/* * libecb - http://software.schmorp.de/pkg/libecb * * Copyright (©) 2009-2014 Marc Alexander Lehmann * Copyright (©) 2011 Emanuele Giaquinta * All rights reserved. * * Redistribution and use in source and binary forms, with or without modifica- * tion, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef ECB_H #define ECB_H /* 16 bits major, 16 bits minor */ #define ECB_VERSION 0x00010003 #ifdef _WIN32 typedef signed char int8_t; typedef unsigned char uint8_t; typedef signed short int16_t; typedef unsigned short uint16_t; typedef signed int int32_t; typedef unsigned int uint32_t; #if __GNUC__ typedef signed long long int64_t; typedef unsigned long long uint64_t; #else /* _MSC_VER || __BORLANDC__ */ typedef signed __int64 int64_t; typedef unsigned __int64 uint64_t; #endif #ifdef _WIN64 #define ECB_PTRSIZE 8 typedef uint64_t uintptr_t; typedef int64_t intptr_t; #else #define ECB_PTRSIZE 4 typedef uint32_t uintptr_t; typedef int32_t intptr_t; #endif #else #include #if UINTMAX_MAX > 0xffffffffU #define ECB_PTRSIZE 8 #else #define ECB_PTRSIZE 4 #endif #endif /* work around x32 idiocy by defining proper macros */ #if __amd64 || __x86_64 || _M_AMD64 || _M_X64 #if _ILP32 #define ECB_AMD64_X32 1 #else #define ECB_AMD64 1 #endif #endif /* many compilers define _GNUC_ to some versions but then only implement * what their idiot authors think are the "more important" extensions, * causing enormous grief in return for some better fake benchmark numbers. * or so. * we try to detect these and simply assume they are not gcc - if they have * an issue with that they should have done it right in the first place. */ #ifndef ECB_GCC_VERSION #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__ #define ECB_GCC_VERSION(major,minor) 0 #else #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor))) #endif #endif #define ECB_CPP (__cplusplus+0) #define ECB_CPP11 (__cplusplus >= 201103L) #if ECB_CPP #define ECB_C 0 #define ECB_STDC_VERSION 0 #else #define ECB_C 1 #define ECB_STDC_VERSION __STDC_VERSION__ #endif #define ECB_C99 (ECB_STDC_VERSION >= 199901L) #define ECB_C11 (ECB_STDC_VERSION >= 201112L) #if ECB_CPP #define ECB_EXTERN_C extern "C" #define ECB_EXTERN_C_BEG ECB_EXTERN_C { #define ECB_EXTERN_C_END } #else #define ECB_EXTERN_C extern #define ECB_EXTERN_C_BEG #define ECB_EXTERN_C_END #endif /*****************************************************************************/ /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */ /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */ #if ECB_NO_THREADS #define ECB_NO_SMP 1 #endif #if ECB_NO_SMP #define ECB_MEMORY_FENCE do { } while (0) #endif #ifndef ECB_MEMORY_FENCE #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 #if __i386 || __i386__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") #elif __amd64 || __amd64__ || __x86_64 || __x86_64__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \ || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory") #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \ || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory") #elif __aarch64__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory") #elif (__sparc || __sparc__) && !__sparcv8 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory") #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory") #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore") #elif defined __s390__ || defined __s390x__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory") #elif defined __mips__ /* GNU/Linux emulates sync on mips1 architectures, so we force its use */ /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */ #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory") #elif defined __alpha__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory") #elif defined __hppa__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") #elif defined __ia64__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory") #elif defined __m68k__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") #elif defined __m88k__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory") #elif defined __sh__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") #endif #endif #endif #ifndef ECB_MEMORY_FENCE #if ECB_GCC_VERSION(4,7) /* see comment below (stdatomic.h) about the C11 memory model. */ #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) /* The __has_feature syntax from clang is so misdesigned that we cannot use it * without risking compile time errors with other compilers. We *could* * define our own ecb_clang_has_feature, but I just can't be bothered to work * around this shit time and again. * #elif defined __clang && __has_feature (cxx_atomic) * // see comment below (stdatomic.h) about the C11 memory model. * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) */ #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ #define ECB_MEMORY_FENCE __sync_synchronize () #elif _MSC_VER >= 1500 /* VC++ 2008 */ /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */ #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier) #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier() #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */ #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier() #elif _MSC_VER >= 1400 /* VC++ 2005 */ #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier) #define ECB_MEMORY_FENCE _ReadWriteBarrier () #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */ #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier () #elif defined _WIN32 #include #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 #include #define ECB_MEMORY_FENCE __machine_rw_barrier () #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier () #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier () #elif __xlC__ #define ECB_MEMORY_FENCE __sync () #endif #endif #ifndef ECB_MEMORY_FENCE #if ECB_C11 && !defined __STDC_NO_ATOMICS__ /* we assume that these memory fences work on all variables/all memory accesses, */ /* not just C11 atomics and atomic accesses */ #include /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */ /* any fence other than seq_cst, which isn't very efficient for us. */ /* Why that is, we don't know - either the C11 memory model is quite useless */ /* for most usages, or gcc and clang have a bug */ /* I *currently* lean towards the latter, and inefficiently implement */ /* all three of ecb's fences as a seq_cst fence */ /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */ /* for all __atomic_thread_fence's except seq_cst */ #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst) #endif #endif #ifndef ECB_MEMORY_FENCE #if !ECB_AVOID_PTHREADS /* * if you get undefined symbol references to pthread_mutex_lock, * or failure to find pthread.h, then you should implement * the ECB_MEMORY_FENCE operations for your cpu/compiler * OR provide pthread.h and link against the posix thread library * of your system. */ #include #define ECB_NEEDS_PTHREADS 1 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER; #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0) #endif #endif #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE #endif #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE #endif /*****************************************************************************/ #if __cplusplus #define ecb_inline static inline #elif ECB_GCC_VERSION(2,5) #define ecb_inline static __inline__ #elif ECB_C99 #define ecb_inline static inline #else #define ecb_inline static #endif #if ECB_GCC_VERSION(3,3) #define ecb_restrict __restrict__ #elif ECB_C99 #define ecb_restrict restrict #else #define ecb_restrict #endif typedef int ecb_bool; #define ECB_CONCAT_(a, b) a ## b #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b) #define ECB_STRINGIFY_(a) # a #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a) #define ecb_function_ ecb_inline #if ECB_GCC_VERSION(3,1) #define ecb_attribute(attrlist) __attribute__(attrlist) #define ecb_is_constant(expr) __builtin_constant_p (expr) #define ecb_expect(expr,value) __builtin_expect ((expr),(value)) #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) #else #define ecb_attribute(attrlist) /* possible C11 impl for integral types typedef struct ecb_is_constant_struct ecb_is_constant_struct; #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */ #define ecb_is_constant(expr) 0 #define ecb_expect(expr,value) (expr) #define ecb_prefetch(addr,rw,locality) #endif /* no emulation for ecb_decltype */ #if ECB_GCC_VERSION(4,5) #define ecb_decltype(x) __decltype(x) #elif ECB_GCC_VERSION(3,0) #define ecb_decltype(x) __typeof(x) #endif #define ecb_noinline ecb_attribute ((__noinline__)) #define ecb_unused ecb_attribute ((__unused__)) #define ecb_const ecb_attribute ((__const__)) #define ecb_pure ecb_attribute ((__pure__)) #if ECB_C11 #define ecb_noreturn _Noreturn #else #define ecb_noreturn ecb_attribute ((__noreturn__)) #endif #if ECB_GCC_VERSION(4,3) #define ecb_artificial ecb_attribute ((__artificial__)) #define ecb_hot ecb_attribute ((__hot__)) #define ecb_cold ecb_attribute ((__cold__)) #else #define ecb_artificial #define ecb_hot #define ecb_cold #endif /* put around conditional expressions if you are very sure that the */ /* expression is mostly true or mostly false. note that these return */ /* booleans, not the expression. */ #define ecb_expect_false(expr) ecb_expect (!!(expr), 0) #define ecb_expect_true(expr) ecb_expect (!!(expr), 1) /* for compatibility to the rest of the world */ #define ecb_likely(expr) ecb_expect_true (expr) #define ecb_unlikely(expr) ecb_expect_false (expr) /* count trailing zero bits and count # of one bits */ #if ECB_GCC_VERSION(3,4) /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */ #define ecb_ld32(x) (__builtin_clz (x) ^ 31) #define ecb_ld64(x) (__builtin_clzll (x) ^ 63) #define ecb_ctz32(x) __builtin_ctz (x) #define ecb_ctz64(x) __builtin_ctzll (x) #define ecb_popcount32(x) __builtin_popcount (x) /* no popcountll */ #else ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const; ecb_function_ int ecb_ctz32 (uint32_t x) { int r = 0; x &= ~x + 1; /* this isolates the lowest bit */ #if ECB_branchless_on_i386 r += !!(x & 0xaaaaaaaa) << 0; r += !!(x & 0xcccccccc) << 1; r += !!(x & 0xf0f0f0f0) << 2; r += !!(x & 0xff00ff00) << 3; r += !!(x & 0xffff0000) << 4; #else if (x & 0xaaaaaaaa) r += 1; if (x & 0xcccccccc) r += 2; if (x & 0xf0f0f0f0) r += 4; if (x & 0xff00ff00) r += 8; if (x & 0xffff0000) r += 16; #endif return r; } ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const; ecb_function_ int ecb_ctz64 (uint64_t x) { int shift = x & 0xffffffffU ? 0 : 32; return ecb_ctz32 (x >> shift) + shift; } ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const; ecb_function_ int ecb_popcount32 (uint32_t x) { x -= (x >> 1) & 0x55555555; x = ((x >> 2) & 0x33333333) + (x & 0x33333333); x = ((x >> 4) + x) & 0x0f0f0f0f; x *= 0x01010101; return x >> 24; } ecb_function_ int ecb_ld32 (uint32_t x) ecb_const; ecb_function_ int ecb_ld32 (uint32_t x) { int r = 0; if (x >> 16) { x >>= 16; r += 16; } if (x >> 8) { x >>= 8; r += 8; } if (x >> 4) { x >>= 4; r += 4; } if (x >> 2) { x >>= 2; r += 2; } if (x >> 1) { r += 1; } return r; } ecb_function_ int ecb_ld64 (uint64_t x) ecb_const; ecb_function_ int ecb_ld64 (uint64_t x) { int r = 0; if (x >> 32) { x >>= 32; r += 32; } return r + ecb_ld32 (x); } #endif ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const; ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); } ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const; ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); } ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const; ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) { return ( (x * 0x0802U & 0x22110U) | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16; } ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const; ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) { x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1); x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2); x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4); x = ( x >> 8 ) | ( x << 8); return x; } ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const; ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) { x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4); x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8); x = ( x >> 16 ) | ( x << 16); return x; } /* popcount64 is only available on 64 bit cpus as gcc builtin */ /* so for this version we are lazy */ ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const; ecb_function_ int ecb_popcount64 (uint64_t x) { return ecb_popcount32 (x) + ecb_popcount32 (x >> 32); } ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const; ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const; ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const; ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const; ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const; ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const; ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const; ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const; ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); } ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); } ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); } ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); } ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); } ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); } ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); } ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); } #if ECB_GCC_VERSION(4,3) #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16) #define ecb_bswap32(x) __builtin_bswap32 (x) #define ecb_bswap64(x) __builtin_bswap64 (x) #else ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const; ecb_function_ uint16_t ecb_bswap16 (uint16_t x) { return ecb_rotl16 (x, 8); } ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const; ecb_function_ uint32_t ecb_bswap32 (uint32_t x) { return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16); } ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const; ecb_function_ uint64_t ecb_bswap64 (uint64_t x) { return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32); } #endif #if ECB_GCC_VERSION(4,5) #define ecb_unreachable() __builtin_unreachable () #else /* this seems to work fine, but gcc always emits a warning for it :/ */ ecb_inline void ecb_unreachable (void) ecb_noreturn; ecb_inline void ecb_unreachable (void) { } #endif /* try to tell the compiler that some condition is definitely true */ #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const; ecb_inline unsigned char ecb_byteorder_helper (void) { /* the union code still generates code under pressure in gcc, */ /* but less than using pointers, and always seems to */ /* successfully return a constant. */ /* the reason why we have this horrible preprocessor mess */ /* is to avoid it in all cases, at least on common architectures */ /* or when using a recent enough gcc version (>= 4.6) */ #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64 return 0x44; #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ return 0x44; #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ return 0x11; #else union { uint32_t i; uint8_t c; } u = { 0x11223344 }; return u.c; #endif } ecb_inline ecb_bool ecb_big_endian (void) ecb_const; ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; } ecb_inline ecb_bool ecb_little_endian (void) ecb_const; ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; } #if ECB_GCC_VERSION(3,0) || ECB_C99 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) #else #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) #endif #if __cplusplus template static inline T ecb_div_rd (T val, T div) { return val < 0 ? - ((-val + div - 1) / div) : (val ) / div; } template static inline T ecb_div_ru (T val, T div) { return val < 0 ? - ((-val ) / div) : (val + div - 1) / div; } #else #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) #endif #if ecb_cplusplus_does_not_suck /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ template static inline int ecb_array_length (const T (&arr)[N]) { return N; } #else #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) #endif /*******************************************************************************/ /* floating point stuff, can be disabled by defining ECB_NO_LIBM */ /* basically, everything uses "ieee pure-endian" floating point numbers */ /* the only noteworthy exception is ancient armle, which uses order 43218765 */ #if 0 \ || __i386 || __i386__ \ || __amd64 || __amd64__ || __x86_64 || __x86_64__ \ || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \ || defined __s390__ || defined __s390x__ \ || defined __mips__ \ || defined __alpha__ \ || defined __hppa__ \ || defined __ia64__ \ || defined __m68k__ \ || defined __m88k__ \ || defined __sh__ \ || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \ || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \ || defined __aarch64__ #define ECB_STDFP 1 #include /* for memcpy */ #else #define ECB_STDFP 0 #endif #ifndef ECB_NO_LIBM #include /* for frexp*, ldexp*, INFINITY, NAN */ /* only the oldest of old doesn't have this one. solaris. */ #ifdef INFINITY #define ECB_INFINITY INFINITY #else #define ECB_INFINITY HUGE_VAL #endif #ifdef NAN #define ECB_NAN NAN #else #define ECB_NAN ECB_INFINITY #endif /* converts an ieee half/binary16 to a float */ ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const; ecb_function_ float ecb_binary16_to_float (uint16_t x) { int e = (x >> 10) & 0x1f; int m = x & 0x3ff; float r; if (!e ) r = ldexpf (m , -24); else if (e != 31) r = ldexpf (m + 0x400, e - 25); else if (m ) r = ECB_NAN; else r = ECB_INFINITY; return x & 0x8000 ? -r : r; } /* convert a float to ieee single/binary32 */ ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const; ecb_function_ uint32_t ecb_float_to_binary32 (float x) { uint32_t r; #if ECB_STDFP memcpy (&r, &x, 4); #else /* slow emulation, works for anything but -0 */ uint32_t m; int e; if (x == 0e0f ) return 0x00000000U; if (x > +3.40282346638528860e+38f) return 0x7f800000U; if (x < -3.40282346638528860e+38f) return 0xff800000U; if (x != x ) return 0x7fbfffffU; m = frexpf (x, &e) * 0x1000000U; r = m & 0x80000000U; if (r) m = -m; if (e <= -126) { m &= 0xffffffU; m >>= (-125 - e); e = -126; } r |= (e + 126) << 23; r |= m & 0x7fffffU; #endif return r; } /* converts an ieee single/binary32 to a float */ ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const; ecb_function_ float ecb_binary32_to_float (uint32_t x) { float r; #if ECB_STDFP memcpy (&r, &x, 4); #else /* emulation, only works for normals and subnormals and +0 */ int neg = x >> 31; int e = (x >> 23) & 0xffU; x &= 0x7fffffU; if (e) x |= 0x800000U; else e = 1; /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */ r = ldexpf (x * (0.5f / 0x800000U), e - 126); r = neg ? -r : r; #endif return r; } /* convert a double to ieee double/binary64 */ ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const; ecb_function_ uint64_t ecb_double_to_binary64 (double x) { uint64_t r; #if ECB_STDFP memcpy (&r, &x, 8); #else /* slow emulation, works for anything but -0 */ uint64_t m; int e; if (x == 0e0 ) return 0x0000000000000000U; if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U; if (x < -1.79769313486231470e+308) return 0xfff0000000000000U; if (x != x ) return 0X7ff7ffffffffffffU; m = frexp (x, &e) * 0x20000000000000U; r = m & 0x8000000000000000;; if (r) m = -m; if (e <= -1022) { m &= 0x1fffffffffffffU; m >>= (-1021 - e); e = -1022; } r |= ((uint64_t)(e + 1022)) << 52; r |= m & 0xfffffffffffffU; #endif return r; } /* converts an ieee double/binary64 to a double */ ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const; ecb_function_ double ecb_binary64_to_double (uint64_t x) { double r; #if ECB_STDFP memcpy (&r, &x, 8); #else /* emulation, only works for normals and subnormals and +0 */ int neg = x >> 63; int e = (x >> 52) & 0x7ffU; x &= 0xfffffffffffffU; if (e) x |= 0x10000000000000U; else e = 1; /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */ r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022); r = neg ? -r : r; #endif return r; } #endif #endif