ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.pod
(Generate patch)

Comparing libecb/ecb.pod (file contents):
Revision 1.85 by root, Mon Jan 20 21:13:38 2020 UTC vs.
Revision 1.90 by root, Tue Jun 22 00:01:15 2021 UTC

80 80
81All the following symbols expand to an expression that can be tested in 81All the following symbols expand to an expression that can be tested in
82preprocessor instructions as well as treated as a boolean (use C<!!> to 82preprocessor instructions as well as treated as a boolean (use C<!!> to
83ensure it's either C<0> or C<1> if you need that). 83ensure it's either C<0> or C<1> if you need that).
84 84
85=over 4 85=over
86 86
87=item ECB_C 87=item ECB_C
88 88
89True if the implementation defines the C<__STDC__> macro to a true value, 89True if the implementation defines the C<__STDC__> macro to a true value,
90while not claiming to be C++, i..e C, but not C++. 90while not claiming to be C++, i..e C, but not C++.
163without having to think about format or endianness. 163without having to think about format or endianness.
164 164
165This is true for basically all modern platforms, although F<ecb.h> might 165This is true for basically all modern platforms, although F<ecb.h> might
166not be able to deduce this correctly everywhere and might err on the safe 166not be able to deduce this correctly everywhere and might err on the safe
167side. 167side.
168
169=item ECB_64BIT_NATIVE
170
171Evaluates to a true value (suitable for both preprocessor and C code
172testing) if 64 bit integer types on this architecture are evaluated
173"natively", that is, with similar speeds as 32 bit integerss. While 64 bit
174integer support is very common (and in fatc required by libecb), 32 bit
175cpus have to emulate operations on them, so you might want to avoid them.
168 176
169=item ECB_AMD64, ECB_AMD64_X32 177=item ECB_AMD64, ECB_AMD64_X32
170 178
171These two macros are defined to C<1> on the x86_64/amd64 ABI and the X32 179These two macros are defined to C<1> on the x86_64/amd64 ABI and the X32
172ABI, respectively, and undefined elsewhere. 180ABI, respectively, and undefined elsewhere.
179 187
180=back 188=back
181 189
182=head2 MACRO TRICKERY 190=head2 MACRO TRICKERY
183 191
184=over 4 192=over
185 193
186=item ECB_CONCAT (a, b) 194=item ECB_CONCAT (a, b)
187 195
188Expands any macros in C<a> and C<b>, then concatenates the result to form 196Expands any macros in C<a> and C<b>, then concatenates the result to form
189a single token. This is mainly useful to form identifiers from components, 197a single token. This is mainly useful to form identifiers from components,
230declarations must be put before the whole declaration: 238declarations must be put before the whole declaration:
231 239
232 ecb_const int mysqrt (int a); 240 ecb_const int mysqrt (int a);
233 ecb_unused int i; 241 ecb_unused int i;
234 242
235=over 4 243=over
236 244
237=item ecb_unused 245=item ecb_unused
238 246
239Marks a function or a variable as "unused", which simply suppresses a 247Marks a function or a variable as "unused", which simply suppresses a
240warning by the compiler when it detects it as unused. This is useful when 248warning by the compiler when it detects it as unused. This is useful when
414 422
415=back 423=back
416 424
417=head2 OPTIMISATION HINTS 425=head2 OPTIMISATION HINTS
418 426
419=over 4 427=over
420 428
421=item bool ecb_is_constant (expr) 429=item bool ecb_is_constant (expr)
422 430
423Returns true iff the expression can be deduced to be a compile-time 431Returns true iff the expression can be deduced to be a compile-time
424constant, and false otherwise. 432constant, and false otherwise.
581 589
582=back 590=back
583 591
584=head2 BIT FIDDLING / BIT WIZARDRY 592=head2 BIT FIDDLING / BIT WIZARDRY
585 593
586=over 4 594=over
587 595
588=item bool ecb_big_endian () 596=item bool ecb_big_endian ()
589 597
590=item bool ecb_little_endian () 598=item bool ecb_little_endian ()
591 599
741 749
742=back 750=back
743 751
744=head2 HOST ENDIANNESS CONVERSION 752=head2 HOST ENDIANNESS CONVERSION
745 753
746=over 4 754=over
747 755
748=item uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) 756=item uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v)
749 757
750=item uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) 758=item uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v)
751 759
779 787
780=back 788=back
781 789
782In C++ the following additional template functions are supported: 790In C++ the following additional template functions are supported:
783 791
784=over 4 792=over
785 793
786=item T ecb_be_to_host (T v) 794=item T ecb_be_to_host (T v)
787 795
788=item T ecb_le_to_host (T v) 796=item T ecb_le_to_host (T v)
789 797
790=item T ecb_host_to_be (T v) 798=item T ecb_host_to_be (T v)
791 799
792=item T ecb_host_to_le (T v) 800=item T ecb_host_to_le (T v)
801
802=back
793 803
794These functions work like their C counterparts, above, but use templates, 804These functions work like their C counterparts, above, but use templates,
795which make them useful in generic code. 805which make them useful in generic code.
796 806
797C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t> 807C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>
800 810
801=head2 UNALIGNED LOAD/STORE 811=head2 UNALIGNED LOAD/STORE
802 812
803These function load or store unaligned multi-byte values. 813These function load or store unaligned multi-byte values.
804 814
805=over 4 815=over
806 816
807=item uint_fast16_t ecb_peek_u16_u (const void *ptr) 817=item uint_fast16_t ecb_peek_u16_u (const void *ptr)
808 818
809=item uint_fast32_t ecb_peek_u32_u (const void *ptr) 819=item uint_fast32_t ecb_peek_u32_u (const void *ptr)
810 820
854 864
855=back 865=back
856 866
857In C++ the following additional template functions are supported: 867In C++ the following additional template functions are supported:
858 868
859=over 4 869=over
860 870
861=item T ecb_peek<T> (const void *ptr) 871=item T ecb_peek<T> (const void *ptr)
862 872
863=item T ecb_peek_be<T> (const void *ptr) 873=item T ecb_peek_be<T> (const void *ptr)
864 874
906(C<uint8_t>) and also have an aligned version (without the C<_u> prefix), 916(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
907all of which hopefully makes them more useful in generic code. 917all of which hopefully makes them more useful in generic code.
908 918
909=back 919=back
910 920
921=head2 FAST INTEGER TO STRING
922
923Libecb defines a set of very fast integer to decimal string (or integer
924to ascii, short C<i2a>) functions. These work by converting the integer
925to a fixed point representation and then successively multiplying out
926the topmost digits. Unlike some other, also very fast, libraries, ecb's
927algorithm should be completely branchless per digit, and does not rely on
928the presence of special cpu functions (such as clz).
929
930There is a high level API that takes an C<int32_t>, C<uint32_t>,
931C<int64_t> or C<uint64_t> as argument, and a low-level API, which is
932harder to use but supports slightly more formatting options.
933
934=head3 HIGH LEVEL API
935
936The high level API consists of four functions, one each for C<int32_t>,
937C<uint32_t>, C<int64_t> and C<uint64_t>:
938
939=over
940
941=item ECB_I2A_I32_DIGITS (=11)
942
943=item char *ecb_i2a_u32 (char *ptr, uint32_t value)
944
945Takes an C<uint32_t> I<value> and formats it as a decimal number starting
946at I<ptr>, using at most C<ECB_I2A_I32_DIGITS> characters. Returns a
947pointer to just after the generated string, where you would normally put
948the temrinating C<0> character. This function outputs the minimum number
949of digits.
950
951=item ECB_I2A_U32_DIGITS (=10)
952
953=item char *ecb_i2a_i32 (char *ptr, int32_t value)
954
955Same as C<ecb_i2a_u32>, but formats a C<int32_t> value, including a minus
956sign if needed.
957
958=item ECB_I2A_I64_DIGITS (=20)
959
960=item char *ecb_i2a_u64 (char *ptr, uint64_t value)
961
962=item ECB_I2A_U64_DIGITS (=21)
963
964=item char *ecb_i2a_i64 (char *ptr, int64_t value)
965
966Similar to their 32 bit counterparts, these take a 64 bit argument.
967
968=item ECB_I2A_MAX_DIGITS (=21)
969
970Instead of using a type specific length macro, youi can just use
971C<ECB_I2A_MAX_DIGITS>, which is good enough for any C<ecb_i2a> function.
972
973=back
974
975=head3 LOW-LEVEL API
976
977The functions above use a number of low-level APIs which have some strict
978limitaitons, but cna be used as building blocks (study of C<ecb_i2a_i32>
979and related cunctions is recommended).
980
981There are three families of functions: functions that convert a number
982to a fixed number of digits with leading zeroes (C<ecb_i2a_0N>, C<0>
983for "leading zeroes"), functions that generate up to N digits, skipping
984leading zeroes (C<_N>), and functions that can generate more digits, but
985the leading digit has limited range (C<_xN>).
986
987None of the functions deal with negative numbera.
988
989=over
990
991=item char *ecb_i2a_02 (char *ptr, uint32_t value) // 32 bit
992
993=item char *ecb_i2a_03 (char *ptr, uint32_t value) // 32 bit
994
995=item char *ecb_i2a_04 (char *ptr, uint32_t value) // 32 bit
996
997=item char *ecb_i2a_05 (char *ptr, uint32_t value) // 64 bit
998
999=item char *ecb_i2a_06 (char *ptr, uint32_t value) // 64 bit
1000
1001=item char *ecb_i2a_07 (char *ptr, uint32_t value) // 64 bit
1002
1003=item char *ecb_i2a_08 (char *ptr, uint32_t value) // 64 bit
1004
1005=item char *ecb_i2a_09 (char *ptr, uint32_t value) // 64 bit
1006
1007The C<< ecb_i2a_0I<N> > functions take an unsigned I<value> and convert
1008them to exactly I<N> digits, returning a pointer to the first character
1009after the digits. The I<value> must be in range. The functions marked with
1010I<32 bit> do their calculations internally in 32 bit, the ones marked with
1011I<64 bit> internally use 64 bit integers, which might be slow on 32 bit
1012architectures (the high level API decides on 32 vs. 64 bit versions using
1013C<ECB_64BIT_NATIVE>).
1014
1015=item char *ecb_i2a_2 (char *ptr, uint32_t value) // 32 bit
1016
1017=item char *ecb_i2a_3 (char *ptr, uint32_t value) // 32 bit
1018
1019=item char *ecb_i2a_4 (char *ptr, uint32_t value) // 32 bit
1020
1021=item char *ecb_i2a_5 (char *ptr, uint32_t value) // 64 bit
1022
1023=item char *ecb_i2a_6 (char *ptr, uint32_t value) // 64 bit
1024
1025=item char *ecb_i2a_7 (char *ptr, uint32_t value) // 64 bit
1026
1027=item char *ecb_i2a_8 (char *ptr, uint32_t value) // 64 bit
1028
1029=item char *ecb_i2a_9 (char *ptr, uint32_t value) // 64 bit
1030
1031Similarly, the C<< ecb_i2a_I<N> > functions take an unsigned I<value>
1032and convert them to at most I<N> digits, suppressing leading zeroes, and
1033returning a pointer to the first character after the digits.
1034
1035=item ECB_I2A_MAX_X5 (=59074)
1036
1037=item char *ecb_i2a_x5 (char *ptr, uint32_t value) // 32 bit
1038
1039=item ECB_I2A_MAX_X10 (=2932500665)
1040
1041=item char *ecb_i2a_x10 (char *ptr, uint32_t value) // 64 bit
1042
1043The C<< ecb_i2a_xI<N> >> functions are similar to the C<< ecb_i2a_I<N> >
1044functions, but they can generate one digit more, as long as the number
1045is within range, which is given by the symbols C<ECB_I2A_MAX_X5> (almost
104616 bit range) and C<ECB_I2A_MAX_X10> (a bit more than 31 bit range),
1047respectively.
1048
1049For example, the sigit part of a 32 bit signed integer just fits into the
1050C<ECB_I2A_MAX_X10> range, so while C<ecb_i2a_x10> cannot convert a 10
1051digit number, it can convert all 32 bit signed numbers. Sadly, it's not
1052good enough for 32 bit unsigned numbers.
1053
1054=back
1055
911=head2 FLOATING POINT FIDDLING 1056=head2 FLOATING POINT FIDDLING
912 1057
913=over 4 1058=over
914 1059
915=item ECB_INFINITY [-UECB_NO_LIBM] 1060=item ECB_INFINITY [-UECB_NO_LIBM]
916 1061
917Evaluates to positive infinity if supported by the platform, otherwise to 1062Evaluates to positive infinity if supported by the platform, otherwise to
918a truly huge number. 1063a truly huge number.
996 1141
997=back 1142=back
998 1143
999=head2 ARITHMETIC 1144=head2 ARITHMETIC
1000 1145
1001=over 4 1146=over
1002 1147
1003=item x = ecb_mod (m, n) 1148=item x = ecb_mod (m, n)
1004 1149
1005Returns C<m> modulo C<n>, which is the same as the positive remainder 1150Returns C<m> modulo C<n>, which is the same as the positive remainder
1006of the division operation between C<m> and C<n>, using floored 1151of the division operation between C<m> and C<n>, using floored
1037 1182
1038=back 1183=back
1039 1184
1040=head2 UTILITY 1185=head2 UTILITY
1041 1186
1042=over 4 1187=over
1043 1188
1044=item element_count = ecb_array_length (name) 1189=item element_count = ecb_array_length (name)
1045 1190
1046Returns the number of elements in the array C<name>. For example: 1191Returns the number of elements in the array C<name>. For example:
1047 1192
1055 1200
1056=head2 SYMBOLS GOVERNING COMPILATION OF ECB.H ITSELF 1201=head2 SYMBOLS GOVERNING COMPILATION OF ECB.H ITSELF
1057 1202
1058These symbols need to be defined before including F<ecb.h> the first time. 1203These symbols need to be defined before including F<ecb.h> the first time.
1059 1204
1060=over 4 1205=over
1061 1206
1062=item ECB_NO_THREADS 1207=item ECB_NO_THREADS
1063 1208
1064If F<ecb.h> is never used from multiple threads, then this symbol can 1209If F<ecb.h> is never used from multiple threads, then this symbol can
1065be defined, in which case memory fences (and similar constructs) are 1210be defined, in which case memory fences (and similar constructs) are

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines