ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.100 by root, Sun Nov 11 04:02:54 2007 UTC vs.
Revision 1.418 by root, Mon Apr 2 23:14:41 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
64#endif 127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
65 137
66#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
67#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
68#include <fcntl.h> 169#include <fcntl.h>
69#include <stddef.h> 170#include <stddef.h>
70 171
71#include <stdio.h> 172#include <stdio.h>
72 173
73#include <assert.h> 174#include <assert.h>
74#include <errno.h> 175#include <errno.h>
75#include <sys/types.h> 176#include <sys/types.h>
76#include <time.h> 177#include <time.h>
178#include <limits.h>
77 179
78#include <signal.h> 180#include <signal.h>
79
80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
83# include <sys/wait.h>
84#endif
85/**/
86
87#ifndef EV_USE_MONOTONIC
88# define EV_USE_MONOTONIC 1
89#endif
90
91#ifndef EV_USE_SELECT
92# define EV_USE_SELECT 1
93#endif
94
95#ifndef EV_USE_POLL
96# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
97#endif
98
99#ifndef EV_USE_EPOLL
100# define EV_USE_EPOLL 0
101#endif
102
103#ifndef EV_USE_KQUEUE
104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
115#endif
116
117#ifndef EV_USE_REALTIME
118# define EV_USE_REALTIME 1
119#endif
120
121/**/
122
123#ifndef CLOCK_MONOTONIC
124# undef EV_USE_MONOTONIC
125# define EV_USE_MONOTONIC 0
126#endif
127
128#ifndef CLOCK_REALTIME
129# undef EV_USE_REALTIME
130# define EV_USE_REALTIME 0
131#endif
132
133/**/
134
135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
139 181
140#ifdef EV_H 182#ifdef EV_H
141# include EV_H 183# include EV_H
142#else 184#else
143# include "ev.h" 185# include "ev.h"
144#endif 186#endif
145 187
146#if __GNUC__ >= 3 188#if EV_NO_THREADS
147# define expect(expr,value) __builtin_expect ((expr),(value)) 189# undef EV_NO_SMP
148# define inline inline 190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
199#ifndef _WIN32
200# include <sys/time.h>
201# include <sys/wait.h>
202# include <unistd.h>
149#else 203#else
150# define expect(expr,value) (expr) 204# include <io.h>
151# define inline static 205# define WIN32_LEAN_AND_MEAN
206# include <windows.h>
207# ifndef EV_SELECT_IS_WINSOCKET
208# define EV_SELECT_IS_WINSOCKET 1
152#endif 209# endif
210# undef EV_AVOID_STDIO
211#endif
153 212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
220
221/* this block tries to deduce configuration from header-defined symbols and defaults */
222
223/* try to deduce the maximum number of signals on this platform */
224#if defined EV_NSIG
225/* use what's provided */
226#elif defined NSIG
227# define EV_NSIG (NSIG)
228#elif defined _NSIG
229# define EV_NSIG (_NSIG)
230#elif defined SIGMAX
231# define EV_NSIG (SIGMAX+1)
232#elif defined SIG_MAX
233# define EV_NSIG (SIG_MAX+1)
234#elif defined _SIG_MAX
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined MAXSIG
237# define EV_NSIG (MAXSIG+1)
238#elif defined MAX_SIG
239# define EV_NSIG (MAX_SIG+1)
240#elif defined SIGARRAYSIZE
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined _sys_nsig
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
260# endif
261#endif
262
263#ifndef EV_USE_MONOTONIC
264# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
267# define EV_USE_MONOTONIC 0
268# endif
269#endif
270
271#ifndef EV_USE_REALTIME
272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273#endif
274
275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
279# define EV_USE_NANOSLEEP 0
280# endif
281#endif
282
283#ifndef EV_USE_SELECT
284# define EV_USE_SELECT EV_FEATURE_BACKENDS
285#endif
286
287#ifndef EV_USE_POLL
288# ifdef _WIN32
289# define EV_USE_POLL 0
290# else
291# define EV_USE_POLL EV_FEATURE_BACKENDS
292# endif
293#endif
294
295#ifndef EV_USE_EPOLL
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
298# else
299# define EV_USE_EPOLL 0
300# endif
301#endif
302
303#ifndef EV_USE_KQUEUE
304# define EV_USE_KQUEUE 0
305#endif
306
307#ifndef EV_USE_PORT
308# define EV_USE_PORT 0
309#endif
310
311#ifndef EV_USE_INOTIFY
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313# define EV_USE_INOTIFY EV_FEATURE_OS
314# else
315# define EV_USE_INOTIFY 0
316# endif
317#endif
318
319#ifndef EV_PID_HASHSIZE
320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321#endif
322
323#ifndef EV_INOTIFY_HASHSIZE
324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325#endif
326
327#ifndef EV_USE_EVENTFD
328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329# define EV_USE_EVENTFD EV_FEATURE_OS
330# else
331# define EV_USE_EVENTFD 0
332# endif
333#endif
334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
340# endif
341#endif
342
343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
382
383#ifndef CLOCK_MONOTONIC
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 0
386#endif
387
388#ifndef CLOCK_REALTIME
389# undef EV_USE_REALTIME
390# define EV_USE_REALTIME 0
391#endif
392
393#if !EV_STAT_ENABLE
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396#endif
397
398#if !EV_USE_NANOSLEEP
399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined _WIN32 && !defined __hpux
401# include <sys/select.h>
402# endif
403#endif
404
405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
413#endif
414
415#if EV_SELECT_IS_WINSOCKET
416# include <winsock.h>
417#endif
418
419#if EV_USE_EVENTFD
420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421# include <stdint.h>
422# ifndef EFD_NONBLOCK
423# define EFD_NONBLOCK O_NONBLOCK
424# endif
425# ifndef EFD_CLOEXEC
426# ifdef O_CLOEXEC
427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
455#endif
456
457/**/
458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
465/*
466 * This is used to work around floating point rounding problems.
467 * This value is good at least till the year 4000.
468 */
469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
471
472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509#ifndef ECB_H
510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526#else
527 #include <inttypes.h>
528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
542 #endif
543#endif
544
545/*****************************************************************************/
546
547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
571 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
574 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined __s390__ || defined __s390x__
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined __mips__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #endif
585 #endif
586#endif
587
588#ifndef ECB_MEMORY_FENCE
589 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
590 #define ECB_MEMORY_FENCE __sync_synchronize ()
591 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
592 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
593 #elif _MSC_VER >= 1400 /* VC++ 2005 */
594 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
595 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
596 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
597 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
598 #elif defined _WIN32
599 #include <WinNT.h>
600 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
601 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
602 #include <mbarrier.h>
603 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
604 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
605 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
606 #elif __xlC__
607 #define ECB_MEMORY_FENCE __sync ()
608 #endif
609#endif
610
611#ifndef ECB_MEMORY_FENCE
612 #if !ECB_AVOID_PTHREADS
613 /*
614 * if you get undefined symbol references to pthread_mutex_lock,
615 * or failure to find pthread.h, then you should implement
616 * the ECB_MEMORY_FENCE operations for your cpu/compiler
617 * OR provide pthread.h and link against the posix thread library
618 * of your system.
619 */
620 #include <pthread.h>
621 #define ECB_NEEDS_PTHREADS 1
622 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
623
624 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
625 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
626 #endif
627#endif
628
629#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
630 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
631#endif
632
633#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
634 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
635#endif
636
637/*****************************************************************************/
638
639#define ECB_C99 (__STDC_VERSION__ >= 199901L)
640
641#if __cplusplus
642 #define ecb_inline static inline
643#elif ECB_GCC_VERSION(2,5)
644 #define ecb_inline static __inline__
645#elif ECB_C99
646 #define ecb_inline static inline
647#else
648 #define ecb_inline static
649#endif
650
651#if ECB_GCC_VERSION(3,3)
652 #define ecb_restrict __restrict__
653#elif ECB_C99
654 #define ecb_restrict restrict
655#else
656 #define ecb_restrict
657#endif
658
659typedef int ecb_bool;
660
661#define ECB_CONCAT_(a, b) a ## b
662#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
663#define ECB_STRINGIFY_(a) # a
664#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
665
666#define ecb_function_ ecb_inline
667
668#if ECB_GCC_VERSION(3,1)
669 #define ecb_attribute(attrlist) __attribute__(attrlist)
670 #define ecb_is_constant(expr) __builtin_constant_p (expr)
671 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
672 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
673#else
674 #define ecb_attribute(attrlist)
675 #define ecb_is_constant(expr) 0
676 #define ecb_expect(expr,value) (expr)
677 #define ecb_prefetch(addr,rw,locality)
678#endif
679
680/* no emulation for ecb_decltype */
681#if ECB_GCC_VERSION(4,5)
682 #define ecb_decltype(x) __decltype(x)
683#elif ECB_GCC_VERSION(3,0)
684 #define ecb_decltype(x) __typeof(x)
685#endif
686
687#define ecb_noinline ecb_attribute ((__noinline__))
688#define ecb_noreturn ecb_attribute ((__noreturn__))
689#define ecb_unused ecb_attribute ((__unused__))
690#define ecb_const ecb_attribute ((__const__))
691#define ecb_pure ecb_attribute ((__pure__))
692
693#if ECB_GCC_VERSION(4,3)
694 #define ecb_artificial ecb_attribute ((__artificial__))
695 #define ecb_hot ecb_attribute ((__hot__))
696 #define ecb_cold ecb_attribute ((__cold__))
697#else
698 #define ecb_artificial
699 #define ecb_hot
700 #define ecb_cold
701#endif
702
703/* put around conditional expressions if you are very sure that the */
704/* expression is mostly true or mostly false. note that these return */
705/* booleans, not the expression. */
154#define expect_false(expr) expect ((expr) != 0, 0) 706#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
155#define expect_true(expr) expect ((expr) != 0, 1) 707#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
708/* for compatibility to the rest of the world */
709#define ecb_likely(expr) ecb_expect_true (expr)
710#define ecb_unlikely(expr) ecb_expect_false (expr)
156 711
712/* count trailing zero bits and count # of one bits */
713#if ECB_GCC_VERSION(3,4)
714 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
715 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
716 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
717 #define ecb_ctz32(x) __builtin_ctz (x)
718 #define ecb_ctz64(x) __builtin_ctzll (x)
719 #define ecb_popcount32(x) __builtin_popcount (x)
720 /* no popcountll */
721#else
722 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
723 ecb_function_ int
724 ecb_ctz32 (uint32_t x)
725 {
726 int r = 0;
727
728 x &= ~x + 1; /* this isolates the lowest bit */
729
730#if ECB_branchless_on_i386
731 r += !!(x & 0xaaaaaaaa) << 0;
732 r += !!(x & 0xcccccccc) << 1;
733 r += !!(x & 0xf0f0f0f0) << 2;
734 r += !!(x & 0xff00ff00) << 3;
735 r += !!(x & 0xffff0000) << 4;
736#else
737 if (x & 0xaaaaaaaa) r += 1;
738 if (x & 0xcccccccc) r += 2;
739 if (x & 0xf0f0f0f0) r += 4;
740 if (x & 0xff00ff00) r += 8;
741 if (x & 0xffff0000) r += 16;
742#endif
743
744 return r;
745 }
746
747 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
748 ecb_function_ int
749 ecb_ctz64 (uint64_t x)
750 {
751 int shift = x & 0xffffffffU ? 0 : 32;
752 return ecb_ctz32 (x >> shift) + shift;
753 }
754
755 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
756 ecb_function_ int
757 ecb_popcount32 (uint32_t x)
758 {
759 x -= (x >> 1) & 0x55555555;
760 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
761 x = ((x >> 4) + x) & 0x0f0f0f0f;
762 x *= 0x01010101;
763
764 return x >> 24;
765 }
766
767 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
768 ecb_function_ int ecb_ld32 (uint32_t x)
769 {
770 int r = 0;
771
772 if (x >> 16) { x >>= 16; r += 16; }
773 if (x >> 8) { x >>= 8; r += 8; }
774 if (x >> 4) { x >>= 4; r += 4; }
775 if (x >> 2) { x >>= 2; r += 2; }
776 if (x >> 1) { r += 1; }
777
778 return r;
779 }
780
781 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
782 ecb_function_ int ecb_ld64 (uint64_t x)
783 {
784 int r = 0;
785
786 if (x >> 32) { x >>= 32; r += 32; }
787
788 return r + ecb_ld32 (x);
789 }
790#endif
791
792ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
793ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
794{
795 return ( (x * 0x0802U & 0x22110U)
796 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
797}
798
799ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
800ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
801{
802 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
803 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
804 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
805 x = ( x >> 8 ) | ( x << 8);
806
807 return x;
808}
809
810ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
811ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
812{
813 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
814 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
815 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
816 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
817 x = ( x >> 16 ) | ( x << 16);
818
819 return x;
820}
821
822/* popcount64 is only available on 64 bit cpus as gcc builtin */
823/* so for this version we are lazy */
824ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
825ecb_function_ int
826ecb_popcount64 (uint64_t x)
827{
828 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
829}
830
831ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
832ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
833ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
834ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
835ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
836ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
837ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
838ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
839
840ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
841ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
842ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
843ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
844ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
845ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
846ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
847ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
848
849#if ECB_GCC_VERSION(4,3)
850 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
851 #define ecb_bswap32(x) __builtin_bswap32 (x)
852 #define ecb_bswap64(x) __builtin_bswap64 (x)
853#else
854 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
855 ecb_function_ uint16_t
856 ecb_bswap16 (uint16_t x)
857 {
858 return ecb_rotl16 (x, 8);
859 }
860
861 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
862 ecb_function_ uint32_t
863 ecb_bswap32 (uint32_t x)
864 {
865 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
866 }
867
868 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
869 ecb_function_ uint64_t
870 ecb_bswap64 (uint64_t x)
871 {
872 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
873 }
874#endif
875
876#if ECB_GCC_VERSION(4,5)
877 #define ecb_unreachable() __builtin_unreachable ()
878#else
879 /* this seems to work fine, but gcc always emits a warning for it :/ */
880 ecb_inline void ecb_unreachable (void) ecb_noreturn;
881 ecb_inline void ecb_unreachable (void) { }
882#endif
883
884/* try to tell the compiler that some condition is definitely true */
885#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
886
887ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
888ecb_inline unsigned char
889ecb_byteorder_helper (void)
890{
891 const uint32_t u = 0x11223344;
892 return *(unsigned char *)&u;
893}
894
895ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
896ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
897ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
898ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
899
900#if ECB_GCC_VERSION(3,0) || ECB_C99
901 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
902#else
903 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
904#endif
905
906#if __cplusplus
907 template<typename T>
908 static inline T ecb_div_rd (T val, T div)
909 {
910 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
911 }
912 template<typename T>
913 static inline T ecb_div_ru (T val, T div)
914 {
915 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
916 }
917#else
918 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
919 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
920#endif
921
922#if ecb_cplusplus_does_not_suck
923 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
924 template<typename T, int N>
925 static inline int ecb_array_length (const T (&arr)[N])
926 {
927 return N;
928 }
929#else
930 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
931#endif
932
933#endif
934
935/* ECB.H END */
936
937#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
938/* if your architecture doesn't need memory fences, e.g. because it is
939 * single-cpu/core, or if you use libev in a project that doesn't use libev
940 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
941 * libev, in which cases the memory fences become nops.
942 * alternatively, you can remove this #error and link against libpthread,
943 * which will then provide the memory fences.
944 */
945# error "memory fences not defined for your architecture, please report"
946#endif
947
948#ifndef ECB_MEMORY_FENCE
949# define ECB_MEMORY_FENCE do { } while (0)
950# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
951# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
952#endif
953
954#define expect_false(cond) ecb_expect_false (cond)
955#define expect_true(cond) ecb_expect_true (cond)
956#define noinline ecb_noinline
957
958#define inline_size ecb_inline
959
960#if EV_FEATURE_CODE
961# define inline_speed ecb_inline
962#else
963# define inline_speed static noinline
964#endif
965
157#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 966#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
967
968#if EV_MINPRI == EV_MAXPRI
969# define ABSPRI(w) (((W)w), 0)
970#else
158#define ABSPRI(w) ((w)->priority - EV_MINPRI) 971# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
972#endif
159 973
974#define EMPTY /* required for microsofts broken pseudo-c compiler */
975#define EMPTY2(a,b) /* used to suppress some warnings */
976
160typedef struct ev_watcher *W; 977typedef ev_watcher *W;
161typedef struct ev_watcher_list *WL; 978typedef ev_watcher_list *WL;
162typedef struct ev_watcher_time *WT; 979typedef ev_watcher_time *WT;
163 980
981#define ev_active(w) ((W)(w))->active
982#define ev_at(w) ((WT)(w))->at
983
984#if EV_USE_REALTIME
985/* sig_atomic_t is used to avoid per-thread variables or locking but still */
986/* giving it a reasonably high chance of working on typical architectures */
987static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
988#endif
989
990#if EV_USE_MONOTONIC
164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 991static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
992#endif
165 993
994#ifndef EV_FD_TO_WIN32_HANDLE
995# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
996#endif
997#ifndef EV_WIN32_HANDLE_TO_FD
998# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
999#endif
1000#ifndef EV_WIN32_CLOSE_FD
1001# define EV_WIN32_CLOSE_FD(fd) close (fd)
1002#endif
1003
166#ifdef WIN32 1004#ifdef _WIN32
167# include "ev_win32.c" 1005# include "ev_win32.c"
168#endif 1006#endif
169 1007
170/*****************************************************************************/ 1008/*****************************************************************************/
171 1009
1010/* define a suitable floor function (only used by periodics atm) */
1011
1012#if EV_USE_FLOOR
1013# include <math.h>
1014# define ev_floor(v) floor (v)
1015#else
1016
1017#include <float.h>
1018
1019/* a floor() replacement function, should be independent of ev_tstamp type */
1020static ev_tstamp noinline
1021ev_floor (ev_tstamp v)
1022{
1023 /* the choice of shift factor is not terribly important */
1024#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1025 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1026#else
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1028#endif
1029
1030 /* argument too large for an unsigned long? */
1031 if (expect_false (v >= shift))
1032 {
1033 ev_tstamp f;
1034
1035 if (v == v - 1.)
1036 return v; /* very large number */
1037
1038 f = shift * ev_floor (v * (1. / shift));
1039 return f + ev_floor (v - f);
1040 }
1041
1042 /* special treatment for negative args? */
1043 if (expect_false (v < 0.))
1044 {
1045 ev_tstamp f = -ev_floor (-v);
1046
1047 return f - (f == v ? 0 : 1);
1048 }
1049
1050 /* fits into an unsigned long */
1051 return (unsigned long)v;
1052}
1053
1054#endif
1055
1056/*****************************************************************************/
1057
1058#ifdef __linux
1059# include <sys/utsname.h>
1060#endif
1061
1062static unsigned int noinline ecb_cold
1063ev_linux_version (void)
1064{
1065#ifdef __linux
1066 unsigned int v = 0;
1067 struct utsname buf;
1068 int i;
1069 char *p = buf.release;
1070
1071 if (uname (&buf))
1072 return 0;
1073
1074 for (i = 3+1; --i; )
1075 {
1076 unsigned int c = 0;
1077
1078 for (;;)
1079 {
1080 if (*p >= '0' && *p <= '9')
1081 c = c * 10 + *p++ - '0';
1082 else
1083 {
1084 p += *p == '.';
1085 break;
1086 }
1087 }
1088
1089 v = (v << 8) | c;
1090 }
1091
1092 return v;
1093#else
1094 return 0;
1095#endif
1096}
1097
1098/*****************************************************************************/
1099
1100#if EV_AVOID_STDIO
1101static void noinline ecb_cold
1102ev_printerr (const char *msg)
1103{
1104 write (STDERR_FILENO, msg, strlen (msg));
1105}
1106#endif
1107
172static void (*syserr_cb)(const char *msg); 1108static void (*syserr_cb)(const char *msg);
173 1109
1110void ecb_cold
174void ev_set_syserr_cb (void (*cb)(const char *msg)) 1111ev_set_syserr_cb (void (*cb)(const char *msg))
175{ 1112{
176 syserr_cb = cb; 1113 syserr_cb = cb;
177} 1114}
178 1115
179static void 1116static void noinline ecb_cold
180syserr (const char *msg) 1117ev_syserr (const char *msg)
181{ 1118{
182 if (!msg) 1119 if (!msg)
183 msg = "(libev) system error"; 1120 msg = "(libev) system error";
184 1121
185 if (syserr_cb) 1122 if (syserr_cb)
186 syserr_cb (msg); 1123 syserr_cb (msg);
187 else 1124 else
188 { 1125 {
1126#if EV_AVOID_STDIO
1127 ev_printerr (msg);
1128 ev_printerr (": ");
1129 ev_printerr (strerror (errno));
1130 ev_printerr ("\n");
1131#else
189 perror (msg); 1132 perror (msg);
1133#endif
190 abort (); 1134 abort ();
191 } 1135 }
192} 1136}
193 1137
1138static void *
1139ev_realloc_emul (void *ptr, long size)
1140{
1141#if __GLIBC__
1142 return realloc (ptr, size);
1143#else
1144 /* some systems, notably openbsd and darwin, fail to properly
1145 * implement realloc (x, 0) (as required by both ansi c-89 and
1146 * the single unix specification, so work around them here.
1147 */
1148
1149 if (size)
1150 return realloc (ptr, size);
1151
1152 free (ptr);
1153 return 0;
1154#endif
1155}
1156
194static void *(*alloc)(void *ptr, long size); 1157static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
195 1158
1159void ecb_cold
196void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1160ev_set_allocator (void *(*cb)(void *ptr, long size))
197{ 1161{
198 alloc = cb; 1162 alloc = cb;
199} 1163}
200 1164
201static void * 1165inline_speed void *
202ev_realloc (void *ptr, long size) 1166ev_realloc (void *ptr, long size)
203{ 1167{
204 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1168 ptr = alloc (ptr, size);
205 1169
206 if (!ptr && size) 1170 if (!ptr && size)
207 { 1171 {
1172#if EV_AVOID_STDIO
1173 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1174#else
208 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1175 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1176#endif
209 abort (); 1177 abort ();
210 } 1178 }
211 1179
212 return ptr; 1180 return ptr;
213} 1181}
215#define ev_malloc(size) ev_realloc (0, (size)) 1183#define ev_malloc(size) ev_realloc (0, (size))
216#define ev_free(ptr) ev_realloc ((ptr), 0) 1184#define ev_free(ptr) ev_realloc ((ptr), 0)
217 1185
218/*****************************************************************************/ 1186/*****************************************************************************/
219 1187
1188/* set in reify when reification needed */
1189#define EV_ANFD_REIFY 1
1190
1191/* file descriptor info structure */
220typedef struct 1192typedef struct
221{ 1193{
222 WL head; 1194 WL head;
223 unsigned char events; 1195 unsigned char events; /* the events watched for */
1196 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1197 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
224 unsigned char reify; 1198 unsigned char unused;
1199#if EV_USE_EPOLL
1200 unsigned int egen; /* generation counter to counter epoll bugs */
1201#endif
1202#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1203 SOCKET handle;
1204#endif
1205#if EV_USE_IOCP
1206 OVERLAPPED or, ow;
1207#endif
225} ANFD; 1208} ANFD;
226 1209
1210/* stores the pending event set for a given watcher */
227typedef struct 1211typedef struct
228{ 1212{
229 W w; 1213 W w;
230 int events; 1214 int events; /* the pending event set for the given watcher */
231} ANPENDING; 1215} ANPENDING;
1216
1217#if EV_USE_INOTIFY
1218/* hash table entry per inotify-id */
1219typedef struct
1220{
1221 WL head;
1222} ANFS;
1223#endif
1224
1225/* Heap Entry */
1226#if EV_HEAP_CACHE_AT
1227 /* a heap element */
1228 typedef struct {
1229 ev_tstamp at;
1230 WT w;
1231 } ANHE;
1232
1233 #define ANHE_w(he) (he).w /* access watcher, read-write */
1234 #define ANHE_at(he) (he).at /* access cached at, read-only */
1235 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1236#else
1237 /* a heap element */
1238 typedef WT ANHE;
1239
1240 #define ANHE_w(he) (he)
1241 #define ANHE_at(he) (he)->at
1242 #define ANHE_at_cache(he)
1243#endif
232 1244
233#if EV_MULTIPLICITY 1245#if EV_MULTIPLICITY
234 1246
235 struct ev_loop 1247 struct ev_loop
236 { 1248 {
240 #include "ev_vars.h" 1252 #include "ev_vars.h"
241 #undef VAR 1253 #undef VAR
242 }; 1254 };
243 #include "ev_wrap.h" 1255 #include "ev_wrap.h"
244 1256
245 struct ev_loop default_loop_struct; 1257 static struct ev_loop default_loop_struct;
246 static struct ev_loop *default_loop; 1258 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
247 1259
248#else 1260#else
249 1261
250 ev_tstamp ev_rt_now; 1262 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
251 #define VAR(name,decl) static decl; 1263 #define VAR(name,decl) static decl;
252 #include "ev_vars.h" 1264 #include "ev_vars.h"
253 #undef VAR 1265 #undef VAR
254 1266
255 static int default_loop; 1267 static int ev_default_loop_ptr;
256 1268
257#endif 1269#endif
1270
1271#if EV_FEATURE_API
1272# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1273# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1274# define EV_INVOKE_PENDING invoke_cb (EV_A)
1275#else
1276# define EV_RELEASE_CB (void)0
1277# define EV_ACQUIRE_CB (void)0
1278# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1279#endif
1280
1281#define EVBREAK_RECURSE 0x80
258 1282
259/*****************************************************************************/ 1283/*****************************************************************************/
260 1284
1285#ifndef EV_HAVE_EV_TIME
261ev_tstamp 1286ev_tstamp
262ev_time (void) 1287ev_time (void)
263{ 1288{
264#if EV_USE_REALTIME 1289#if EV_USE_REALTIME
1290 if (expect_true (have_realtime))
1291 {
265 struct timespec ts; 1292 struct timespec ts;
266 clock_gettime (CLOCK_REALTIME, &ts); 1293 clock_gettime (CLOCK_REALTIME, &ts);
267 return ts.tv_sec + ts.tv_nsec * 1e-9; 1294 return ts.tv_sec + ts.tv_nsec * 1e-9;
268#else 1295 }
1296#endif
1297
269 struct timeval tv; 1298 struct timeval tv;
270 gettimeofday (&tv, 0); 1299 gettimeofday (&tv, 0);
271 return tv.tv_sec + tv.tv_usec * 1e-6; 1300 return tv.tv_sec + tv.tv_usec * 1e-6;
272#endif
273} 1301}
1302#endif
274 1303
275inline ev_tstamp 1304inline_size ev_tstamp
276get_clock (void) 1305get_clock (void)
277{ 1306{
278#if EV_USE_MONOTONIC 1307#if EV_USE_MONOTONIC
279 if (expect_true (have_monotonic)) 1308 if (expect_true (have_monotonic))
280 { 1309 {
293{ 1322{
294 return ev_rt_now; 1323 return ev_rt_now;
295} 1324}
296#endif 1325#endif
297 1326
298#define array_roundsize(type,n) ((n) | 4 & ~3) 1327void
1328ev_sleep (ev_tstamp delay)
1329{
1330 if (delay > 0.)
1331 {
1332#if EV_USE_NANOSLEEP
1333 struct timespec ts;
1334
1335 EV_TS_SET (ts, delay);
1336 nanosleep (&ts, 0);
1337#elif defined _WIN32
1338 Sleep ((unsigned long)(delay * 1e3));
1339#else
1340 struct timeval tv;
1341
1342 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1343 /* something not guaranteed by newer posix versions, but guaranteed */
1344 /* by older ones */
1345 EV_TV_SET (tv, delay);
1346 select (0, 0, 0, 0, &tv);
1347#endif
1348 }
1349}
1350
1351/*****************************************************************************/
1352
1353#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1354
1355/* find a suitable new size for the given array, */
1356/* hopefully by rounding to a nice-to-malloc size */
1357inline_size int
1358array_nextsize (int elem, int cur, int cnt)
1359{
1360 int ncur = cur + 1;
1361
1362 do
1363 ncur <<= 1;
1364 while (cnt > ncur);
1365
1366 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1367 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1368 {
1369 ncur *= elem;
1370 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1371 ncur = ncur - sizeof (void *) * 4;
1372 ncur /= elem;
1373 }
1374
1375 return ncur;
1376}
1377
1378static void * noinline ecb_cold
1379array_realloc (int elem, void *base, int *cur, int cnt)
1380{
1381 *cur = array_nextsize (elem, *cur, cnt);
1382 return ev_realloc (base, elem * *cur);
1383}
1384
1385#define array_init_zero(base,count) \
1386 memset ((void *)(base), 0, sizeof (*(base)) * (count))
299 1387
300#define array_needsize(type,base,cur,cnt,init) \ 1388#define array_needsize(type,base,cur,cnt,init) \
301 if (expect_false ((cnt) > cur)) \ 1389 if (expect_false ((cnt) > (cur))) \
302 { \ 1390 { \
303 int newcnt = cur; \ 1391 int ecb_unused ocur_ = (cur); \
304 do \ 1392 (base) = (type *)array_realloc \
305 { \ 1393 (sizeof (type), (base), &(cur), (cnt)); \
306 newcnt = array_roundsize (type, newcnt << 1); \ 1394 init ((base) + (ocur_), (cur) - ocur_); \
307 } \
308 while ((cnt) > newcnt); \
309 \
310 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
311 init (base + cur, newcnt - cur); \
312 cur = newcnt; \
313 } 1395 }
314 1396
1397#if 0
315#define array_slim(type,stem) \ 1398#define array_slim(type,stem) \
316 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1399 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
317 { \ 1400 { \
318 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1401 stem ## max = array_roundsize (stem ## cnt >> 1); \
319 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1402 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
320 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1403 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
321 } 1404 }
322 1405#endif
323/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
324/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
325#define array_free_microshit(stem) \
326 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
327 1406
328#define array_free(stem, idx) \ 1407#define array_free(stem, idx) \
329 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1408 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
330 1409
331/*****************************************************************************/ 1410/*****************************************************************************/
332 1411
333static void 1412/* dummy callback for pending events */
334anfds_init (ANFD *base, int count) 1413static void noinline
1414pendingcb (EV_P_ ev_prepare *w, int revents)
335{ 1415{
336 while (count--)
337 {
338 base->head = 0;
339 base->events = EV_NONE;
340 base->reify = 0;
341
342 ++base;
343 }
344} 1416}
345 1417
346void 1418void noinline
347ev_feed_event (EV_P_ void *w, int revents) 1419ev_feed_event (EV_P_ void *w, int revents)
348{ 1420{
349 W w_ = (W)w; 1421 W w_ = (W)w;
1422 int pri = ABSPRI (w_);
350 1423
351 if (w_->pending) 1424 if (expect_false (w_->pending))
1425 pendings [pri][w_->pending - 1].events |= revents;
1426 else
352 { 1427 {
1428 w_->pending = ++pendingcnt [pri];
1429 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1430 pendings [pri][w_->pending - 1].w = w_;
353 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1431 pendings [pri][w_->pending - 1].events = revents;
354 return;
355 } 1432 }
356
357 w_->pending = ++pendingcnt [ABSPRI (w_)];
358 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
359 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
360 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
361} 1433}
362 1434
363static void 1435inline_speed void
1436feed_reverse (EV_P_ W w)
1437{
1438 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1439 rfeeds [rfeedcnt++] = w;
1440}
1441
1442inline_size void
1443feed_reverse_done (EV_P_ int revents)
1444{
1445 do
1446 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1447 while (rfeedcnt);
1448}
1449
1450inline_speed void
364queue_events (EV_P_ W *events, int eventcnt, int type) 1451queue_events (EV_P_ W *events, int eventcnt, int type)
365{ 1452{
366 int i; 1453 int i;
367 1454
368 for (i = 0; i < eventcnt; ++i) 1455 for (i = 0; i < eventcnt; ++i)
369 ev_feed_event (EV_A_ events [i], type); 1456 ev_feed_event (EV_A_ events [i], type);
370} 1457}
371 1458
1459/*****************************************************************************/
1460
372inline void 1461inline_speed void
373fd_event (EV_P_ int fd, int revents) 1462fd_event_nocheck (EV_P_ int fd, int revents)
374{ 1463{
375 ANFD *anfd = anfds + fd; 1464 ANFD *anfd = anfds + fd;
376 struct ev_io *w; 1465 ev_io *w;
377 1466
378 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1467 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
379 { 1468 {
380 int ev = w->events & revents; 1469 int ev = w->events & revents;
381 1470
382 if (ev) 1471 if (ev)
383 ev_feed_event (EV_A_ (W)w, ev); 1472 ev_feed_event (EV_A_ (W)w, ev);
384 } 1473 }
385} 1474}
386 1475
1476/* do not submit kernel events for fds that have reify set */
1477/* because that means they changed while we were polling for new events */
1478inline_speed void
1479fd_event (EV_P_ int fd, int revents)
1480{
1481 ANFD *anfd = anfds + fd;
1482
1483 if (expect_true (!anfd->reify))
1484 fd_event_nocheck (EV_A_ fd, revents);
1485}
1486
387void 1487void
388ev_feed_fd_event (EV_P_ int fd, int revents) 1488ev_feed_fd_event (EV_P_ int fd, int revents)
389{ 1489{
1490 if (fd >= 0 && fd < anfdmax)
390 fd_event (EV_A_ fd, revents); 1491 fd_event_nocheck (EV_A_ fd, revents);
391} 1492}
392 1493
393/*****************************************************************************/ 1494/* make sure the external fd watch events are in-sync */
394 1495/* with the kernel/libev internal state */
395static void 1496inline_size void
396fd_reify (EV_P) 1497fd_reify (EV_P)
397{ 1498{
398 int i; 1499 int i;
399 1500
1501#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
400 for (i = 0; i < fdchangecnt; ++i) 1502 for (i = 0; i < fdchangecnt; ++i)
401 { 1503 {
402 int fd = fdchanges [i]; 1504 int fd = fdchanges [i];
403 ANFD *anfd = anfds + fd; 1505 ANFD *anfd = anfds + fd;
1506
1507 if (anfd->reify & EV__IOFDSET && anfd->head)
1508 {
1509 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1510
1511 if (handle != anfd->handle)
1512 {
1513 unsigned long arg;
1514
1515 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1516
1517 /* handle changed, but fd didn't - we need to do it in two steps */
1518 backend_modify (EV_A_ fd, anfd->events, 0);
1519 anfd->events = 0;
1520 anfd->handle = handle;
1521 }
1522 }
1523 }
1524#endif
1525
1526 for (i = 0; i < fdchangecnt; ++i)
1527 {
1528 int fd = fdchanges [i];
1529 ANFD *anfd = anfds + fd;
404 struct ev_io *w; 1530 ev_io *w;
405 1531
406 int events = 0; 1532 unsigned char o_events = anfd->events;
1533 unsigned char o_reify = anfd->reify;
407 1534
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
409 events |= w->events;
410
411 anfd->reify = 0; 1535 anfd->reify = 0;
412 1536
413 method_modify (EV_A_ fd, anfd->events, events); 1537 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1538 {
414 anfd->events = events; 1539 anfd->events = 0;
1540
1541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1542 anfd->events |= (unsigned char)w->events;
1543
1544 if (o_events != anfd->events)
1545 o_reify = EV__IOFDSET; /* actually |= */
1546 }
1547
1548 if (o_reify & EV__IOFDSET)
1549 backend_modify (EV_A_ fd, o_events, anfd->events);
415 } 1550 }
416 1551
417 fdchangecnt = 0; 1552 fdchangecnt = 0;
418} 1553}
419 1554
420static void 1555/* something about the given fd changed */
1556inline_size void
421fd_change (EV_P_ int fd) 1557fd_change (EV_P_ int fd, int flags)
422{ 1558{
423 if (anfds [fd].reify) 1559 unsigned char reify = anfds [fd].reify;
424 return;
425
426 anfds [fd].reify = 1; 1560 anfds [fd].reify |= flags;
427 1561
1562 if (expect_true (!reify))
1563 {
428 ++fdchangecnt; 1564 ++fdchangecnt;
429 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1565 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
430 fdchanges [fdchangecnt - 1] = fd; 1566 fdchanges [fdchangecnt - 1] = fd;
1567 }
431} 1568}
432 1569
433static void 1570/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1571inline_speed void ecb_cold
434fd_kill (EV_P_ int fd) 1572fd_kill (EV_P_ int fd)
435{ 1573{
436 struct ev_io *w; 1574 ev_io *w;
437 1575
438 while ((w = (struct ev_io *)anfds [fd].head)) 1576 while ((w = (ev_io *)anfds [fd].head))
439 { 1577 {
440 ev_io_stop (EV_A_ w); 1578 ev_io_stop (EV_A_ w);
441 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1579 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
442 } 1580 }
443} 1581}
444 1582
445static int 1583/* check whether the given fd is actually valid, for error recovery */
1584inline_size int ecb_cold
446fd_valid (int fd) 1585fd_valid (int fd)
447{ 1586{
448#ifdef WIN32 1587#ifdef _WIN32
449 return !!win32_get_osfhandle (fd); 1588 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
450#else 1589#else
451 return fcntl (fd, F_GETFD) != -1; 1590 return fcntl (fd, F_GETFD) != -1;
452#endif 1591#endif
453} 1592}
454 1593
455/* called on EBADF to verify fds */ 1594/* called on EBADF to verify fds */
456static void 1595static void noinline ecb_cold
457fd_ebadf (EV_P) 1596fd_ebadf (EV_P)
458{ 1597{
459 int fd; 1598 int fd;
460 1599
461 for (fd = 0; fd < anfdmax; ++fd) 1600 for (fd = 0; fd < anfdmax; ++fd)
462 if (anfds [fd].events) 1601 if (anfds [fd].events)
463 if (!fd_valid (fd) == -1 && errno == EBADF) 1602 if (!fd_valid (fd) && errno == EBADF)
464 fd_kill (EV_A_ fd); 1603 fd_kill (EV_A_ fd);
465} 1604}
466 1605
467/* called on ENOMEM in select/poll to kill some fds and retry */ 1606/* called on ENOMEM in select/poll to kill some fds and retry */
468static void 1607static void noinline ecb_cold
469fd_enomem (EV_P) 1608fd_enomem (EV_P)
470{ 1609{
471 int fd; 1610 int fd;
472 1611
473 for (fd = anfdmax; fd--; ) 1612 for (fd = anfdmax; fd--; )
474 if (anfds [fd].events) 1613 if (anfds [fd].events)
475 { 1614 {
476 fd_kill (EV_A_ fd); 1615 fd_kill (EV_A_ fd);
477 return; 1616 break;
478 } 1617 }
479} 1618}
480 1619
481/* usually called after fork if method needs to re-arm all fds from scratch */ 1620/* usually called after fork if backend needs to re-arm all fds from scratch */
482static void 1621static void noinline
483fd_rearm_all (EV_P) 1622fd_rearm_all (EV_P)
484{ 1623{
485 int fd; 1624 int fd;
486 1625
487 /* this should be highly optimised to not do anything but set a flag */
488 for (fd = 0; fd < anfdmax; ++fd) 1626 for (fd = 0; fd < anfdmax; ++fd)
489 if (anfds [fd].events) 1627 if (anfds [fd].events)
490 { 1628 {
491 anfds [fd].events = 0; 1629 anfds [fd].events = 0;
492 fd_change (EV_A_ fd); 1630 anfds [fd].emask = 0;
1631 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
493 } 1632 }
494} 1633}
495 1634
1635/* used to prepare libev internal fd's */
1636/* this is not fork-safe */
1637inline_speed void
1638fd_intern (int fd)
1639{
1640#ifdef _WIN32
1641 unsigned long arg = 1;
1642 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1643#else
1644 fcntl (fd, F_SETFD, FD_CLOEXEC);
1645 fcntl (fd, F_SETFL, O_NONBLOCK);
1646#endif
1647}
1648
496/*****************************************************************************/ 1649/*****************************************************************************/
497 1650
1651/*
1652 * the heap functions want a real array index. array index 0 is guaranteed to not
1653 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1654 * the branching factor of the d-tree.
1655 */
1656
1657/*
1658 * at the moment we allow libev the luxury of two heaps,
1659 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1660 * which is more cache-efficient.
1661 * the difference is about 5% with 50000+ watchers.
1662 */
1663#if EV_USE_4HEAP
1664
1665#define DHEAP 4
1666#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1667#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1668#define UPHEAP_DONE(p,k) ((p) == (k))
1669
1670/* away from the root */
1671inline_speed void
1672downheap (ANHE *heap, int N, int k)
1673{
1674 ANHE he = heap [k];
1675 ANHE *E = heap + N + HEAP0;
1676
1677 for (;;)
1678 {
1679 ev_tstamp minat;
1680 ANHE *minpos;
1681 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1682
1683 /* find minimum child */
1684 if (expect_true (pos + DHEAP - 1 < E))
1685 {
1686 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1687 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1688 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1690 }
1691 else if (pos < E)
1692 {
1693 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1694 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1695 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1696 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1697 }
1698 else
1699 break;
1700
1701 if (ANHE_at (he) <= minat)
1702 break;
1703
1704 heap [k] = *minpos;
1705 ev_active (ANHE_w (*minpos)) = k;
1706
1707 k = minpos - heap;
1708 }
1709
1710 heap [k] = he;
1711 ev_active (ANHE_w (he)) = k;
1712}
1713
1714#else /* 4HEAP */
1715
1716#define HEAP0 1
1717#define HPARENT(k) ((k) >> 1)
1718#define UPHEAP_DONE(p,k) (!(p))
1719
1720/* away from the root */
1721inline_speed void
1722downheap (ANHE *heap, int N, int k)
1723{
1724 ANHE he = heap [k];
1725
1726 for (;;)
1727 {
1728 int c = k << 1;
1729
1730 if (c >= N + HEAP0)
1731 break;
1732
1733 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1734 ? 1 : 0;
1735
1736 if (ANHE_at (he) <= ANHE_at (heap [c]))
1737 break;
1738
1739 heap [k] = heap [c];
1740 ev_active (ANHE_w (heap [k])) = k;
1741
1742 k = c;
1743 }
1744
1745 heap [k] = he;
1746 ev_active (ANHE_w (he)) = k;
1747}
1748#endif
1749
1750/* towards the root */
1751inline_speed void
1752upheap (ANHE *heap, int k)
1753{
1754 ANHE he = heap [k];
1755
1756 for (;;)
1757 {
1758 int p = HPARENT (k);
1759
1760 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1761 break;
1762
1763 heap [k] = heap [p];
1764 ev_active (ANHE_w (heap [k])) = k;
1765 k = p;
1766 }
1767
1768 heap [k] = he;
1769 ev_active (ANHE_w (he)) = k;
1770}
1771
1772/* move an element suitably so it is in a correct place */
1773inline_size void
1774adjustheap (ANHE *heap, int N, int k)
1775{
1776 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1777 upheap (heap, k);
1778 else
1779 downheap (heap, N, k);
1780}
1781
1782/* rebuild the heap: this function is used only once and executed rarely */
1783inline_size void
1784reheap (ANHE *heap, int N)
1785{
1786 int i;
1787
1788 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1789 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1790 for (i = 0; i < N; ++i)
1791 upheap (heap, i + HEAP0);
1792}
1793
1794/*****************************************************************************/
1795
1796/* associate signal watchers to a signal signal */
1797typedef struct
1798{
1799 EV_ATOMIC_T pending;
1800#if EV_MULTIPLICITY
1801 EV_P;
1802#endif
1803 WL head;
1804} ANSIG;
1805
1806static ANSIG signals [EV_NSIG - 1];
1807
1808/*****************************************************************************/
1809
1810#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1811
1812static void noinline ecb_cold
1813evpipe_init (EV_P)
1814{
1815 if (!ev_is_active (&pipe_w))
1816 {
1817# if EV_USE_EVENTFD
1818 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1819 if (evfd < 0 && errno == EINVAL)
1820 evfd = eventfd (0, 0);
1821
1822 if (evfd >= 0)
1823 {
1824 evpipe [0] = -1;
1825 fd_intern (evfd); /* doing it twice doesn't hurt */
1826 ev_io_set (&pipe_w, evfd, EV_READ);
1827 }
1828 else
1829# endif
1830 {
1831 while (pipe (evpipe))
1832 ev_syserr ("(libev) error creating signal/async pipe");
1833
1834 fd_intern (evpipe [0]);
1835 fd_intern (evpipe [1]);
1836 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1837 }
1838
1839 ev_io_start (EV_A_ &pipe_w);
1840 ev_unref (EV_A); /* watcher should not keep loop alive */
1841 }
1842}
1843
1844inline_speed void
1845evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1846{
1847 if (expect_true (*flag))
1848 return;
1849
1850 *flag = 1;
1851
1852 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1853
1854 pipe_write_skipped = 1;
1855
1856 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1857
1858 if (pipe_write_wanted)
1859 {
1860 int old_errno;
1861
1862 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1863
1864 old_errno = errno; /* save errno because write will clobber it */
1865
1866#if EV_USE_EVENTFD
1867 if (evfd >= 0)
1868 {
1869 uint64_t counter = 1;
1870 write (evfd, &counter, sizeof (uint64_t));
1871 }
1872 else
1873#endif
1874 {
1875 /* win32 people keep sending patches that change this write() to send() */
1876 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1877 /* so when you think this write should be a send instead, please find out */
1878 /* where your send() is from - it's definitely not the microsoft send, and */
1879 /* tell me. thank you. */
1880 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1881 /* check the ev documentation on how to use this flag */
1882 write (evpipe [1], &(evpipe [1]), 1);
1883 }
1884
1885 errno = old_errno;
1886 }
1887}
1888
1889/* called whenever the libev signal pipe */
1890/* got some events (signal, async) */
498static void 1891static void
499upheap (WT *heap, int k) 1892pipecb (EV_P_ ev_io *iow, int revents)
500{ 1893{
501 WT w = heap [k]; 1894 int i;
502 1895
503 while (k && heap [k >> 1]->at > w->at) 1896 if (revents & EV_READ)
504 {
505 heap [k] = heap [k >> 1];
506 ((W)heap [k])->active = k + 1;
507 k >>= 1;
508 } 1897 {
1898#if EV_USE_EVENTFD
1899 if (evfd >= 0)
1900 {
1901 uint64_t counter;
1902 read (evfd, &counter, sizeof (uint64_t));
1903 }
1904 else
1905#endif
1906 {
1907 char dummy;
1908 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1909 read (evpipe [0], &dummy, 1);
1910 }
1911 }
509 1912
510 heap [k] = w; 1913 pipe_write_skipped = 0;
511 ((W)heap [k])->active = k + 1;
512 1914
1915#if EV_SIGNAL_ENABLE
1916 if (sig_pending)
1917 {
1918 sig_pending = 0;
1919
1920 for (i = EV_NSIG - 1; i--; )
1921 if (expect_false (signals [i].pending))
1922 ev_feed_signal_event (EV_A_ i + 1);
1923 }
1924#endif
1925
1926#if EV_ASYNC_ENABLE
1927 if (async_pending)
1928 {
1929 async_pending = 0;
1930
1931 for (i = asynccnt; i--; )
1932 if (asyncs [i]->sent)
1933 {
1934 asyncs [i]->sent = 0;
1935 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1936 }
1937 }
1938#endif
1939}
1940
1941/*****************************************************************************/
1942
1943void
1944ev_feed_signal (int signum)
1945{
1946#if EV_MULTIPLICITY
1947 EV_P = signals [signum - 1].loop;
1948
1949 if (!EV_A)
1950 return;
1951#endif
1952
1953 if (!ev_active (&pipe_w))
1954 return;
1955
1956 signals [signum - 1].pending = 1;
1957 evpipe_write (EV_A_ &sig_pending);
513} 1958}
514 1959
515static void 1960static void
516downheap (WT *heap, int N, int k)
517{
518 WT w = heap [k];
519
520 while (k < (N >> 1))
521 {
522 int j = k << 1;
523
524 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
525 ++j;
526
527 if (w->at <= heap [j]->at)
528 break;
529
530 heap [k] = heap [j];
531 ((W)heap [k])->active = k + 1;
532 k = j;
533 }
534
535 heap [k] = w;
536 ((W)heap [k])->active = k + 1;
537}
538
539inline void
540adjustheap (WT *heap, int N, int k)
541{
542 upheap (heap, k);
543 downheap (heap, N, k);
544}
545
546/*****************************************************************************/
547
548typedef struct
549{
550 WL head;
551 sig_atomic_t volatile gotsig;
552} ANSIG;
553
554static ANSIG *signals;
555static int signalmax;
556
557static int sigpipe [2];
558static sig_atomic_t volatile gotsig;
559static struct ev_io sigev;
560
561static void
562signals_init (ANSIG *base, int count)
563{
564 while (count--)
565 {
566 base->head = 0;
567 base->gotsig = 0;
568
569 ++base;
570 }
571}
572
573static void
574sighandler (int signum) 1961ev_sighandler (int signum)
575{ 1962{
576#if WIN32
577 signal (signum, sighandler);
578#endif
579
580 signals [signum - 1].gotsig = 1;
581
582 if (!gotsig)
583 {
584 int old_errno = errno;
585 gotsig = 1;
586#ifdef WIN32 1963#ifdef _WIN32
587 send (sigpipe [1], &signum, 1, MSG_DONTWAIT); 1964 signal (signum, ev_sighandler);
588#else
589 write (sigpipe [1], &signum, 1);
590#endif 1965#endif
591 errno = old_errno;
592 }
593}
594 1966
595void 1967 ev_feed_signal (signum);
1968}
1969
1970void noinline
596ev_feed_signal_event (EV_P_ int signum) 1971ev_feed_signal_event (EV_P_ int signum)
597{ 1972{
598 WL w; 1973 WL w;
599 1974
1975 if (expect_false (signum <= 0 || signum > EV_NSIG))
1976 return;
1977
1978 --signum;
1979
600#if EV_MULTIPLICITY 1980#if EV_MULTIPLICITY
601 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1981 /* it is permissible to try to feed a signal to the wrong loop */
602#endif 1982 /* or, likely more useful, feeding a signal nobody is waiting for */
603 1983
604 --signum; 1984 if (expect_false (signals [signum].loop != EV_A))
605
606 if (signum < 0 || signum >= signalmax)
607 return; 1985 return;
1986#endif
608 1987
609 signals [signum].gotsig = 0; 1988 signals [signum].pending = 0;
610 1989
611 for (w = signals [signum].head; w; w = w->next) 1990 for (w = signals [signum].head; w; w = w->next)
612 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1991 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
613} 1992}
614 1993
1994#if EV_USE_SIGNALFD
615static void 1995static void
616sigcb (EV_P_ struct ev_io *iow, int revents) 1996sigfdcb (EV_P_ ev_io *iow, int revents)
617{ 1997{
618 int signum; 1998 struct signalfd_siginfo si[2], *sip; /* these structs are big */
619 1999
620#ifdef WIN32 2000 for (;;)
621 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 2001 {
622#else 2002 ssize_t res = read (sigfd, si, sizeof (si));
623 read (sigpipe [0], &revents, 1);
624#endif
625 gotsig = 0;
626 2003
627 for (signum = signalmax; signum--; ) 2004 /* not ISO-C, as res might be -1, but works with SuS */
628 if (signals [signum].gotsig) 2005 for (sip = si; (char *)sip < (char *)si + res; ++sip)
629 ev_feed_signal_event (EV_A_ signum + 1); 2006 ev_feed_signal_event (EV_A_ sip->ssi_signo);
630}
631 2007
632static void 2008 if (res < (ssize_t)sizeof (si))
633siginit (EV_P) 2009 break;
634{ 2010 }
635#ifndef WIN32
636 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
637 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
638
639 /* rather than sort out wether we really need nb, set it */
640 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
641 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
642#endif
643
644 ev_io_set (&sigev, sigpipe [0], EV_READ);
645 ev_io_start (EV_A_ &sigev);
646 ev_unref (EV_A); /* child watcher should not keep loop alive */
647} 2011}
2012#endif
2013
2014#endif
648 2015
649/*****************************************************************************/ 2016/*****************************************************************************/
650 2017
651static struct ev_child *childs [PID_HASHSIZE]; 2018#if EV_CHILD_ENABLE
2019static WL childs [EV_PID_HASHSIZE];
652 2020
653#ifndef WIN32
654
655static struct ev_signal childev; 2021static ev_signal childev;
2022
2023#ifndef WIFCONTINUED
2024# define WIFCONTINUED(status) 0
2025#endif
2026
2027/* handle a single child status event */
2028inline_speed void
2029child_reap (EV_P_ int chain, int pid, int status)
2030{
2031 ev_child *w;
2032 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2033
2034 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2035 {
2036 if ((w->pid == pid || !w->pid)
2037 && (!traced || (w->flags & 1)))
2038 {
2039 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2040 w->rpid = pid;
2041 w->rstatus = status;
2042 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2043 }
2044 }
2045}
656 2046
657#ifndef WCONTINUED 2047#ifndef WCONTINUED
658# define WCONTINUED 0 2048# define WCONTINUED 0
659#endif 2049#endif
660 2050
2051/* called on sigchld etc., calls waitpid */
661static void 2052static void
662child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
663{
664 struct ev_child *w;
665
666 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
667 if (w->pid == pid || !w->pid)
668 {
669 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
670 w->rpid = pid;
671 w->rstatus = status;
672 ev_feed_event (EV_A_ (W)w, EV_CHILD);
673 }
674}
675
676static void
677childcb (EV_P_ struct ev_signal *sw, int revents) 2053childcb (EV_P_ ev_signal *sw, int revents)
678{ 2054{
679 int pid, status; 2055 int pid, status;
680 2056
2057 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
681 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2058 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
682 { 2059 if (!WCONTINUED
2060 || errno != EINVAL
2061 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2062 return;
2063
683 /* make sure we are called again until all childs have been reaped */ 2064 /* make sure we are called again until all children have been reaped */
2065 /* we need to do it this way so that the callback gets called before we continue */
684 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2066 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
685 2067
686 child_reap (EV_A_ sw, pid, pid, status); 2068 child_reap (EV_A_ pid, pid, status);
2069 if ((EV_PID_HASHSIZE) > 1)
687 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2070 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
688 }
689} 2071}
690 2072
691#endif 2073#endif
692 2074
693/*****************************************************************************/ 2075/*****************************************************************************/
694 2076
2077#if EV_USE_IOCP
2078# include "ev_iocp.c"
2079#endif
2080#if EV_USE_PORT
2081# include "ev_port.c"
2082#endif
695#if EV_USE_KQUEUE 2083#if EV_USE_KQUEUE
696# include "ev_kqueue.c" 2084# include "ev_kqueue.c"
697#endif 2085#endif
698#if EV_USE_EPOLL 2086#if EV_USE_EPOLL
699# include "ev_epoll.c" 2087# include "ev_epoll.c"
703#endif 2091#endif
704#if EV_USE_SELECT 2092#if EV_USE_SELECT
705# include "ev_select.c" 2093# include "ev_select.c"
706#endif 2094#endif
707 2095
708int 2096int ecb_cold
709ev_version_major (void) 2097ev_version_major (void)
710{ 2098{
711 return EV_VERSION_MAJOR; 2099 return EV_VERSION_MAJOR;
712} 2100}
713 2101
714int 2102int ecb_cold
715ev_version_minor (void) 2103ev_version_minor (void)
716{ 2104{
717 return EV_VERSION_MINOR; 2105 return EV_VERSION_MINOR;
718} 2106}
719 2107
720/* return true if we are running with elevated privileges and should ignore env variables */ 2108/* return true if we are running with elevated privileges and should ignore env variables */
721static int 2109int inline_size ecb_cold
722enable_secure (void) 2110enable_secure (void)
723{ 2111{
724#ifdef WIN32 2112#ifdef _WIN32
725 return 0; 2113 return 0;
726#else 2114#else
727 return getuid () != geteuid () 2115 return getuid () != geteuid ()
728 || getgid () != getegid (); 2116 || getgid () != getegid ();
729#endif 2117#endif
730} 2118}
731 2119
732int 2120unsigned int ecb_cold
2121ev_supported_backends (void)
2122{
2123 unsigned int flags = 0;
2124
2125 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2126 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2127 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2128 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2129 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2130
2131 return flags;
2132}
2133
2134unsigned int ecb_cold
2135ev_recommended_backends (void)
2136{
2137 unsigned int flags = ev_supported_backends ();
2138
2139#ifndef __NetBSD__
2140 /* kqueue is borked on everything but netbsd apparently */
2141 /* it usually doesn't work correctly on anything but sockets and pipes */
2142 flags &= ~EVBACKEND_KQUEUE;
2143#endif
2144#ifdef __APPLE__
2145 /* only select works correctly on that "unix-certified" platform */
2146 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2147 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2148#endif
2149#ifdef __FreeBSD__
2150 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2151#endif
2152
2153 return flags;
2154}
2155
2156unsigned int ecb_cold
2157ev_embeddable_backends (void)
2158{
2159 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2160
2161 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2162 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2163 flags &= ~EVBACKEND_EPOLL;
2164
2165 return flags;
2166}
2167
2168unsigned int
2169ev_backend (EV_P)
2170{
2171 return backend;
2172}
2173
2174#if EV_FEATURE_API
2175unsigned int
2176ev_iteration (EV_P)
2177{
2178 return loop_count;
2179}
2180
2181unsigned int
733ev_method (EV_P) 2182ev_depth (EV_P)
734{ 2183{
735 return method; 2184 return loop_depth;
736} 2185}
737 2186
738static void 2187void
739loop_init (EV_P_ int methods) 2188ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
740{ 2189{
741 if (!method) 2190 io_blocktime = interval;
2191}
2192
2193void
2194ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2195{
2196 timeout_blocktime = interval;
2197}
2198
2199void
2200ev_set_userdata (EV_P_ void *data)
2201{
2202 userdata = data;
2203}
2204
2205void *
2206ev_userdata (EV_P)
2207{
2208 return userdata;
2209}
2210
2211void
2212ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2213{
2214 invoke_cb = invoke_pending_cb;
2215}
2216
2217void
2218ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2219{
2220 release_cb = release;
2221 acquire_cb = acquire;
2222}
2223#endif
2224
2225/* initialise a loop structure, must be zero-initialised */
2226static void noinline ecb_cold
2227loop_init (EV_P_ unsigned int flags)
2228{
2229 if (!backend)
742 { 2230 {
2231 origflags = flags;
2232
2233#if EV_USE_REALTIME
2234 if (!have_realtime)
2235 {
2236 struct timespec ts;
2237
2238 if (!clock_gettime (CLOCK_REALTIME, &ts))
2239 have_realtime = 1;
2240 }
2241#endif
2242
743#if EV_USE_MONOTONIC 2243#if EV_USE_MONOTONIC
2244 if (!have_monotonic)
2245 {
2246 struct timespec ts;
2247
2248 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2249 have_monotonic = 1;
2250 }
2251#endif
2252
2253 /* pid check not overridable via env */
2254#ifndef _WIN32
2255 if (flags & EVFLAG_FORKCHECK)
2256 curpid = getpid ();
2257#endif
2258
2259 if (!(flags & EVFLAG_NOENV)
2260 && !enable_secure ()
2261 && getenv ("LIBEV_FLAGS"))
2262 flags = atoi (getenv ("LIBEV_FLAGS"));
2263
2264 ev_rt_now = ev_time ();
2265 mn_now = get_clock ();
2266 now_floor = mn_now;
2267 rtmn_diff = ev_rt_now - mn_now;
2268#if EV_FEATURE_API
2269 invoke_cb = ev_invoke_pending;
2270#endif
2271
2272 io_blocktime = 0.;
2273 timeout_blocktime = 0.;
2274 backend = 0;
2275 backend_fd = -1;
2276 sig_pending = 0;
2277#if EV_ASYNC_ENABLE
2278 async_pending = 0;
2279#endif
2280 pipe_write_skipped = 0;
2281 pipe_write_wanted = 0;
2282#if EV_USE_INOTIFY
2283 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2284#endif
2285#if EV_USE_SIGNALFD
2286 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2287#endif
2288
2289 if (!(flags & EVBACKEND_MASK))
2290 flags |= ev_recommended_backends ();
2291
2292#if EV_USE_IOCP
2293 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2294#endif
2295#if EV_USE_PORT
2296 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2297#endif
2298#if EV_USE_KQUEUE
2299 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2300#endif
2301#if EV_USE_EPOLL
2302 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2303#endif
2304#if EV_USE_POLL
2305 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2306#endif
2307#if EV_USE_SELECT
2308 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2309#endif
2310
2311 ev_prepare_init (&pending_w, pendingcb);
2312
2313#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2314 ev_init (&pipe_w, pipecb);
2315 ev_set_priority (&pipe_w, EV_MAXPRI);
2316#endif
2317 }
2318}
2319
2320/* free up a loop structure */
2321void ecb_cold
2322ev_loop_destroy (EV_P)
2323{
2324 int i;
2325
2326#if EV_MULTIPLICITY
2327 /* mimic free (0) */
2328 if (!EV_A)
2329 return;
2330#endif
2331
2332#if EV_CLEANUP_ENABLE
2333 /* queue cleanup watchers (and execute them) */
2334 if (expect_false (cleanupcnt))
2335 {
2336 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2337 EV_INVOKE_PENDING;
2338 }
2339#endif
2340
2341#if EV_CHILD_ENABLE
2342 if (ev_is_active (&childev))
2343 {
2344 ev_ref (EV_A); /* child watcher */
2345 ev_signal_stop (EV_A_ &childev);
2346 }
2347#endif
2348
2349 if (ev_is_active (&pipe_w))
2350 {
2351 /*ev_ref (EV_A);*/
2352 /*ev_io_stop (EV_A_ &pipe_w);*/
2353
2354#if EV_USE_EVENTFD
2355 if (evfd >= 0)
2356 close (evfd);
2357#endif
2358
2359 if (evpipe [0] >= 0)
2360 {
2361 EV_WIN32_CLOSE_FD (evpipe [0]);
2362 EV_WIN32_CLOSE_FD (evpipe [1]);
2363 }
2364 }
2365
2366#if EV_USE_SIGNALFD
2367 if (ev_is_active (&sigfd_w))
2368 close (sigfd);
2369#endif
2370
2371#if EV_USE_INOTIFY
2372 if (fs_fd >= 0)
2373 close (fs_fd);
2374#endif
2375
2376 if (backend_fd >= 0)
2377 close (backend_fd);
2378
2379#if EV_USE_IOCP
2380 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2381#endif
2382#if EV_USE_PORT
2383 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2384#endif
2385#if EV_USE_KQUEUE
2386 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2387#endif
2388#if EV_USE_EPOLL
2389 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2390#endif
2391#if EV_USE_POLL
2392 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2393#endif
2394#if EV_USE_SELECT
2395 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2396#endif
2397
2398 for (i = NUMPRI; i--; )
2399 {
2400 array_free (pending, [i]);
2401#if EV_IDLE_ENABLE
2402 array_free (idle, [i]);
2403#endif
2404 }
2405
2406 ev_free (anfds); anfds = 0; anfdmax = 0;
2407
2408 /* have to use the microsoft-never-gets-it-right macro */
2409 array_free (rfeed, EMPTY);
2410 array_free (fdchange, EMPTY);
2411 array_free (timer, EMPTY);
2412#if EV_PERIODIC_ENABLE
2413 array_free (periodic, EMPTY);
2414#endif
2415#if EV_FORK_ENABLE
2416 array_free (fork, EMPTY);
2417#endif
2418#if EV_CLEANUP_ENABLE
2419 array_free (cleanup, EMPTY);
2420#endif
2421 array_free (prepare, EMPTY);
2422 array_free (check, EMPTY);
2423#if EV_ASYNC_ENABLE
2424 array_free (async, EMPTY);
2425#endif
2426
2427 backend = 0;
2428
2429#if EV_MULTIPLICITY
2430 if (ev_is_default_loop (EV_A))
2431#endif
2432 ev_default_loop_ptr = 0;
2433#if EV_MULTIPLICITY
2434 else
2435 ev_free (EV_A);
2436#endif
2437}
2438
2439#if EV_USE_INOTIFY
2440inline_size void infy_fork (EV_P);
2441#endif
2442
2443inline_size void
2444loop_fork (EV_P)
2445{
2446#if EV_USE_PORT
2447 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2448#endif
2449#if EV_USE_KQUEUE
2450 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2451#endif
2452#if EV_USE_EPOLL
2453 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2454#endif
2455#if EV_USE_INOTIFY
2456 infy_fork (EV_A);
2457#endif
2458
2459 if (ev_is_active (&pipe_w))
2460 {
2461 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2462
2463 ev_ref (EV_A);
2464 ev_io_stop (EV_A_ &pipe_w);
2465
2466#if EV_USE_EVENTFD
2467 if (evfd >= 0)
2468 close (evfd);
2469#endif
2470
2471 if (evpipe [0] >= 0)
2472 {
2473 EV_WIN32_CLOSE_FD (evpipe [0]);
2474 EV_WIN32_CLOSE_FD (evpipe [1]);
2475 }
2476
2477#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2478 evpipe_init (EV_A);
2479 /* now iterate over everything, in case we missed something */
2480 pipecb (EV_A_ &pipe_w, EV_READ);
2481#endif
2482 }
2483
2484 postfork = 0;
2485}
2486
2487#if EV_MULTIPLICITY
2488
2489struct ev_loop * ecb_cold
2490ev_loop_new (unsigned int flags)
2491{
2492 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2493
2494 memset (EV_A, 0, sizeof (struct ev_loop));
2495 loop_init (EV_A_ flags);
2496
2497 if (ev_backend (EV_A))
2498 return EV_A;
2499
2500 ev_free (EV_A);
2501 return 0;
2502}
2503
2504#endif /* multiplicity */
2505
2506#if EV_VERIFY
2507static void noinline ecb_cold
2508verify_watcher (EV_P_ W w)
2509{
2510 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2511
2512 if (w->pending)
2513 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2514}
2515
2516static void noinline ecb_cold
2517verify_heap (EV_P_ ANHE *heap, int N)
2518{
2519 int i;
2520
2521 for (i = HEAP0; i < N + HEAP0; ++i)
2522 {
2523 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2524 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2525 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2526
2527 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2528 }
2529}
2530
2531static void noinline ecb_cold
2532array_verify (EV_P_ W *ws, int cnt)
2533{
2534 while (cnt--)
2535 {
2536 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2537 verify_watcher (EV_A_ ws [cnt]);
2538 }
2539}
2540#endif
2541
2542#if EV_FEATURE_API
2543void ecb_cold
2544ev_verify (EV_P)
2545{
2546#if EV_VERIFY
2547 int i;
2548 WL w;
2549
2550 assert (activecnt >= -1);
2551
2552 assert (fdchangemax >= fdchangecnt);
2553 for (i = 0; i < fdchangecnt; ++i)
2554 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2555
2556 assert (anfdmax >= 0);
2557 for (i = 0; i < anfdmax; ++i)
2558 for (w = anfds [i].head; w; w = w->next)
744 { 2559 {
745 struct timespec ts; 2560 verify_watcher (EV_A_ (W)w);
746 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2561 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
747 have_monotonic = 1; 2562 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
748 } 2563 }
749#endif
750 2564
751 ev_rt_now = ev_time (); 2565 assert (timermax >= timercnt);
752 mn_now = get_clock (); 2566 verify_heap (EV_A_ timers, timercnt);
753 now_floor = mn_now;
754 rtmn_diff = ev_rt_now - mn_now;
755 2567
756 if (methods == EVMETHOD_AUTO) 2568#if EV_PERIODIC_ENABLE
757 if (!enable_secure () && getenv ("LIBEV_METHODS")) 2569 assert (periodicmax >= periodiccnt);
758 methods = atoi (getenv ("LIBEV_METHODS")); 2570 verify_heap (EV_A_ periodics, periodiccnt);
759 else
760 methods = EVMETHOD_ANY;
761
762 method = 0;
763#if EV_USE_WIN32
764 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
765#endif
766#if EV_USE_KQUEUE
767 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
768#endif
769#if EV_USE_EPOLL
770 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
771#endif
772#if EV_USE_POLL
773 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
774#endif
775#if EV_USE_SELECT
776 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
777#endif
778
779 ev_init (&sigev, sigcb);
780 ev_set_priority (&sigev, EV_MAXPRI);
781 }
782}
783
784void
785loop_destroy (EV_P)
786{
787 int i;
788
789#if EV_USE_WIN32
790 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
791#endif
792#if EV_USE_KQUEUE
793 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
794#endif
795#if EV_USE_EPOLL
796 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
797#endif
798#if EV_USE_POLL
799 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
800#endif
801#if EV_USE_SELECT
802 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
803#endif 2571#endif
804 2572
805 for (i = NUMPRI; i--; ) 2573 for (i = NUMPRI; i--; )
806 array_free (pending, [i]); 2574 {
2575 assert (pendingmax [i] >= pendingcnt [i]);
2576#if EV_IDLE_ENABLE
2577 assert (idleall >= 0);
2578 assert (idlemax [i] >= idlecnt [i]);
2579 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2580#endif
2581 }
807 2582
808 /* have to use the microsoft-never-gets-it-right macro */ 2583#if EV_FORK_ENABLE
809 array_free_microshit (fdchange); 2584 assert (forkmax >= forkcnt);
810 array_free_microshit (timer); 2585 array_verify (EV_A_ (W *)forks, forkcnt);
811#if EV_PERIODICS 2586#endif
812 array_free_microshit (periodic); 2587
2588#if EV_CLEANUP_ENABLE
2589 assert (cleanupmax >= cleanupcnt);
2590 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2591#endif
2592
2593#if EV_ASYNC_ENABLE
2594 assert (asyncmax >= asynccnt);
2595 array_verify (EV_A_ (W *)asyncs, asynccnt);
2596#endif
2597
2598#if EV_PREPARE_ENABLE
2599 assert (preparemax >= preparecnt);
2600 array_verify (EV_A_ (W *)prepares, preparecnt);
2601#endif
2602
2603#if EV_CHECK_ENABLE
2604 assert (checkmax >= checkcnt);
2605 array_verify (EV_A_ (W *)checks, checkcnt);
2606#endif
2607
2608# if 0
2609#if EV_CHILD_ENABLE
2610 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2611 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2612#endif
813#endif 2613# endif
814 array_free_microshit (idle);
815 array_free_microshit (prepare);
816 array_free_microshit (check);
817
818 method = 0;
819}
820
821static void
822loop_fork (EV_P)
823{
824#if EV_USE_EPOLL
825 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
826#endif 2614#endif
827#if EV_USE_KQUEUE
828 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
829#endif
830
831 if (ev_is_active (&sigev))
832 {
833 /* default loop */
834
835 ev_ref (EV_A);
836 ev_io_stop (EV_A_ &sigev);
837 close (sigpipe [0]);
838 close (sigpipe [1]);
839
840 while (pipe (sigpipe))
841 syserr ("(libev) error creating pipe");
842
843 siginit (EV_A);
844 }
845
846 postfork = 0;
847} 2615}
2616#endif
848 2617
849#if EV_MULTIPLICITY 2618#if EV_MULTIPLICITY
850struct ev_loop * 2619struct ev_loop * ecb_cold
851ev_loop_new (int methods)
852{
853 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
854
855 memset (loop, 0, sizeof (struct ev_loop));
856
857 loop_init (EV_A_ methods);
858
859 if (ev_method (EV_A))
860 return loop;
861
862 return 0;
863}
864
865void
866ev_loop_destroy (EV_P)
867{
868 loop_destroy (EV_A);
869 ev_free (loop);
870}
871
872void
873ev_loop_fork (EV_P)
874{
875 postfork = 1;
876}
877
878#endif
879
880#if EV_MULTIPLICITY
881struct ev_loop *
882#else 2620#else
883int 2621int
884#endif 2622#endif
885ev_default_loop (int methods) 2623ev_default_loop (unsigned int flags)
886{ 2624{
887 if (sigpipe [0] == sigpipe [1])
888 if (pipe (sigpipe))
889 return 0;
890
891 if (!default_loop) 2625 if (!ev_default_loop_ptr)
892 { 2626 {
893#if EV_MULTIPLICITY 2627#if EV_MULTIPLICITY
894 struct ev_loop *loop = default_loop = &default_loop_struct; 2628 EV_P = ev_default_loop_ptr = &default_loop_struct;
895#else 2629#else
896 default_loop = 1; 2630 ev_default_loop_ptr = 1;
897#endif 2631#endif
898 2632
899 loop_init (EV_A_ methods); 2633 loop_init (EV_A_ flags);
900 2634
901 if (ev_method (EV_A)) 2635 if (ev_backend (EV_A))
902 { 2636 {
903 siginit (EV_A); 2637#if EV_CHILD_ENABLE
904
905#ifndef WIN32
906 ev_signal_init (&childev, childcb, SIGCHLD); 2638 ev_signal_init (&childev, childcb, SIGCHLD);
907 ev_set_priority (&childev, EV_MAXPRI); 2639 ev_set_priority (&childev, EV_MAXPRI);
908 ev_signal_start (EV_A_ &childev); 2640 ev_signal_start (EV_A_ &childev);
909 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2641 ev_unref (EV_A); /* child watcher should not keep loop alive */
910#endif 2642#endif
911 } 2643 }
912 else 2644 else
913 default_loop = 0; 2645 ev_default_loop_ptr = 0;
914 } 2646 }
915 2647
916 return default_loop; 2648 return ev_default_loop_ptr;
917} 2649}
918 2650
919void 2651void
920ev_default_destroy (void) 2652ev_loop_fork (EV_P)
921{ 2653{
922#if EV_MULTIPLICITY 2654 postfork = 1; /* must be in line with ev_default_fork */
923 struct ev_loop *loop = default_loop;
924#endif
925
926#ifndef WIN32
927 ev_ref (EV_A); /* child watcher */
928 ev_signal_stop (EV_A_ &childev);
929#endif
930
931 ev_ref (EV_A); /* signal watcher */
932 ev_io_stop (EV_A_ &sigev);
933
934 close (sigpipe [0]); sigpipe [0] = 0;
935 close (sigpipe [1]); sigpipe [1] = 0;
936
937 loop_destroy (EV_A);
938} 2655}
2656
2657/*****************************************************************************/
939 2658
940void 2659void
941ev_default_fork (void) 2660ev_invoke (EV_P_ void *w, int revents)
942{ 2661{
943#if EV_MULTIPLICITY 2662 EV_CB_INVOKE ((W)w, revents);
944 struct ev_loop *loop = default_loop;
945#endif
946
947 if (method)
948 postfork = 1;
949} 2663}
950 2664
951/*****************************************************************************/ 2665unsigned int
952 2666ev_pending_count (EV_P)
953static int
954any_pending (EV_P)
955{ 2667{
956 int pri; 2668 int pri;
2669 unsigned int count = 0;
957 2670
958 for (pri = NUMPRI; pri--; ) 2671 for (pri = NUMPRI; pri--; )
959 if (pendingcnt [pri]) 2672 count += pendingcnt [pri];
960 return 1;
961 2673
962 return 0; 2674 return count;
963} 2675}
964 2676
965static void 2677void noinline
966call_pending (EV_P) 2678ev_invoke_pending (EV_P)
967{ 2679{
968 int pri; 2680 int pri;
969 2681
970 for (pri = NUMPRI; pri--; ) 2682 for (pri = NUMPRI; pri--; )
971 while (pendingcnt [pri]) 2683 while (pendingcnt [pri])
972 { 2684 {
973 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2685 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
974 2686
975 if (p->w)
976 {
977 p->w->pending = 0; 2687 p->w->pending = 0;
978 EV_CB_INVOKE (p->w, p->events); 2688 EV_CB_INVOKE (p->w, p->events);
979 } 2689 EV_FREQUENT_CHECK;
980 } 2690 }
981} 2691}
982 2692
983static void 2693#if EV_IDLE_ENABLE
2694/* make idle watchers pending. this handles the "call-idle */
2695/* only when higher priorities are idle" logic */
2696inline_size void
2697idle_reify (EV_P)
2698{
2699 if (expect_false (idleall))
2700 {
2701 int pri;
2702
2703 for (pri = NUMPRI; pri--; )
2704 {
2705 if (pendingcnt [pri])
2706 break;
2707
2708 if (idlecnt [pri])
2709 {
2710 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2711 break;
2712 }
2713 }
2714 }
2715}
2716#endif
2717
2718/* make timers pending */
2719inline_size void
984timers_reify (EV_P) 2720timers_reify (EV_P)
985{ 2721{
2722 EV_FREQUENT_CHECK;
2723
986 while (timercnt && ((WT)timers [0])->at <= mn_now) 2724 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
987 { 2725 {
988 struct ev_timer *w = timers [0]; 2726 do
989
990 assert (("inactive timer on timer heap detected", ev_is_active (w)));
991
992 /* first reschedule or stop timer */
993 if (w->repeat)
994 { 2727 {
2728 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2729
2730 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2731
2732 /* first reschedule or stop timer */
2733 if (w->repeat)
2734 {
2735 ev_at (w) += w->repeat;
2736 if (ev_at (w) < mn_now)
2737 ev_at (w) = mn_now;
2738
995 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2739 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
996 2740
997 ((WT)w)->at += w->repeat; 2741 ANHE_at_cache (timers [HEAP0]);
998 if (((WT)w)->at < mn_now)
999 ((WT)w)->at = mn_now;
1000
1001 downheap ((WT *)timers, timercnt, 0); 2742 downheap (timers, timercnt, HEAP0);
2743 }
2744 else
2745 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2746
2747 EV_FREQUENT_CHECK;
2748 feed_reverse (EV_A_ (W)w);
1002 } 2749 }
1003 else 2750 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1004 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1005 2751
1006 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2752 feed_reverse_done (EV_A_ EV_TIMER);
2753 }
2754}
2755
2756#if EV_PERIODIC_ENABLE
2757
2758static void noinline
2759periodic_recalc (EV_P_ ev_periodic *w)
2760{
2761 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2762 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2763
2764 /* the above almost always errs on the low side */
2765 while (at <= ev_rt_now)
1007 } 2766 {
1008} 2767 ev_tstamp nat = at + w->interval;
1009 2768
1010#if EV_PERIODICS 2769 /* when resolution fails us, we use ev_rt_now */
1011static void 2770 if (expect_false (nat == at))
2771 {
2772 at = ev_rt_now;
2773 break;
2774 }
2775
2776 at = nat;
2777 }
2778
2779 ev_at (w) = at;
2780}
2781
2782/* make periodics pending */
2783inline_size void
1012periodics_reify (EV_P) 2784periodics_reify (EV_P)
1013{ 2785{
2786 EV_FREQUENT_CHECK;
2787
1014 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2788 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1015 { 2789 {
1016 struct ev_periodic *w = periodics [0]; 2790 int feed_count = 0;
1017 2791
2792 do
2793 {
2794 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2795
1018 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2796 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1019 2797
1020 /* first reschedule or stop timer */ 2798 /* first reschedule or stop timer */
2799 if (w->reschedule_cb)
2800 {
2801 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2802
2803 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2804
2805 ANHE_at_cache (periodics [HEAP0]);
2806 downheap (periodics, periodiccnt, HEAP0);
2807 }
2808 else if (w->interval)
2809 {
2810 periodic_recalc (EV_A_ w);
2811 ANHE_at_cache (periodics [HEAP0]);
2812 downheap (periodics, periodiccnt, HEAP0);
2813 }
2814 else
2815 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2816
2817 EV_FREQUENT_CHECK;
2818 feed_reverse (EV_A_ (W)w);
2819 }
2820 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2821
2822 feed_reverse_done (EV_A_ EV_PERIODIC);
2823 }
2824}
2825
2826/* simply recalculate all periodics */
2827/* TODO: maybe ensure that at least one event happens when jumping forward? */
2828static void noinline ecb_cold
2829periodics_reschedule (EV_P)
2830{
2831 int i;
2832
2833 /* adjust periodics after time jump */
2834 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2835 {
2836 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2837
1021 if (w->reschedule_cb) 2838 if (w->reschedule_cb)
2839 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2840 else if (w->interval)
2841 periodic_recalc (EV_A_ w);
2842
2843 ANHE_at_cache (periodics [i]);
2844 }
2845
2846 reheap (periodics, periodiccnt);
2847}
2848#endif
2849
2850/* adjust all timers by a given offset */
2851static void noinline ecb_cold
2852timers_reschedule (EV_P_ ev_tstamp adjust)
2853{
2854 int i;
2855
2856 for (i = 0; i < timercnt; ++i)
2857 {
2858 ANHE *he = timers + i + HEAP0;
2859 ANHE_w (*he)->at += adjust;
2860 ANHE_at_cache (*he);
2861 }
2862}
2863
2864/* fetch new monotonic and realtime times from the kernel */
2865/* also detect if there was a timejump, and act accordingly */
2866inline_speed void
2867time_update (EV_P_ ev_tstamp max_block)
2868{
2869#if EV_USE_MONOTONIC
2870 if (expect_true (have_monotonic))
2871 {
2872 int i;
2873 ev_tstamp odiff = rtmn_diff;
2874
2875 mn_now = get_clock ();
2876
2877 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2878 /* interpolate in the meantime */
2879 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1022 { 2880 {
1023 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2881 ev_rt_now = rtmn_diff + mn_now;
1024 2882 return;
1025 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1026 downheap ((WT *)periodics, periodiccnt, 0);
1027 } 2883 }
1028 else if (w->interval)
1029 {
1030 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1031 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1032 downheap ((WT *)periodics, periodiccnt, 0);
1033 }
1034 else
1035 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1036 2884
1037 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1038 }
1039}
1040
1041static void
1042periodics_reschedule (EV_P)
1043{
1044 int i;
1045
1046 /* adjust periodics after time jump */
1047 for (i = 0; i < periodiccnt; ++i)
1048 {
1049 struct ev_periodic *w = periodics [i];
1050
1051 if (w->reschedule_cb)
1052 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1053 else if (w->interval)
1054 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1055 }
1056
1057 /* now rebuild the heap */
1058 for (i = periodiccnt >> 1; i--; )
1059 downheap ((WT *)periodics, periodiccnt, i);
1060}
1061#endif
1062
1063inline int
1064time_update_monotonic (EV_P)
1065{
1066 mn_now = get_clock ();
1067
1068 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1069 {
1070 ev_rt_now = rtmn_diff + mn_now;
1071 return 0;
1072 }
1073 else
1074 {
1075 now_floor = mn_now; 2885 now_floor = mn_now;
1076 ev_rt_now = ev_time (); 2886 ev_rt_now = ev_time ();
1077 return 1;
1078 }
1079}
1080 2887
1081static void 2888 /* loop a few times, before making important decisions.
1082time_update (EV_P) 2889 * on the choice of "4": one iteration isn't enough,
1083{ 2890 * in case we get preempted during the calls to
1084 int i; 2891 * ev_time and get_clock. a second call is almost guaranteed
1085 2892 * to succeed in that case, though. and looping a few more times
1086#if EV_USE_MONOTONIC 2893 * doesn't hurt either as we only do this on time-jumps or
1087 if (expect_true (have_monotonic)) 2894 * in the unlikely event of having been preempted here.
1088 { 2895 */
1089 if (time_update_monotonic (EV_A)) 2896 for (i = 4; --i; )
1090 { 2897 {
1091 ev_tstamp odiff = rtmn_diff; 2898 ev_tstamp diff;
1092
1093 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1094 {
1095 rtmn_diff = ev_rt_now - mn_now; 2899 rtmn_diff = ev_rt_now - mn_now;
1096 2900
1097 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2901 diff = odiff - rtmn_diff;
2902
2903 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1098 return; /* all is well */ 2904 return; /* all is well */
1099 2905
1100 ev_rt_now = ev_time (); 2906 ev_rt_now = ev_time ();
1101 mn_now = get_clock (); 2907 mn_now = get_clock ();
1102 now_floor = mn_now; 2908 now_floor = mn_now;
1103 } 2909 }
1104 2910
2911 /* no timer adjustment, as the monotonic clock doesn't jump */
2912 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1105# if EV_PERIODICS 2913# if EV_PERIODIC_ENABLE
2914 periodics_reschedule (EV_A);
2915# endif
2916 }
2917 else
2918#endif
2919 {
2920 ev_rt_now = ev_time ();
2921
2922 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2923 {
2924 /* adjust timers. this is easy, as the offset is the same for all of them */
2925 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2926#if EV_PERIODIC_ENABLE
1106 periodics_reschedule (EV_A); 2927 periodics_reschedule (EV_A);
1107# endif 2928#endif
1108 /* no timer adjustment, as the monotonic clock doesn't jump */
1109 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1110 } 2929 }
1111 }
1112 else
1113#endif
1114 {
1115 ev_rt_now = ev_time ();
1116
1117 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1118 {
1119#if EV_PERIODICS
1120 periodics_reschedule (EV_A);
1121#endif
1122
1123 /* adjust timers. this is easy, as the offset is the same for all */
1124 for (i = 0; i < timercnt; ++i)
1125 ((WT)timers [i])->at += ev_rt_now - mn_now;
1126 }
1127 2930
1128 mn_now = ev_rt_now; 2931 mn_now = ev_rt_now;
1129 } 2932 }
1130} 2933}
1131 2934
1132void 2935int
1133ev_ref (EV_P)
1134{
1135 ++activecnt;
1136}
1137
1138void
1139ev_unref (EV_P)
1140{
1141 --activecnt;
1142}
1143
1144static int loop_done;
1145
1146void
1147ev_loop (EV_P_ int flags) 2936ev_run (EV_P_ int flags)
1148{ 2937{
1149 double block; 2938#if EV_FEATURE_API
1150 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2939 ++loop_depth;
2940#endif
2941
2942 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2943
2944 loop_done = EVBREAK_CANCEL;
2945
2946 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1151 2947
1152 do 2948 do
1153 { 2949 {
2950#if EV_VERIFY >= 2
2951 ev_verify (EV_A);
2952#endif
2953
2954#ifndef _WIN32
2955 if (expect_false (curpid)) /* penalise the forking check even more */
2956 if (expect_false (getpid () != curpid))
2957 {
2958 curpid = getpid ();
2959 postfork = 1;
2960 }
2961#endif
2962
2963#if EV_FORK_ENABLE
2964 /* we might have forked, so queue fork handlers */
2965 if (expect_false (postfork))
2966 if (forkcnt)
2967 {
2968 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2969 EV_INVOKE_PENDING;
2970 }
2971#endif
2972
2973#if EV_PREPARE_ENABLE
1154 /* queue check watchers (and execute them) */ 2974 /* queue prepare watchers (and execute them) */
1155 if (expect_false (preparecnt)) 2975 if (expect_false (preparecnt))
1156 { 2976 {
1157 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2977 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1158 call_pending (EV_A); 2978 EV_INVOKE_PENDING;
1159 } 2979 }
2980#endif
2981
2982 if (expect_false (loop_done))
2983 break;
1160 2984
1161 /* we might have forked, so reify kernel state if necessary */ 2985 /* we might have forked, so reify kernel state if necessary */
1162 if (expect_false (postfork)) 2986 if (expect_false (postfork))
1163 loop_fork (EV_A); 2987 loop_fork (EV_A);
1164 2988
1165 /* update fd-related kernel structures */ 2989 /* update fd-related kernel structures */
1166 fd_reify (EV_A); 2990 fd_reify (EV_A);
1167 2991
1168 /* calculate blocking time */ 2992 /* calculate blocking time */
2993 {
2994 ev_tstamp waittime = 0.;
2995 ev_tstamp sleeptime = 0.;
1169 2996
1170 /* we only need this for !monotonic clock or timers, but as we basically 2997 /* remember old timestamp for io_blocktime calculation */
1171 always have timers, we just calculate it always */ 2998 ev_tstamp prev_mn_now = mn_now;
1172#if EV_USE_MONOTONIC 2999
1173 if (expect_true (have_monotonic)) 3000 /* update time to cancel out callback processing overhead */
1174 time_update_monotonic (EV_A); 3001 time_update (EV_A_ 1e100);
1175 else 3002
1176#endif 3003 /* from now on, we want a pipe-wake-up */
3004 pipe_write_wanted = 1;
3005
3006 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3007
3008 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1177 { 3009 {
1178 ev_rt_now = ev_time ();
1179 mn_now = ev_rt_now;
1180 }
1181
1182 if (flags & EVLOOP_NONBLOCK || idlecnt)
1183 block = 0.;
1184 else
1185 {
1186 block = MAX_BLOCKTIME; 3010 waittime = MAX_BLOCKTIME;
1187 3011
1188 if (timercnt) 3012 if (timercnt)
1189 { 3013 {
1190 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3014 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1191 if (block > to) block = to; 3015 if (waittime > to) waittime = to;
1192 } 3016 }
1193 3017
1194#if EV_PERIODICS 3018#if EV_PERIODIC_ENABLE
1195 if (periodiccnt) 3019 if (periodiccnt)
1196 { 3020 {
1197 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3021 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1198 if (block > to) block = to; 3022 if (waittime > to) waittime = to;
1199 } 3023 }
1200#endif 3024#endif
1201 3025
1202 if (block < 0.) block = 0.; 3026 /* don't let timeouts decrease the waittime below timeout_blocktime */
3027 if (expect_false (waittime < timeout_blocktime))
3028 waittime = timeout_blocktime;
3029
3030 /* at this point, we NEED to wait, so we have to ensure */
3031 /* to pass a minimum nonzero value to the backend */
3032 if (expect_false (waittime < backend_mintime))
3033 waittime = backend_mintime;
3034
3035 /* extra check because io_blocktime is commonly 0 */
3036 if (expect_false (io_blocktime))
3037 {
3038 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3039
3040 if (sleeptime > waittime - backend_mintime)
3041 sleeptime = waittime - backend_mintime;
3042
3043 if (expect_true (sleeptime > 0.))
3044 {
3045 ev_sleep (sleeptime);
3046 waittime -= sleeptime;
3047 }
3048 }
1203 } 3049 }
1204 3050
1205 method_poll (EV_A_ block); 3051#if EV_FEATURE_API
3052 ++loop_count;
3053#endif
3054 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3055 backend_poll (EV_A_ waittime);
3056 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1206 3057
3058 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3059
3060 if (pipe_write_skipped)
3061 {
3062 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3063 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3064 }
3065
3066
1207 /* update ev_rt_now, do magic */ 3067 /* update ev_rt_now, do magic */
1208 time_update (EV_A); 3068 time_update (EV_A_ waittime + sleeptime);
3069 }
1209 3070
1210 /* queue pending timers and reschedule them */ 3071 /* queue pending timers and reschedule them */
1211 timers_reify (EV_A); /* relative timers called last */ 3072 timers_reify (EV_A); /* relative timers called last */
1212#if EV_PERIODICS 3073#if EV_PERIODIC_ENABLE
1213 periodics_reify (EV_A); /* absolute timers called first */ 3074 periodics_reify (EV_A); /* absolute timers called first */
1214#endif 3075#endif
1215 3076
3077#if EV_IDLE_ENABLE
1216 /* queue idle watchers unless io or timers are pending */ 3078 /* queue idle watchers unless other events are pending */
1217 if (idlecnt && !any_pending (EV_A)) 3079 idle_reify (EV_A);
1218 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3080#endif
1219 3081
3082#if EV_CHECK_ENABLE
1220 /* queue check watchers, to be executed first */ 3083 /* queue check watchers, to be executed first */
1221 if (checkcnt) 3084 if (expect_false (checkcnt))
1222 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3085 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3086#endif
1223 3087
1224 call_pending (EV_A); 3088 EV_INVOKE_PENDING;
1225 } 3089 }
1226 while (activecnt && !loop_done); 3090 while (expect_true (
3091 activecnt
3092 && !loop_done
3093 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3094 ));
1227 3095
1228 if (loop_done != 2) 3096 if (loop_done == EVBREAK_ONE)
1229 loop_done = 0; 3097 loop_done = EVBREAK_CANCEL;
3098
3099#if EV_FEATURE_API
3100 --loop_depth;
3101#endif
3102
3103 return activecnt;
1230} 3104}
1231 3105
1232void 3106void
1233ev_unloop (EV_P_ int how) 3107ev_break (EV_P_ int how)
1234{ 3108{
1235 loop_done = how; 3109 loop_done = how;
1236} 3110}
1237 3111
3112void
3113ev_ref (EV_P)
3114{
3115 ++activecnt;
3116}
3117
3118void
3119ev_unref (EV_P)
3120{
3121 --activecnt;
3122}
3123
3124void
3125ev_now_update (EV_P)
3126{
3127 time_update (EV_A_ 1e100);
3128}
3129
3130void
3131ev_suspend (EV_P)
3132{
3133 ev_now_update (EV_A);
3134}
3135
3136void
3137ev_resume (EV_P)
3138{
3139 ev_tstamp mn_prev = mn_now;
3140
3141 ev_now_update (EV_A);
3142 timers_reschedule (EV_A_ mn_now - mn_prev);
3143#if EV_PERIODIC_ENABLE
3144 /* TODO: really do this? */
3145 periodics_reschedule (EV_A);
3146#endif
3147}
3148
1238/*****************************************************************************/ 3149/*****************************************************************************/
3150/* singly-linked list management, used when the expected list length is short */
1239 3151
1240inline void 3152inline_size void
1241wlist_add (WL *head, WL elem) 3153wlist_add (WL *head, WL elem)
1242{ 3154{
1243 elem->next = *head; 3155 elem->next = *head;
1244 *head = elem; 3156 *head = elem;
1245} 3157}
1246 3158
1247inline void 3159inline_size void
1248wlist_del (WL *head, WL elem) 3160wlist_del (WL *head, WL elem)
1249{ 3161{
1250 while (*head) 3162 while (*head)
1251 { 3163 {
1252 if (*head == elem) 3164 if (expect_true (*head == elem))
1253 { 3165 {
1254 *head = elem->next; 3166 *head = elem->next;
1255 return; 3167 break;
1256 } 3168 }
1257 3169
1258 head = &(*head)->next; 3170 head = &(*head)->next;
1259 } 3171 }
1260} 3172}
1261 3173
3174/* internal, faster, version of ev_clear_pending */
1262inline void 3175inline_speed void
1263ev_clear_pending (EV_P_ W w) 3176clear_pending (EV_P_ W w)
1264{ 3177{
1265 if (w->pending) 3178 if (w->pending)
1266 { 3179 {
1267 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3180 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1268 w->pending = 0; 3181 w->pending = 0;
1269 } 3182 }
1270} 3183}
1271 3184
3185int
3186ev_clear_pending (EV_P_ void *w)
3187{
3188 W w_ = (W)w;
3189 int pending = w_->pending;
3190
3191 if (expect_true (pending))
3192 {
3193 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3194 p->w = (W)&pending_w;
3195 w_->pending = 0;
3196 return p->events;
3197 }
3198 else
3199 return 0;
3200}
3201
1272inline void 3202inline_size void
3203pri_adjust (EV_P_ W w)
3204{
3205 int pri = ev_priority (w);
3206 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3207 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3208 ev_set_priority (w, pri);
3209}
3210
3211inline_speed void
1273ev_start (EV_P_ W w, int active) 3212ev_start (EV_P_ W w, int active)
1274{ 3213{
1275 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3214 pri_adjust (EV_A_ w);
1276 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1277
1278 w->active = active; 3215 w->active = active;
1279 ev_ref (EV_A); 3216 ev_ref (EV_A);
1280} 3217}
1281 3218
1282inline void 3219inline_size void
1283ev_stop (EV_P_ W w) 3220ev_stop (EV_P_ W w)
1284{ 3221{
1285 ev_unref (EV_A); 3222 ev_unref (EV_A);
1286 w->active = 0; 3223 w->active = 0;
1287} 3224}
1288 3225
1289/*****************************************************************************/ 3226/*****************************************************************************/
1290 3227
1291void 3228void noinline
1292ev_io_start (EV_P_ struct ev_io *w) 3229ev_io_start (EV_P_ ev_io *w)
1293{ 3230{
1294 int fd = w->fd; 3231 int fd = w->fd;
1295 3232
1296 if (ev_is_active (w)) 3233 if (expect_false (ev_is_active (w)))
1297 return; 3234 return;
1298 3235
1299 assert (("ev_io_start called with negative fd", fd >= 0)); 3236 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3237 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3238
3239 EV_FREQUENT_CHECK;
1300 3240
1301 ev_start (EV_A_ (W)w, 1); 3241 ev_start (EV_A_ (W)w, 1);
1302 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3242 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1303 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3243 wlist_add (&anfds[fd].head, (WL)w);
1304 3244
1305 fd_change (EV_A_ fd); 3245 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1306} 3246 w->events &= ~EV__IOFDSET;
1307 3247
1308void 3248 EV_FREQUENT_CHECK;
3249}
3250
3251void noinline
1309ev_io_stop (EV_P_ struct ev_io *w) 3252ev_io_stop (EV_P_ ev_io *w)
1310{ 3253{
1311 ev_clear_pending (EV_A_ (W)w); 3254 clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 3255 if (expect_false (!ev_is_active (w)))
1313 return; 3256 return;
1314 3257
1315 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3258 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1316 3259
3260 EV_FREQUENT_CHECK;
3261
1317 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3262 wlist_del (&anfds[w->fd].head, (WL)w);
1318 ev_stop (EV_A_ (W)w); 3263 ev_stop (EV_A_ (W)w);
1319 3264
1320 fd_change (EV_A_ w->fd); 3265 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1321}
1322 3266
1323void 3267 EV_FREQUENT_CHECK;
3268}
3269
3270void noinline
1324ev_timer_start (EV_P_ struct ev_timer *w) 3271ev_timer_start (EV_P_ ev_timer *w)
1325{ 3272{
1326 if (ev_is_active (w)) 3273 if (expect_false (ev_is_active (w)))
1327 return; 3274 return;
1328 3275
1329 ((WT)w)->at += mn_now; 3276 ev_at (w) += mn_now;
1330 3277
1331 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3278 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1332 3279
3280 EV_FREQUENT_CHECK;
3281
3282 ++timercnt;
1333 ev_start (EV_A_ (W)w, ++timercnt); 3283 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1334 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 3284 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1335 timers [timercnt - 1] = w; 3285 ANHE_w (timers [ev_active (w)]) = (WT)w;
1336 upheap ((WT *)timers, timercnt - 1); 3286 ANHE_at_cache (timers [ev_active (w)]);
3287 upheap (timers, ev_active (w));
1337 3288
3289 EV_FREQUENT_CHECK;
3290
1338 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3291 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1339} 3292}
1340 3293
1341void 3294void noinline
1342ev_timer_stop (EV_P_ struct ev_timer *w) 3295ev_timer_stop (EV_P_ ev_timer *w)
1343{ 3296{
1344 ev_clear_pending (EV_A_ (W)w); 3297 clear_pending (EV_A_ (W)w);
1345 if (!ev_is_active (w)) 3298 if (expect_false (!ev_is_active (w)))
1346 return; 3299 return;
1347 3300
3301 EV_FREQUENT_CHECK;
3302
3303 {
3304 int active = ev_active (w);
3305
1348 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3306 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1349 3307
1350 if (((W)w)->active < timercnt--) 3308 --timercnt;
3309
3310 if (expect_true (active < timercnt + HEAP0))
1351 { 3311 {
1352 timers [((W)w)->active - 1] = timers [timercnt]; 3312 timers [active] = timers [timercnt + HEAP0];
1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3313 adjustheap (timers, timercnt, active);
1354 } 3314 }
3315 }
1355 3316
1356 ((WT)w)->at -= mn_now; 3317 ev_at (w) -= mn_now;
1357 3318
1358 ev_stop (EV_A_ (W)w); 3319 ev_stop (EV_A_ (W)w);
1359}
1360 3320
1361void 3321 EV_FREQUENT_CHECK;
3322}
3323
3324void noinline
1362ev_timer_again (EV_P_ struct ev_timer *w) 3325ev_timer_again (EV_P_ ev_timer *w)
1363{ 3326{
3327 EV_FREQUENT_CHECK;
3328
3329 clear_pending (EV_A_ (W)w);
3330
1364 if (ev_is_active (w)) 3331 if (ev_is_active (w))
1365 { 3332 {
1366 if (w->repeat) 3333 if (w->repeat)
1367 { 3334 {
1368 ((WT)w)->at = mn_now + w->repeat; 3335 ev_at (w) = mn_now + w->repeat;
3336 ANHE_at_cache (timers [ev_active (w)]);
1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3337 adjustheap (timers, timercnt, ev_active (w));
1370 } 3338 }
1371 else 3339 else
1372 ev_timer_stop (EV_A_ w); 3340 ev_timer_stop (EV_A_ w);
1373 } 3341 }
1374 else if (w->repeat) 3342 else if (w->repeat)
3343 {
3344 ev_at (w) = w->repeat;
1375 ev_timer_start (EV_A_ w); 3345 ev_timer_start (EV_A_ w);
1376} 3346 }
1377 3347
3348 EV_FREQUENT_CHECK;
3349}
3350
3351ev_tstamp
3352ev_timer_remaining (EV_P_ ev_timer *w)
3353{
3354 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3355}
3356
1378#if EV_PERIODICS 3357#if EV_PERIODIC_ENABLE
1379void 3358void noinline
1380ev_periodic_start (EV_P_ struct ev_periodic *w) 3359ev_periodic_start (EV_P_ ev_periodic *w)
1381{ 3360{
1382 if (ev_is_active (w)) 3361 if (expect_false (ev_is_active (w)))
1383 return; 3362 return;
1384 3363
1385 if (w->reschedule_cb) 3364 if (w->reschedule_cb)
1386 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3365 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1387 else if (w->interval) 3366 else if (w->interval)
1388 { 3367 {
1389 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3368 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1390 /* this formula differs from the one in periodic_reify because we do not always round up */ 3369 periodic_recalc (EV_A_ w);
1391 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1392 } 3370 }
3371 else
3372 ev_at (w) = w->offset;
1393 3373
3374 EV_FREQUENT_CHECK;
3375
3376 ++periodiccnt;
1394 ev_start (EV_A_ (W)w, ++periodiccnt); 3377 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1395 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 3378 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1396 periodics [periodiccnt - 1] = w; 3379 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1397 upheap ((WT *)periodics, periodiccnt - 1); 3380 ANHE_at_cache (periodics [ev_active (w)]);
3381 upheap (periodics, ev_active (w));
1398 3382
3383 EV_FREQUENT_CHECK;
3384
1399 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3385 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1400} 3386}
1401 3387
1402void 3388void noinline
1403ev_periodic_stop (EV_P_ struct ev_periodic *w) 3389ev_periodic_stop (EV_P_ ev_periodic *w)
1404{ 3390{
1405 ev_clear_pending (EV_A_ (W)w); 3391 clear_pending (EV_A_ (W)w);
1406 if (!ev_is_active (w)) 3392 if (expect_false (!ev_is_active (w)))
1407 return; 3393 return;
1408 3394
3395 EV_FREQUENT_CHECK;
3396
3397 {
3398 int active = ev_active (w);
3399
1409 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3400 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1410 3401
1411 if (((W)w)->active < periodiccnt--) 3402 --periodiccnt;
3403
3404 if (expect_true (active < periodiccnt + HEAP0))
1412 { 3405 {
1413 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3406 periodics [active] = periodics [periodiccnt + HEAP0];
1414 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3407 adjustheap (periodics, periodiccnt, active);
1415 } 3408 }
3409 }
1416 3410
1417 ev_stop (EV_A_ (W)w); 3411 ev_stop (EV_A_ (W)w);
1418}
1419 3412
1420void 3413 EV_FREQUENT_CHECK;
3414}
3415
3416void noinline
1421ev_periodic_again (EV_P_ struct ev_periodic *w) 3417ev_periodic_again (EV_P_ ev_periodic *w)
1422{ 3418{
1423 /* TODO: use adjustheap and recalculation */ 3419 /* TODO: use adjustheap and recalculation */
1424 ev_periodic_stop (EV_A_ w); 3420 ev_periodic_stop (EV_A_ w);
1425 ev_periodic_start (EV_A_ w); 3421 ev_periodic_start (EV_A_ w);
1426} 3422}
1427#endif 3423#endif
1428 3424
1429void
1430ev_idle_start (EV_P_ struct ev_idle *w)
1431{
1432 if (ev_is_active (w))
1433 return;
1434
1435 ev_start (EV_A_ (W)w, ++idlecnt);
1436 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1437 idles [idlecnt - 1] = w;
1438}
1439
1440void
1441ev_idle_stop (EV_P_ struct ev_idle *w)
1442{
1443 ev_clear_pending (EV_A_ (W)w);
1444 if (ev_is_active (w))
1445 return;
1446
1447 idles [((W)w)->active - 1] = idles [--idlecnt];
1448 ev_stop (EV_A_ (W)w);
1449}
1450
1451void
1452ev_prepare_start (EV_P_ struct ev_prepare *w)
1453{
1454 if (ev_is_active (w))
1455 return;
1456
1457 ev_start (EV_A_ (W)w, ++preparecnt);
1458 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1459 prepares [preparecnt - 1] = w;
1460}
1461
1462void
1463ev_prepare_stop (EV_P_ struct ev_prepare *w)
1464{
1465 ev_clear_pending (EV_A_ (W)w);
1466 if (!ev_is_active (w))
1467 return;
1468
1469 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1470 ev_stop (EV_A_ (W)w);
1471}
1472
1473void
1474ev_check_start (EV_P_ struct ev_check *w)
1475{
1476 if (ev_is_active (w))
1477 return;
1478
1479 ev_start (EV_A_ (W)w, ++checkcnt);
1480 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1481 checks [checkcnt - 1] = w;
1482}
1483
1484void
1485ev_check_stop (EV_P_ struct ev_check *w)
1486{
1487 ev_clear_pending (EV_A_ (W)w);
1488 if (!ev_is_active (w))
1489 return;
1490
1491 checks [((W)w)->active - 1] = checks [--checkcnt];
1492 ev_stop (EV_A_ (W)w);
1493}
1494
1495#ifndef SA_RESTART 3425#ifndef SA_RESTART
1496# define SA_RESTART 0 3426# define SA_RESTART 0
1497#endif 3427#endif
1498 3428
3429#if EV_SIGNAL_ENABLE
3430
3431void noinline
3432ev_signal_start (EV_P_ ev_signal *w)
3433{
3434 if (expect_false (ev_is_active (w)))
3435 return;
3436
3437 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3438
3439#if EV_MULTIPLICITY
3440 assert (("libev: a signal must not be attached to two different loops",
3441 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3442
3443 signals [w->signum - 1].loop = EV_A;
3444#endif
3445
3446 EV_FREQUENT_CHECK;
3447
3448#if EV_USE_SIGNALFD
3449 if (sigfd == -2)
3450 {
3451 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3452 if (sigfd < 0 && errno == EINVAL)
3453 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3454
3455 if (sigfd >= 0)
3456 {
3457 fd_intern (sigfd); /* doing it twice will not hurt */
3458
3459 sigemptyset (&sigfd_set);
3460
3461 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3462 ev_set_priority (&sigfd_w, EV_MAXPRI);
3463 ev_io_start (EV_A_ &sigfd_w);
3464 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3465 }
3466 }
3467
3468 if (sigfd >= 0)
3469 {
3470 /* TODO: check .head */
3471 sigaddset (&sigfd_set, w->signum);
3472 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3473
3474 signalfd (sigfd, &sigfd_set, 0);
3475 }
3476#endif
3477
3478 ev_start (EV_A_ (W)w, 1);
3479 wlist_add (&signals [w->signum - 1].head, (WL)w);
3480
3481 if (!((WL)w)->next)
3482# if EV_USE_SIGNALFD
3483 if (sigfd < 0) /*TODO*/
3484# endif
3485 {
3486# ifdef _WIN32
3487 evpipe_init (EV_A);
3488
3489 signal (w->signum, ev_sighandler);
3490# else
3491 struct sigaction sa;
3492
3493 evpipe_init (EV_A);
3494
3495 sa.sa_handler = ev_sighandler;
3496 sigfillset (&sa.sa_mask);
3497 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3498 sigaction (w->signum, &sa, 0);
3499
3500 if (origflags & EVFLAG_NOSIGMASK)
3501 {
3502 sigemptyset (&sa.sa_mask);
3503 sigaddset (&sa.sa_mask, w->signum);
3504 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3505 }
3506#endif
3507 }
3508
3509 EV_FREQUENT_CHECK;
3510}
3511
3512void noinline
3513ev_signal_stop (EV_P_ ev_signal *w)
3514{
3515 clear_pending (EV_A_ (W)w);
3516 if (expect_false (!ev_is_active (w)))
3517 return;
3518
3519 EV_FREQUENT_CHECK;
3520
3521 wlist_del (&signals [w->signum - 1].head, (WL)w);
3522 ev_stop (EV_A_ (W)w);
3523
3524 if (!signals [w->signum - 1].head)
3525 {
3526#if EV_MULTIPLICITY
3527 signals [w->signum - 1].loop = 0; /* unattach from signal */
3528#endif
3529#if EV_USE_SIGNALFD
3530 if (sigfd >= 0)
3531 {
3532 sigset_t ss;
3533
3534 sigemptyset (&ss);
3535 sigaddset (&ss, w->signum);
3536 sigdelset (&sigfd_set, w->signum);
3537
3538 signalfd (sigfd, &sigfd_set, 0);
3539 sigprocmask (SIG_UNBLOCK, &ss, 0);
3540 }
3541 else
3542#endif
3543 signal (w->signum, SIG_DFL);
3544 }
3545
3546 EV_FREQUENT_CHECK;
3547}
3548
3549#endif
3550
3551#if EV_CHILD_ENABLE
3552
1499void 3553void
1500ev_signal_start (EV_P_ struct ev_signal *w) 3554ev_child_start (EV_P_ ev_child *w)
1501{ 3555{
1502#if EV_MULTIPLICITY 3556#if EV_MULTIPLICITY
1503 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3557 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1504#endif 3558#endif
1505 if (ev_is_active (w)) 3559 if (expect_false (ev_is_active (w)))
1506 return; 3560 return;
1507 3561
1508 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3562 EV_FREQUENT_CHECK;
1509 3563
1510 ev_start (EV_A_ (W)w, 1); 3564 ev_start (EV_A_ (W)w, 1);
1511 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3565 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1512 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1513 3566
1514 if (!((WL)w)->next) 3567 EV_FREQUENT_CHECK;
3568}
3569
3570void
3571ev_child_stop (EV_P_ ev_child *w)
3572{
3573 clear_pending (EV_A_ (W)w);
3574 if (expect_false (!ev_is_active (w)))
3575 return;
3576
3577 EV_FREQUENT_CHECK;
3578
3579 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3580 ev_stop (EV_A_ (W)w);
3581
3582 EV_FREQUENT_CHECK;
3583}
3584
3585#endif
3586
3587#if EV_STAT_ENABLE
3588
3589# ifdef _WIN32
3590# undef lstat
3591# define lstat(a,b) _stati64 (a,b)
3592# endif
3593
3594#define DEF_STAT_INTERVAL 5.0074891
3595#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3596#define MIN_STAT_INTERVAL 0.1074891
3597
3598static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3599
3600#if EV_USE_INOTIFY
3601
3602/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3603# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3604
3605static void noinline
3606infy_add (EV_P_ ev_stat *w)
3607{
3608 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3609
3610 if (w->wd >= 0)
3611 {
3612 struct statfs sfs;
3613
3614 /* now local changes will be tracked by inotify, but remote changes won't */
3615 /* unless the filesystem is known to be local, we therefore still poll */
3616 /* also do poll on <2.6.25, but with normal frequency */
3617
3618 if (!fs_2625)
3619 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3620 else if (!statfs (w->path, &sfs)
3621 && (sfs.f_type == 0x1373 /* devfs */
3622 || sfs.f_type == 0xEF53 /* ext2/3 */
3623 || sfs.f_type == 0x3153464a /* jfs */
3624 || sfs.f_type == 0x52654973 /* reiser3 */
3625 || sfs.f_type == 0x01021994 /* tempfs */
3626 || sfs.f_type == 0x58465342 /* xfs */))
3627 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3628 else
3629 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1515 { 3630 }
1516#if WIN32 3631 else
1517 signal (w->signum, sighandler); 3632 {
3633 /* can't use inotify, continue to stat */
3634 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3635
3636 /* if path is not there, monitor some parent directory for speedup hints */
3637 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3638 /* but an efficiency issue only */
3639 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3640 {
3641 char path [4096];
3642 strcpy (path, w->path);
3643
3644 do
3645 {
3646 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3647 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3648
3649 char *pend = strrchr (path, '/');
3650
3651 if (!pend || pend == path)
3652 break;
3653
3654 *pend = 0;
3655 w->wd = inotify_add_watch (fs_fd, path, mask);
3656 }
3657 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3658 }
3659 }
3660
3661 if (w->wd >= 0)
3662 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3663
3664 /* now re-arm timer, if required */
3665 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3666 ev_timer_again (EV_A_ &w->timer);
3667 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3668}
3669
3670static void noinline
3671infy_del (EV_P_ ev_stat *w)
3672{
3673 int slot;
3674 int wd = w->wd;
3675
3676 if (wd < 0)
3677 return;
3678
3679 w->wd = -2;
3680 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3681 wlist_del (&fs_hash [slot].head, (WL)w);
3682
3683 /* remove this watcher, if others are watching it, they will rearm */
3684 inotify_rm_watch (fs_fd, wd);
3685}
3686
3687static void noinline
3688infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3689{
3690 if (slot < 0)
3691 /* overflow, need to check for all hash slots */
3692 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3693 infy_wd (EV_A_ slot, wd, ev);
3694 else
3695 {
3696 WL w_;
3697
3698 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3699 {
3700 ev_stat *w = (ev_stat *)w_;
3701 w_ = w_->next; /* lets us remove this watcher and all before it */
3702
3703 if (w->wd == wd || wd == -1)
3704 {
3705 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3706 {
3707 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3708 w->wd = -1;
3709 infy_add (EV_A_ w); /* re-add, no matter what */
3710 }
3711
3712 stat_timer_cb (EV_A_ &w->timer, 0);
3713 }
3714 }
3715 }
3716}
3717
3718static void
3719infy_cb (EV_P_ ev_io *w, int revents)
3720{
3721 char buf [EV_INOTIFY_BUFSIZE];
3722 int ofs;
3723 int len = read (fs_fd, buf, sizeof (buf));
3724
3725 for (ofs = 0; ofs < len; )
3726 {
3727 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3728 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3729 ofs += sizeof (struct inotify_event) + ev->len;
3730 }
3731}
3732
3733inline_size void ecb_cold
3734ev_check_2625 (EV_P)
3735{
3736 /* kernels < 2.6.25 are borked
3737 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3738 */
3739 if (ev_linux_version () < 0x020619)
3740 return;
3741
3742 fs_2625 = 1;
3743}
3744
3745inline_size int
3746infy_newfd (void)
3747{
3748#if defined IN_CLOEXEC && defined IN_NONBLOCK
3749 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3750 if (fd >= 0)
3751 return fd;
3752#endif
3753 return inotify_init ();
3754}
3755
3756inline_size void
3757infy_init (EV_P)
3758{
3759 if (fs_fd != -2)
3760 return;
3761
3762 fs_fd = -1;
3763
3764 ev_check_2625 (EV_A);
3765
3766 fs_fd = infy_newfd ();
3767
3768 if (fs_fd >= 0)
3769 {
3770 fd_intern (fs_fd);
3771 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3772 ev_set_priority (&fs_w, EV_MAXPRI);
3773 ev_io_start (EV_A_ &fs_w);
3774 ev_unref (EV_A);
3775 }
3776}
3777
3778inline_size void
3779infy_fork (EV_P)
3780{
3781 int slot;
3782
3783 if (fs_fd < 0)
3784 return;
3785
3786 ev_ref (EV_A);
3787 ev_io_stop (EV_A_ &fs_w);
3788 close (fs_fd);
3789 fs_fd = infy_newfd ();
3790
3791 if (fs_fd >= 0)
3792 {
3793 fd_intern (fs_fd);
3794 ev_io_set (&fs_w, fs_fd, EV_READ);
3795 ev_io_start (EV_A_ &fs_w);
3796 ev_unref (EV_A);
3797 }
3798
3799 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3800 {
3801 WL w_ = fs_hash [slot].head;
3802 fs_hash [slot].head = 0;
3803
3804 while (w_)
3805 {
3806 ev_stat *w = (ev_stat *)w_;
3807 w_ = w_->next; /* lets us add this watcher */
3808
3809 w->wd = -1;
3810
3811 if (fs_fd >= 0)
3812 infy_add (EV_A_ w); /* re-add, no matter what */
3813 else
3814 {
3815 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3816 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3817 ev_timer_again (EV_A_ &w->timer);
3818 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3819 }
3820 }
3821 }
3822}
3823
3824#endif
3825
3826#ifdef _WIN32
3827# define EV_LSTAT(p,b) _stati64 (p, b)
1518#else 3828#else
1519 struct sigaction sa; 3829# define EV_LSTAT(p,b) lstat (p, b)
1520 sa.sa_handler = sighandler;
1521 sigfillset (&sa.sa_mask);
1522 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1523 sigaction (w->signum, &sa, 0);
1524#endif 3830#endif
1525 }
1526}
1527 3831
1528void 3832void
1529ev_signal_stop (EV_P_ struct ev_signal *w) 3833ev_stat_stat (EV_P_ ev_stat *w)
1530{ 3834{
1531 ev_clear_pending (EV_A_ (W)w); 3835 if (lstat (w->path, &w->attr) < 0)
1532 if (!ev_is_active (w)) 3836 w->attr.st_nlink = 0;
3837 else if (!w->attr.st_nlink)
3838 w->attr.st_nlink = 1;
3839}
3840
3841static void noinline
3842stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3843{
3844 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3845
3846 ev_statdata prev = w->attr;
3847 ev_stat_stat (EV_A_ w);
3848
3849 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3850 if (
3851 prev.st_dev != w->attr.st_dev
3852 || prev.st_ino != w->attr.st_ino
3853 || prev.st_mode != w->attr.st_mode
3854 || prev.st_nlink != w->attr.st_nlink
3855 || prev.st_uid != w->attr.st_uid
3856 || prev.st_gid != w->attr.st_gid
3857 || prev.st_rdev != w->attr.st_rdev
3858 || prev.st_size != w->attr.st_size
3859 || prev.st_atime != w->attr.st_atime
3860 || prev.st_mtime != w->attr.st_mtime
3861 || prev.st_ctime != w->attr.st_ctime
3862 ) {
3863 /* we only update w->prev on actual differences */
3864 /* in case we test more often than invoke the callback, */
3865 /* to ensure that prev is always different to attr */
3866 w->prev = prev;
3867
3868 #if EV_USE_INOTIFY
3869 if (fs_fd >= 0)
3870 {
3871 infy_del (EV_A_ w);
3872 infy_add (EV_A_ w);
3873 ev_stat_stat (EV_A_ w); /* avoid race... */
3874 }
3875 #endif
3876
3877 ev_feed_event (EV_A_ w, EV_STAT);
3878 }
3879}
3880
3881void
3882ev_stat_start (EV_P_ ev_stat *w)
3883{
3884 if (expect_false (ev_is_active (w)))
1533 return; 3885 return;
1534 3886
1535 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3887 ev_stat_stat (EV_A_ w);
3888
3889 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3890 w->interval = MIN_STAT_INTERVAL;
3891
3892 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3893 ev_set_priority (&w->timer, ev_priority (w));
3894
3895#if EV_USE_INOTIFY
3896 infy_init (EV_A);
3897
3898 if (fs_fd >= 0)
3899 infy_add (EV_A_ w);
3900 else
3901#endif
3902 {
3903 ev_timer_again (EV_A_ &w->timer);
3904 ev_unref (EV_A);
3905 }
3906
3907 ev_start (EV_A_ (W)w, 1);
3908
3909 EV_FREQUENT_CHECK;
3910}
3911
3912void
3913ev_stat_stop (EV_P_ ev_stat *w)
3914{
3915 clear_pending (EV_A_ (W)w);
3916 if (expect_false (!ev_is_active (w)))
3917 return;
3918
3919 EV_FREQUENT_CHECK;
3920
3921#if EV_USE_INOTIFY
3922 infy_del (EV_A_ w);
3923#endif
3924
3925 if (ev_is_active (&w->timer))
3926 {
3927 ev_ref (EV_A);
3928 ev_timer_stop (EV_A_ &w->timer);
3929 }
3930
1536 ev_stop (EV_A_ (W)w); 3931 ev_stop (EV_A_ (W)w);
1537 3932
1538 if (!signals [w->signum - 1].head) 3933 EV_FREQUENT_CHECK;
1539 signal (w->signum, SIG_DFL);
1540} 3934}
3935#endif
1541 3936
3937#if EV_IDLE_ENABLE
1542void 3938void
1543ev_child_start (EV_P_ struct ev_child *w) 3939ev_idle_start (EV_P_ ev_idle *w)
1544{ 3940{
1545#if EV_MULTIPLICITY
1546 assert (("child watchers are only supported in the default loop", loop == default_loop));
1547#endif
1548 if (ev_is_active (w)) 3941 if (expect_false (ev_is_active (w)))
1549 return; 3942 return;
1550 3943
3944 pri_adjust (EV_A_ (W)w);
3945
3946 EV_FREQUENT_CHECK;
3947
3948 {
3949 int active = ++idlecnt [ABSPRI (w)];
3950
3951 ++idleall;
3952 ev_start (EV_A_ (W)w, active);
3953
3954 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3955 idles [ABSPRI (w)][active - 1] = w;
3956 }
3957
3958 EV_FREQUENT_CHECK;
3959}
3960
3961void
3962ev_idle_stop (EV_P_ ev_idle *w)
3963{
3964 clear_pending (EV_A_ (W)w);
3965 if (expect_false (!ev_is_active (w)))
3966 return;
3967
3968 EV_FREQUENT_CHECK;
3969
3970 {
3971 int active = ev_active (w);
3972
3973 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3974 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3975
3976 ev_stop (EV_A_ (W)w);
3977 --idleall;
3978 }
3979
3980 EV_FREQUENT_CHECK;
3981}
3982#endif
3983
3984#if EV_PREPARE_ENABLE
3985void
3986ev_prepare_start (EV_P_ ev_prepare *w)
3987{
3988 if (expect_false (ev_is_active (w)))
3989 return;
3990
3991 EV_FREQUENT_CHECK;
3992
3993 ev_start (EV_A_ (W)w, ++preparecnt);
3994 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3995 prepares [preparecnt - 1] = w;
3996
3997 EV_FREQUENT_CHECK;
3998}
3999
4000void
4001ev_prepare_stop (EV_P_ ev_prepare *w)
4002{
4003 clear_pending (EV_A_ (W)w);
4004 if (expect_false (!ev_is_active (w)))
4005 return;
4006
4007 EV_FREQUENT_CHECK;
4008
4009 {
4010 int active = ev_active (w);
4011
4012 prepares [active - 1] = prepares [--preparecnt];
4013 ev_active (prepares [active - 1]) = active;
4014 }
4015
4016 ev_stop (EV_A_ (W)w);
4017
4018 EV_FREQUENT_CHECK;
4019}
4020#endif
4021
4022#if EV_CHECK_ENABLE
4023void
4024ev_check_start (EV_P_ ev_check *w)
4025{
4026 if (expect_false (ev_is_active (w)))
4027 return;
4028
4029 EV_FREQUENT_CHECK;
4030
4031 ev_start (EV_A_ (W)w, ++checkcnt);
4032 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4033 checks [checkcnt - 1] = w;
4034
4035 EV_FREQUENT_CHECK;
4036}
4037
4038void
4039ev_check_stop (EV_P_ ev_check *w)
4040{
4041 clear_pending (EV_A_ (W)w);
4042 if (expect_false (!ev_is_active (w)))
4043 return;
4044
4045 EV_FREQUENT_CHECK;
4046
4047 {
4048 int active = ev_active (w);
4049
4050 checks [active - 1] = checks [--checkcnt];
4051 ev_active (checks [active - 1]) = active;
4052 }
4053
4054 ev_stop (EV_A_ (W)w);
4055
4056 EV_FREQUENT_CHECK;
4057}
4058#endif
4059
4060#if EV_EMBED_ENABLE
4061void noinline
4062ev_embed_sweep (EV_P_ ev_embed *w)
4063{
4064 ev_run (w->other, EVRUN_NOWAIT);
4065}
4066
4067static void
4068embed_io_cb (EV_P_ ev_io *io, int revents)
4069{
4070 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4071
4072 if (ev_cb (w))
4073 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4074 else
4075 ev_run (w->other, EVRUN_NOWAIT);
4076}
4077
4078static void
4079embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4080{
4081 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4082
4083 {
4084 EV_P = w->other;
4085
4086 while (fdchangecnt)
4087 {
4088 fd_reify (EV_A);
4089 ev_run (EV_A_ EVRUN_NOWAIT);
4090 }
4091 }
4092}
4093
4094static void
4095embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4096{
4097 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4098
4099 ev_embed_stop (EV_A_ w);
4100
4101 {
4102 EV_P = w->other;
4103
4104 ev_loop_fork (EV_A);
4105 ev_run (EV_A_ EVRUN_NOWAIT);
4106 }
4107
4108 ev_embed_start (EV_A_ w);
4109}
4110
4111#if 0
4112static void
4113embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4114{
4115 ev_idle_stop (EV_A_ idle);
4116}
4117#endif
4118
4119void
4120ev_embed_start (EV_P_ ev_embed *w)
4121{
4122 if (expect_false (ev_is_active (w)))
4123 return;
4124
4125 {
4126 EV_P = w->other;
4127 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4128 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4129 }
4130
4131 EV_FREQUENT_CHECK;
4132
4133 ev_set_priority (&w->io, ev_priority (w));
4134 ev_io_start (EV_A_ &w->io);
4135
4136 ev_prepare_init (&w->prepare, embed_prepare_cb);
4137 ev_set_priority (&w->prepare, EV_MINPRI);
4138 ev_prepare_start (EV_A_ &w->prepare);
4139
4140 ev_fork_init (&w->fork, embed_fork_cb);
4141 ev_fork_start (EV_A_ &w->fork);
4142
4143 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4144
1551 ev_start (EV_A_ (W)w, 1); 4145 ev_start (EV_A_ (W)w, 1);
1552 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4146
4147 EV_FREQUENT_CHECK;
1553} 4148}
1554 4149
1555void 4150void
1556ev_child_stop (EV_P_ struct ev_child *w) 4151ev_embed_stop (EV_P_ ev_embed *w)
1557{ 4152{
1558 ev_clear_pending (EV_A_ (W)w); 4153 clear_pending (EV_A_ (W)w);
1559 if (!ev_is_active (w)) 4154 if (expect_false (!ev_is_active (w)))
1560 return; 4155 return;
1561 4156
1562 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4157 EV_FREQUENT_CHECK;
4158
4159 ev_io_stop (EV_A_ &w->io);
4160 ev_prepare_stop (EV_A_ &w->prepare);
4161 ev_fork_stop (EV_A_ &w->fork);
4162
1563 ev_stop (EV_A_ (W)w); 4163 ev_stop (EV_A_ (W)w);
4164
4165 EV_FREQUENT_CHECK;
1564} 4166}
4167#endif
4168
4169#if EV_FORK_ENABLE
4170void
4171ev_fork_start (EV_P_ ev_fork *w)
4172{
4173 if (expect_false (ev_is_active (w)))
4174 return;
4175
4176 EV_FREQUENT_CHECK;
4177
4178 ev_start (EV_A_ (W)w, ++forkcnt);
4179 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4180 forks [forkcnt - 1] = w;
4181
4182 EV_FREQUENT_CHECK;
4183}
4184
4185void
4186ev_fork_stop (EV_P_ ev_fork *w)
4187{
4188 clear_pending (EV_A_ (W)w);
4189 if (expect_false (!ev_is_active (w)))
4190 return;
4191
4192 EV_FREQUENT_CHECK;
4193
4194 {
4195 int active = ev_active (w);
4196
4197 forks [active - 1] = forks [--forkcnt];
4198 ev_active (forks [active - 1]) = active;
4199 }
4200
4201 ev_stop (EV_A_ (W)w);
4202
4203 EV_FREQUENT_CHECK;
4204}
4205#endif
4206
4207#if EV_CLEANUP_ENABLE
4208void
4209ev_cleanup_start (EV_P_ ev_cleanup *w)
4210{
4211 if (expect_false (ev_is_active (w)))
4212 return;
4213
4214 EV_FREQUENT_CHECK;
4215
4216 ev_start (EV_A_ (W)w, ++cleanupcnt);
4217 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4218 cleanups [cleanupcnt - 1] = w;
4219
4220 /* cleanup watchers should never keep a refcount on the loop */
4221 ev_unref (EV_A);
4222 EV_FREQUENT_CHECK;
4223}
4224
4225void
4226ev_cleanup_stop (EV_P_ ev_cleanup *w)
4227{
4228 clear_pending (EV_A_ (W)w);
4229 if (expect_false (!ev_is_active (w)))
4230 return;
4231
4232 EV_FREQUENT_CHECK;
4233 ev_ref (EV_A);
4234
4235 {
4236 int active = ev_active (w);
4237
4238 cleanups [active - 1] = cleanups [--cleanupcnt];
4239 ev_active (cleanups [active - 1]) = active;
4240 }
4241
4242 ev_stop (EV_A_ (W)w);
4243
4244 EV_FREQUENT_CHECK;
4245}
4246#endif
4247
4248#if EV_ASYNC_ENABLE
4249void
4250ev_async_start (EV_P_ ev_async *w)
4251{
4252 if (expect_false (ev_is_active (w)))
4253 return;
4254
4255 w->sent = 0;
4256
4257 evpipe_init (EV_A);
4258
4259 EV_FREQUENT_CHECK;
4260
4261 ev_start (EV_A_ (W)w, ++asynccnt);
4262 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4263 asyncs [asynccnt - 1] = w;
4264
4265 EV_FREQUENT_CHECK;
4266}
4267
4268void
4269ev_async_stop (EV_P_ ev_async *w)
4270{
4271 clear_pending (EV_A_ (W)w);
4272 if (expect_false (!ev_is_active (w)))
4273 return;
4274
4275 EV_FREQUENT_CHECK;
4276
4277 {
4278 int active = ev_active (w);
4279
4280 asyncs [active - 1] = asyncs [--asynccnt];
4281 ev_active (asyncs [active - 1]) = active;
4282 }
4283
4284 ev_stop (EV_A_ (W)w);
4285
4286 EV_FREQUENT_CHECK;
4287}
4288
4289void
4290ev_async_send (EV_P_ ev_async *w)
4291{
4292 w->sent = 1;
4293 evpipe_write (EV_A_ &async_pending);
4294}
4295#endif
1565 4296
1566/*****************************************************************************/ 4297/*****************************************************************************/
1567 4298
1568struct ev_once 4299struct ev_once
1569{ 4300{
1570 struct ev_io io; 4301 ev_io io;
1571 struct ev_timer to; 4302 ev_timer to;
1572 void (*cb)(int revents, void *arg); 4303 void (*cb)(int revents, void *arg);
1573 void *arg; 4304 void *arg;
1574}; 4305};
1575 4306
1576static void 4307static void
1577once_cb (EV_P_ struct ev_once *once, int revents) 4308once_cb (EV_P_ struct ev_once *once, int revents)
1578{ 4309{
1579 void (*cb)(int revents, void *arg) = once->cb; 4310 void (*cb)(int revents, void *arg) = once->cb;
1580 void *arg = once->arg; 4311 void *arg = once->arg;
1581 4312
1582 ev_io_stop (EV_A_ &once->io); 4313 ev_io_stop (EV_A_ &once->io);
1583 ev_timer_stop (EV_A_ &once->to); 4314 ev_timer_stop (EV_A_ &once->to);
1584 ev_free (once); 4315 ev_free (once);
1585 4316
1586 cb (revents, arg); 4317 cb (revents, arg);
1587} 4318}
1588 4319
1589static void 4320static void
1590once_cb_io (EV_P_ struct ev_io *w, int revents) 4321once_cb_io (EV_P_ ev_io *w, int revents)
1591{ 4322{
1592 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4323 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4324
4325 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1593} 4326}
1594 4327
1595static void 4328static void
1596once_cb_to (EV_P_ struct ev_timer *w, int revents) 4329once_cb_to (EV_P_ ev_timer *w, int revents)
1597{ 4330{
1598 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4331 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4332
4333 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1599} 4334}
1600 4335
1601void 4336void
1602ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4337ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1603{ 4338{
1604 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4339 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1605 4340
1606 if (!once) 4341 if (expect_false (!once))
4342 {
1607 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4343 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1608 else 4344 return;
1609 { 4345 }
4346
1610 once->cb = cb; 4347 once->cb = cb;
1611 once->arg = arg; 4348 once->arg = arg;
1612 4349
1613 ev_init (&once->io, once_cb_io); 4350 ev_init (&once->io, once_cb_io);
1614 if (fd >= 0) 4351 if (fd >= 0)
4352 {
4353 ev_io_set (&once->io, fd, events);
4354 ev_io_start (EV_A_ &once->io);
4355 }
4356
4357 ev_init (&once->to, once_cb_to);
4358 if (timeout >= 0.)
4359 {
4360 ev_timer_set (&once->to, timeout, 0.);
4361 ev_timer_start (EV_A_ &once->to);
4362 }
4363}
4364
4365/*****************************************************************************/
4366
4367#if EV_WALK_ENABLE
4368void ecb_cold
4369ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4370{
4371 int i, j;
4372 ev_watcher_list *wl, *wn;
4373
4374 if (types & (EV_IO | EV_EMBED))
4375 for (i = 0; i < anfdmax; ++i)
4376 for (wl = anfds [i].head; wl; )
1615 { 4377 {
1616 ev_io_set (&once->io, fd, events); 4378 wn = wl->next;
1617 ev_io_start (EV_A_ &once->io); 4379
4380#if EV_EMBED_ENABLE
4381 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4382 {
4383 if (types & EV_EMBED)
4384 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4385 }
4386 else
4387#endif
4388#if EV_USE_INOTIFY
4389 if (ev_cb ((ev_io *)wl) == infy_cb)
4390 ;
4391 else
4392#endif
4393 if ((ev_io *)wl != &pipe_w)
4394 if (types & EV_IO)
4395 cb (EV_A_ EV_IO, wl);
4396
4397 wl = wn;
1618 } 4398 }
1619 4399
1620 ev_init (&once->to, once_cb_to); 4400 if (types & (EV_TIMER | EV_STAT))
1621 if (timeout >= 0.) 4401 for (i = timercnt + HEAP0; i-- > HEAP0; )
4402#if EV_STAT_ENABLE
4403 /*TODO: timer is not always active*/
4404 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1622 { 4405 {
1623 ev_timer_set (&once->to, timeout, 0.); 4406 if (types & EV_STAT)
1624 ev_timer_start (EV_A_ &once->to); 4407 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1625 } 4408 }
1626 } 4409 else
1627} 4410#endif
4411 if (types & EV_TIMER)
4412 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1628 4413
1629#ifdef __cplusplus 4414#if EV_PERIODIC_ENABLE
1630} 4415 if (types & EV_PERIODIC)
4416 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4417 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4418#endif
4419
4420#if EV_IDLE_ENABLE
4421 if (types & EV_IDLE)
4422 for (j = NUMPRI; j--; )
4423 for (i = idlecnt [j]; i--; )
4424 cb (EV_A_ EV_IDLE, idles [j][i]);
4425#endif
4426
4427#if EV_FORK_ENABLE
4428 if (types & EV_FORK)
4429 for (i = forkcnt; i--; )
4430 if (ev_cb (forks [i]) != embed_fork_cb)
4431 cb (EV_A_ EV_FORK, forks [i]);
4432#endif
4433
4434#if EV_ASYNC_ENABLE
4435 if (types & EV_ASYNC)
4436 for (i = asynccnt; i--; )
4437 cb (EV_A_ EV_ASYNC, asyncs [i]);
4438#endif
4439
4440#if EV_PREPARE_ENABLE
4441 if (types & EV_PREPARE)
4442 for (i = preparecnt; i--; )
4443# if EV_EMBED_ENABLE
4444 if (ev_cb (prepares [i]) != embed_prepare_cb)
1631#endif 4445# endif
4446 cb (EV_A_ EV_PREPARE, prepares [i]);
4447#endif
1632 4448
4449#if EV_CHECK_ENABLE
4450 if (types & EV_CHECK)
4451 for (i = checkcnt; i--; )
4452 cb (EV_A_ EV_CHECK, checks [i]);
4453#endif
4454
4455#if EV_SIGNAL_ENABLE
4456 if (types & EV_SIGNAL)
4457 for (i = 0; i < EV_NSIG - 1; ++i)
4458 for (wl = signals [i].head; wl; )
4459 {
4460 wn = wl->next;
4461 cb (EV_A_ EV_SIGNAL, wl);
4462 wl = wn;
4463 }
4464#endif
4465
4466#if EV_CHILD_ENABLE
4467 if (types & EV_CHILD)
4468 for (i = (EV_PID_HASHSIZE); i--; )
4469 for (wl = childs [i]; wl; )
4470 {
4471 wn = wl->next;
4472 cb (EV_A_ EV_CHILD, wl);
4473 wl = wn;
4474 }
4475#endif
4476/* EV_STAT 0x00001000 /* stat data changed */
4477/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4478}
4479#endif
4480
4481#if EV_MULTIPLICITY
4482 #include "ev_wrap.h"
4483#endif
4484

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines