ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.65
Committed: Sun Nov 4 23:29:48 2007 UTC (16 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.64: +16 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.59 #ifndef EV_STANDALONE
32 root 1.29 # include "config.h"
33 root 1.60
34     # if HAVE_CLOCK_GETTIME
35     # define EV_USE_MONOTONIC 1
36     # define EV_USE_REALTIME 1
37     # endif
38    
39     # if HAVE_SELECT && HAVE_SYS_SELECT_H
40     # define EV_USE_SELECT 1
41     # endif
42    
43     # if HAVE_POLL && HAVE_POLL_H
44     # define EV_USE_POLL 1
45     # endif
46    
47     # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48     # define EV_USE_EPOLL 1
49     # endif
50    
51     # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52     # define EV_USE_KQUEUE 1
53     # endif
54    
55 root 1.29 #endif
56 root 1.17
57 root 1.1 #include <math.h>
58     #include <stdlib.h>
59 root 1.7 #include <unistd.h>
60     #include <fcntl.h>
61     #include <signal.h>
62 root 1.16 #include <stddef.h>
63 root 1.1
64     #include <stdio.h>
65    
66 root 1.4 #include <assert.h>
67 root 1.1 #include <errno.h>
68 root 1.22 #include <sys/types.h>
69 root 1.45 #ifndef WIN32
70     # include <sys/wait.h>
71     #endif
72 root 1.1 #include <sys/time.h>
73     #include <time.h>
74    
75 root 1.40 /**/
76    
77 root 1.29 #ifndef EV_USE_MONOTONIC
78 root 1.37 # define EV_USE_MONOTONIC 1
79     #endif
80    
81 root 1.29 #ifndef EV_USE_SELECT
82     # define EV_USE_SELECT 1
83 root 1.10 #endif
84    
85 root 1.59 #ifndef EV_USE_POLL
86     # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87 root 1.41 #endif
88    
89 root 1.29 #ifndef EV_USE_EPOLL
90     # define EV_USE_EPOLL 0
91 root 1.10 #endif
92    
93 root 1.44 #ifndef EV_USE_KQUEUE
94     # define EV_USE_KQUEUE 0
95     #endif
96    
97 root 1.62 #ifndef EV_USE_WIN32
98     # ifdef WIN32
99     # define EV_USE_WIN32 1
100     # else
101     # define EV_USE_WIN32 0
102     # endif
103     #endif
104    
105 root 1.40 #ifndef EV_USE_REALTIME
106     # define EV_USE_REALTIME 1
107     #endif
108    
109     /**/
110    
111     #ifndef CLOCK_MONOTONIC
112     # undef EV_USE_MONOTONIC
113     # define EV_USE_MONOTONIC 0
114     #endif
115    
116 root 1.31 #ifndef CLOCK_REALTIME
117 root 1.40 # undef EV_USE_REALTIME
118 root 1.31 # define EV_USE_REALTIME 0
119     #endif
120 root 1.40
121     /**/
122 root 1.1
123 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 root 1.1
128 root 1.59 #include "ev.h"
129 root 1.1
130 root 1.40 #if __GNUC__ >= 3
131     # define expect(expr,value) __builtin_expect ((expr),(value))
132     # define inline inline
133     #else
134     # define expect(expr,value) (expr)
135     # define inline static
136     #endif
137    
138     #define expect_false(expr) expect ((expr) != 0, 0)
139     #define expect_true(expr) expect ((expr) != 0, 1)
140    
141 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
143    
144 root 1.10 typedef struct ev_watcher *W;
145     typedef struct ev_watcher_list *WL;
146 root 1.12 typedef struct ev_watcher_time *WT;
147 root 1.10
148 root 1.54 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149    
150 root 1.53 /*****************************************************************************/
151 root 1.1
152 root 1.53 typedef struct
153     {
154     struct ev_watcher_list *head;
155     unsigned char events;
156     unsigned char reify;
157     } ANFD;
158 root 1.1
159 root 1.53 typedef struct
160     {
161     W w;
162     int events;
163     } ANPENDING;
164 root 1.51
165 root 1.55 #if EV_MULTIPLICITY
166 root 1.54
167 root 1.53 struct ev_loop
168     {
169 root 1.54 # define VAR(name,decl) decl;
170 root 1.53 # include "ev_vars.h"
171     };
172 root 1.54 # undef VAR
173     # include "ev_wrap.h"
174    
175 root 1.53 #else
176 root 1.54
177     # define VAR(name,decl) static decl;
178 root 1.53 # include "ev_vars.h"
179 root 1.54 # undef VAR
180    
181 root 1.51 #endif
182 root 1.1
183 root 1.8 /*****************************************************************************/
184    
185 root 1.51 inline ev_tstamp
186 root 1.1 ev_time (void)
187     {
188 root 1.29 #if EV_USE_REALTIME
189 root 1.1 struct timespec ts;
190     clock_gettime (CLOCK_REALTIME, &ts);
191     return ts.tv_sec + ts.tv_nsec * 1e-9;
192     #else
193     struct timeval tv;
194     gettimeofday (&tv, 0);
195     return tv.tv_sec + tv.tv_usec * 1e-6;
196     #endif
197     }
198    
199 root 1.51 inline ev_tstamp
200 root 1.1 get_clock (void)
201     {
202 root 1.29 #if EV_USE_MONOTONIC
203 root 1.40 if (expect_true (have_monotonic))
204 root 1.1 {
205     struct timespec ts;
206     clock_gettime (CLOCK_MONOTONIC, &ts);
207     return ts.tv_sec + ts.tv_nsec * 1e-9;
208     }
209     #endif
210    
211     return ev_time ();
212     }
213    
214 root 1.51 ev_tstamp
215     ev_now (EV_P)
216     {
217     return rt_now;
218     }
219    
220 root 1.30 #define array_roundsize(base,n) ((n) | 4 & ~3)
221 root 1.29
222 root 1.1 #define array_needsize(base,cur,cnt,init) \
223 root 1.40 if (expect_false ((cnt) > cur)) \
224 root 1.1 { \
225 root 1.23 int newcnt = cur; \
226     do \
227     { \
228 root 1.30 newcnt = array_roundsize (base, newcnt << 1); \
229 root 1.23 } \
230     while ((cnt) > newcnt); \
231     \
232 root 1.1 base = realloc (base, sizeof (*base) * (newcnt)); \
233     init (base + cur, newcnt - cur); \
234     cur = newcnt; \
235     }
236    
237 root 1.65 #define array_free(stem, idx) \
238     free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239    
240 root 1.8 /*****************************************************************************/
241    
242 root 1.1 static void
243     anfds_init (ANFD *base, int count)
244     {
245     while (count--)
246     {
247 root 1.27 base->head = 0;
248     base->events = EV_NONE;
249 root 1.33 base->reify = 0;
250    
251 root 1.1 ++base;
252     }
253     }
254    
255     static void
256 root 1.51 event (EV_P_ W w, int events)
257 root 1.1 {
258 root 1.32 if (w->pending)
259     {
260 root 1.42 pendings [ABSPRI (w)][w->pending - 1].events |= events;
261 root 1.32 return;
262     }
263    
264 root 1.42 w->pending = ++pendingcnt [ABSPRI (w)];
265     array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
266     pendings [ABSPRI (w)][w->pending - 1].w = w;
267     pendings [ABSPRI (w)][w->pending - 1].events = events;
268 root 1.1 }
269    
270     static void
271 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
272 root 1.27 {
273     int i;
274    
275     for (i = 0; i < eventcnt; ++i)
276 root 1.51 event (EV_A_ events [i], type);
277 root 1.27 }
278    
279     static void
280 root 1.51 fd_event (EV_P_ int fd, int events)
281 root 1.1 {
282     ANFD *anfd = anfds + fd;
283     struct ev_io *w;
284    
285 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
286 root 1.1 {
287     int ev = w->events & events;
288    
289     if (ev)
290 root 1.51 event (EV_A_ (W)w, ev);
291 root 1.1 }
292     }
293    
294 root 1.27 /*****************************************************************************/
295    
296 root 1.9 static void
297 root 1.51 fd_reify (EV_P)
298 root 1.9 {
299     int i;
300    
301 root 1.27 for (i = 0; i < fdchangecnt; ++i)
302     {
303     int fd = fdchanges [i];
304     ANFD *anfd = anfds + fd;
305     struct ev_io *w;
306    
307     int events = 0;
308    
309 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
310 root 1.27 events |= w->events;
311    
312 root 1.33 anfd->reify = 0;
313 root 1.27
314 root 1.64 method_modify (EV_A_ fd, anfd->events, events);
315     anfd->events = events;
316 root 1.27 }
317    
318     fdchangecnt = 0;
319     }
320    
321     static void
322 root 1.51 fd_change (EV_P_ int fd)
323 root 1.27 {
324 root 1.33 if (anfds [fd].reify || fdchangecnt < 0)
325 root 1.27 return;
326    
327 root 1.33 anfds [fd].reify = 1;
328 root 1.27
329     ++fdchangecnt;
330     array_needsize (fdchanges, fdchangemax, fdchangecnt, );
331     fdchanges [fdchangecnt - 1] = fd;
332 root 1.9 }
333    
334 root 1.41 static void
335 root 1.51 fd_kill (EV_P_ int fd)
336 root 1.41 {
337     struct ev_io *w;
338    
339 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
340 root 1.41 {
341 root 1.51 ev_io_stop (EV_A_ w);
342     event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 root 1.41 }
344     }
345    
346 root 1.19 /* called on EBADF to verify fds */
347     static void
348 root 1.51 fd_ebadf (EV_P)
349 root 1.19 {
350     int fd;
351    
352     for (fd = 0; fd < anfdmax; ++fd)
353 root 1.27 if (anfds [fd].events)
354 root 1.19 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
355 root 1.51 fd_kill (EV_A_ fd);
356 root 1.41 }
357    
358     /* called on ENOMEM in select/poll to kill some fds and retry */
359     static void
360 root 1.51 fd_enomem (EV_P)
361 root 1.41 {
362 root 1.62 int fd;
363 root 1.41
364 root 1.62 for (fd = anfdmax; fd--; )
365 root 1.41 if (anfds [fd].events)
366     {
367     close (fd);
368 root 1.51 fd_kill (EV_A_ fd);
369 root 1.41 return;
370     }
371 root 1.19 }
372    
373 root 1.56 /* susually called after fork if method needs to re-arm all fds from scratch */
374     static void
375     fd_rearm_all (EV_P)
376     {
377     int fd;
378    
379     /* this should be highly optimised to not do anything but set a flag */
380     for (fd = 0; fd < anfdmax; ++fd)
381     if (anfds [fd].events)
382     {
383     anfds [fd].events = 0;
384 root 1.60 fd_change (EV_A_ fd);
385 root 1.56 }
386     }
387    
388 root 1.8 /*****************************************************************************/
389    
390 root 1.1 static void
391 root 1.54 upheap (WT *heap, int k)
392 root 1.1 {
393 root 1.54 WT w = heap [k];
394 root 1.1
395 root 1.54 while (k && heap [k >> 1]->at > w->at)
396 root 1.1 {
397 root 1.54 heap [k] = heap [k >> 1];
398 root 1.62 ((W)heap [k])->active = k + 1;
399 root 1.1 k >>= 1;
400     }
401    
402 root 1.54 heap [k] = w;
403 root 1.62 ((W)heap [k])->active = k + 1;
404 root 1.1
405     }
406    
407     static void
408 root 1.54 downheap (WT *heap, int N, int k)
409 root 1.1 {
410 root 1.54 WT w = heap [k];
411 root 1.1
412 root 1.4 while (k < (N >> 1))
413 root 1.1 {
414     int j = k << 1;
415    
416 root 1.54 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
417 root 1.1 ++j;
418    
419 root 1.54 if (w->at <= heap [j]->at)
420 root 1.1 break;
421    
422 root 1.54 heap [k] = heap [j];
423 root 1.62 ((W)heap [k])->active = k + 1;
424 root 1.1 k = j;
425     }
426    
427 root 1.54 heap [k] = w;
428 root 1.62 ((W)heap [k])->active = k + 1;
429 root 1.1 }
430    
431 root 1.8 /*****************************************************************************/
432    
433 root 1.7 typedef struct
434     {
435 root 1.50 struct ev_watcher_list *head;
436 root 1.34 sig_atomic_t volatile gotsig;
437 root 1.7 } ANSIG;
438    
439     static ANSIG *signals;
440 root 1.4 static int signalmax;
441 root 1.1
442 root 1.7 static int sigpipe [2];
443 root 1.34 static sig_atomic_t volatile gotsig;
444 root 1.59 static struct ev_io sigev;
445 root 1.7
446 root 1.1 static void
447 root 1.7 signals_init (ANSIG *base, int count)
448 root 1.1 {
449     while (count--)
450 root 1.7 {
451     base->head = 0;
452     base->gotsig = 0;
453 root 1.33
454 root 1.7 ++base;
455     }
456     }
457    
458     static void
459     sighandler (int signum)
460     {
461     signals [signum - 1].gotsig = 1;
462    
463     if (!gotsig)
464     {
465 root 1.48 int old_errno = errno;
466 root 1.7 gotsig = 1;
467 root 1.34 write (sigpipe [1], &signum, 1);
468 root 1.48 errno = old_errno;
469 root 1.7 }
470     }
471    
472     static void
473 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
474 root 1.7 {
475 root 1.50 struct ev_watcher_list *w;
476 root 1.38 int signum;
477 root 1.7
478 root 1.34 read (sigpipe [0], &revents, 1);
479 root 1.7 gotsig = 0;
480    
481 root 1.38 for (signum = signalmax; signum--; )
482     if (signals [signum].gotsig)
483 root 1.7 {
484 root 1.38 signals [signum].gotsig = 0;
485 root 1.7
486 root 1.38 for (w = signals [signum].head; w; w = w->next)
487 root 1.51 event (EV_A_ (W)w, EV_SIGNAL);
488 root 1.7 }
489     }
490    
491     static void
492 root 1.51 siginit (EV_P)
493 root 1.7 {
494 root 1.45 #ifndef WIN32
495 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
496     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497    
498     /* rather than sort out wether we really need nb, set it */
499     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501 root 1.45 #endif
502 root 1.7
503 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 root 1.54 ev_io_start (EV_A_ &sigev);
505 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
506 root 1.1 }
507    
508 root 1.8 /*****************************************************************************/
509    
510 root 1.45 #ifndef WIN32
511    
512 root 1.59 static struct ev_child *childs [PID_HASHSIZE];
513     static struct ev_signal childev;
514    
515 root 1.22 #ifndef WCONTINUED
516     # define WCONTINUED 0
517     #endif
518    
519     static void
520 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521 root 1.47 {
522     struct ev_child *w;
523    
524 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 root 1.47 if (w->pid == pid || !w->pid)
526     {
527 root 1.63 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528     w->rpid = pid;
529     w->rstatus = status;
530 root 1.51 event (EV_A_ (W)w, EV_CHILD);
531 root 1.47 }
532     }
533    
534     static void
535 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
536 root 1.22 {
537     int pid, status;
538    
539 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540     {
541     /* make sure we are called again until all childs have been reaped */
542 root 1.51 event (EV_A_ (W)sw, EV_SIGNAL);
543 root 1.47
544 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
545     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 root 1.47 }
547 root 1.22 }
548    
549 root 1.45 #endif
550    
551 root 1.22 /*****************************************************************************/
552    
553 root 1.44 #if EV_USE_KQUEUE
554     # include "ev_kqueue.c"
555     #endif
556 root 1.29 #if EV_USE_EPOLL
557 root 1.1 # include "ev_epoll.c"
558     #endif
559 root 1.59 #if EV_USE_POLL
560 root 1.41 # include "ev_poll.c"
561     #endif
562 root 1.29 #if EV_USE_SELECT
563 root 1.1 # include "ev_select.c"
564     #endif
565    
566 root 1.24 int
567     ev_version_major (void)
568     {
569     return EV_VERSION_MAJOR;
570     }
571    
572     int
573     ev_version_minor (void)
574     {
575     return EV_VERSION_MINOR;
576     }
577    
578 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
579 root 1.41 static int
580 root 1.51 enable_secure (void)
581 root 1.41 {
582 root 1.49 #ifdef WIN32
583     return 0;
584     #else
585 root 1.41 return getuid () != geteuid ()
586     || getgid () != getegid ();
587 root 1.49 #endif
588 root 1.41 }
589    
590 root 1.51 int
591     ev_method (EV_P)
592 root 1.1 {
593 root 1.51 return method;
594     }
595    
596 root 1.56 static void
597 root 1.54 loop_init (EV_P_ int methods)
598 root 1.51 {
599     if (!method)
600 root 1.23 {
601 root 1.29 #if EV_USE_MONOTONIC
602 root 1.23 {
603     struct timespec ts;
604     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605     have_monotonic = 1;
606     }
607 root 1.1 #endif
608    
609 root 1.51 rt_now = ev_time ();
610     mn_now = get_clock ();
611     now_floor = mn_now;
612 root 1.54 rtmn_diff = rt_now - mn_now;
613 root 1.1
614 root 1.41 if (methods == EVMETHOD_AUTO)
615 root 1.56 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616     methods = atoi (getenv ("LIBEV_METHODS"));
617 root 1.50 else
618     methods = EVMETHOD_ANY;
619 root 1.41
620 root 1.51 method = 0;
621 root 1.62 #if EV_USE_WIN32
622     if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623     #endif
624 root 1.44 #if EV_USE_KQUEUE
625 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626 root 1.44 #endif
627 root 1.29 #if EV_USE_EPOLL
628 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629 root 1.41 #endif
630 root 1.59 #if EV_USE_POLL
631 root 1.51 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632 root 1.1 #endif
633 root 1.29 #if EV_USE_SELECT
634 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635 root 1.1 #endif
636 root 1.56 }
637     }
638    
639     void
640     loop_destroy (EV_P)
641     {
642 root 1.65 int i;
643    
644 root 1.62 #if EV_USE_WIN32
645     if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646     #endif
647 root 1.56 #if EV_USE_KQUEUE
648     if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649     #endif
650     #if EV_USE_EPOLL
651     if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652     #endif
653 root 1.59 #if EV_USE_POLL
654 root 1.56 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655     #endif
656     #if EV_USE_SELECT
657     if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658     #endif
659 root 1.1
660 root 1.65 for (i = NUMPRI; i--; )
661     array_free (pending, [i]);
662    
663     array_free (fdchange, );
664     array_free (timer, );
665     array_free (periodic, );
666     array_free (idle, );
667     array_free (prepare, );
668     array_free (check, );
669    
670 root 1.56 method = 0;
671     /*TODO*/
672     }
673 root 1.22
674 root 1.56 void
675     loop_fork (EV_P)
676     {
677     /*TODO*/
678     #if EV_USE_EPOLL
679     if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680     #endif
681     #if EV_USE_KQUEUE
682     if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683 root 1.45 #endif
684 root 1.1 }
685    
686 root 1.55 #if EV_MULTIPLICITY
687 root 1.54 struct ev_loop *
688     ev_loop_new (int methods)
689     {
690     struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691    
692 root 1.56 loop_init (EV_A_ methods);
693    
694 root 1.60 if (ev_method (EV_A))
695 root 1.55 return loop;
696 root 1.54
697 root 1.55 return 0;
698 root 1.54 }
699    
700     void
701 root 1.56 ev_loop_destroy (EV_P)
702 root 1.54 {
703 root 1.56 loop_destroy (EV_A);
704 root 1.54 free (loop);
705     }
706    
707 root 1.56 void
708     ev_loop_fork (EV_P)
709     {
710     loop_fork (EV_A);
711     }
712    
713     #endif
714    
715     #if EV_MULTIPLICITY
716     struct ev_loop default_loop_struct;
717     static struct ev_loop *default_loop;
718    
719     struct ev_loop *
720 root 1.54 #else
721 root 1.56 static int default_loop;
722 root 1.54
723     int
724 root 1.56 #endif
725     ev_default_loop (int methods)
726 root 1.54 {
727 root 1.56 if (sigpipe [0] == sigpipe [1])
728     if (pipe (sigpipe))
729     return 0;
730 root 1.54
731 root 1.56 if (!default_loop)
732     {
733     #if EV_MULTIPLICITY
734     struct ev_loop *loop = default_loop = &default_loop_struct;
735     #else
736     default_loop = 1;
737 root 1.54 #endif
738    
739 root 1.56 loop_init (EV_A_ methods);
740    
741     if (ev_method (EV_A))
742     {
743     ev_watcher_init (&sigev, sigcb);
744     ev_set_priority (&sigev, EV_MAXPRI);
745     siginit (EV_A);
746    
747     #ifndef WIN32
748     ev_signal_init (&childev, childcb, SIGCHLD);
749     ev_set_priority (&childev, EV_MAXPRI);
750     ev_signal_start (EV_A_ &childev);
751     ev_unref (EV_A); /* child watcher should not keep loop alive */
752     #endif
753     }
754     else
755     default_loop = 0;
756     }
757 root 1.8
758 root 1.56 return default_loop;
759 root 1.1 }
760    
761 root 1.24 void
762 root 1.56 ev_default_destroy (void)
763 root 1.1 {
764 root 1.57 #if EV_MULTIPLICITY
765 root 1.56 struct ev_loop *loop = default_loop;
766 root 1.57 #endif
767 root 1.56
768     ev_ref (EV_A); /* child watcher */
769     ev_signal_stop (EV_A_ &childev);
770    
771     ev_ref (EV_A); /* signal watcher */
772     ev_io_stop (EV_A_ &sigev);
773    
774     close (sigpipe [0]); sigpipe [0] = 0;
775     close (sigpipe [1]); sigpipe [1] = 0;
776    
777     loop_destroy (EV_A);
778 root 1.1 }
779    
780 root 1.24 void
781 root 1.60 ev_default_fork (void)
782 root 1.1 {
783 root 1.60 #if EV_MULTIPLICITY
784     struct ev_loop *loop = default_loop;
785     #endif
786    
787 root 1.56 loop_fork (EV_A);
788 root 1.7
789 root 1.54 ev_io_stop (EV_A_ &sigev);
790 root 1.7 close (sigpipe [0]);
791     close (sigpipe [1]);
792     pipe (sigpipe);
793 root 1.56
794     ev_ref (EV_A); /* signal watcher */
795 root 1.54 siginit (EV_A);
796 root 1.1 }
797    
798 root 1.8 /*****************************************************************************/
799    
800 root 1.1 static void
801 root 1.51 call_pending (EV_P)
802 root 1.1 {
803 root 1.42 int pri;
804    
805     for (pri = NUMPRI; pri--; )
806     while (pendingcnt [pri])
807     {
808     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
809 root 1.1
810 root 1.42 if (p->w)
811     {
812     p->w->pending = 0;
813 root 1.63
814 root 1.65 ((void (*)(EV_P_ W, int))p->w->cb) (EV_A_ p->w, p->events);
815 root 1.42 }
816     }
817 root 1.1 }
818    
819     static void
820 root 1.51 timers_reify (EV_P)
821 root 1.1 {
822 root 1.63 while (timercnt && ((WT)timers [0])->at <= mn_now)
823 root 1.1 {
824     struct ev_timer *w = timers [0];
825    
826 root 1.61 assert (("inactive timer on timer heap detected", ev_is_active (w)));
827    
828 root 1.4 /* first reschedule or stop timer */
829 root 1.1 if (w->repeat)
830     {
831 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
832 root 1.63 ((WT)w)->at = mn_now + w->repeat;
833 root 1.12 downheap ((WT *)timers, timercnt, 0);
834     }
835     else
836 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
837 root 1.30
838 root 1.54 event (EV_A_ (W)w, EV_TIMEOUT);
839 root 1.12 }
840     }
841 root 1.4
842 root 1.12 static void
843 root 1.51 periodics_reify (EV_P)
844 root 1.12 {
845 root 1.63 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
846 root 1.12 {
847     struct ev_periodic *w = periodics [0];
848 root 1.1
849 root 1.61 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
850    
851 root 1.12 /* first reschedule or stop timer */
852     if (w->interval)
853     {
854 root 1.63 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
855     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
856 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
857 root 1.1 }
858     else
859 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
860 root 1.12
861 root 1.51 event (EV_A_ (W)w, EV_PERIODIC);
862 root 1.12 }
863     }
864    
865     static void
866 root 1.54 periodics_reschedule (EV_P)
867 root 1.12 {
868     int i;
869    
870 root 1.13 /* adjust periodics after time jump */
871 root 1.12 for (i = 0; i < periodiccnt; ++i)
872     {
873     struct ev_periodic *w = periodics [i];
874    
875     if (w->interval)
876 root 1.4 {
877 root 1.63 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
878 root 1.12
879     if (fabs (diff) >= 1e-4)
880     {
881 root 1.51 ev_periodic_stop (EV_A_ w);
882     ev_periodic_start (EV_A_ w);
883 root 1.12
884     i = 0; /* restart loop, inefficient, but time jumps should be rare */
885     }
886 root 1.4 }
887 root 1.12 }
888 root 1.1 }
889    
890 root 1.51 inline int
891     time_update_monotonic (EV_P)
892 root 1.40 {
893 root 1.51 mn_now = get_clock ();
894 root 1.40
895 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
896 root 1.40 {
897 root 1.54 rt_now = rtmn_diff + mn_now;
898 root 1.40 return 0;
899     }
900     else
901     {
902 root 1.51 now_floor = mn_now;
903     rt_now = ev_time ();
904 root 1.40 return 1;
905     }
906     }
907    
908 root 1.4 static void
909 root 1.51 time_update (EV_P)
910 root 1.4 {
911     int i;
912 root 1.12
913 root 1.40 #if EV_USE_MONOTONIC
914     if (expect_true (have_monotonic))
915     {
916 root 1.51 if (time_update_monotonic (EV_A))
917 root 1.40 {
918 root 1.54 ev_tstamp odiff = rtmn_diff;
919 root 1.4
920 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
921     {
922 root 1.54 rtmn_diff = rt_now - mn_now;
923 root 1.4
924 root 1.54 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
925 root 1.40 return; /* all is well */
926 root 1.4
927 root 1.51 rt_now = ev_time ();
928     mn_now = get_clock ();
929     now_floor = mn_now;
930 root 1.40 }
931 root 1.4
932 root 1.54 periodics_reschedule (EV_A);
933 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
934 root 1.54 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
935 root 1.4 }
936     }
937     else
938 root 1.40 #endif
939 root 1.4 {
940 root 1.51 rt_now = ev_time ();
941 root 1.40
942 root 1.51 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
943 root 1.13 {
944 root 1.54 periodics_reschedule (EV_A);
945 root 1.13
946     /* adjust timers. this is easy, as the offset is the same for all */
947     for (i = 0; i < timercnt; ++i)
948 root 1.63 ((WT)timers [i])->at += rt_now - mn_now;
949 root 1.13 }
950 root 1.4
951 root 1.51 mn_now = rt_now;
952 root 1.4 }
953     }
954    
955 root 1.51 void
956     ev_ref (EV_P)
957     {
958     ++activecnt;
959     }
960 root 1.1
961 root 1.51 void
962     ev_unref (EV_P)
963     {
964     --activecnt;
965     }
966    
967     static int loop_done;
968    
969     void
970     ev_loop (EV_P_ int flags)
971 root 1.1 {
972     double block;
973 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
974 root 1.1
975 root 1.20 do
976 root 1.9 {
977 root 1.20 /* queue check watchers (and execute them) */
978 root 1.40 if (expect_false (preparecnt))
979 root 1.20 {
980 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
981     call_pending (EV_A);
982 root 1.20 }
983 root 1.9
984 root 1.1 /* update fd-related kernel structures */
985 root 1.51 fd_reify (EV_A);
986 root 1.1
987     /* calculate blocking time */
988 root 1.12
989 root 1.21 /* we only need this for !monotonic clockor timers, but as we basically
990     always have timers, we just calculate it always */
991 root 1.40 #if EV_USE_MONOTONIC
992     if (expect_true (have_monotonic))
993 root 1.51 time_update_monotonic (EV_A);
994 root 1.40 else
995     #endif
996     {
997 root 1.51 rt_now = ev_time ();
998     mn_now = rt_now;
999 root 1.40 }
1000 root 1.12
1001 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
1002 root 1.1 block = 0.;
1003     else
1004     {
1005 root 1.4 block = MAX_BLOCKTIME;
1006    
1007 root 1.12 if (timercnt)
1008 root 1.4 {
1009 root 1.63 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1010 root 1.4 if (block > to) block = to;
1011     }
1012    
1013 root 1.12 if (periodiccnt)
1014 root 1.4 {
1015 root 1.63 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1016 root 1.4 if (block > to) block = to;
1017     }
1018    
1019 root 1.1 if (block < 0.) block = 0.;
1020     }
1021    
1022 root 1.51 method_poll (EV_A_ block);
1023 root 1.1
1024 root 1.51 /* update rt_now, do magic */
1025     time_update (EV_A);
1026 root 1.4
1027 root 1.9 /* queue pending timers and reschedule them */
1028 root 1.51 timers_reify (EV_A); /* relative timers called last */
1029     periodics_reify (EV_A); /* absolute timers called first */
1030 root 1.1
1031 root 1.9 /* queue idle watchers unless io or timers are pending */
1032     if (!pendingcnt)
1033 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1034 root 1.9
1035 root 1.20 /* queue check watchers, to be executed first */
1036     if (checkcnt)
1037 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1038 root 1.9
1039 root 1.51 call_pending (EV_A);
1040 root 1.1 }
1041 root 1.51 while (activecnt && !loop_done);
1042 root 1.13
1043 root 1.51 if (loop_done != 2)
1044     loop_done = 0;
1045     }
1046    
1047     void
1048     ev_unloop (EV_P_ int how)
1049     {
1050     loop_done = how;
1051 root 1.1 }
1052    
1053 root 1.8 /*****************************************************************************/
1054    
1055 root 1.51 inline void
1056 root 1.10 wlist_add (WL *head, WL elem)
1057 root 1.1 {
1058     elem->next = *head;
1059     *head = elem;
1060     }
1061    
1062 root 1.51 inline void
1063 root 1.10 wlist_del (WL *head, WL elem)
1064 root 1.1 {
1065     while (*head)
1066     {
1067     if (*head == elem)
1068     {
1069     *head = elem->next;
1070     return;
1071     }
1072    
1073     head = &(*head)->next;
1074     }
1075     }
1076    
1077 root 1.51 inline void
1078     ev_clear_pending (EV_P_ W w)
1079 root 1.16 {
1080     if (w->pending)
1081     {
1082 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1083 root 1.16 w->pending = 0;
1084     }
1085     }
1086    
1087 root 1.51 inline void
1088     ev_start (EV_P_ W w, int active)
1089 root 1.1 {
1090 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1091     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1092    
1093 root 1.1 w->active = active;
1094 root 1.51 ev_ref (EV_A);
1095 root 1.1 }
1096    
1097 root 1.51 inline void
1098     ev_stop (EV_P_ W w)
1099 root 1.1 {
1100 root 1.51 ev_unref (EV_A);
1101 root 1.1 w->active = 0;
1102     }
1103    
1104 root 1.8 /*****************************************************************************/
1105    
1106 root 1.1 void
1107 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
1108 root 1.1 {
1109 root 1.37 int fd = w->fd;
1110    
1111 root 1.1 if (ev_is_active (w))
1112     return;
1113    
1114 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
1115    
1116 root 1.51 ev_start (EV_A_ (W)w, 1);
1117 root 1.1 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1118 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1119 root 1.1
1120 root 1.51 fd_change (EV_A_ fd);
1121 root 1.1 }
1122    
1123     void
1124 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1125 root 1.1 {
1126 root 1.51 ev_clear_pending (EV_A_ (W)w);
1127 root 1.1 if (!ev_is_active (w))
1128     return;
1129    
1130 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1131 root 1.51 ev_stop (EV_A_ (W)w);
1132 root 1.1
1133 root 1.51 fd_change (EV_A_ w->fd);
1134 root 1.1 }
1135    
1136     void
1137 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1138 root 1.1 {
1139     if (ev_is_active (w))
1140     return;
1141    
1142 root 1.63 ((WT)w)->at += mn_now;
1143 root 1.12
1144 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1145 root 1.13
1146 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1147 root 1.12 array_needsize (timers, timermax, timercnt, );
1148     timers [timercnt - 1] = w;
1149     upheap ((WT *)timers, timercnt - 1);
1150 root 1.62
1151     assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1152 root 1.12 }
1153    
1154     void
1155 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1156 root 1.12 {
1157 root 1.51 ev_clear_pending (EV_A_ (W)w);
1158 root 1.12 if (!ev_is_active (w))
1159     return;
1160    
1161 root 1.62 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1162    
1163     if (((W)w)->active < timercnt--)
1164 root 1.1 {
1165 root 1.62 timers [((W)w)->active - 1] = timers [timercnt];
1166     downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1167 root 1.12 }
1168 root 1.4
1169 root 1.63 ((WT)w)->at = w->repeat;
1170 root 1.14
1171 root 1.51 ev_stop (EV_A_ (W)w);
1172 root 1.12 }
1173 root 1.4
1174 root 1.12 void
1175 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1176 root 1.14 {
1177     if (ev_is_active (w))
1178     {
1179     if (w->repeat)
1180     {
1181 root 1.63 ((WT)w)->at = mn_now + w->repeat;
1182 root 1.62 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1183 root 1.14 }
1184     else
1185 root 1.51 ev_timer_stop (EV_A_ w);
1186 root 1.14 }
1187     else if (w->repeat)
1188 root 1.51 ev_timer_start (EV_A_ w);
1189 root 1.14 }
1190    
1191     void
1192 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1193 root 1.12 {
1194     if (ev_is_active (w))
1195     return;
1196 root 1.1
1197 root 1.33 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1198 root 1.13
1199 root 1.12 /* this formula differs from the one in periodic_reify because we do not always round up */
1200     if (w->interval)
1201 root 1.63 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1202 root 1.12
1203 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1204 root 1.12 array_needsize (periodics, periodicmax, periodiccnt, );
1205     periodics [periodiccnt - 1] = w;
1206     upheap ((WT *)periodics, periodiccnt - 1);
1207 root 1.62
1208     assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1209 root 1.1 }
1210    
1211     void
1212 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1213 root 1.1 {
1214 root 1.51 ev_clear_pending (EV_A_ (W)w);
1215 root 1.1 if (!ev_is_active (w))
1216     return;
1217    
1218 root 1.62 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1219    
1220     if (((W)w)->active < periodiccnt--)
1221 root 1.2 {
1222 root 1.62 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1223     downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1224 root 1.2 }
1225    
1226 root 1.51 ev_stop (EV_A_ (W)w);
1227 root 1.1 }
1228    
1229 root 1.28 void
1230 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1231 root 1.9 {
1232     if (ev_is_active (w))
1233     return;
1234    
1235 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1236 root 1.9 array_needsize (idles, idlemax, idlecnt, );
1237     idles [idlecnt - 1] = w;
1238     }
1239    
1240 root 1.28 void
1241 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1242 root 1.9 {
1243 root 1.51 ev_clear_pending (EV_A_ (W)w);
1244 root 1.16 if (ev_is_active (w))
1245     return;
1246    
1247 root 1.62 idles [((W)w)->active - 1] = idles [--idlecnt];
1248 root 1.51 ev_stop (EV_A_ (W)w);
1249 root 1.9 }
1250    
1251 root 1.28 void
1252 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1253 root 1.20 {
1254     if (ev_is_active (w))
1255     return;
1256    
1257 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1258 root 1.20 array_needsize (prepares, preparemax, preparecnt, );
1259     prepares [preparecnt - 1] = w;
1260     }
1261    
1262 root 1.28 void
1263 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1264 root 1.20 {
1265 root 1.51 ev_clear_pending (EV_A_ (W)w);
1266 root 1.20 if (ev_is_active (w))
1267     return;
1268    
1269 root 1.62 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1270 root 1.51 ev_stop (EV_A_ (W)w);
1271 root 1.20 }
1272    
1273 root 1.28 void
1274 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1275 root 1.9 {
1276     if (ev_is_active (w))
1277     return;
1278    
1279 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1280 root 1.9 array_needsize (checks, checkmax, checkcnt, );
1281     checks [checkcnt - 1] = w;
1282     }
1283    
1284 root 1.28 void
1285 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1286 root 1.9 {
1287 root 1.51 ev_clear_pending (EV_A_ (W)w);
1288 root 1.16 if (ev_is_active (w))
1289     return;
1290    
1291 root 1.62 checks [((W)w)->active - 1] = checks [--checkcnt];
1292 root 1.51 ev_stop (EV_A_ (W)w);
1293 root 1.9 }
1294    
1295 root 1.56 #ifndef SA_RESTART
1296     # define SA_RESTART 0
1297     #endif
1298    
1299     void
1300     ev_signal_start (EV_P_ struct ev_signal *w)
1301     {
1302     #if EV_MULTIPLICITY
1303     assert (("signal watchers are only supported in the default loop", loop == default_loop));
1304     #endif
1305     if (ev_is_active (w))
1306     return;
1307    
1308     assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1309    
1310     ev_start (EV_A_ (W)w, 1);
1311     array_needsize (signals, signalmax, w->signum, signals_init);
1312     wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1313    
1314 root 1.63 if (!((WL)w)->next)
1315 root 1.56 {
1316     struct sigaction sa;
1317     sa.sa_handler = sighandler;
1318     sigfillset (&sa.sa_mask);
1319     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1320     sigaction (w->signum, &sa, 0);
1321     }
1322     }
1323    
1324     void
1325     ev_signal_stop (EV_P_ struct ev_signal *w)
1326     {
1327     ev_clear_pending (EV_A_ (W)w);
1328     if (!ev_is_active (w))
1329     return;
1330    
1331     wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1332     ev_stop (EV_A_ (W)w);
1333    
1334     if (!signals [w->signum - 1].head)
1335     signal (w->signum, SIG_DFL);
1336     }
1337    
1338 root 1.28 void
1339 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1340 root 1.22 {
1341 root 1.56 #if EV_MULTIPLICITY
1342     assert (("child watchers are only supported in the default loop", loop == default_loop));
1343     #endif
1344 root 1.22 if (ev_is_active (w))
1345     return;
1346    
1347 root 1.51 ev_start (EV_A_ (W)w, 1);
1348 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1349     }
1350    
1351 root 1.28 void
1352 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1353 root 1.22 {
1354 root 1.51 ev_clear_pending (EV_A_ (W)w);
1355 root 1.22 if (ev_is_active (w))
1356     return;
1357    
1358     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1359 root 1.51 ev_stop (EV_A_ (W)w);
1360 root 1.22 }
1361    
1362 root 1.1 /*****************************************************************************/
1363 root 1.10
1364 root 1.16 struct ev_once
1365     {
1366     struct ev_io io;
1367     struct ev_timer to;
1368     void (*cb)(int revents, void *arg);
1369     void *arg;
1370     };
1371    
1372     static void
1373 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1374 root 1.16 {
1375     void (*cb)(int revents, void *arg) = once->cb;
1376     void *arg = once->arg;
1377    
1378 root 1.51 ev_io_stop (EV_A_ &once->io);
1379     ev_timer_stop (EV_A_ &once->to);
1380 root 1.16 free (once);
1381    
1382     cb (revents, arg);
1383     }
1384    
1385     static void
1386 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1387 root 1.16 {
1388 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1389 root 1.16 }
1390    
1391     static void
1392 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1393 root 1.16 {
1394 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1395 root 1.16 }
1396    
1397     void
1398 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1399 root 1.16 {
1400     struct ev_once *once = malloc (sizeof (struct ev_once));
1401    
1402     if (!once)
1403 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1404 root 1.16 else
1405     {
1406     once->cb = cb;
1407     once->arg = arg;
1408    
1409 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1410 root 1.16 if (fd >= 0)
1411     {
1412 root 1.28 ev_io_set (&once->io, fd, events);
1413 root 1.51 ev_io_start (EV_A_ &once->io);
1414 root 1.16 }
1415    
1416 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1417 root 1.16 if (timeout >= 0.)
1418     {
1419 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1420 root 1.51 ev_timer_start (EV_A_ &once->to);
1421 root 1.16 }
1422     }
1423     }
1424