ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.pod
(Generate patch)

Comparing libecb/ecb.pod (file contents):
Revision 1.59 by sf-exg, Mon Jan 26 12:04:56 2015 UTC vs.
Revision 1.81 by root, Mon Jan 20 21:01:29 2020 UTC

58 58
59=head2 TYPES / TYPE SUPPORT 59=head2 TYPES / TYPE SUPPORT
60 60
61ecb.h makes sure that the following types are defined (in the expected way): 61ecb.h makes sure that the following types are defined (in the expected way):
62 62
63 int8_t uint8_t int16_t uint16_t 63 int8_t uint8_
64 int32_t uint32_t int64_t uint64_t 64 int16_t uint16_t
65 int32_t uint32_
66 int64_t uint64_t
67 int_fast8_t uint_fast8_t
68 int_fast16_t uint_fast16_t
69 int_fast32_t uint_fast32_t
70 int_fast64_t uint_fast64_t
65 intptr_t uintptr_t 71 intptr_t uintptr_t
66 72
67The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this 73The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this
68platform (currently C<4> or C<8>) and can be used in preprocessor 74platform (currently C<4> or C<8>) and can be used in preprocessor
69expressions. 75expressions.
70 76
71For C<ptrdiff_t> and C<size_t> use C<stddef.h>. 77For C<ptrdiff_t> and C<size_t> use C<stddef.h>/C<cstddef>.
72 78
73=head2 LANGUAGE/COMPILER VERSIONS 79=head2 LANGUAGE/ENVIRONMENT/COMPILER VERSIONS
74 80
75All the following symbols expand to an expression that can be tested in 81All the following symbols expand to an expression that can be tested in
76preprocessor instructions as well as treated as a boolean (use C<!!> to 82preprocessor instructions as well as treated as a boolean (use C<!!> to
77ensure it's either C<0> or C<1> if you need that). 83ensure it's either C<0> or C<1> if you need that).
78 84
899899:1999) or any later version, while not claiming to be C++. 959899:1999) or any later version, while not claiming to be C++.
90 96
91Note that later versions (ECB_C11) remove core features again (for 97Note that later versions (ECB_C11) remove core features again (for
92example, variable length arrays). 98example, variable length arrays).
93 99
94=item ECB_C11 100=item ECB_C11, ECB_C17
95 101
96True if the implementation claims to be compliant to C11 (ISO/IEC 102True if the implementation claims to be compliant to C11/C17 (ISO/IEC
979899:2011) or any later version, while not claiming to be C++. 1039899:2011, :20187) or any later version, while not claiming to be C++.
98 104
99=item ECB_CPP 105=item ECB_CPP
100 106
101True if the implementation defines the C<__cplusplus__> macro to a true 107True if the implementation defines the C<__cplusplus__> macro to a true
102value, which is typically true for C++ compilers. 108value, which is typically true for C++ compilers.
103 109
104=item ECB_CPP11 110=item ECB_CPP11, ECB_CPP14, ECB_CPP17
105 111
106True if the implementation claims to be compliant to ISO/IEC 14882:2011 112True if the implementation claims to be compliant to C++11/C++14/C++17
107(C++11) or any later version. 113(ISO/IEC 14882:2011, :2014, :2017) or any later version.
114
115=item ECB_OPTIMIZE_SIZE
116
117Is C<1> when the compiler optimizes for size, C<0> otherwise. This symbol
118can also be defined before including F<ecb.h>, in which case it will be
119unchanged.
108 120
109=item ECB_GCC_VERSION (major, minor) 121=item ECB_GCC_VERSION (major, minor)
110 122
111Expands to a true value (suitable for testing in by the preprocessor) 123Expands to a true value (suitable for testing in by the preprocessor)
112if the compiler used is GNU C and the version is the given version, or 124if the compiler used is GNU C and the version is the given version, or
163C<__x86_64> stands for, well, the x86-64 ABI, making these macros 175C<__x86_64> stands for, well, the x86-64 ABI, making these macros
164necessary. 176necessary.
165 177
166=back 178=back
167 179
180=head2 MACRO TRICKERY
181
182=over 4
183
184=item ECB_CONCAT (a, b)
185
186Expands any macros in C<a> and C<b>, then concatenates the result to form
187a single token. This is mainly useful to form identifiers from components,
188e.g.:
189
190 #define S1 str
191 #define S2 cpy
192
193 ECB_CONCAT (S1, S2)(dst, src); // == strcpy (dst, src);
194
195=item ECB_STRINGIFY (arg)
196
197Expands any macros in C<arg> and returns the stringified version of
198it. This is mainly useful to get the contents of a macro in string form,
199e.g.:
200
201 #define SQL_LIMIT 100
202 sql_exec ("select * from table limit " ECB_STRINGIFY (SQL_LIMIT));
203
204=item ECB_STRINGIFY_EXPR (expr)
205
206Like C<ECB_STRINGIFY>, but additionally evaluates C<expr> to make sure it
207is a valid expression. This is useful to catch typos or cases where the
208macro isn't available:
209
210 #include <errno.h>
211
212 ECB_STRINGIFY (EDOM); // "33" (on my system at least)
213 ECB_STRINGIFY_EXPR (EDOM); // "33"
214
215 // now imagine we had a typo:
216
217 ECB_STRINGIFY (EDAM); // "EDAM"
218 ECB_STRINGIFY_EXPR (EDAM); // error: EDAM undefined
219
220=back
221
168=head2 GCC ATTRIBUTES 222=head2 ATTRIBUTES
169 223
170A major part of libecb deals with GCC attributes. These are additional 224A major part of libecb deals with additional attributes that can be
171attributes that you can assign to functions, variables and sometimes even 225assigned to functions, variables and sometimes even types - much like
172types - much like C<const> or C<volatile> in C. 226C<const> or C<volatile> in C. They are implemented using either GCC
173 227attributes or other compiler/language specific features. Attributes
174While GCC allows declarations to show up in many surprising places,
175but not in many expected places, the safest way is to put attribute
176declarations before the whole declaration: 228declarations must be put before the whole declaration:
177 229
178 ecb_const int mysqrt (int a); 230 ecb_const int mysqrt (int a);
179 ecb_unused int i; 231 ecb_unused int i;
180 232
181For variables, it is often nicer to put the attribute after the name, and
182avoid multiple declarations using commas:
183
184 int i ecb_unused;
185
186=over 4 233=over 4
187
188=item ecb_attribute ((attrs...))
189
190A simple wrapper that expands to C<__attribute__((attrs))> on GCC 3.1+ and
191Clang 2.8+, and to nothing on other compilers, so the effect is that only
192GCC and Clang see these.
193
194Example: use the C<deprecated> attribute on a function.
195
196 ecb_attribute((__deprecated__)) void
197 do_not_use_me_anymore (void);
198 234
199=item ecb_unused 235=item ecb_unused
200 236
201Marks a function or a variable as "unused", which simply suppresses a 237Marks a function or a variable as "unused", which simply suppresses a
202warning by GCC when it detects it as unused. This is useful when you e.g. 238warning by GCC when it detects it as unused. This is useful when you e.g.
203declare a variable but do not always use it: 239declare a variable but do not always use it:
204 240
205 { 241 {
206 int var ecb_unused; 242 ecb_unused int var;
207 243
208 #ifdef SOMECONDITION 244 #ifdef SOMECONDITION
209 var = ...; 245 var = ...;
210 return var; 246 return var;
211 #else 247 #else
216=item ecb_deprecated 252=item ecb_deprecated
217 253
218Similar to C<ecb_unused>, but marks a function, variable or type as 254Similar to C<ecb_unused>, but marks a function, variable or type as
219deprecated. This makes some compilers warn when the type is used. 255deprecated. This makes some compilers warn when the type is used.
220 256
257=item ecb_deprecated_message (message)
258
259Same as C<ecb_deprecated>, but if possible, the specified diagnostic is
260used instead of a generic depreciation message when the object is being
261used.
262
221=item ecb_inline 263=item ecb_inline
222 264
223This is not actually an attribute, but you use it like one. It expands 265Expands either to (a compiler-specific equivalent of) C<static inline> or
224either to C<static inline> or to just C<static>, if inline isn't 266to just C<static>, if inline isn't supported. It should be used to declare
225supported. It should be used to declare functions that should be inlined, 267functions that should be inlined, for code size or speed reasons.
226for code size or speed reasons.
227 268
228Example: inline this function, it surely will reduce codesize. 269Example: inline this function, it surely will reduce codesize.
229 270
230 ecb_inline int 271 ecb_inline int
231 negmul (int a, int b) 272 negmul (int a, int b)
233 return - (a * b); 274 return - (a * b);
234 } 275 }
235 276
236=item ecb_noinline 277=item ecb_noinline
237 278
238Prevent a function from being inlined - it might be optimised away, but 279Prevents a function from being inlined - it might be optimised away, but
239not inlined into other functions. This is useful if you know your function 280not inlined into other functions. This is useful if you know your function
240is rarely called and large enough for inlining not to be helpful. 281is rarely called and large enough for inlining not to be helpful.
241 282
242=item ecb_noreturn 283=item ecb_noreturn
243 284
264 305
265Example: multiply a vector, and allow the compiler to parallelise the 306Example: multiply a vector, and allow the compiler to parallelise the
266loop, because it knows it doesn't overwrite input values. 307loop, because it knows it doesn't overwrite input values.
267 308
268 void 309 void
269 multiply (float *ecb_restrict src, 310 multiply (ecb_restrict float *src,
270 float *ecb_restrict dst, 311 ecb_restrict float *dst,
271 int len, float factor) 312 int len, float factor)
272 { 313 {
273 int i; 314 int i;
274 315
275 for (i = 0; i < len; ++i) 316 for (i = 0; i < len; ++i)
401 return is_constant (n) && !(n & (n - 1)) 442 return is_constant (n) && !(n & (n - 1))
402 ? rndm16 () & (num - 1) 443 ? rndm16 () & (num - 1)
403 : (n * (uint32_t)rndm16 ()) >> 16; 444 : (n * (uint32_t)rndm16 ()) >> 16;
404 } 445 }
405 446
406=item bool ecb_expect (expr, value) 447=item ecb_expect (expr, value)
407 448
408Evaluates C<expr> and returns it. In addition, it tells the compiler that 449Evaluates C<expr> and returns it. In addition, it tells the compiler that
409the C<expr> evaluates to C<value> a lot, which can be used for static 450the C<expr> evaluates to C<value> a lot, which can be used for static
410branch optimisations. 451branch optimisations.
411 452
458 { 499 {
459 if (ecb_expect_false (current + size > end)) 500 if (ecb_expect_false (current + size > end))
460 real_reserve_method (size); /* presumably noinline */ 501 real_reserve_method (size); /* presumably noinline */
461 } 502 }
462 503
463=item bool ecb_assume (cond) 504=item ecb_assume (cond)
464 505
465Try to tell the compiler that some condition is true, even if it's not 506Tries to tell the compiler that some condition is true, even if it's not
466obvious. 507obvious. This is not a function, but a statement: it cannot be used in
508another expression.
467 509
468This can be used to teach the compiler about invariants or other 510This can be used to teach the compiler about invariants or other
469conditions that might improve code generation, but which are impossible to 511conditions that might improve code generation, but which are impossible to
470deduce form the code itself. 512deduce form the code itself.
471 513
488 530
489Then the compiler I<might> be able to optimise out the second call 531Then the compiler I<might> be able to optimise out the second call
490completely, as it knows that C<< current + 1 > end >> is false and the 532completely, as it knows that C<< current + 1 > end >> is false and the
491call will never be executed. 533call will never be executed.
492 534
493=item bool ecb_unreachable () 535=item ecb_unreachable ()
494 536
495This function does nothing itself, except tell the compiler that it will 537This function does nothing itself, except tell the compiler that it will
496never be executed. Apart from suppressing a warning in some cases, this 538never be executed. Apart from suppressing a warning in some cases, this
497function can be used to implement C<ecb_assume> or similar functions. 539function can be used to implement C<ecb_assume> or similar functionality.
498 540
499=item bool ecb_prefetch (addr, rw, locality) 541=item ecb_prefetch (addr, rw, locality)
500 542
501Tells the compiler to try to prefetch memory at the given C<addr>ess 543Tells the compiler to try to prefetch memory at the given C<addr>ess
502for either reading (C<rw> = 0) or writing (C<rw> = 1). A C<locality> of 544for either reading (C<rw> = 0) or writing (C<rw> = 1). A C<locality> of
503C<0> means that there will only be one access later, C<3> means that 545C<0> means that there will only be one access later, C<3> means that
504the data will likely be accessed very often, and values in between mean 546the data will likely be accessed very often, and values in between mean
505something... in between. The memory pointed to by the address does not 547something... in between. The memory pointed to by the address does not
506need to be accessible (it could be a null pointer for example), but C<rw> 548need to be accessible (it could be a null pointer for example), but C<rw>
507and C<locality> must be compile-time constants. 549and C<locality> must be compile-time constants.
508 550
551This is a statement, not a function: you cannot use it as part of an
552expression.
553
509An obvious way to use this is to prefetch some data far away, in a big 554An obvious way to use this is to prefetch some data far away, in a big
510array you loop over. This prefetches memory some 128 array elements later, 555array you loop over. This prefetches memory some 128 array elements later,
511in the hope that it will be ready when the CPU arrives at that location. 556in the hope that it will be ready when the CPU arrives at that location.
512 557
513 int sum = 0; 558 int sum = 0;
550 595
551=item int ecb_ctz32 (uint32_t x) 596=item int ecb_ctz32 (uint32_t x)
552 597
553=item int ecb_ctz64 (uint64_t x) 598=item int ecb_ctz64 (uint64_t x)
554 599
600=item int ecb_ctz (T x) [C++]
601
555Returns the index of the least significant bit set in C<x> (or 602Returns the index of the least significant bit set in C<x> (or
556equivalently the number of bits set to 0 before the least significant bit 603equivalently the number of bits set to 0 before the least significant bit
557set), starting from 0. If C<x> is 0 the result is undefined. 604set), starting from 0. If C<x> is 0 the result is undefined.
558 605
559For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>. 606For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>.
560 607
608The overloaded C++ C<ecb_ctz> function supports C<uint8_t>, C<uint16_t>,
609C<uint32_t> and C<uint64_t> types.
610
561For example: 611For example:
562 612
563 ecb_ctz32 (3) = 0 613 ecb_ctz32 (3) = 0
564 ecb_ctz32 (6) = 1 614 ecb_ctz32 (6) = 1
565 615
566=item bool ecb_is_pot32 (uint32_t x) 616=item bool ecb_is_pot32 (uint32_t x)
567 617
568=item bool ecb_is_pot64 (uint32_t x) 618=item bool ecb_is_pot64 (uint32_t x)
569 619
620=item bool ecb_is_pot (T x) [C++]
621
570Return true iff C<x> is a power of two or C<x == 0>. 622Returns true iff C<x> is a power of two or C<x == 0>.
571 623
572For smaller types then C<uint32_t> you can safely use C<ecb_is_pot32>. 624For smaller types than C<uint32_t> you can safely use C<ecb_is_pot32>.
625
626The overloaded C++ C<ecb_is_pot> function supports C<uint8_t>, C<uint16_t>,
627C<uint32_t> and C<uint64_t> types.
573 628
574=item int ecb_ld32 (uint32_t x) 629=item int ecb_ld32 (uint32_t x)
575 630
576=item int ecb_ld64 (uint64_t x) 631=item int ecb_ld64 (uint64_t x)
632
633=item int ecb_ld64 (T x) [C++]
577 634
578Returns the index of the most significant bit set in C<x>, or the number 635Returns the index of the most significant bit set in C<x>, or the number
579of digits the number requires in binary (so that C<< 2**ld <= x < 636of digits the number requires in binary (so that C<< 2**ld <= x <
5802**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is 6372**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is
581to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for 638to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for
586the given data type), while C<ecb_ld> returns how many bits the number 643the given data type), while C<ecb_ld> returns how many bits the number
587itself requires. 644itself requires.
588 645
589For smaller types than C<uint32_t> you can safely use C<ecb_ld32>. 646For smaller types than C<uint32_t> you can safely use C<ecb_ld32>.
590 647
648The overloaded C++ C<ecb_ld> function supports C<uint8_t>, C<uint16_t>,
649C<uint32_t> and C<uint64_t> types.
650
591=item int ecb_popcount32 (uint32_t x) 651=item int ecb_popcount32 (uint32_t x)
592 652
593=item int ecb_popcount64 (uint64_t x) 653=item int ecb_popcount64 (uint64_t x)
594 654
655=item int ecb_popcount (T x) [C++]
656
595Returns the number of bits set to 1 in C<x>. 657Returns the number of bits set to 1 in C<x>.
596 658
597For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>. 659For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>.
660
661The overloaded C++ C<ecb_popcount> function supports C<uint8_t>, C<uint16_t>,
662C<uint32_t> and C<uint64_t> types.
598 663
599For example: 664For example:
600 665
601 ecb_popcount32 (7) = 3 666 ecb_popcount32 (7) = 3
602 ecb_popcount32 (255) = 8 667 ecb_popcount32 (255) = 8
605 670
606=item uint16_t ecb_bitrev16 (uint16_t x) 671=item uint16_t ecb_bitrev16 (uint16_t x)
607 672
608=item uint32_t ecb_bitrev32 (uint32_t x) 673=item uint32_t ecb_bitrev32 (uint32_t x)
609 674
675=item T ecb_bitrev (T x) [C++]
676
610Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1 677Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1
611and so on. 678and so on.
612 679
680The overloaded C++ C<ecb_bitrev> function supports C<uint8_t>, C<uint16_t> and C<uint32_t> types.
681
613Example: 682Example:
614 683
615 ecb_bitrev8 (0xa7) = 0xea 684 ecb_bitrev8 (0xa7) = 0xea
616 ecb_bitrev32 (0xffcc4411) = 0x882233ff 685 ecb_bitrev32 (0xffcc4411) = 0x882233ff
617 686
687=item T ecb_bitrev (T x) [C++]
688
689Overloaded C++ bitrev function.
690
691C<T> must be one of C<uint8_t>, C<uint16_t> or C<uint32_t>.
692
618=item uint32_t ecb_bswap16 (uint32_t x) 693=item uint32_t ecb_bswap16 (uint32_t x)
619 694
620=item uint32_t ecb_bswap32 (uint32_t x) 695=item uint32_t ecb_bswap32 (uint32_t x)
621 696
622=item uint64_t ecb_bswap64 (uint64_t x) 697=item uint64_t ecb_bswap64 (uint64_t x)
698
699=item T ecb_bswap (T x)
623 700
624These functions return the value of the 16-bit (32-bit, 64-bit) value 701These functions return the value of the 16-bit (32-bit, 64-bit) value
625C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in 702C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in
626C<ecb_bswap32>). 703C<ecb_bswap32>).
627 704
705The overloaded C++ C<ecb_bswap> function supports C<uint8_t>, C<uint16_t>,
706C<uint32_t> and C<uint64_t> types.
707
628=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count) 708=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count)
629 709
630=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count) 710=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count)
631 711
632=item uint32_t ecb_rotl32 (uint32_t x, unsigned int count) 712=item uint32_t ecb_rotl32 (uint32_t x, unsigned int count)
647 727
648Current GCC versions understand these functions and usually compile them 728Current GCC versions understand these functions and usually compile them
649to "optimal" code (e.g. a single C<rol> or a combination of C<shld> on 729to "optimal" code (e.g. a single C<rol> or a combination of C<shld> on
650x86). 730x86).
651 731
732=item T ecb_rotl (T x, unsigned int count) [C++]
733
734=item T ecb_rotr (T x, unsigned int count) [C++]
735
736Overloaded C++ rotl/rotr functions.
737
738C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
739
652=back 740=back
653 741
742=head2 HOST ENDIANNESS CONVERSION
743
744=over 4
745
746=item uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v)
747
748=item uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v)
749
750=item uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v)
751
752=item uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v)
753
754=item uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v)
755
756=item uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v)
757
758Convert an unsigned 16, 32 or 64 bit value from big or little endian to host byte order.
759
760The naming convention is C<ecb_>(C<be>|C<le>)C<_u>C<16|32|64>C<_to_host>,
761where C<be> and C<le> stand for big endian and little endian, respectively.
762
763=item uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v)
764
765=item uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v)
766
767=item uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v)
768
769=item uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v)
770
771=item uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v)
772
773=item uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v)
774
775Like above, but converts I<from> host byte order to the specified
776endianness.
777
778=back
779
780In C++ the following additional template functions are supported:
781
782=over 4
783
784=item T ecb_be_to_host (T v)
785
786=item T ecb_le_to_host (T v)
787
788=item T ecb_host_to_be (T v)
789
790=item T ecb_host_to_le (T v)
791
792These functions work like their C counterparts, above, but use templates,
793which make them useful in generic code.
794
795C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>
796(so unlike their C counterparts, there is a version for C<uint8_t>, which
797again can be useful in generic code).
798
799=head2 UNALIGNED LOAD/STORE
800
801These function load or store unaligned multi-byte values.
802
803=over 4
804
805=item uint_fast16_t ecb_peek_u16_u (const void *ptr)
806
807=item uint_fast32_t ecb_peek_u32_u (const void *ptr)
808
809=item uint_fast64_t ecb_peek_u64_u (const void *ptr)
810
811These functions load an unaligned, unsigned 16, 32 or 64 bit value from
812memory.
813
814=item uint_fast16_t ecb_peek_be_u16_u (const void *ptr)
815
816=item uint_fast32_t ecb_peek_be_u32_u (const void *ptr)
817
818=item uint_fast64_t ecb_peek_be_u64_u (const void *ptr)
819
820=item uint_fast16_t ecb_peek_le_u16_u (const void *ptr)
821
822=item uint_fast32_t ecb_peek_le_u32_u (const void *ptr)
823
824=item uint_fast64_t ecb_peek_le_u64_u (const void *ptr)
825
826Like above, but additionally convert from big endian (C<be>) or little
827endian (C<le>) byte order to host byte order while doing so.
828
829=item ecb_poke_u16_u (void *ptr, uint16_t v)
830
831=item ecb_poke_u32_u (void *ptr, uint32_t v)
832
833=item ecb_poke_u64_u (void *ptr, uint64_t v)
834
835These functions store an unaligned, unsigned 16, 32 or 64 bit value to
836memory.
837
838=item ecb_poke_be_u16_u (void *ptr, uint_fast16_t v)
839
840=item ecb_poke_be_u32_u (void *ptr, uint_fast32_t v)
841
842=item ecb_poke_be_u64_u (void *ptr, uint_fast64_t v)
843
844=item ecb_poke_le_u16_u (void *ptr, uint_fast16_t v)
845
846=item ecb_poke_le_u32_u (void *ptr, uint_fast32_t v)
847
848=item ecb_poke_le_u64_u (void *ptr, uint_fast64_t v)
849
850Like above, but additionally convert from host byte order to big endian
851(C<be>) or little endian (C<le>) byte order while doing so.
852
853=back
854
855In C++ the following additional template functions are supported:
856
857=over 4
858
859=item T ecb_peek<T> (const void *ptr)
860
861=item T ecb_peek_be<T> (const void *ptr)
862
863=item T ecb_peek_le<T> (const void *ptr)
864
865=item T ecb_peek_u<T> (const void *ptr)
866
867=item T ecb_peek_be_u<T> (const void *ptr)
868
869=item T ecb_peek_le_u<T> (const void *ptr)
870
871Similarly to their C counterparts, these functions load an unsigned 8, 16,
87232 or 64 bit value from memory, with optional conversion from big/little
873endian.
874
875Since the type cannot be deduced, it has to be specified explicitly, e.g.
876
877 uint_fast16_t v = ecb_peek<uint16_t> (ptr);
878
879C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
880
881Unlike their C counterparts, these functions support 8 bit quantities
882(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
883all of which hopefully makes them more useful in generic code.
884
885=item ecb_poke (void *ptr, T v)
886
887=item ecb_poke_be (void *ptr, T v)
888
889=item ecb_poke_le (void *ptr, T v)
890
891=item ecb_poke_u (void *ptr, T v)
892
893=item ecb_poke_be_u (void *ptr, T v)
894
895=item ecb_poke_le_u (void *ptr, T v)
896
897Again, similarly to their C counterparts, these functions store an
898unsigned 8, 16, 32 or z64 bit value to memory, with optional conversion to
899big/little endian.
900
901C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
902
903Unlike their C counterparts, these functions support 8 bit quantities
904(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
905all of which hopefully makes them more useful in generic code.
906
907=back
908
654=head2 FLOATING POINT FIDDLING 909=head2 FLOATING POINT FIDDLING
655 910
656=over 4 911=over 4
657 912
913=item ECB_INFINITY [-UECB_NO_LIBM]
914
915Evaluates to positive infinity if supported by the platform, otherwise to
916a truly huge number.
917
918=item ECB_NAN [-UECB_NO_LIBM]
919
920Evaluates to a quiet NAN if supported by the platform, otherwise to
921C<ECB_INFINITY>.
922
923=item float ecb_ldexpf (float x, int exp) [-UECB_NO_LIBM]
924
925Same as C<ldexpf>, but always available.
926
927=item uint32_t ecb_float_to_binary16 (float x) [-UECB_NO_LIBM]
928
658=item uint32_t ecb_float_to_binary32 (float x) [-UECB_NO_LIBM] 929=item uint32_t ecb_float_to_binary32 (float x) [-UECB_NO_LIBM]
659 930
660=item uint64_t ecb_double_to_binary64 (double x) [-UECB_NO_LIBM] 931=item uint64_t ecb_double_to_binary64 (double x) [-UECB_NO_LIBM]
661 932
662These functions each take an argument in the native C<float> or C<double> 933These functions each take an argument in the native C<float> or C<double>
663type and return the IEEE 754 bit representation of it. 934type and return the IEEE 754 bit representation of it (binary16/half,
935binary32/single or binary64/double precision).
664 936
665The bit representation is just as IEEE 754 defines it, i.e. the sign bit 937The bit representation is just as IEEE 754 defines it, i.e. the sign bit
666will be the most significant bit, followed by exponent and mantissa. 938will be the most significant bit, followed by exponent and mantissa.
667 939
668This function should work even when the native floating point format isn't 940This function should work even when the native floating point format isn't
672 944
673On all modern platforms (where C<ECB_STDFP> is true), the compiler should 945On all modern platforms (where C<ECB_STDFP> is true), the compiler should
674be able to optimise away this function completely. 946be able to optimise away this function completely.
675 947
676These functions can be helpful when serialising floats to the network - you 948These functions can be helpful when serialising floats to the network - you
677can serialise the return value like a normal uint32_t/uint64_t. 949can serialise the return value like a normal uint16_t/uint32_t/uint64_t.
678 950
679Another use for these functions is to manipulate floating point values 951Another use for these functions is to manipulate floating point values
680directly. 952directly.
681 953
682Silly example: toggle the sign bit of a float. 954Silly example: toggle the sign bit of a float.
689 961
690=item float ecb_binary16_to_float (uint16_t x) [-UECB_NO_LIBM] 962=item float ecb_binary16_to_float (uint16_t x) [-UECB_NO_LIBM]
691 963
692=item float ecb_binary32_to_float (uint32_t x) [-UECB_NO_LIBM] 964=item float ecb_binary32_to_float (uint32_t x) [-UECB_NO_LIBM]
693 965
694=item double ecb_binary32_to_double (uint64_t x) [-UECB_NO_LIBM] 966=item double ecb_binary64_to_double (uint64_t x) [-UECB_NO_LIBM]
695 967
696The reverse operation of the previous function - takes the bit 968The reverse operation of the previous function - takes the bit
697representation of an IEEE binary16, binary32 or binary64 number and 969representation of an IEEE binary16, binary32 or binary64 number (half,
698converts it to the native C<float> or C<double> format. 970single or double precision) and converts it to the native C<float> or
971C<double> format.
699 972
700This function should work even when the native floating point format isn't 973This function should work even when the native floating point format isn't
701IEEE compliant, of course at a speed and code size penalty, and of course 974IEEE compliant, of course at a speed and code size penalty, and of course
702also within reasonable limits (it tries to convert normals and denormals, 975also within reasonable limits (it tries to convert normals and denormals,
703and might be lucky for infinities, and with extraordinary luck, also for 976and might be lucky for infinities, and with extraordinary luck, also for
704negative zero). 977negative zero).
705 978
706On all modern platforms (where C<ECB_STDFP> is true), the compiler should 979On all modern platforms (where C<ECB_STDFP> is true), the compiler should
707be able to optimise away this function completely. 980be able to optimise away this function completely.
981
982=item uint16_t ecb_binary32_to_binary16 (uint32_t x)
983
984=item uint32_t ecb_binary16_to_binary32 (uint16_t x)
985
986Convert a IEEE binary32/single precision to binary16/half format, and vice
987versa, handling all details (round-to-nearest-even, subnormals, infinity
988and NaNs) correctly.
989
990These are functions are available under C<-DECB_NO_LIBM>, since
991they do not rely on the platform floating point format. The
992C<ecb_float_to_binary16> and C<ecb_binary16_to_float> functions are
993usually what you want.
708 994
709=back 995=back
710 996
711=head2 ARITHMETIC 997=head2 ARITHMETIC
712 998
793dependencies on the math library (usually called F<-lm>) - these are 1079dependencies on the math library (usually called F<-lm>) - these are
794marked with [-UECB_NO_LIBM]. 1080marked with [-UECB_NO_LIBM].
795 1081
796=back 1082=back
797 1083
1084=head1 UNDOCUMENTED FUNCTIONALITY
798 1085
1086F<ecb.h> is full of undocumented functionality as well, some of which is
1087intended to be internal-use only, some of which we forgot to document, and
1088some of which we hide because we are not sure we will keep the interface
1089stable.
1090
1091While you are welcome to rummage around and use whatever you find useful
1092(we can't stop you), keep in mind that we will change undocumented
1093functionality in incompatible ways without thinking twice, while we are
1094considerably more conservative with documented things.
1095
1096=head1 AUTHORS
1097
1098C<libecb> is designed and maintained by:
1099
1100 Emanuele Giaquinta <e.giaquinta@glauco.it>
1101 Marc Alexander Lehmann <schmorp@schmorp.de>
1102
1103

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines