1 |
/* |
2 |
* libev event processing core, watcher management |
3 |
* |
4 |
* Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> |
5 |
* All rights reserved. |
6 |
* |
7 |
* Redistribution and use in source and binary forms, with or without |
8 |
* modification, are permitted provided that the following conditions are |
9 |
* met: |
10 |
* |
11 |
* * Redistributions of source code must retain the above copyright |
12 |
* notice, this list of conditions and the following disclaimer. |
13 |
* |
14 |
* * Redistributions in binary form must reproduce the above |
15 |
* copyright notice, this list of conditions and the following |
16 |
* disclaimer in the documentation and/or other materials provided |
17 |
* with the distribution. |
18 |
* |
19 |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
20 |
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
21 |
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
22 |
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
23 |
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
24 |
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
25 |
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
26 |
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
27 |
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
28 |
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
29 |
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
30 |
*/ |
31 |
#ifndef EV_STANDALONE |
32 |
# include "config.h" |
33 |
#endif |
34 |
|
35 |
#include <math.h> |
36 |
#include <stdlib.h> |
37 |
#include <unistd.h> |
38 |
#include <fcntl.h> |
39 |
#include <signal.h> |
40 |
#include <stddef.h> |
41 |
|
42 |
#include <stdio.h> |
43 |
|
44 |
#include <assert.h> |
45 |
#include <errno.h> |
46 |
#include <sys/types.h> |
47 |
#ifndef WIN32 |
48 |
# include <sys/wait.h> |
49 |
#endif |
50 |
#include <sys/time.h> |
51 |
#include <time.h> |
52 |
|
53 |
/**/ |
54 |
|
55 |
#ifndef EV_USE_MONOTONIC |
56 |
# define EV_USE_MONOTONIC 1 |
57 |
#endif |
58 |
|
59 |
#ifndef EV_USE_SELECT |
60 |
# define EV_USE_SELECT 1 |
61 |
#endif |
62 |
|
63 |
#ifndef EV_USEV_POLL |
64 |
# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ |
65 |
#endif |
66 |
|
67 |
#ifndef EV_USE_EPOLL |
68 |
# define EV_USE_EPOLL 0 |
69 |
#endif |
70 |
|
71 |
#ifndef EV_USE_KQUEUE |
72 |
# define EV_USE_KQUEUE 0 |
73 |
#endif |
74 |
|
75 |
#ifndef EV_USE_REALTIME |
76 |
# define EV_USE_REALTIME 1 |
77 |
#endif |
78 |
|
79 |
/**/ |
80 |
|
81 |
#ifndef CLOCK_MONOTONIC |
82 |
# undef EV_USE_MONOTONIC |
83 |
# define EV_USE_MONOTONIC 0 |
84 |
#endif |
85 |
|
86 |
#ifndef CLOCK_REALTIME |
87 |
# undef EV_USE_REALTIME |
88 |
# define EV_USE_REALTIME 0 |
89 |
#endif |
90 |
|
91 |
/**/ |
92 |
|
93 |
#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ |
94 |
#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ |
95 |
#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ |
96 |
/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ |
97 |
|
98 |
#include "ev.h" |
99 |
|
100 |
#if __GNUC__ >= 3 |
101 |
# define expect(expr,value) __builtin_expect ((expr),(value)) |
102 |
# define inline inline |
103 |
#else |
104 |
# define expect(expr,value) (expr) |
105 |
# define inline static |
106 |
#endif |
107 |
|
108 |
#define expect_false(expr) expect ((expr) != 0, 0) |
109 |
#define expect_true(expr) expect ((expr) != 0, 1) |
110 |
|
111 |
#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) |
112 |
#define ABSPRI(w) ((w)->priority - EV_MINPRI) |
113 |
|
114 |
typedef struct ev_watcher *W; |
115 |
typedef struct ev_watcher_list *WL; |
116 |
typedef struct ev_watcher_time *WT; |
117 |
|
118 |
static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ |
119 |
|
120 |
/*****************************************************************************/ |
121 |
|
122 |
typedef struct |
123 |
{ |
124 |
struct ev_watcher_list *head; |
125 |
unsigned char events; |
126 |
unsigned char reify; |
127 |
} ANFD; |
128 |
|
129 |
typedef struct |
130 |
{ |
131 |
W w; |
132 |
int events; |
133 |
} ANPENDING; |
134 |
|
135 |
#if EV_MULTIPLICITY |
136 |
|
137 |
struct ev_loop |
138 |
{ |
139 |
# define VAR(name,decl) decl; |
140 |
# include "ev_vars.h" |
141 |
}; |
142 |
# undef VAR |
143 |
# include "ev_wrap.h" |
144 |
|
145 |
#else |
146 |
|
147 |
# define VAR(name,decl) static decl; |
148 |
# include "ev_vars.h" |
149 |
# undef VAR |
150 |
|
151 |
#endif |
152 |
|
153 |
/*****************************************************************************/ |
154 |
|
155 |
inline ev_tstamp |
156 |
ev_time (void) |
157 |
{ |
158 |
#if EV_USE_REALTIME |
159 |
struct timespec ts; |
160 |
clock_gettime (CLOCK_REALTIME, &ts); |
161 |
return ts.tv_sec + ts.tv_nsec * 1e-9; |
162 |
#else |
163 |
struct timeval tv; |
164 |
gettimeofday (&tv, 0); |
165 |
return tv.tv_sec + tv.tv_usec * 1e-6; |
166 |
#endif |
167 |
} |
168 |
|
169 |
inline ev_tstamp |
170 |
get_clock (void) |
171 |
{ |
172 |
#if EV_USE_MONOTONIC |
173 |
if (expect_true (have_monotonic)) |
174 |
{ |
175 |
struct timespec ts; |
176 |
clock_gettime (CLOCK_MONOTONIC, &ts); |
177 |
return ts.tv_sec + ts.tv_nsec * 1e-9; |
178 |
} |
179 |
#endif |
180 |
|
181 |
return ev_time (); |
182 |
} |
183 |
|
184 |
ev_tstamp |
185 |
ev_now (EV_P) |
186 |
{ |
187 |
return rt_now; |
188 |
} |
189 |
|
190 |
#define array_roundsize(base,n) ((n) | 4 & ~3) |
191 |
|
192 |
#define array_needsize(base,cur,cnt,init) \ |
193 |
if (expect_false ((cnt) > cur)) \ |
194 |
{ \ |
195 |
int newcnt = cur; \ |
196 |
do \ |
197 |
{ \ |
198 |
newcnt = array_roundsize (base, newcnt << 1); \ |
199 |
} \ |
200 |
while ((cnt) > newcnt); \ |
201 |
\ |
202 |
base = realloc (base, sizeof (*base) * (newcnt)); \ |
203 |
init (base + cur, newcnt - cur); \ |
204 |
cur = newcnt; \ |
205 |
} |
206 |
|
207 |
/*****************************************************************************/ |
208 |
|
209 |
static void |
210 |
anfds_init (ANFD *base, int count) |
211 |
{ |
212 |
while (count--) |
213 |
{ |
214 |
base->head = 0; |
215 |
base->events = EV_NONE; |
216 |
base->reify = 0; |
217 |
|
218 |
++base; |
219 |
} |
220 |
} |
221 |
|
222 |
static void |
223 |
event (EV_P_ W w, int events) |
224 |
{ |
225 |
if (w->pending) |
226 |
{ |
227 |
pendings [ABSPRI (w)][w->pending - 1].events |= events; |
228 |
return; |
229 |
} |
230 |
|
231 |
w->pending = ++pendingcnt [ABSPRI (w)]; |
232 |
array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); |
233 |
pendings [ABSPRI (w)][w->pending - 1].w = w; |
234 |
pendings [ABSPRI (w)][w->pending - 1].events = events; |
235 |
} |
236 |
|
237 |
static void |
238 |
queue_events (EV_P_ W *events, int eventcnt, int type) |
239 |
{ |
240 |
int i; |
241 |
|
242 |
for (i = 0; i < eventcnt; ++i) |
243 |
event (EV_A_ events [i], type); |
244 |
} |
245 |
|
246 |
static void |
247 |
fd_event (EV_P_ int fd, int events) |
248 |
{ |
249 |
ANFD *anfd = anfds + fd; |
250 |
struct ev_io *w; |
251 |
|
252 |
for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) |
253 |
{ |
254 |
int ev = w->events & events; |
255 |
|
256 |
if (ev) |
257 |
event (EV_A_ (W)w, ev); |
258 |
} |
259 |
} |
260 |
|
261 |
/*****************************************************************************/ |
262 |
|
263 |
static void |
264 |
fd_reify (EV_P) |
265 |
{ |
266 |
int i; |
267 |
|
268 |
for (i = 0; i < fdchangecnt; ++i) |
269 |
{ |
270 |
int fd = fdchanges [i]; |
271 |
ANFD *anfd = anfds + fd; |
272 |
struct ev_io *w; |
273 |
|
274 |
int events = 0; |
275 |
|
276 |
for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) |
277 |
events |= w->events; |
278 |
|
279 |
anfd->reify = 0; |
280 |
|
281 |
if (anfd->events != events) |
282 |
{ |
283 |
method_modify (EV_A_ fd, anfd->events, events); |
284 |
anfd->events = events; |
285 |
} |
286 |
} |
287 |
|
288 |
fdchangecnt = 0; |
289 |
} |
290 |
|
291 |
static void |
292 |
fd_change (EV_P_ int fd) |
293 |
{ |
294 |
if (anfds [fd].reify || fdchangecnt < 0) |
295 |
return; |
296 |
|
297 |
anfds [fd].reify = 1; |
298 |
|
299 |
++fdchangecnt; |
300 |
array_needsize (fdchanges, fdchangemax, fdchangecnt, ); |
301 |
fdchanges [fdchangecnt - 1] = fd; |
302 |
} |
303 |
|
304 |
static void |
305 |
fd_kill (EV_P_ int fd) |
306 |
{ |
307 |
struct ev_io *w; |
308 |
|
309 |
while ((w = (struct ev_io *)anfds [fd].head)) |
310 |
{ |
311 |
ev_io_stop (EV_A_ w); |
312 |
event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); |
313 |
} |
314 |
} |
315 |
|
316 |
/* called on EBADF to verify fds */ |
317 |
static void |
318 |
fd_ebadf (EV_P) |
319 |
{ |
320 |
int fd; |
321 |
|
322 |
for (fd = 0; fd < anfdmax; ++fd) |
323 |
if (anfds [fd].events) |
324 |
if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) |
325 |
fd_kill (EV_A_ fd); |
326 |
} |
327 |
|
328 |
/* called on ENOMEM in select/poll to kill some fds and retry */ |
329 |
static void |
330 |
fd_enomem (EV_P) |
331 |
{ |
332 |
int fd = anfdmax; |
333 |
|
334 |
while (fd--) |
335 |
if (anfds [fd].events) |
336 |
{ |
337 |
close (fd); |
338 |
fd_kill (EV_A_ fd); |
339 |
return; |
340 |
} |
341 |
} |
342 |
|
343 |
/* susually called after fork if method needs to re-arm all fds from scratch */ |
344 |
static void |
345 |
fd_rearm_all (EV_P) |
346 |
{ |
347 |
int fd; |
348 |
|
349 |
/* this should be highly optimised to not do anything but set a flag */ |
350 |
for (fd = 0; fd < anfdmax; ++fd) |
351 |
if (anfds [fd].events) |
352 |
{ |
353 |
anfds [fd].events = 0; |
354 |
fd_change (fd); |
355 |
} |
356 |
} |
357 |
|
358 |
/*****************************************************************************/ |
359 |
|
360 |
static void |
361 |
upheap (WT *heap, int k) |
362 |
{ |
363 |
WT w = heap [k]; |
364 |
|
365 |
while (k && heap [k >> 1]->at > w->at) |
366 |
{ |
367 |
heap [k] = heap [k >> 1]; |
368 |
heap [k]->active = k + 1; |
369 |
k >>= 1; |
370 |
} |
371 |
|
372 |
heap [k] = w; |
373 |
heap [k]->active = k + 1; |
374 |
|
375 |
} |
376 |
|
377 |
static void |
378 |
downheap (WT *heap, int N, int k) |
379 |
{ |
380 |
WT w = heap [k]; |
381 |
|
382 |
while (k < (N >> 1)) |
383 |
{ |
384 |
int j = k << 1; |
385 |
|
386 |
if (j + 1 < N && heap [j]->at > heap [j + 1]->at) |
387 |
++j; |
388 |
|
389 |
if (w->at <= heap [j]->at) |
390 |
break; |
391 |
|
392 |
heap [k] = heap [j]; |
393 |
heap [k]->active = k + 1; |
394 |
k = j; |
395 |
} |
396 |
|
397 |
heap [k] = w; |
398 |
heap [k]->active = k + 1; |
399 |
} |
400 |
|
401 |
/*****************************************************************************/ |
402 |
|
403 |
typedef struct |
404 |
{ |
405 |
struct ev_watcher_list *head; |
406 |
sig_atomic_t volatile gotsig; |
407 |
} ANSIG; |
408 |
|
409 |
static ANSIG *signals; |
410 |
static int signalmax; |
411 |
|
412 |
static int sigpipe [2]; |
413 |
static sig_atomic_t volatile gotsig; |
414 |
|
415 |
static void |
416 |
signals_init (ANSIG *base, int count) |
417 |
{ |
418 |
while (count--) |
419 |
{ |
420 |
base->head = 0; |
421 |
base->gotsig = 0; |
422 |
|
423 |
++base; |
424 |
} |
425 |
} |
426 |
|
427 |
static void |
428 |
sighandler (int signum) |
429 |
{ |
430 |
signals [signum - 1].gotsig = 1; |
431 |
|
432 |
if (!gotsig) |
433 |
{ |
434 |
int old_errno = errno; |
435 |
gotsig = 1; |
436 |
write (sigpipe [1], &signum, 1); |
437 |
errno = old_errno; |
438 |
} |
439 |
} |
440 |
|
441 |
static void |
442 |
sigcb (EV_P_ struct ev_io *iow, int revents) |
443 |
{ |
444 |
struct ev_watcher_list *w; |
445 |
int signum; |
446 |
|
447 |
read (sigpipe [0], &revents, 1); |
448 |
gotsig = 0; |
449 |
|
450 |
for (signum = signalmax; signum--; ) |
451 |
if (signals [signum].gotsig) |
452 |
{ |
453 |
signals [signum].gotsig = 0; |
454 |
|
455 |
for (w = signals [signum].head; w; w = w->next) |
456 |
event (EV_A_ (W)w, EV_SIGNAL); |
457 |
} |
458 |
} |
459 |
|
460 |
static void |
461 |
siginit (EV_P) |
462 |
{ |
463 |
#ifndef WIN32 |
464 |
fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); |
465 |
fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); |
466 |
|
467 |
/* rather than sort out wether we really need nb, set it */ |
468 |
fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); |
469 |
fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); |
470 |
#endif |
471 |
|
472 |
ev_io_set (&sigev, sigpipe [0], EV_READ); |
473 |
ev_io_start (EV_A_ &sigev); |
474 |
ev_unref (EV_A); /* child watcher should not keep loop alive */ |
475 |
} |
476 |
|
477 |
/*****************************************************************************/ |
478 |
|
479 |
#ifndef WIN32 |
480 |
|
481 |
#ifndef WCONTINUED |
482 |
# define WCONTINUED 0 |
483 |
#endif |
484 |
|
485 |
static void |
486 |
child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) |
487 |
{ |
488 |
struct ev_child *w; |
489 |
|
490 |
for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) |
491 |
if (w->pid == pid || !w->pid) |
492 |
{ |
493 |
w->priority = sw->priority; /* need to do it *now* */ |
494 |
w->rpid = pid; |
495 |
w->rstatus = status; |
496 |
event (EV_A_ (W)w, EV_CHILD); |
497 |
} |
498 |
} |
499 |
|
500 |
static void |
501 |
childcb (EV_P_ struct ev_signal *sw, int revents) |
502 |
{ |
503 |
int pid, status; |
504 |
|
505 |
if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) |
506 |
{ |
507 |
/* make sure we are called again until all childs have been reaped */ |
508 |
event (EV_A_ (W)sw, EV_SIGNAL); |
509 |
|
510 |
child_reap (EV_A_ sw, pid, pid, status); |
511 |
child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ |
512 |
} |
513 |
} |
514 |
|
515 |
#endif |
516 |
|
517 |
/*****************************************************************************/ |
518 |
|
519 |
#if EV_USE_KQUEUE |
520 |
# include "ev_kqueue.c" |
521 |
#endif |
522 |
#if EV_USE_EPOLL |
523 |
# include "ev_epoll.c" |
524 |
#endif |
525 |
#if EV_USEV_POLL |
526 |
# include "ev_poll.c" |
527 |
#endif |
528 |
#if EV_USE_SELECT |
529 |
# include "ev_select.c" |
530 |
#endif |
531 |
|
532 |
int |
533 |
ev_version_major (void) |
534 |
{ |
535 |
return EV_VERSION_MAJOR; |
536 |
} |
537 |
|
538 |
int |
539 |
ev_version_minor (void) |
540 |
{ |
541 |
return EV_VERSION_MINOR; |
542 |
} |
543 |
|
544 |
/* return true if we are running with elevated privileges and should ignore env variables */ |
545 |
static int |
546 |
enable_secure (void) |
547 |
{ |
548 |
#ifdef WIN32 |
549 |
return 0; |
550 |
#else |
551 |
return getuid () != geteuid () |
552 |
|| getgid () != getegid (); |
553 |
#endif |
554 |
} |
555 |
|
556 |
int |
557 |
ev_method (EV_P) |
558 |
{ |
559 |
return method; |
560 |
} |
561 |
|
562 |
static void |
563 |
loop_init (EV_P_ int methods) |
564 |
{ |
565 |
if (!method) |
566 |
{ |
567 |
#if EV_USE_MONOTONIC |
568 |
{ |
569 |
struct timespec ts; |
570 |
if (!clock_gettime (CLOCK_MONOTONIC, &ts)) |
571 |
have_monotonic = 1; |
572 |
} |
573 |
#endif |
574 |
|
575 |
rt_now = ev_time (); |
576 |
mn_now = get_clock (); |
577 |
now_floor = mn_now; |
578 |
rtmn_diff = rt_now - mn_now; |
579 |
|
580 |
if (methods == EVMETHOD_AUTO) |
581 |
if (!enable_secure () && getenv ("LIBEV_METHODS")) |
582 |
methods = atoi (getenv ("LIBEV_METHODS")); |
583 |
else |
584 |
methods = EVMETHOD_ANY; |
585 |
|
586 |
method = 0; |
587 |
#if EV_USE_KQUEUE |
588 |
if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); |
589 |
#endif |
590 |
#if EV_USE_EPOLL |
591 |
if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); |
592 |
#endif |
593 |
#if EV_USEV_POLL |
594 |
if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); |
595 |
#endif |
596 |
#if EV_USE_SELECT |
597 |
if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); |
598 |
#endif |
599 |
} |
600 |
} |
601 |
|
602 |
void |
603 |
loop_destroy (EV_P) |
604 |
{ |
605 |
#if EV_USE_KQUEUE |
606 |
if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); |
607 |
#endif |
608 |
#if EV_USE_EPOLL |
609 |
if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); |
610 |
#endif |
611 |
#if EV_USEV_POLL |
612 |
if (method == EVMETHOD_POLL ) poll_destroy (EV_A); |
613 |
#endif |
614 |
#if EV_USE_SELECT |
615 |
if (method == EVMETHOD_SELECT) select_destroy (EV_A); |
616 |
#endif |
617 |
|
618 |
method = 0; |
619 |
/*TODO*/ |
620 |
} |
621 |
|
622 |
void |
623 |
loop_fork (EV_P) |
624 |
{ |
625 |
/*TODO*/ |
626 |
#if EV_USE_EPOLL |
627 |
if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); |
628 |
#endif |
629 |
#if EV_USE_KQUEUE |
630 |
if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); |
631 |
#endif |
632 |
} |
633 |
|
634 |
#if EV_MULTIPLICITY |
635 |
struct ev_loop * |
636 |
ev_loop_new (int methods) |
637 |
{ |
638 |
struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); |
639 |
|
640 |
loop_init (EV_A_ methods); |
641 |
|
642 |
if (ev_methods (EV_A)) |
643 |
return loop; |
644 |
|
645 |
return 0; |
646 |
} |
647 |
|
648 |
void |
649 |
ev_loop_destroy (EV_P) |
650 |
{ |
651 |
loop_destroy (EV_A); |
652 |
free (loop); |
653 |
} |
654 |
|
655 |
void |
656 |
ev_loop_fork (EV_P) |
657 |
{ |
658 |
loop_fork (EV_A); |
659 |
} |
660 |
|
661 |
#endif |
662 |
|
663 |
#if EV_MULTIPLICITY |
664 |
struct ev_loop default_loop_struct; |
665 |
static struct ev_loop *default_loop; |
666 |
|
667 |
struct ev_loop * |
668 |
#else |
669 |
static int default_loop; |
670 |
|
671 |
int |
672 |
#endif |
673 |
ev_default_loop (int methods) |
674 |
{ |
675 |
if (sigpipe [0] == sigpipe [1]) |
676 |
if (pipe (sigpipe)) |
677 |
return 0; |
678 |
|
679 |
if (!default_loop) |
680 |
{ |
681 |
#if EV_MULTIPLICITY |
682 |
struct ev_loop *loop = default_loop = &default_loop_struct; |
683 |
#else |
684 |
default_loop = 1; |
685 |
#endif |
686 |
|
687 |
loop_init (EV_A_ methods); |
688 |
|
689 |
if (ev_method (EV_A)) |
690 |
{ |
691 |
ev_watcher_init (&sigev, sigcb); |
692 |
ev_set_priority (&sigev, EV_MAXPRI); |
693 |
siginit (EV_A); |
694 |
|
695 |
#ifndef WIN32 |
696 |
ev_signal_init (&childev, childcb, SIGCHLD); |
697 |
ev_set_priority (&childev, EV_MAXPRI); |
698 |
ev_signal_start (EV_A_ &childev); |
699 |
ev_unref (EV_A); /* child watcher should not keep loop alive */ |
700 |
#endif |
701 |
} |
702 |
else |
703 |
default_loop = 0; |
704 |
} |
705 |
|
706 |
return default_loop; |
707 |
} |
708 |
|
709 |
void |
710 |
ev_default_destroy (void) |
711 |
{ |
712 |
#if EV_MULTIPLICITY |
713 |
struct ev_loop *loop = default_loop; |
714 |
#endif |
715 |
|
716 |
ev_ref (EV_A); /* child watcher */ |
717 |
ev_signal_stop (EV_A_ &childev); |
718 |
|
719 |
ev_ref (EV_A); /* signal watcher */ |
720 |
ev_io_stop (EV_A_ &sigev); |
721 |
|
722 |
close (sigpipe [0]); sigpipe [0] = 0; |
723 |
close (sigpipe [1]); sigpipe [1] = 0; |
724 |
|
725 |
loop_destroy (EV_A); |
726 |
} |
727 |
|
728 |
void |
729 |
ev_default_fork (EV_P) |
730 |
{ |
731 |
loop_fork (EV_A); |
732 |
|
733 |
ev_io_stop (EV_A_ &sigev); |
734 |
close (sigpipe [0]); |
735 |
close (sigpipe [1]); |
736 |
pipe (sigpipe); |
737 |
|
738 |
ev_ref (EV_A); /* signal watcher */ |
739 |
siginit (EV_A); |
740 |
} |
741 |
|
742 |
/*****************************************************************************/ |
743 |
|
744 |
static void |
745 |
call_pending (EV_P) |
746 |
{ |
747 |
int pri; |
748 |
|
749 |
for (pri = NUMPRI; pri--; ) |
750 |
while (pendingcnt [pri]) |
751 |
{ |
752 |
ANPENDING *p = pendings [pri] + --pendingcnt [pri]; |
753 |
|
754 |
if (p->w) |
755 |
{ |
756 |
p->w->pending = 0; |
757 |
p->w->cb (EV_A_ p->w, p->events); |
758 |
} |
759 |
} |
760 |
} |
761 |
|
762 |
static void |
763 |
timers_reify (EV_P) |
764 |
{ |
765 |
while (timercnt && timers [0]->at <= mn_now) |
766 |
{ |
767 |
struct ev_timer *w = timers [0]; |
768 |
|
769 |
/* first reschedule or stop timer */ |
770 |
if (w->repeat) |
771 |
{ |
772 |
assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); |
773 |
w->at = mn_now + w->repeat; |
774 |
downheap ((WT *)timers, timercnt, 0); |
775 |
} |
776 |
else |
777 |
ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ |
778 |
|
779 |
event (EV_A_ (W)w, EV_TIMEOUT); |
780 |
} |
781 |
} |
782 |
|
783 |
static void |
784 |
periodics_reify (EV_P) |
785 |
{ |
786 |
while (periodiccnt && periodics [0]->at <= rt_now) |
787 |
{ |
788 |
struct ev_periodic *w = periodics [0]; |
789 |
|
790 |
/* first reschedule or stop timer */ |
791 |
if (w->interval) |
792 |
{ |
793 |
w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; |
794 |
assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); |
795 |
downheap ((WT *)periodics, periodiccnt, 0); |
796 |
} |
797 |
else |
798 |
ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ |
799 |
|
800 |
event (EV_A_ (W)w, EV_PERIODIC); |
801 |
} |
802 |
} |
803 |
|
804 |
static void |
805 |
periodics_reschedule (EV_P) |
806 |
{ |
807 |
int i; |
808 |
|
809 |
/* adjust periodics after time jump */ |
810 |
for (i = 0; i < periodiccnt; ++i) |
811 |
{ |
812 |
struct ev_periodic *w = periodics [i]; |
813 |
|
814 |
if (w->interval) |
815 |
{ |
816 |
ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; |
817 |
|
818 |
if (fabs (diff) >= 1e-4) |
819 |
{ |
820 |
ev_periodic_stop (EV_A_ w); |
821 |
ev_periodic_start (EV_A_ w); |
822 |
|
823 |
i = 0; /* restart loop, inefficient, but time jumps should be rare */ |
824 |
} |
825 |
} |
826 |
} |
827 |
} |
828 |
|
829 |
inline int |
830 |
time_update_monotonic (EV_P) |
831 |
{ |
832 |
mn_now = get_clock (); |
833 |
|
834 |
if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) |
835 |
{ |
836 |
rt_now = rtmn_diff + mn_now; |
837 |
return 0; |
838 |
} |
839 |
else |
840 |
{ |
841 |
now_floor = mn_now; |
842 |
rt_now = ev_time (); |
843 |
return 1; |
844 |
} |
845 |
} |
846 |
|
847 |
static void |
848 |
time_update (EV_P) |
849 |
{ |
850 |
int i; |
851 |
|
852 |
#if EV_USE_MONOTONIC |
853 |
if (expect_true (have_monotonic)) |
854 |
{ |
855 |
if (time_update_monotonic (EV_A)) |
856 |
{ |
857 |
ev_tstamp odiff = rtmn_diff; |
858 |
|
859 |
for (i = 4; --i; ) /* loop a few times, before making important decisions */ |
860 |
{ |
861 |
rtmn_diff = rt_now - mn_now; |
862 |
|
863 |
if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) |
864 |
return; /* all is well */ |
865 |
|
866 |
rt_now = ev_time (); |
867 |
mn_now = get_clock (); |
868 |
now_floor = mn_now; |
869 |
} |
870 |
|
871 |
periodics_reschedule (EV_A); |
872 |
/* no timer adjustment, as the monotonic clock doesn't jump */ |
873 |
/* timers_reschedule (EV_A_ rtmn_diff - odiff) */ |
874 |
} |
875 |
} |
876 |
else |
877 |
#endif |
878 |
{ |
879 |
rt_now = ev_time (); |
880 |
|
881 |
if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) |
882 |
{ |
883 |
periodics_reschedule (EV_A); |
884 |
|
885 |
/* adjust timers. this is easy, as the offset is the same for all */ |
886 |
for (i = 0; i < timercnt; ++i) |
887 |
timers [i]->at += rt_now - mn_now; |
888 |
} |
889 |
|
890 |
mn_now = rt_now; |
891 |
} |
892 |
} |
893 |
|
894 |
void |
895 |
ev_ref (EV_P) |
896 |
{ |
897 |
++activecnt; |
898 |
} |
899 |
|
900 |
void |
901 |
ev_unref (EV_P) |
902 |
{ |
903 |
--activecnt; |
904 |
} |
905 |
|
906 |
static int loop_done; |
907 |
|
908 |
void |
909 |
ev_loop (EV_P_ int flags) |
910 |
{ |
911 |
double block; |
912 |
loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; |
913 |
|
914 |
do |
915 |
{ |
916 |
/* queue check watchers (and execute them) */ |
917 |
if (expect_false (preparecnt)) |
918 |
{ |
919 |
queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); |
920 |
call_pending (EV_A); |
921 |
} |
922 |
|
923 |
/* update fd-related kernel structures */ |
924 |
fd_reify (EV_A); |
925 |
|
926 |
/* calculate blocking time */ |
927 |
|
928 |
/* we only need this for !monotonic clockor timers, but as we basically |
929 |
always have timers, we just calculate it always */ |
930 |
#if EV_USE_MONOTONIC |
931 |
if (expect_true (have_monotonic)) |
932 |
time_update_monotonic (EV_A); |
933 |
else |
934 |
#endif |
935 |
{ |
936 |
rt_now = ev_time (); |
937 |
mn_now = rt_now; |
938 |
} |
939 |
|
940 |
if (flags & EVLOOP_NONBLOCK || idlecnt) |
941 |
block = 0.; |
942 |
else |
943 |
{ |
944 |
block = MAX_BLOCKTIME; |
945 |
|
946 |
if (timercnt) |
947 |
{ |
948 |
ev_tstamp to = timers [0]->at - mn_now + method_fudge; |
949 |
if (block > to) block = to; |
950 |
} |
951 |
|
952 |
if (periodiccnt) |
953 |
{ |
954 |
ev_tstamp to = periodics [0]->at - rt_now + method_fudge; |
955 |
if (block > to) block = to; |
956 |
} |
957 |
|
958 |
if (block < 0.) block = 0.; |
959 |
} |
960 |
|
961 |
method_poll (EV_A_ block); |
962 |
|
963 |
/* update rt_now, do magic */ |
964 |
time_update (EV_A); |
965 |
|
966 |
/* queue pending timers and reschedule them */ |
967 |
timers_reify (EV_A); /* relative timers called last */ |
968 |
periodics_reify (EV_A); /* absolute timers called first */ |
969 |
|
970 |
/* queue idle watchers unless io or timers are pending */ |
971 |
if (!pendingcnt) |
972 |
queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); |
973 |
|
974 |
/* queue check watchers, to be executed first */ |
975 |
if (checkcnt) |
976 |
queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); |
977 |
|
978 |
call_pending (EV_A); |
979 |
} |
980 |
while (activecnt && !loop_done); |
981 |
|
982 |
if (loop_done != 2) |
983 |
loop_done = 0; |
984 |
} |
985 |
|
986 |
void |
987 |
ev_unloop (EV_P_ int how) |
988 |
{ |
989 |
loop_done = how; |
990 |
} |
991 |
|
992 |
/*****************************************************************************/ |
993 |
|
994 |
inline void |
995 |
wlist_add (WL *head, WL elem) |
996 |
{ |
997 |
elem->next = *head; |
998 |
*head = elem; |
999 |
} |
1000 |
|
1001 |
inline void |
1002 |
wlist_del (WL *head, WL elem) |
1003 |
{ |
1004 |
while (*head) |
1005 |
{ |
1006 |
if (*head == elem) |
1007 |
{ |
1008 |
*head = elem->next; |
1009 |
return; |
1010 |
} |
1011 |
|
1012 |
head = &(*head)->next; |
1013 |
} |
1014 |
} |
1015 |
|
1016 |
inline void |
1017 |
ev_clear_pending (EV_P_ W w) |
1018 |
{ |
1019 |
if (w->pending) |
1020 |
{ |
1021 |
pendings [ABSPRI (w)][w->pending - 1].w = 0; |
1022 |
w->pending = 0; |
1023 |
} |
1024 |
} |
1025 |
|
1026 |
inline void |
1027 |
ev_start (EV_P_ W w, int active) |
1028 |
{ |
1029 |
if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; |
1030 |
if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; |
1031 |
|
1032 |
w->active = active; |
1033 |
ev_ref (EV_A); |
1034 |
} |
1035 |
|
1036 |
inline void |
1037 |
ev_stop (EV_P_ W w) |
1038 |
{ |
1039 |
ev_unref (EV_A); |
1040 |
w->active = 0; |
1041 |
} |
1042 |
|
1043 |
/*****************************************************************************/ |
1044 |
|
1045 |
void |
1046 |
ev_io_start (EV_P_ struct ev_io *w) |
1047 |
{ |
1048 |
int fd = w->fd; |
1049 |
|
1050 |
if (ev_is_active (w)) |
1051 |
return; |
1052 |
|
1053 |
assert (("ev_io_start called with negative fd", fd >= 0)); |
1054 |
|
1055 |
ev_start (EV_A_ (W)w, 1); |
1056 |
array_needsize (anfds, anfdmax, fd + 1, anfds_init); |
1057 |
wlist_add ((WL *)&anfds[fd].head, (WL)w); |
1058 |
|
1059 |
fd_change (EV_A_ fd); |
1060 |
} |
1061 |
|
1062 |
void |
1063 |
ev_io_stop (EV_P_ struct ev_io *w) |
1064 |
{ |
1065 |
ev_clear_pending (EV_A_ (W)w); |
1066 |
if (!ev_is_active (w)) |
1067 |
return; |
1068 |
|
1069 |
wlist_del ((WL *)&anfds[w->fd].head, (WL)w); |
1070 |
ev_stop (EV_A_ (W)w); |
1071 |
|
1072 |
fd_change (EV_A_ w->fd); |
1073 |
} |
1074 |
|
1075 |
void |
1076 |
ev_timer_start (EV_P_ struct ev_timer *w) |
1077 |
{ |
1078 |
if (ev_is_active (w)) |
1079 |
return; |
1080 |
|
1081 |
w->at += mn_now; |
1082 |
|
1083 |
assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); |
1084 |
|
1085 |
ev_start (EV_A_ (W)w, ++timercnt); |
1086 |
array_needsize (timers, timermax, timercnt, ); |
1087 |
timers [timercnt - 1] = w; |
1088 |
upheap ((WT *)timers, timercnt - 1); |
1089 |
} |
1090 |
|
1091 |
void |
1092 |
ev_timer_stop (EV_P_ struct ev_timer *w) |
1093 |
{ |
1094 |
ev_clear_pending (EV_A_ (W)w); |
1095 |
if (!ev_is_active (w)) |
1096 |
return; |
1097 |
|
1098 |
if (w->active < timercnt--) |
1099 |
{ |
1100 |
timers [w->active - 1] = timers [timercnt]; |
1101 |
downheap ((WT *)timers, timercnt, w->active - 1); |
1102 |
} |
1103 |
|
1104 |
w->at = w->repeat; |
1105 |
|
1106 |
ev_stop (EV_A_ (W)w); |
1107 |
} |
1108 |
|
1109 |
void |
1110 |
ev_timer_again (EV_P_ struct ev_timer *w) |
1111 |
{ |
1112 |
if (ev_is_active (w)) |
1113 |
{ |
1114 |
if (w->repeat) |
1115 |
{ |
1116 |
w->at = mn_now + w->repeat; |
1117 |
downheap ((WT *)timers, timercnt, w->active - 1); |
1118 |
} |
1119 |
else |
1120 |
ev_timer_stop (EV_A_ w); |
1121 |
} |
1122 |
else if (w->repeat) |
1123 |
ev_timer_start (EV_A_ w); |
1124 |
} |
1125 |
|
1126 |
void |
1127 |
ev_periodic_start (EV_P_ struct ev_periodic *w) |
1128 |
{ |
1129 |
if (ev_is_active (w)) |
1130 |
return; |
1131 |
|
1132 |
assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); |
1133 |
|
1134 |
/* this formula differs from the one in periodic_reify because we do not always round up */ |
1135 |
if (w->interval) |
1136 |
w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; |
1137 |
|
1138 |
ev_start (EV_A_ (W)w, ++periodiccnt); |
1139 |
array_needsize (periodics, periodicmax, periodiccnt, ); |
1140 |
periodics [periodiccnt - 1] = w; |
1141 |
upheap ((WT *)periodics, periodiccnt - 1); |
1142 |
} |
1143 |
|
1144 |
void |
1145 |
ev_periodic_stop (EV_P_ struct ev_periodic *w) |
1146 |
{ |
1147 |
ev_clear_pending (EV_A_ (W)w); |
1148 |
if (!ev_is_active (w)) |
1149 |
return; |
1150 |
|
1151 |
if (w->active < periodiccnt--) |
1152 |
{ |
1153 |
periodics [w->active - 1] = periodics [periodiccnt]; |
1154 |
downheap ((WT *)periodics, periodiccnt, w->active - 1); |
1155 |
} |
1156 |
|
1157 |
ev_stop (EV_A_ (W)w); |
1158 |
} |
1159 |
|
1160 |
void |
1161 |
ev_idle_start (EV_P_ struct ev_idle *w) |
1162 |
{ |
1163 |
if (ev_is_active (w)) |
1164 |
return; |
1165 |
|
1166 |
ev_start (EV_A_ (W)w, ++idlecnt); |
1167 |
array_needsize (idles, idlemax, idlecnt, ); |
1168 |
idles [idlecnt - 1] = w; |
1169 |
} |
1170 |
|
1171 |
void |
1172 |
ev_idle_stop (EV_P_ struct ev_idle *w) |
1173 |
{ |
1174 |
ev_clear_pending (EV_A_ (W)w); |
1175 |
if (ev_is_active (w)) |
1176 |
return; |
1177 |
|
1178 |
idles [w->active - 1] = idles [--idlecnt]; |
1179 |
ev_stop (EV_A_ (W)w); |
1180 |
} |
1181 |
|
1182 |
void |
1183 |
ev_prepare_start (EV_P_ struct ev_prepare *w) |
1184 |
{ |
1185 |
if (ev_is_active (w)) |
1186 |
return; |
1187 |
|
1188 |
ev_start (EV_A_ (W)w, ++preparecnt); |
1189 |
array_needsize (prepares, preparemax, preparecnt, ); |
1190 |
prepares [preparecnt - 1] = w; |
1191 |
} |
1192 |
|
1193 |
void |
1194 |
ev_prepare_stop (EV_P_ struct ev_prepare *w) |
1195 |
{ |
1196 |
ev_clear_pending (EV_A_ (W)w); |
1197 |
if (ev_is_active (w)) |
1198 |
return; |
1199 |
|
1200 |
prepares [w->active - 1] = prepares [--preparecnt]; |
1201 |
ev_stop (EV_A_ (W)w); |
1202 |
} |
1203 |
|
1204 |
void |
1205 |
ev_check_start (EV_P_ struct ev_check *w) |
1206 |
{ |
1207 |
if (ev_is_active (w)) |
1208 |
return; |
1209 |
|
1210 |
ev_start (EV_A_ (W)w, ++checkcnt); |
1211 |
array_needsize (checks, checkmax, checkcnt, ); |
1212 |
checks [checkcnt - 1] = w; |
1213 |
} |
1214 |
|
1215 |
void |
1216 |
ev_check_stop (EV_P_ struct ev_check *w) |
1217 |
{ |
1218 |
ev_clear_pending (EV_A_ (W)w); |
1219 |
if (ev_is_active (w)) |
1220 |
return; |
1221 |
|
1222 |
checks [w->active - 1] = checks [--checkcnt]; |
1223 |
ev_stop (EV_A_ (W)w); |
1224 |
} |
1225 |
|
1226 |
#ifndef SA_RESTART |
1227 |
# define SA_RESTART 0 |
1228 |
#endif |
1229 |
|
1230 |
void |
1231 |
ev_signal_start (EV_P_ struct ev_signal *w) |
1232 |
{ |
1233 |
#if EV_MULTIPLICITY |
1234 |
assert (("signal watchers are only supported in the default loop", loop == default_loop)); |
1235 |
#endif |
1236 |
if (ev_is_active (w)) |
1237 |
return; |
1238 |
|
1239 |
assert (("ev_signal_start called with illegal signal number", w->signum > 0)); |
1240 |
|
1241 |
ev_start (EV_A_ (W)w, 1); |
1242 |
array_needsize (signals, signalmax, w->signum, signals_init); |
1243 |
wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); |
1244 |
|
1245 |
if (!w->next) |
1246 |
{ |
1247 |
struct sigaction sa; |
1248 |
sa.sa_handler = sighandler; |
1249 |
sigfillset (&sa.sa_mask); |
1250 |
sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ |
1251 |
sigaction (w->signum, &sa, 0); |
1252 |
} |
1253 |
} |
1254 |
|
1255 |
void |
1256 |
ev_signal_stop (EV_P_ struct ev_signal *w) |
1257 |
{ |
1258 |
ev_clear_pending (EV_A_ (W)w); |
1259 |
if (!ev_is_active (w)) |
1260 |
return; |
1261 |
|
1262 |
wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); |
1263 |
ev_stop (EV_A_ (W)w); |
1264 |
|
1265 |
if (!signals [w->signum - 1].head) |
1266 |
signal (w->signum, SIG_DFL); |
1267 |
} |
1268 |
|
1269 |
void |
1270 |
ev_child_start (EV_P_ struct ev_child *w) |
1271 |
{ |
1272 |
#if EV_MULTIPLICITY |
1273 |
assert (("child watchers are only supported in the default loop", loop == default_loop)); |
1274 |
#endif |
1275 |
if (ev_is_active (w)) |
1276 |
return; |
1277 |
|
1278 |
ev_start (EV_A_ (W)w, 1); |
1279 |
wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); |
1280 |
} |
1281 |
|
1282 |
void |
1283 |
ev_child_stop (EV_P_ struct ev_child *w) |
1284 |
{ |
1285 |
ev_clear_pending (EV_A_ (W)w); |
1286 |
if (ev_is_active (w)) |
1287 |
return; |
1288 |
|
1289 |
wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); |
1290 |
ev_stop (EV_A_ (W)w); |
1291 |
} |
1292 |
|
1293 |
/*****************************************************************************/ |
1294 |
|
1295 |
struct ev_once |
1296 |
{ |
1297 |
struct ev_io io; |
1298 |
struct ev_timer to; |
1299 |
void (*cb)(int revents, void *arg); |
1300 |
void *arg; |
1301 |
}; |
1302 |
|
1303 |
static void |
1304 |
once_cb (EV_P_ struct ev_once *once, int revents) |
1305 |
{ |
1306 |
void (*cb)(int revents, void *arg) = once->cb; |
1307 |
void *arg = once->arg; |
1308 |
|
1309 |
ev_io_stop (EV_A_ &once->io); |
1310 |
ev_timer_stop (EV_A_ &once->to); |
1311 |
free (once); |
1312 |
|
1313 |
cb (revents, arg); |
1314 |
} |
1315 |
|
1316 |
static void |
1317 |
once_cb_io (EV_P_ struct ev_io *w, int revents) |
1318 |
{ |
1319 |
once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); |
1320 |
} |
1321 |
|
1322 |
static void |
1323 |
once_cb_to (EV_P_ struct ev_timer *w, int revents) |
1324 |
{ |
1325 |
once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); |
1326 |
} |
1327 |
|
1328 |
void |
1329 |
ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) |
1330 |
{ |
1331 |
struct ev_once *once = malloc (sizeof (struct ev_once)); |
1332 |
|
1333 |
if (!once) |
1334 |
cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); |
1335 |
else |
1336 |
{ |
1337 |
once->cb = cb; |
1338 |
once->arg = arg; |
1339 |
|
1340 |
ev_watcher_init (&once->io, once_cb_io); |
1341 |
if (fd >= 0) |
1342 |
{ |
1343 |
ev_io_set (&once->io, fd, events); |
1344 |
ev_io_start (EV_A_ &once->io); |
1345 |
} |
1346 |
|
1347 |
ev_watcher_init (&once->to, once_cb_to); |
1348 |
if (timeout >= 0.) |
1349 |
{ |
1350 |
ev_timer_set (&once->to, timeout, 0.); |
1351 |
ev_timer_start (EV_A_ &once->to); |
1352 |
} |
1353 |
} |
1354 |
} |
1355 |
|