=head1 LIBECB - e-C-Builtins =head2 ABOUT LIBECB Libecb is currently a simple header file that doesn't require any configuration to use or include in your project. It's part of the e-suite of libraries, other members of which include libev and libeio. Its homepage can be found here: http://software.schmorp.de/pkg/libecb It mainly provides a number of wrappers around many compiler built-ins, together with replacement functions for other compilers. In addition to this, it provides a number of other lowlevel C utilities, such as endianness detection, byte swapping or bit rotations. Or in other words, things that should be built into any standard C system, but aren't, implemented as efficient as possible with GCC (clang, msvc...), and still correct with other compilers. More might come. =head2 ABOUT THE HEADER At the moment, all you have to do is copy F somewhere where your compiler can find it and include it: #include The header should work fine for both C and C++ compilation, and gives you all of F in addition to the ECB symbols. There are currently no object files to link to - future versions might come with an (optional) object code library to link against, to reduce code size or gain access to additional features. It also currently includes everything from F. =head2 ABOUT THIS MANUAL / CONVENTIONS This manual mainly describes each (public) function available after including the F header. The header might define other symbols than these, but these are not part of the public API, and not supported in any way. When the manual mentions a "function" then this could be defined either as as inline function, a macro, or an external symbol. When functions use a concrete standard type, such as C or C, then the corresponding function works only with that type. If only a generic name is used (C, C, C and so on), then the corresponding function relies on C to implement the correct types, and is usually implemented as a macro. Specifically, a "bool" in this manual refers to any kind of boolean value, not a specific type. =head2 TYPES / TYPE SUPPORT ecb.h makes sure that the following types are defined (in the expected way): int8_t uint8_ int16_t uint16_t int32_t uint32_ int64_t uint64_t int_fast8_t uint_fast8_t int_fast16_t uint_fast16_t int_fast32_t uint_fast32_t int_fast64_t uint_fast64_t intptr_t uintptr_t The macro C is defined to the size of a pointer on this platform (currently C<4> or C<8>) and can be used in preprocessor expressions. For C and C use C/C. =head2 LANGUAGE/ENVIRONMENT/COMPILER VERSIONS All the following symbols expand to an expression that can be tested in preprocessor instructions as well as treated as a boolean (use C to ensure it's either C<0> or C<1> if you need that). =over 4 =item ECB_C True if the implementation defines the C<__STDC__> macro to a true value, while not claiming to be C++, i..e C, but not C++. =item ECB_C99 True if the implementation claims to be compliant to C99 (ISO/IEC 9899:1999) or any later version, while not claiming to be C++. Note that later versions (ECB_C11) remove core features again (for example, variable length arrays). =item ECB_C11, ECB_C17 True if the implementation claims to be compliant to C11/C17 (ISO/IEC 9899:2011, :20187) or any later version, while not claiming to be C++. =item ECB_CPP True if the implementation defines the C<__cplusplus__> macro to a true value, which is typically true for C++ compilers. =item ECB_CPP11, ECB_CPP14, ECB_CPP17 True if the implementation claims to be compliant to C++11/C++14/C++17 (ISO/IEC 14882:2011, :2014, :2017) or any later version. Note that many C++20 features will likely have their own feature test macros (see e.g. L). =item ECB_OPTIMIZE_SIZE Is C<1> when the compiler optimizes for size, C<0> otherwise. This symbol can also be defined before including F, in which case it will be unchanged. =item ECB_GCC_VERSION (major, minor) Expands to a true value (suitable for testing by the preprocessor) if the compiler used is GNU C and the version is the given version, or higher. This macro tries to return false on compilers that claim to be GCC compatible but aren't. =item ECB_EXTERN_C Expands to C in C++, and a simple C in C. This can be used to declare a single external C function: ECB_EXTERN_C int printf (const char *format, ...); =item ECB_EXTERN_C_BEG / ECB_EXTERN_C_END These two macros can be used to wrap multiple C definitions - they expand to nothing in C. They are most useful in header files: ECB_EXTERN_C_BEG int mycfun1 (int x); int mycfun2 (int x); ECB_EXTERN_C_END =item ECB_STDFP If this evaluates to a true value (suitable for testing by the preprocessor), then C and C use IEEE 754 single/binary32 and double/binary64 representations internally I the endianness of both types match the endianness of C and C. This means you can just copy the bits of a C (or C) to an C (or C) and get the raw IEEE 754 bit representation without having to think about format or endianness. This is true for basically all modern platforms, although F might not be able to deduce this correctly everywhere and might err on the safe side. =item ECB_AMD64, ECB_AMD64_X32 These two macros are defined to C<1> on the x86_64/amd64 ABI and the X32 ABI, respectively, and undefined elsewhere. The designers of the new X32 ABI for some inexplicable reason decided to make it look exactly like amd64, even though it's completely incompatible to that ABI, breaking about every piece of software that assumed that C<__x86_64> stands for, well, the x86-64 ABI, making these macros necessary. =back =head2 MACRO TRICKERY =over 4 =item ECB_CONCAT (a, b) Expands any macros in C and C, then concatenates the result to form a single token. This is mainly useful to form identifiers from components, e.g.: #define S1 str #define S2 cpy ECB_CONCAT (S1, S2)(dst, src); // == strcpy (dst, src); =item ECB_STRINGIFY (arg) Expands any macros in C and returns the stringified version of it. This is mainly useful to get the contents of a macro in string form, e.g.: #define SQL_LIMIT 100 sql_exec ("select * from table limit " ECB_STRINGIFY (SQL_LIMIT)); =item ECB_STRINGIFY_EXPR (expr) Like C, but additionally evaluates C to make sure it is a valid expression. This is useful to catch typos or cases where the macro isn't available: #include ECB_STRINGIFY (EDOM); // "33" (on my system at least) ECB_STRINGIFY_EXPR (EDOM); // "33" // now imagine we had a typo: ECB_STRINGIFY (EDAM); // "EDAM" ECB_STRINGIFY_EXPR (EDAM); // error: EDAM undefined =back =head2 ATTRIBUTES A major part of libecb deals with additional attributes that can be assigned to functions, variables and sometimes even types - much like C or C in C. They are implemented using either GCC attributes or other compiler/language specific features. Attributes declarations must be put before the whole declaration: ecb_const int mysqrt (int a); ecb_unused int i; =over 4 =item ecb_unused Marks a function or a variable as "unused", which simply suppresses a warning by the compiler when it detects it as unused. This is useful when you e.g. declare a variable but do not always use it: { ecb_unused int var; #ifdef SOMECONDITION var = ...; return var; #else return 0; #endif } =item ecb_deprecated Similar to C, but marks a function, variable or type as deprecated. This makes some compilers warn when the type is used. =item ecb_deprecated_message (message) Same as C, but if possible, the specified diagnostic is used instead of a generic depreciation message when the object is being used. =item ecb_inline Expands either to (a compiler-specific equivalent of) C or to just C, if inline isn't supported. It should be used to declare functions that should be inlined, for code size or speed reasons. Example: inline this function, it surely will reduce codesize. ecb_inline int negmul (int a, int b) { return - (a * b); } =item ecb_noinline Prevents a function from being inlined - it might be optimised away, but not inlined into other functions. This is useful if you know your function is rarely called and large enough for inlining not to be helpful. =item ecb_noreturn Marks a function as "not returning, ever". Some typical functions that don't return are C or C (which really works hard to not return), and now you can make your own: ecb_noreturn void my_abort (const char *errline) { puts (errline); abort (); } In this case, the compiler would probably be smart enough to deduce it on its own, so this is mainly useful for declarations. =item ecb_restrict Expands to the C keyword or equivalent on compilers that support them, and to nothing on others. Must be specified on a pointer type or an array index to indicate that the memory doesn't alias with any other restricted pointer in the same scope. Example: multiply a vector, and allow the compiler to parallelise the loop, because it knows it doesn't overwrite input values. void multiply (ecb_restrict float *src, ecb_restrict float *dst, int len, float factor) { int i; for (i = 0; i < len; ++i) dst [i] = src [i] * factor; } =item ecb_const Declares that the function only depends on the values of its arguments, much like a mathematical function. It specifically does not read or write any memory any arguments might point to, global variables, or call any non-const functions. It also must not have any side effects. Such a function can be optimised much more aggressively by the compiler - for example, multiple calls with the same arguments can be optimised into a single call, which wouldn't be possible if the compiler would have to expect any side effects. It is best suited for functions in the sense of mathematical functions, such as a function returning the square root of its input argument. Not suited would be a function that calculates the hash of some memory area you pass in, prints some messages or looks at a global variable to decide on rounding. See C for a slightly less restrictive class of functions. =item ecb_pure Similar to C, declares a function that has no side effects. Unlike C, the function is allowed to examine global variables and any other memory areas (such as the ones passed to it via pointers). While these functions cannot be optimised as aggressively as C functions, they can still be optimised away in many occasions, and the compiler has more freedom in moving calls to them around. Typical examples for such functions would be C or C. A function that calculates the MD5 sum of some input and updates some MD5 state passed as argument would I be pure, however, as it would modify some memory area that is not the return value. =item ecb_hot This declares a function as "hot" with regards to the cache - the function is used so often, that it is very beneficial to keep it in the cache if possible. The compiler reacts by trying to place hot functions near to each other in memory. Whether a function is hot or not often depends on the whole program, and less on the function itself. C is likely more useful in practise. =item ecb_cold The opposite of C - declares a function as "cold" with regards to the cache, or in other words, this function is not called often, or not at speed-critical times, and keeping it in the cache might be a waste of said cache. In addition to placing cold functions together (or at least away from hot functions), this knowledge can be used in other ways, for example, the function will be optimised for size, as opposed to speed, and codepaths leading to calls to those functions can automatically be marked as if C had been used to reach them. Good examples for such functions would be error reporting functions, or functions only called in exceptional or rare cases. =item ecb_artificial Declares the function as "artificial", in this case meaning that this function is not really meant to be a function, but more like an accessor - many methods in C++ classes are mere accessor functions, and having a crash reported in such a method, or single-stepping through them, is not usually so helpful, especially when it's inlined to just a few instructions. Marking them as artificial will instruct the debugger about just this, leading to happier debugging and thus happier lives. Example: in some kind of smart-pointer class, mark the pointer accessor as artificial, so that the whole class acts more like a pointer and less like some C++ abstraction monster. template struct my_smart_ptr { T *value; ecb_artificial operator T *() { return value; } }; =back =head2 OPTIMISATION HINTS =over 4 =item bool ecb_is_constant (expr) Returns true iff the expression can be deduced to be a compile-time constant, and false otherwise. For example, when you have a C function that returns a 16 bit random number, and you have a function that maps this to a range from 0..n-1, then you could use this inline function in a header file: ecb_inline uint32_t rndm (uint32_t n) { return (n * (uint32_t)rndm16 ()) >> 16; } However, for powers of two, you could use a normal mask, but that is only worth it if, at compile time, you can detect this case. This is the case when the passed number is a constant and also a power of two (C): ecb_inline uint32_t rndm (uint32_t n) { return is_constant (n) && !(n & (n - 1)) ? rndm16 () & (num - 1) : (n * (uint32_t)rndm16 ()) >> 16; } =item ecb_expect (expr, value) Evaluates C and returns it. In addition, it tells the compiler that the C evaluates to C a lot, which can be used for static branch optimisations. Usually, you want to use the more intuitive C and C functions instead. =item bool ecb_expect_true (cond) =item bool ecb_expect_false (cond) These two functions expect a expression that is true or false and return C<1> or C<0>, respectively, so when used in the condition of an C or other conditional statement, it will not change the program: /* these two do the same thing */ if (some_condition) ...; if (ecb_expect_true (some_condition)) ...; However, by using C, you tell the compiler that the condition is likely to be true (and for C, that it is unlikely to be true). For example, when you check for a null pointer and expect this to be a rare, exceptional, case, then use C: void my_free (void *ptr) { if (ecb_expect_false (ptr == 0)) return; } Consequent use of these functions to mark away exceptional cases or to tell the compiler what the hot path through a function is can increase performance considerably. You might know these functions under the name C and C - while these are common aliases, we find that the expect name is easier to understand when quickly skimming code. If you wish, you can use C instead of C and C instead of C - these are simply aliases. A very good example is in a function that reserves more space for some memory block (for example, inside an implementation of a string stream) - each time something is added, you have to check for a buffer overrun, but you expect that most checks will turn out to be false: /* make sure we have "size" extra room in our buffer */ ecb_inline void reserve (int size) { if (ecb_expect_false (current + size > end)) real_reserve_method (size); /* presumably noinline */ } =item ecb_assume (cond) Tries to tell the compiler that some condition is true, even if it's not obvious. This is not a function, but a statement: it cannot be used in another expression. This can be used to teach the compiler about invariants or other conditions that might improve code generation, but which are impossible to deduce form the code itself. For example, the example reservation function from the C description could be written thus (only C was added): ecb_inline void reserve (int size) { if (ecb_expect_false (current + size > end)) real_reserve_method (size); /* presumably noinline */ ecb_assume (current + size <= end); } If you then call this function twice, like this: reserve (10); reserve (1); Then the compiler I be able to optimise out the second call completely, as it knows that C<< current + 1 > end >> is false and the call will never be executed. =item ecb_unreachable () This function does nothing itself, except tell the compiler that it will never be executed. Apart from suppressing a warning in some cases, this function can be used to implement C or similar functionality. =item ecb_prefetch (addr, rw, locality) Tells the compiler to try to prefetch memory at the given Cess for either reading (C = 0) or writing (C = 1). A C of C<0> means that there will only be one access later, C<3> means that the data will likely be accessed very often, and values in between mean something... in between. The memory pointed to by the address does not need to be accessible (it could be a null pointer for example), but C and C must be compile-time constants. This is a statement, not a function: you cannot use it as part of an expression. An obvious way to use this is to prefetch some data far away, in a big array you loop over. This prefetches memory some 128 array elements later, in the hope that it will be ready when the CPU arrives at that location. int sum = 0; for (i = 0; i < N; ++i) { sum += arr [i] ecb_prefetch (arr + i + 128, 0, 0); } It's hard to predict how far to prefetch, and most CPUs that can prefetch are often good enough to predict this kind of behaviour themselves. It gets more interesting with linked lists, especially when you do some fair processing on each list element: for (node *n = start; n; n = n->next) { ecb_prefetch (n->next, 0, 0); ... do medium amount of work with *n } After processing the node, (part of) the next node might already be in cache. =back =head2 BIT FIDDLING / BIT WIZARDRY =over 4 =item bool ecb_big_endian () =item bool ecb_little_endian () These two functions return true if the byte order is big endian (most-significant byte first) or little endian (least-significant byte first) respectively. On systems that are neither, their return values are unspecified. =item int ecb_ctz32 (uint32_t x) =item int ecb_ctz64 (uint64_t x) =item int ecb_ctz (T x) [C++] Returns the index of the least significant bit set in C (or equivalently the number of bits set to 0 before the least significant bit set), starting from 0. If C is 0 the result is undefined. For smaller types than C you can safely use C. The overloaded C++ C function supports C, C, C and C types. For example: ecb_ctz32 (3) = 0 ecb_ctz32 (6) = 1 =item bool ecb_is_pot32 (uint32_t x) =item bool ecb_is_pot64 (uint32_t x) =item bool ecb_is_pot (T x) [C++] Returns true iff C is a power of two or C. For smaller types than C you can safely use C. The overloaded C++ C function supports C, C, C and C types. =item int ecb_ld32 (uint32_t x) =item int ecb_ld64 (uint64_t x) =item int ecb_ld64 (T x) [C++] Returns the index of the most significant bit set in C, or the number of digits the number requires in binary (so that C<< 2**ld <= x < 2**(ld+1) >>). If C is 0 the result is undefined. A common use case is to compute the integer binary logarithm, i.e. C, for example to see how many bits a certain number requires to be encoded. This function is similar to the "count leading zero bits" function, except that that one returns how many zero bits are "in front" of the number (in the given data type), while C returns how many bits the number itself requires. For smaller types than C you can safely use C. The overloaded C++ C function supports C, C, C and C types. =item int ecb_popcount32 (uint32_t x) =item int ecb_popcount64 (uint64_t x) =item int ecb_popcount (T x) [C++] Returns the number of bits set to 1 in C. For smaller types than C you can safely use C. The overloaded C++ C function supports C, C, C and C types. For example: ecb_popcount32 (7) = 3 ecb_popcount32 (255) = 8 =item uint8_t ecb_bitrev8 (uint8_t x) =item uint16_t ecb_bitrev16 (uint16_t x) =item uint32_t ecb_bitrev32 (uint32_t x) =item T ecb_bitrev (T x) [C++] Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1 and so on. The overloaded C++ C function supports C, C and C types. Example: ecb_bitrev8 (0xa7) = 0xea ecb_bitrev32 (0xffcc4411) = 0x882233ff =item T ecb_bitrev (T x) [C++] Overloaded C++ bitrev function. C must be one of C, C or C. =item uint32_t ecb_bswap16 (uint32_t x) =item uint32_t ecb_bswap32 (uint32_t x) =item uint64_t ecb_bswap64 (uint64_t x) =item T ecb_bswap (T x) These functions return the value of the 16-bit (32-bit, 64-bit) value C after reversing the order of bytes (0x11223344 becomes 0x44332211 in C). The overloaded C++ C function supports C, C, C and C types. =item uint8_t ecb_rotl8 (uint8_t x, unsigned int count) =item uint16_t ecb_rotl16 (uint16_t x, unsigned int count) =item uint32_t ecb_rotl32 (uint32_t x, unsigned int count) =item uint64_t ecb_rotl64 (uint64_t x, unsigned int count) =item uint8_t ecb_rotr8 (uint8_t x, unsigned int count) =item uint16_t ecb_rotr16 (uint16_t x, unsigned int count) =item uint32_t ecb_rotr32 (uint32_t x, unsigned int count) =item uint64_t ecb_rotr64 (uint64_t x, unsigned int count) These two families of functions return the value of C after rotating all the bits by C positions to the right (C) or left (C). Current GCC/clang versions understand these functions and usually compile them to "optimal" code (e.g. a single C or a combination of C on x86). =item T ecb_rotl (T x, unsigned int count) [C++] =item T ecb_rotr (T x, unsigned int count) [C++] Overloaded C++ rotl/rotr functions. C must be one of C, C, C or C. =back =head2 HOST ENDIANNESS CONVERSION =over 4 =item uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) =item uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) =item uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) =item uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) =item uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) =item uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) Convert an unsigned 16, 32 or 64 bit value from big or little endian to host byte order. The naming convention is C(C|C)C<_u>C<16|32|64>C<_to_host>, where C and C stand for big endian and little endian, respectively. =item uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) =item uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) =item uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) =item uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) =item uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) =item uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) Like above, but converts I host byte order to the specified endianness. =back In C++ the following additional template functions are supported: =over 4 =item T ecb_be_to_host (T v) =item T ecb_le_to_host (T v) =item T ecb_host_to_be (T v) =item T ecb_host_to_le (T v) =back These functions work like their C counterparts, above, but use templates, which make them useful in generic code. C must be one of C, C, C or C (so unlike their C counterparts, there is a version for C, which again can be useful in generic code). =head2 UNALIGNED LOAD/STORE These function load or store unaligned multi-byte values. =over 4 =item uint_fast16_t ecb_peek_u16_u (const void *ptr) =item uint_fast32_t ecb_peek_u32_u (const void *ptr) =item uint_fast64_t ecb_peek_u64_u (const void *ptr) These functions load an unaligned, unsigned 16, 32 or 64 bit value from memory. =item uint_fast16_t ecb_peek_be_u16_u (const void *ptr) =item uint_fast32_t ecb_peek_be_u32_u (const void *ptr) =item uint_fast64_t ecb_peek_be_u64_u (const void *ptr) =item uint_fast16_t ecb_peek_le_u16_u (const void *ptr) =item uint_fast32_t ecb_peek_le_u32_u (const void *ptr) =item uint_fast64_t ecb_peek_le_u64_u (const void *ptr) Like above, but additionally convert from big endian (C) or little endian (C) byte order to host byte order while doing so. =item ecb_poke_u16_u (void *ptr, uint16_t v) =item ecb_poke_u32_u (void *ptr, uint32_t v) =item ecb_poke_u64_u (void *ptr, uint64_t v) These functions store an unaligned, unsigned 16, 32 or 64 bit value to memory. =item ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) =item ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) =item ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) =item ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) =item ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) =item ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) Like above, but additionally convert from host byte order to big endian (C) or little endian (C) byte order while doing so. =back In C++ the following additional template functions are supported: =over 4 =item T ecb_peek (const void *ptr) =item T ecb_peek_be (const void *ptr) =item T ecb_peek_le (const void *ptr) =item T ecb_peek_u (const void *ptr) =item T ecb_peek_be_u (const void *ptr) =item T ecb_peek_le_u (const void *ptr) Similarly to their C counterparts, these functions load an unsigned 8, 16, 32 or 64 bit value from memory, with optional conversion from big/little endian. Since the type cannot be deduced, it has to be specified explicitly, e.g. uint_fast16_t v = ecb_peek (ptr); C must be one of C, C, C or C. Unlike their C counterparts, these functions support 8 bit quantities (C) and also have an aligned version (without the C<_u> prefix), all of which hopefully makes them more useful in generic code. =item ecb_poke (void *ptr, T v) =item ecb_poke_be (void *ptr, T v) =item ecb_poke_le (void *ptr, T v) =item ecb_poke_u (void *ptr, T v) =item ecb_poke_be_u (void *ptr, T v) =item ecb_poke_le_u (void *ptr, T v) Again, similarly to their C counterparts, these functions store an unsigned 8, 16, 32 or z64 bit value to memory, with optional conversion to big/little endian. C must be one of C, C, C or C. Unlike their C counterparts, these functions support 8 bit quantities (C) and also have an aligned version (without the C<_u> prefix), all of which hopefully makes them more useful in generic code. =back =head2 FLOATING POINT FIDDLING =over 4 =item ECB_INFINITY [-UECB_NO_LIBM] Evaluates to positive infinity if supported by the platform, otherwise to a truly huge number. =item ECB_NAN [-UECB_NO_LIBM] Evaluates to a quiet NAN if supported by the platform, otherwise to C. =item float ecb_ldexpf (float x, int exp) [-UECB_NO_LIBM] Same as C, but always available. =item uint32_t ecb_float_to_binary16 (float x) [-UECB_NO_LIBM] =item uint32_t ecb_float_to_binary32 (float x) [-UECB_NO_LIBM] =item uint64_t ecb_double_to_binary64 (double x) [-UECB_NO_LIBM] These functions each take an argument in the native C or C type and return the IEEE 754 bit representation of it (binary16/half, binary32/single or binary64/double precision). The bit representation is just as IEEE 754 defines it, i.e. the sign bit will be the most significant bit, followed by exponent and mantissa. This function should work even when the native floating point format isn't IEEE compliant, of course at a speed and code size penalty, and of course also within reasonable limits (it tries to convert NaNs, infinities and denormals, but will likely convert negative zero to positive zero). On all modern platforms (where C is true), the compiler should be able to optimise away this function completely. These functions can be helpful when serialising floats to the network - you can serialise the return value like a normal uint16_t/uint32_t/uint64_t. Another use for these functions is to manipulate floating point values directly. Silly example: toggle the sign bit of a float. /* On gcc-4.7 on amd64, */ /* this results in a single add instruction to toggle the bit, and 4 extra */ /* instructions to move the float value to an integer register and back. */ x = ecb_binary32_to_float (ecb_float_to_binary32 (x) ^ 0x80000000U) =item float ecb_binary16_to_float (uint16_t x) [-UECB_NO_LIBM] =item float ecb_binary32_to_float (uint32_t x) [-UECB_NO_LIBM] =item double ecb_binary64_to_double (uint64_t x) [-UECB_NO_LIBM] The reverse operation of the previous function - takes the bit representation of an IEEE binary16, binary32 or binary64 number (half, single or double precision) and converts it to the native C or C format. This function should work even when the native floating point format isn't IEEE compliant, of course at a speed and code size penalty, and of course also within reasonable limits (it tries to convert normals and denormals, and might be lucky for infinities, and with extraordinary luck, also for negative zero). On all modern platforms (where C is true), the compiler should be able to optimise away this function completely. =item uint16_t ecb_binary32_to_binary16 (uint32_t x) =item uint32_t ecb_binary16_to_binary32 (uint16_t x) Convert a IEEE binary32/single precision to binary16/half format, and vice versa, handling all details (round-to-nearest-even, subnormals, infinity and NaNs) correctly. These are functions are available under C<-DECB_NO_LIBM>, since they do not rely on the platform floating point format. The C and C functions are usually what you want. =back =head2 ARITHMETIC =over 4 =item x = ecb_mod (m, n) Returns C modulo C, which is the same as the positive remainder of the division operation between C and C, using floored division. Unlike the C remainder operator C<%>, this function ensures that the return value is always positive and that the two numbers I and I result in the same value modulo I - in other words, C implements the mathematical modulo operation, which is missing in the language. C must be strictly positive (i.e. C<< >= 1 >>), while C must be negatable, that is, both C and C<-m> must be representable in its type (this typically excludes the minimum signed integer value, the same limitation as for C and C<%> in C). Current GCC/clang versions compile this into an efficient branchless sequence on almost all CPUs. For example, when you want to rotate forward through the members of an array for increasing C (which might be negative), then you should use C, as the C<%> operator might give either negative results, or change direction for negative values: for (m = -100; m <= 100; ++m) int elem = myarray [ecb_mod (m, ecb_array_length (myarray))]; =item x = ecb_div_rd (val, div) =item x = ecb_div_ru (val, div) Returns C divided by C
rounded down or up, respectively. C and C
must have integer types and C
must be strictly positive. Note that these functions are implemented with macros in C and with function templates in C++. =back =head2 UTILITY =over 4 =item element_count = ecb_array_length (name) Returns the number of elements in the array C. For example: int primes[] = { 2, 3, 5, 7, 11 }; int sum = 0; for (i = 0; i < ecb_array_length (primes); i++) sum += primes [i]; =back =head2 SYMBOLS GOVERNING COMPILATION OF ECB.H ITSELF These symbols need to be defined before including F the first time. =over 4 =item ECB_NO_THREADS If F is never used from multiple threads, then this symbol can be defined, in which case memory fences (and similar constructs) are completely removed, leading to more efficient code and fewer dependencies. Setting this symbol to a true value implies C. =item ECB_NO_SMP The weaker version of C - if F is used from multiple threads, but never concurrently (e.g. if the system the program runs on has only a single CPU with a single core, no hyperthreading and so on), then this symbol can be defined, leading to more efficient code and fewer dependencies. =item ECB_NO_LIBM When defined to C<1>, do not export any functions that might introduce dependencies on the math library (usually called F<-lm>) - these are marked with [-UECB_NO_LIBM]. =back =head1 UNDOCUMENTED FUNCTIONALITY F is full of undocumented functionality as well, some of which is intended to be internal-use only, some of which we forgot to document, and some of which we hide because we are not sure we will keep the interface stable. While you are welcome to rummage around and use whatever you find useful (we can't stop you), keep in mind that we will change undocumented functionality in incompatible ways without thinking twice, while we are considerably more conservative with documented things. =head1 AUTHORS C is designed and maintained by: Emanuele Giaquinta Marc Alexander Lehmann