ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.pod
(Generate patch)

Comparing libecb/ecb.pod (file contents):
Revision 1.55 by root, Thu Jan 9 05:16:12 2014 UTC vs.
Revision 1.81 by root, Mon Jan 20 21:01:29 2020 UTC

58 58
59=head2 TYPES / TYPE SUPPORT 59=head2 TYPES / TYPE SUPPORT
60 60
61ecb.h makes sure that the following types are defined (in the expected way): 61ecb.h makes sure that the following types are defined (in the expected way):
62 62
63 int8_t uint8_t int16_t uint16_t 63 int8_t uint8_
64 int32_t uint32_t int64_t uint64_t 64 int16_t uint16_t
65 int32_t uint32_
66 int64_t uint64_t
67 int_fast8_t uint_fast8_t
68 int_fast16_t uint_fast16_t
69 int_fast32_t uint_fast32_t
70 int_fast64_t uint_fast64_t
65 intptr_t uintptr_t 71 intptr_t uintptr_t
66 72
67The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this 73The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this
68platform (currently C<4> or C<8>) and can be used in preprocessor 74platform (currently C<4> or C<8>) and can be used in preprocessor
69expressions. 75expressions.
70 76
71For C<ptrdiff_t> and C<size_t> use C<stddef.h>. 77For C<ptrdiff_t> and C<size_t> use C<stddef.h>/C<cstddef>.
72 78
73=head2 LANGUAGE/COMPILER VERSIONS 79=head2 LANGUAGE/ENVIRONMENT/COMPILER VERSIONS
74 80
75All the following symbols expand to an expression that can be tested in 81All the following symbols expand to an expression that can be tested in
76preprocessor instructions as well as treated as a boolean (use C<!!> to 82preprocessor instructions as well as treated as a boolean (use C<!!> to
77ensure it's either C<0> or C<1> if you need that). 83ensure it's either C<0> or C<1> if you need that).
78 84
899899:1999) or any later version, while not claiming to be C++. 959899:1999) or any later version, while not claiming to be C++.
90 96
91Note that later versions (ECB_C11) remove core features again (for 97Note that later versions (ECB_C11) remove core features again (for
92example, variable length arrays). 98example, variable length arrays).
93 99
94=item ECB_C11 100=item ECB_C11, ECB_C17
95 101
96True if the implementation claims to be compliant to C11 (ISO/IEC 102True if the implementation claims to be compliant to C11/C17 (ISO/IEC
979899:2011) or any later version, while not claiming to be C++. 1039899:2011, :20187) or any later version, while not claiming to be C++.
98 104
99=item ECB_CPP 105=item ECB_CPP
100 106
101True if the implementation defines the C<__cplusplus__> macro to a true 107True if the implementation defines the C<__cplusplus__> macro to a true
102value, which is typically true for C++ compilers. 108value, which is typically true for C++ compilers.
103 109
104=item ECB_CPP11 110=item ECB_CPP11, ECB_CPP14, ECB_CPP17
105 111
106True if the implementation claims to be compliant to ISO/IEC 14882:2011 112True if the implementation claims to be compliant to C++11/C++14/C++17
107(C++11) or any later version. 113(ISO/IEC 14882:2011, :2014, :2017) or any later version.
108 114
115=item ECB_OPTIMIZE_SIZE
116
117Is C<1> when the compiler optimizes for size, C<0> otherwise. This symbol
118can also be defined before including F<ecb.h>, in which case it will be
119unchanged.
120
109=item ECB_GCC_VERSION(major,minor) 121=item ECB_GCC_VERSION (major, minor)
110 122
111Expands to a true value (suitable for testing in by the preprocessor) 123Expands to a true value (suitable for testing in by the preprocessor)
112if the compiler used is GNU C and the version is the given version, or 124if the compiler used is GNU C and the version is the given version, or
113higher. 125higher.
114 126
163C<__x86_64> stands for, well, the x86-64 ABI, making these macros 175C<__x86_64> stands for, well, the x86-64 ABI, making these macros
164necessary. 176necessary.
165 177
166=back 178=back
167 179
180=head2 MACRO TRICKERY
181
182=over 4
183
184=item ECB_CONCAT (a, b)
185
186Expands any macros in C<a> and C<b>, then concatenates the result to form
187a single token. This is mainly useful to form identifiers from components,
188e.g.:
189
190 #define S1 str
191 #define S2 cpy
192
193 ECB_CONCAT (S1, S2)(dst, src); // == strcpy (dst, src);
194
195=item ECB_STRINGIFY (arg)
196
197Expands any macros in C<arg> and returns the stringified version of
198it. This is mainly useful to get the contents of a macro in string form,
199e.g.:
200
201 #define SQL_LIMIT 100
202 sql_exec ("select * from table limit " ECB_STRINGIFY (SQL_LIMIT));
203
204=item ECB_STRINGIFY_EXPR (expr)
205
206Like C<ECB_STRINGIFY>, but additionally evaluates C<expr> to make sure it
207is a valid expression. This is useful to catch typos or cases where the
208macro isn't available:
209
210 #include <errno.h>
211
212 ECB_STRINGIFY (EDOM); // "33" (on my system at least)
213 ECB_STRINGIFY_EXPR (EDOM); // "33"
214
215 // now imagine we had a typo:
216
217 ECB_STRINGIFY (EDAM); // "EDAM"
218 ECB_STRINGIFY_EXPR (EDAM); // error: EDAM undefined
219
220=back
221
168=head2 GCC ATTRIBUTES 222=head2 ATTRIBUTES
169 223
170A major part of libecb deals with GCC attributes. These are additional 224A major part of libecb deals with additional attributes that can be
171attributes that you can assign to functions, variables and sometimes even 225assigned to functions, variables and sometimes even types - much like
172types - much like C<const> or C<volatile> in C. 226C<const> or C<volatile> in C. They are implemented using either GCC
173 227attributes or other compiler/language specific features. Attributes
174While GCC allows declarations to show up in many surprising places,
175but not in many expected places, the safest way is to put attribute
176declarations before the whole declaration: 228declarations must be put before the whole declaration:
177 229
178 ecb_const int mysqrt (int a); 230 ecb_const int mysqrt (int a);
179 ecb_unused int i; 231 ecb_unused int i;
180 232
181For variables, it is often nicer to put the attribute after the name, and
182avoid multiple declarations using commas:
183
184 int i ecb_unused;
185
186=over 4 233=over 4
187
188=item ecb_attribute ((attrs...))
189
190A simple wrapper that expands to C<__attribute__((attrs))> on GCC, and to
191nothing on other compilers, so the effect is that only GCC sees these.
192
193Example: use the C<deprecated> attribute on a function.
194
195 ecb_attribute((__deprecated__)) void
196 do_not_use_me_anymore (void);
197 234
198=item ecb_unused 235=item ecb_unused
199 236
200Marks a function or a variable as "unused", which simply suppresses a 237Marks a function or a variable as "unused", which simply suppresses a
201warning by GCC when it detects it as unused. This is useful when you e.g. 238warning by GCC when it detects it as unused. This is useful when you e.g.
202declare a variable but do not always use it: 239declare a variable but do not always use it:
203 240
204 { 241 {
205 int var ecb_unused; 242 ecb_unused int var;
206 243
207 #ifdef SOMECONDITION 244 #ifdef SOMECONDITION
208 var = ...; 245 var = ...;
209 return var; 246 return var;
210 #else 247 #else
211 return 0; 248 return 0;
212 #endif 249 #endif
213 } 250 }
214 251
252=item ecb_deprecated
253
254Similar to C<ecb_unused>, but marks a function, variable or type as
255deprecated. This makes some compilers warn when the type is used.
256
257=item ecb_deprecated_message (message)
258
259Same as C<ecb_deprecated>, but if possible, the specified diagnostic is
260used instead of a generic depreciation message when the object is being
261used.
262
215=item ecb_inline 263=item ecb_inline
216 264
217This is not actually an attribute, but you use it like one. It expands 265Expands either to (a compiler-specific equivalent of) C<static inline> or
218either to C<static inline> or to just C<static>, if inline isn't 266to just C<static>, if inline isn't supported. It should be used to declare
219supported. It should be used to declare functions that should be inlined, 267functions that should be inlined, for code size or speed reasons.
220for code size or speed reasons.
221 268
222Example: inline this function, it surely will reduce codesize. 269Example: inline this function, it surely will reduce codesize.
223 270
224 ecb_inline int 271 ecb_inline int
225 negmul (int a, int b) 272 negmul (int a, int b)
227 return - (a * b); 274 return - (a * b);
228 } 275 }
229 276
230=item ecb_noinline 277=item ecb_noinline
231 278
232Prevent a function from being inlined - it might be optimised away, but 279Prevents a function from being inlined - it might be optimised away, but
233not inlined into other functions. This is useful if you know your function 280not inlined into other functions. This is useful if you know your function
234is rarely called and large enough for inlining not to be helpful. 281is rarely called and large enough for inlining not to be helpful.
235 282
236=item ecb_noreturn 283=item ecb_noreturn
237 284
258 305
259Example: multiply a vector, and allow the compiler to parallelise the 306Example: multiply a vector, and allow the compiler to parallelise the
260loop, because it knows it doesn't overwrite input values. 307loop, because it knows it doesn't overwrite input values.
261 308
262 void 309 void
263 multiply (float *ecb_restrict src, 310 multiply (ecb_restrict float *src,
264 float *ecb_restrict dst, 311 ecb_restrict float *dst,
265 int len, float factor) 312 int len, float factor)
266 { 313 {
267 int i; 314 int i;
268 315
269 for (i = 0; i < len; ++i) 316 for (i = 0; i < len; ++i)
367 414
368=head2 OPTIMISATION HINTS 415=head2 OPTIMISATION HINTS
369 416
370=over 4 417=over 4
371 418
372=item bool ecb_is_constant(expr) 419=item bool ecb_is_constant (expr)
373 420
374Returns true iff the expression can be deduced to be a compile-time 421Returns true iff the expression can be deduced to be a compile-time
375constant, and false otherwise. 422constant, and false otherwise.
376 423
377For example, when you have a C<rndm16> function that returns a 16 bit 424For example, when you have a C<rndm16> function that returns a 16 bit
395 return is_constant (n) && !(n & (n - 1)) 442 return is_constant (n) && !(n & (n - 1))
396 ? rndm16 () & (num - 1) 443 ? rndm16 () & (num - 1)
397 : (n * (uint32_t)rndm16 ()) >> 16; 444 : (n * (uint32_t)rndm16 ()) >> 16;
398 } 445 }
399 446
400=item bool ecb_expect (expr, value) 447=item ecb_expect (expr, value)
401 448
402Evaluates C<expr> and returns it. In addition, it tells the compiler that 449Evaluates C<expr> and returns it. In addition, it tells the compiler that
403the C<expr> evaluates to C<value> a lot, which can be used for static 450the C<expr> evaluates to C<value> a lot, which can be used for static
404branch optimisations. 451branch optimisations.
405 452
452 { 499 {
453 if (ecb_expect_false (current + size > end)) 500 if (ecb_expect_false (current + size > end))
454 real_reserve_method (size); /* presumably noinline */ 501 real_reserve_method (size); /* presumably noinline */
455 } 502 }
456 503
457=item bool ecb_assume (cond) 504=item ecb_assume (cond)
458 505
459Try to tell the compiler that some condition is true, even if it's not 506Tries to tell the compiler that some condition is true, even if it's not
460obvious. 507obvious. This is not a function, but a statement: it cannot be used in
508another expression.
461 509
462This can be used to teach the compiler about invariants or other 510This can be used to teach the compiler about invariants or other
463conditions that might improve code generation, but which are impossible to 511conditions that might improve code generation, but which are impossible to
464deduce form the code itself. 512deduce form the code itself.
465 513
482 530
483Then the compiler I<might> be able to optimise out the second call 531Then the compiler I<might> be able to optimise out the second call
484completely, as it knows that C<< current + 1 > end >> is false and the 532completely, as it knows that C<< current + 1 > end >> is false and the
485call will never be executed. 533call will never be executed.
486 534
487=item bool ecb_unreachable () 535=item ecb_unreachable ()
488 536
489This function does nothing itself, except tell the compiler that it will 537This function does nothing itself, except tell the compiler that it will
490never be executed. Apart from suppressing a warning in some cases, this 538never be executed. Apart from suppressing a warning in some cases, this
491function can be used to implement C<ecb_assume> or similar functions. 539function can be used to implement C<ecb_assume> or similar functionality.
492 540
493=item bool ecb_prefetch (addr, rw, locality) 541=item ecb_prefetch (addr, rw, locality)
494 542
495Tells the compiler to try to prefetch memory at the given C<addr>ess 543Tells the compiler to try to prefetch memory at the given C<addr>ess
496for either reading (C<rw> = 0) or writing (C<rw> = 1). A C<locality> of 544for either reading (C<rw> = 0) or writing (C<rw> = 1). A C<locality> of
497C<0> means that there will only be one access later, C<3> means that 545C<0> means that there will only be one access later, C<3> means that
498the data will likely be accessed very often, and values in between mean 546the data will likely be accessed very often, and values in between mean
499something... in between. The memory pointed to by the address does not 547something... in between. The memory pointed to by the address does not
500need to be accessible (it could be a null pointer for example), but C<rw> 548need to be accessible (it could be a null pointer for example), but C<rw>
501and C<locality> must be compile-time constants. 549and C<locality> must be compile-time constants.
502 550
551This is a statement, not a function: you cannot use it as part of an
552expression.
553
503An obvious way to use this is to prefetch some data far away, in a big 554An obvious way to use this is to prefetch some data far away, in a big
504array you loop over. This prefetches memory some 128 array elements later, 555array you loop over. This prefetches memory some 128 array elements later,
505in the hope that it will be ready when the CPU arrives at that location. 556in the hope that it will be ready when the CPU arrives at that location.
506 557
507 int sum = 0; 558 int sum = 0;
544 595
545=item int ecb_ctz32 (uint32_t x) 596=item int ecb_ctz32 (uint32_t x)
546 597
547=item int ecb_ctz64 (uint64_t x) 598=item int ecb_ctz64 (uint64_t x)
548 599
600=item int ecb_ctz (T x) [C++]
601
549Returns the index of the least significant bit set in C<x> (or 602Returns the index of the least significant bit set in C<x> (or
550equivalently the number of bits set to 0 before the least significant bit 603equivalently the number of bits set to 0 before the least significant bit
551set), starting from 0. If C<x> is 0 the result is undefined. 604set), starting from 0. If C<x> is 0 the result is undefined.
552 605
553For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>. 606For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>.
554 607
608The overloaded C++ C<ecb_ctz> function supports C<uint8_t>, C<uint16_t>,
609C<uint32_t> and C<uint64_t> types.
610
555For example: 611For example:
556 612
557 ecb_ctz32 (3) = 0 613 ecb_ctz32 (3) = 0
558 ecb_ctz32 (6) = 1 614 ecb_ctz32 (6) = 1
559 615
560=item bool ecb_is_pot32 (uint32_t x) 616=item bool ecb_is_pot32 (uint32_t x)
561 617
562=item bool ecb_is_pot64 (uint32_t x) 618=item bool ecb_is_pot64 (uint32_t x)
563 619
620=item bool ecb_is_pot (T x) [C++]
621
564Return true iff C<x> is a power of two or C<x == 0>. 622Returns true iff C<x> is a power of two or C<x == 0>.
565 623
566For smaller types then C<uint32_t> you can safely use C<ecb_is_pot32>. 624For smaller types than C<uint32_t> you can safely use C<ecb_is_pot32>.
625
626The overloaded C++ C<ecb_is_pot> function supports C<uint8_t>, C<uint16_t>,
627C<uint32_t> and C<uint64_t> types.
567 628
568=item int ecb_ld32 (uint32_t x) 629=item int ecb_ld32 (uint32_t x)
569 630
570=item int ecb_ld64 (uint64_t x) 631=item int ecb_ld64 (uint64_t x)
632
633=item int ecb_ld64 (T x) [C++]
571 634
572Returns the index of the most significant bit set in C<x>, or the number 635Returns the index of the most significant bit set in C<x>, or the number
573of digits the number requires in binary (so that C<< 2**ld <= x < 636of digits the number requires in binary (so that C<< 2**ld <= x <
5742**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is 6372**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is
575to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for 638to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for
580the given data type), while C<ecb_ld> returns how many bits the number 643the given data type), while C<ecb_ld> returns how many bits the number
581itself requires. 644itself requires.
582 645
583For smaller types than C<uint32_t> you can safely use C<ecb_ld32>. 646For smaller types than C<uint32_t> you can safely use C<ecb_ld32>.
584 647
648The overloaded C++ C<ecb_ld> function supports C<uint8_t>, C<uint16_t>,
649C<uint32_t> and C<uint64_t> types.
650
585=item int ecb_popcount32 (uint32_t x) 651=item int ecb_popcount32 (uint32_t x)
586 652
587=item int ecb_popcount64 (uint64_t x) 653=item int ecb_popcount64 (uint64_t x)
588 654
655=item int ecb_popcount (T x) [C++]
656
589Returns the number of bits set to 1 in C<x>. 657Returns the number of bits set to 1 in C<x>.
590 658
591For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>. 659For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>.
660
661The overloaded C++ C<ecb_popcount> function supports C<uint8_t>, C<uint16_t>,
662C<uint32_t> and C<uint64_t> types.
592 663
593For example: 664For example:
594 665
595 ecb_popcount32 (7) = 3 666 ecb_popcount32 (7) = 3
596 ecb_popcount32 (255) = 8 667 ecb_popcount32 (255) = 8
599 670
600=item uint16_t ecb_bitrev16 (uint16_t x) 671=item uint16_t ecb_bitrev16 (uint16_t x)
601 672
602=item uint32_t ecb_bitrev32 (uint32_t x) 673=item uint32_t ecb_bitrev32 (uint32_t x)
603 674
675=item T ecb_bitrev (T x) [C++]
676
604Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1 677Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1
605and so on. 678and so on.
606 679
680The overloaded C++ C<ecb_bitrev> function supports C<uint8_t>, C<uint16_t> and C<uint32_t> types.
681
607Example: 682Example:
608 683
609 ecb_bitrev8 (0xa7) = 0xea 684 ecb_bitrev8 (0xa7) = 0xea
610 ecb_bitrev32 (0xffcc4411) = 0x882233ff 685 ecb_bitrev32 (0xffcc4411) = 0x882233ff
611 686
687=item T ecb_bitrev (T x) [C++]
688
689Overloaded C++ bitrev function.
690
691C<T> must be one of C<uint8_t>, C<uint16_t> or C<uint32_t>.
692
612=item uint32_t ecb_bswap16 (uint32_t x) 693=item uint32_t ecb_bswap16 (uint32_t x)
613 694
614=item uint32_t ecb_bswap32 (uint32_t x) 695=item uint32_t ecb_bswap32 (uint32_t x)
615 696
616=item uint64_t ecb_bswap64 (uint64_t x) 697=item uint64_t ecb_bswap64 (uint64_t x)
698
699=item T ecb_bswap (T x)
617 700
618These functions return the value of the 16-bit (32-bit, 64-bit) value 701These functions return the value of the 16-bit (32-bit, 64-bit) value
619C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in 702C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in
620C<ecb_bswap32>). 703C<ecb_bswap32>).
621 704
705The overloaded C++ C<ecb_bswap> function supports C<uint8_t>, C<uint16_t>,
706C<uint32_t> and C<uint64_t> types.
707
622=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count) 708=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count)
623 709
624=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count) 710=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count)
625 711
626=item uint32_t ecb_rotl32 (uint32_t x, unsigned int count) 712=item uint32_t ecb_rotl32 (uint32_t x, unsigned int count)
641 727
642Current GCC versions understand these functions and usually compile them 728Current GCC versions understand these functions and usually compile them
643to "optimal" code (e.g. a single C<rol> or a combination of C<shld> on 729to "optimal" code (e.g. a single C<rol> or a combination of C<shld> on
644x86). 730x86).
645 731
732=item T ecb_rotl (T x, unsigned int count) [C++]
733
734=item T ecb_rotr (T x, unsigned int count) [C++]
735
736Overloaded C++ rotl/rotr functions.
737
738C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
739
646=back 740=back
647 741
742=head2 HOST ENDIANNESS CONVERSION
743
744=over 4
745
746=item uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v)
747
748=item uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v)
749
750=item uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v)
751
752=item uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v)
753
754=item uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v)
755
756=item uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v)
757
758Convert an unsigned 16, 32 or 64 bit value from big or little endian to host byte order.
759
760The naming convention is C<ecb_>(C<be>|C<le>)C<_u>C<16|32|64>C<_to_host>,
761where C<be> and C<le> stand for big endian and little endian, respectively.
762
763=item uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v)
764
765=item uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v)
766
767=item uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v)
768
769=item uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v)
770
771=item uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v)
772
773=item uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v)
774
775Like above, but converts I<from> host byte order to the specified
776endianness.
777
778=back
779
780In C++ the following additional template functions are supported:
781
782=over 4
783
784=item T ecb_be_to_host (T v)
785
786=item T ecb_le_to_host (T v)
787
788=item T ecb_host_to_be (T v)
789
790=item T ecb_host_to_le (T v)
791
792These functions work like their C counterparts, above, but use templates,
793which make them useful in generic code.
794
795C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>
796(so unlike their C counterparts, there is a version for C<uint8_t>, which
797again can be useful in generic code).
798
799=head2 UNALIGNED LOAD/STORE
800
801These function load or store unaligned multi-byte values.
802
803=over 4
804
805=item uint_fast16_t ecb_peek_u16_u (const void *ptr)
806
807=item uint_fast32_t ecb_peek_u32_u (const void *ptr)
808
809=item uint_fast64_t ecb_peek_u64_u (const void *ptr)
810
811These functions load an unaligned, unsigned 16, 32 or 64 bit value from
812memory.
813
814=item uint_fast16_t ecb_peek_be_u16_u (const void *ptr)
815
816=item uint_fast32_t ecb_peek_be_u32_u (const void *ptr)
817
818=item uint_fast64_t ecb_peek_be_u64_u (const void *ptr)
819
820=item uint_fast16_t ecb_peek_le_u16_u (const void *ptr)
821
822=item uint_fast32_t ecb_peek_le_u32_u (const void *ptr)
823
824=item uint_fast64_t ecb_peek_le_u64_u (const void *ptr)
825
826Like above, but additionally convert from big endian (C<be>) or little
827endian (C<le>) byte order to host byte order while doing so.
828
829=item ecb_poke_u16_u (void *ptr, uint16_t v)
830
831=item ecb_poke_u32_u (void *ptr, uint32_t v)
832
833=item ecb_poke_u64_u (void *ptr, uint64_t v)
834
835These functions store an unaligned, unsigned 16, 32 or 64 bit value to
836memory.
837
838=item ecb_poke_be_u16_u (void *ptr, uint_fast16_t v)
839
840=item ecb_poke_be_u32_u (void *ptr, uint_fast32_t v)
841
842=item ecb_poke_be_u64_u (void *ptr, uint_fast64_t v)
843
844=item ecb_poke_le_u16_u (void *ptr, uint_fast16_t v)
845
846=item ecb_poke_le_u32_u (void *ptr, uint_fast32_t v)
847
848=item ecb_poke_le_u64_u (void *ptr, uint_fast64_t v)
849
850Like above, but additionally convert from host byte order to big endian
851(C<be>) or little endian (C<le>) byte order while doing so.
852
853=back
854
855In C++ the following additional template functions are supported:
856
857=over 4
858
859=item T ecb_peek<T> (const void *ptr)
860
861=item T ecb_peek_be<T> (const void *ptr)
862
863=item T ecb_peek_le<T> (const void *ptr)
864
865=item T ecb_peek_u<T> (const void *ptr)
866
867=item T ecb_peek_be_u<T> (const void *ptr)
868
869=item T ecb_peek_le_u<T> (const void *ptr)
870
871Similarly to their C counterparts, these functions load an unsigned 8, 16,
87232 or 64 bit value from memory, with optional conversion from big/little
873endian.
874
875Since the type cannot be deduced, it has to be specified explicitly, e.g.
876
877 uint_fast16_t v = ecb_peek<uint16_t> (ptr);
878
879C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
880
881Unlike their C counterparts, these functions support 8 bit quantities
882(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
883all of which hopefully makes them more useful in generic code.
884
885=item ecb_poke (void *ptr, T v)
886
887=item ecb_poke_be (void *ptr, T v)
888
889=item ecb_poke_le (void *ptr, T v)
890
891=item ecb_poke_u (void *ptr, T v)
892
893=item ecb_poke_be_u (void *ptr, T v)
894
895=item ecb_poke_le_u (void *ptr, T v)
896
897Again, similarly to their C counterparts, these functions store an
898unsigned 8, 16, 32 or z64 bit value to memory, with optional conversion to
899big/little endian.
900
901C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
902
903Unlike their C counterparts, these functions support 8 bit quantities
904(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
905all of which hopefully makes them more useful in generic code.
906
907=back
908
648=head2 FLOATING POINT FIDDLING 909=head2 FLOATING POINT FIDDLING
649 910
650=over 4 911=over 4
651 912
913=item ECB_INFINITY [-UECB_NO_LIBM]
914
915Evaluates to positive infinity if supported by the platform, otherwise to
916a truly huge number.
917
918=item ECB_NAN [-UECB_NO_LIBM]
919
920Evaluates to a quiet NAN if supported by the platform, otherwise to
921C<ECB_INFINITY>.
922
923=item float ecb_ldexpf (float x, int exp) [-UECB_NO_LIBM]
924
925Same as C<ldexpf>, but always available.
926
927=item uint32_t ecb_float_to_binary16 (float x) [-UECB_NO_LIBM]
928
652=item uint32_t ecb_float_to_binary32 (float x) [-UECB_NO_LIBM] 929=item uint32_t ecb_float_to_binary32 (float x) [-UECB_NO_LIBM]
653 930
654=item uint64_t ecb_double_to_binary64 (double x) [-UECB_NO_LIBM] 931=item uint64_t ecb_double_to_binary64 (double x) [-UECB_NO_LIBM]
655 932
656These functions each take an argument in the native C<float> or C<double> 933These functions each take an argument in the native C<float> or C<double>
657type and return the IEEE 754 bit representation of it. 934type and return the IEEE 754 bit representation of it (binary16/half,
935binary32/single or binary64/double precision).
658 936
659The bit representation is just as IEEE 754 defines it, i.e. the sign bit 937The bit representation is just as IEEE 754 defines it, i.e. the sign bit
660will be the most significant bit, followed by exponent and mantissa. 938will be the most significant bit, followed by exponent and mantissa.
661 939
662This function should work even when the native floating point format isn't 940This function should work even when the native floating point format isn't
666 944
667On all modern platforms (where C<ECB_STDFP> is true), the compiler should 945On all modern platforms (where C<ECB_STDFP> is true), the compiler should
668be able to optimise away this function completely. 946be able to optimise away this function completely.
669 947
670These functions can be helpful when serialising floats to the network - you 948These functions can be helpful when serialising floats to the network - you
671can serialise the return value like a normal uint32_t/uint64_t. 949can serialise the return value like a normal uint16_t/uint32_t/uint64_t.
672 950
673Another use for these functions is to manipulate floating point values 951Another use for these functions is to manipulate floating point values
674directly. 952directly.
675 953
676Silly example: toggle the sign bit of a float. 954Silly example: toggle the sign bit of a float.
679 /* this results in a single add instruction to toggle the bit, and 4 extra */ 957 /* this results in a single add instruction to toggle the bit, and 4 extra */
680 /* instructions to move the float value to an integer register and back. */ 958 /* instructions to move the float value to an integer register and back. */
681 959
682 x = ecb_binary32_to_float (ecb_float_to_binary32 (x) ^ 0x80000000U) 960 x = ecb_binary32_to_float (ecb_float_to_binary32 (x) ^ 0x80000000U)
683 961
962=item float ecb_binary16_to_float (uint16_t x) [-UECB_NO_LIBM]
963
684=item float ecb_binary32_to_float (uint32_t x) [-UECB_NO_LIBM] 964=item float ecb_binary32_to_float (uint32_t x) [-UECB_NO_LIBM]
685 965
686=item double ecb_binary32_to_double (uint64_t x) [-UECB_NO_LIBM] 966=item double ecb_binary64_to_double (uint64_t x) [-UECB_NO_LIBM]
687 967
688The reverse operation of the previos function - takes the bit representation 968The reverse operation of the previous function - takes the bit
689of an IEEE binary32 or binary64 number and converts it to the native C<float> 969representation of an IEEE binary16, binary32 or binary64 number (half,
970single or double precision) and converts it to the native C<float> or
690or C<double> format. 971C<double> format.
691 972
692This function should work even when the native floating point format isn't 973This function should work even when the native floating point format isn't
693IEEE compliant, of course at a speed and code size penalty, and of course 974IEEE compliant, of course at a speed and code size penalty, and of course
694also within reasonable limits (it tries to convert normals and denormals, 975also within reasonable limits (it tries to convert normals and denormals,
695and might be lucky for infinities, and with extraordinary luck, also for 976and might be lucky for infinities, and with extraordinary luck, also for
696negative zero). 977negative zero).
697 978
698On all modern platforms (where C<ECB_STDFP> is true), the compiler should 979On all modern platforms (where C<ECB_STDFP> is true), the compiler should
699be able to optimise away this function completely. 980be able to optimise away this function completely.
981
982=item uint16_t ecb_binary32_to_binary16 (uint32_t x)
983
984=item uint32_t ecb_binary16_to_binary32 (uint16_t x)
985
986Convert a IEEE binary32/single precision to binary16/half format, and vice
987versa, handling all details (round-to-nearest-even, subnormals, infinity
988and NaNs) correctly.
989
990These are functions are available under C<-DECB_NO_LIBM>, since
991they do not rely on the platform floating point format. The
992C<ecb_float_to_binary16> and C<ecb_binary16_to_float> functions are
993usually what you want.
700 994
701=back 995=back
702 996
703=head2 ARITHMETIC 997=head2 ARITHMETIC
704 998
785dependencies on the math library (usually called F<-lm>) - these are 1079dependencies on the math library (usually called F<-lm>) - these are
786marked with [-UECB_NO_LIBM]. 1080marked with [-UECB_NO_LIBM].
787 1081
788=back 1082=back
789 1083
1084=head1 UNDOCUMENTED FUNCTIONALITY
790 1085
1086F<ecb.h> is full of undocumented functionality as well, some of which is
1087intended to be internal-use only, some of which we forgot to document, and
1088some of which we hide because we are not sure we will keep the interface
1089stable.
1090
1091While you are welcome to rummage around and use whatever you find useful
1092(we can't stop you), keep in mind that we will change undocumented
1093functionality in incompatible ways without thinking twice, while we are
1094considerably more conservative with documented things.
1095
1096=head1 AUTHORS
1097
1098C<libecb> is designed and maintained by:
1099
1100 Emanuele Giaquinta <e.giaquinta@glauco.it>
1101 Marc Alexander Lehmann <schmorp@schmorp.de>
1102
1103

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines