ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.70 by root, Tue Nov 6 00:52:32 2007 UTC vs.
Revision 1.100 by root, Sun Nov 11 04:02:54 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
71#endif 84#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 85/**/
76 86
77#ifndef EV_USE_MONOTONIC 87#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 88# define EV_USE_MONOTONIC 1
79#endif 89#endif
94# define EV_USE_KQUEUE 0 104# define EV_USE_KQUEUE 0
95#endif 105#endif
96 106
97#ifndef EV_USE_WIN32 107#ifndef EV_USE_WIN32
98# ifdef WIN32 108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 111# define EV_USE_SELECT 1
100# else 112# else
101# define EV_USE_WIN32 0 113# define EV_USE_WIN32 0
102# endif 114# endif
103#endif 115#endif
104 116
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 139
140#ifdef EV_H
141# include EV_H
142#else
128#include "ev.h" 143# include "ev.h"
144#endif
129 145
130#if __GNUC__ >= 3 146#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 148# define inline inline
133#else 149#else
145typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
147 163
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 165
150#if WIN32 166#ifdef WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 167# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 168#endif
155 169
156/*****************************************************************************/ 170/*****************************************************************************/
157 171
158static void (*syserr_cb)(const char *msg); 172static void (*syserr_cb)(const char *msg);
216 int events; 230 int events;
217} ANPENDING; 231} ANPENDING;
218 232
219#if EV_MULTIPLICITY 233#if EV_MULTIPLICITY
220 234
221struct ev_loop 235 struct ev_loop
222{ 236 {
237 ev_tstamp ev_rt_now;
238 #define ev_rt_now ((loop)->ev_rt_now)
223# define VAR(name,decl) decl; 239 #define VAR(name,decl) decl;
224# include "ev_vars.h" 240 #include "ev_vars.h"
225};
226# undef VAR 241 #undef VAR
242 };
227# include "ev_wrap.h" 243 #include "ev_wrap.h"
244
245 struct ev_loop default_loop_struct;
246 static struct ev_loop *default_loop;
228 247
229#else 248#else
230 249
250 ev_tstamp ev_rt_now;
231# define VAR(name,decl) static decl; 251 #define VAR(name,decl) static decl;
232# include "ev_vars.h" 252 #include "ev_vars.h"
233# undef VAR 253 #undef VAR
254
255 static int default_loop;
234 256
235#endif 257#endif
236 258
237/*****************************************************************************/ 259/*****************************************************************************/
238 260
239inline ev_tstamp 261ev_tstamp
240ev_time (void) 262ev_time (void)
241{ 263{
242#if EV_USE_REALTIME 264#if EV_USE_REALTIME
243 struct timespec ts; 265 struct timespec ts;
244 clock_gettime (CLOCK_REALTIME, &ts); 266 clock_gettime (CLOCK_REALTIME, &ts);
263#endif 285#endif
264 286
265 return ev_time (); 287 return ev_time ();
266} 288}
267 289
290#if EV_MULTIPLICITY
268ev_tstamp 291ev_tstamp
269ev_now (EV_P) 292ev_now (EV_P)
270{ 293{
271 return rt_now; 294 return ev_rt_now;
272} 295}
296#endif
273 297
274#define array_roundsize(base,n) ((n) | 4 & ~3) 298#define array_roundsize(type,n) ((n) | 4 & ~3)
275 299
276#define array_needsize(base,cur,cnt,init) \ 300#define array_needsize(type,base,cur,cnt,init) \
277 if (expect_false ((cnt) > cur)) \ 301 if (expect_false ((cnt) > cur)) \
278 { \ 302 { \
279 int newcnt = cur; \ 303 int newcnt = cur; \
280 do \ 304 do \
281 { \ 305 { \
282 newcnt = array_roundsize (base, newcnt << 1); \ 306 newcnt = array_roundsize (type, newcnt << 1); \
283 } \ 307 } \
284 while ((cnt) > newcnt); \ 308 while ((cnt) > newcnt); \
285 \ 309 \
286 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 310 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
287 init (base + cur, newcnt - cur); \ 311 init (base + cur, newcnt - cur); \
288 cur = newcnt; \ 312 cur = newcnt; \
289 } 313 }
290 314
291#define array_slim(stem) \ 315#define array_slim(type,stem) \
292 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 316 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
293 { \ 317 { \
294 stem ## max = array_roundsize (stem ## cnt >> 1); \ 318 stem ## max = array_roundsize (stem ## cnt >> 1); \
295 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 319 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
296 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 320 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
297 } 321 }
322
323/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
324/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
325#define array_free_microshit(stem) \
326 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
298 327
299#define array_free(stem, idx) \ 328#define array_free(stem, idx) \
300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 329 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
301 330
302/*****************************************************************************/ 331/*****************************************************************************/
312 341
313 ++base; 342 ++base;
314 } 343 }
315} 344}
316 345
317static void 346void
318event (EV_P_ W w, int events) 347ev_feed_event (EV_P_ void *w, int revents)
319{ 348{
349 W w_ = (W)w;
350
320 if (w->pending) 351 if (w_->pending)
321 { 352 {
322 pendings [ABSPRI (w)][w->pending - 1].events |= events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
323 return; 354 return;
324 } 355 }
325 356
326 w->pending = ++pendingcnt [ABSPRI (w)]; 357 w_->pending = ++pendingcnt [ABSPRI (w_)];
327 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 358 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
328 pendings [ABSPRI (w)][w->pending - 1].w = w; 359 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
329 pendings [ABSPRI (w)][w->pending - 1].events = events; 360 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
330} 361}
331 362
332static void 363static void
333queue_events (EV_P_ W *events, int eventcnt, int type) 364queue_events (EV_P_ W *events, int eventcnt, int type)
334{ 365{
335 int i; 366 int i;
336 367
337 for (i = 0; i < eventcnt; ++i) 368 for (i = 0; i < eventcnt; ++i)
338 event (EV_A_ events [i], type); 369 ev_feed_event (EV_A_ events [i], type);
339} 370}
340 371
341static void 372inline void
342fd_event (EV_P_ int fd, int events) 373fd_event (EV_P_ int fd, int revents)
343{ 374{
344 ANFD *anfd = anfds + fd; 375 ANFD *anfd = anfds + fd;
345 struct ev_io *w; 376 struct ev_io *w;
346 377
347 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 378 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
348 { 379 {
349 int ev = w->events & events; 380 int ev = w->events & revents;
350 381
351 if (ev) 382 if (ev)
352 event (EV_A_ (W)w, ev); 383 ev_feed_event (EV_A_ (W)w, ev);
353 } 384 }
385}
386
387void
388ev_feed_fd_event (EV_P_ int fd, int revents)
389{
390 fd_event (EV_A_ fd, revents);
354} 391}
355 392
356/*****************************************************************************/ 393/*****************************************************************************/
357 394
358static void 395static void
387 return; 424 return;
388 425
389 anfds [fd].reify = 1; 426 anfds [fd].reify = 1;
390 427
391 ++fdchangecnt; 428 ++fdchangecnt;
392 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 429 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
393 fdchanges [fdchangecnt - 1] = fd; 430 fdchanges [fdchangecnt - 1] = fd;
394} 431}
395 432
396static void 433static void
397fd_kill (EV_P_ int fd) 434fd_kill (EV_P_ int fd)
399 struct ev_io *w; 436 struct ev_io *w;
400 437
401 while ((w = (struct ev_io *)anfds [fd].head)) 438 while ((w = (struct ev_io *)anfds [fd].head))
402 { 439 {
403 ev_io_stop (EV_A_ w); 440 ev_io_stop (EV_A_ w);
404 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 441 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
405 } 442 }
443}
444
445static int
446fd_valid (int fd)
447{
448#ifdef WIN32
449 return !!win32_get_osfhandle (fd);
450#else
451 return fcntl (fd, F_GETFD) != -1;
452#endif
406} 453}
407 454
408/* called on EBADF to verify fds */ 455/* called on EBADF to verify fds */
409static void 456static void
410fd_ebadf (EV_P) 457fd_ebadf (EV_P)
411{ 458{
412 int fd; 459 int fd;
413 460
414 for (fd = 0; fd < anfdmax; ++fd) 461 for (fd = 0; fd < anfdmax; ++fd)
415 if (anfds [fd].events) 462 if (anfds [fd].events)
416 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 463 if (!fd_valid (fd) == -1 && errno == EBADF)
417 fd_kill (EV_A_ fd); 464 fd_kill (EV_A_ fd);
418} 465}
419 466
420/* called on ENOMEM in select/poll to kill some fds and retry */ 467/* called on ENOMEM in select/poll to kill some fds and retry */
421static void 468static void
487 534
488 heap [k] = w; 535 heap [k] = w;
489 ((W)heap [k])->active = k + 1; 536 ((W)heap [k])->active = k + 1;
490} 537}
491 538
539inline void
540adjustheap (WT *heap, int N, int k)
541{
542 upheap (heap, k);
543 downheap (heap, N, k);
544}
545
492/*****************************************************************************/ 546/*****************************************************************************/
493 547
494typedef struct 548typedef struct
495{ 549{
496 WL head; 550 WL head;
527 581
528 if (!gotsig) 582 if (!gotsig)
529 { 583 {
530 int old_errno = errno; 584 int old_errno = errno;
531 gotsig = 1; 585 gotsig = 1;
586#ifdef WIN32
587 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
588#else
532 write (sigpipe [1], &signum, 1); 589 write (sigpipe [1], &signum, 1);
590#endif
533 errno = old_errno; 591 errno = old_errno;
534 } 592 }
535} 593}
536 594
595void
596ev_feed_signal_event (EV_P_ int signum)
597{
598 WL w;
599
600#if EV_MULTIPLICITY
601 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
602#endif
603
604 --signum;
605
606 if (signum < 0 || signum >= signalmax)
607 return;
608
609 signals [signum].gotsig = 0;
610
611 for (w = signals [signum].head; w; w = w->next)
612 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
613}
614
537static void 615static void
538sigcb (EV_P_ struct ev_io *iow, int revents) 616sigcb (EV_P_ struct ev_io *iow, int revents)
539{ 617{
540 WL w;
541 int signum; 618 int signum;
542 619
620#ifdef WIN32
621 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
622#else
543 read (sigpipe [0], &revents, 1); 623 read (sigpipe [0], &revents, 1);
624#endif
544 gotsig = 0; 625 gotsig = 0;
545 626
546 for (signum = signalmax; signum--; ) 627 for (signum = signalmax; signum--; )
547 if (signals [signum].gotsig) 628 if (signals [signum].gotsig)
548 { 629 ev_feed_signal_event (EV_A_ signum + 1);
549 signals [signum].gotsig = 0;
550
551 for (w = signals [signum].head; w; w = w->next)
552 event (EV_A_ (W)w, EV_SIGNAL);
553 }
554} 630}
555 631
556static void 632static void
557siginit (EV_P) 633siginit (EV_P)
558{ 634{
570 ev_unref (EV_A); /* child watcher should not keep loop alive */ 646 ev_unref (EV_A); /* child watcher should not keep loop alive */
571} 647}
572 648
573/*****************************************************************************/ 649/*****************************************************************************/
574 650
651static struct ev_child *childs [PID_HASHSIZE];
652
575#ifndef WIN32 653#ifndef WIN32
576 654
577static struct ev_child *childs [PID_HASHSIZE];
578static struct ev_signal childev; 655static struct ev_signal childev;
579 656
580#ifndef WCONTINUED 657#ifndef WCONTINUED
581# define WCONTINUED 0 658# define WCONTINUED 0
582#endif 659#endif
590 if (w->pid == pid || !w->pid) 667 if (w->pid == pid || !w->pid)
591 { 668 {
592 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 669 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
593 w->rpid = pid; 670 w->rpid = pid;
594 w->rstatus = status; 671 w->rstatus = status;
595 event (EV_A_ (W)w, EV_CHILD); 672 ev_feed_event (EV_A_ (W)w, EV_CHILD);
596 } 673 }
597} 674}
598 675
599static void 676static void
600childcb (EV_P_ struct ev_signal *sw, int revents) 677childcb (EV_P_ struct ev_signal *sw, int revents)
602 int pid, status; 679 int pid, status;
603 680
604 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 681 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
605 { 682 {
606 /* make sure we are called again until all childs have been reaped */ 683 /* make sure we are called again until all childs have been reaped */
607 event (EV_A_ (W)sw, EV_SIGNAL); 684 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
608 685
609 child_reap (EV_A_ sw, pid, pid, status); 686 child_reap (EV_A_ sw, pid, pid, status);
610 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 687 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
611 } 688 }
612} 689}
669 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 746 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
670 have_monotonic = 1; 747 have_monotonic = 1;
671 } 748 }
672#endif 749#endif
673 750
674 rt_now = ev_time (); 751 ev_rt_now = ev_time ();
675 mn_now = get_clock (); 752 mn_now = get_clock ();
676 now_floor = mn_now; 753 now_floor = mn_now;
677 rtmn_diff = rt_now - mn_now; 754 rtmn_diff = ev_rt_now - mn_now;
678 755
679 if (methods == EVMETHOD_AUTO) 756 if (methods == EVMETHOD_AUTO)
680 if (!enable_secure () && getenv ("LIBEV_METHODS")) 757 if (!enable_secure () && getenv ("LIBEV_METHODS"))
681 methods = atoi (getenv ("LIBEV_METHODS")); 758 methods = atoi (getenv ("LIBEV_METHODS"));
682 else 759 else
697#endif 774#endif
698#if EV_USE_SELECT 775#if EV_USE_SELECT
699 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 776 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
700#endif 777#endif
701 778
702 ev_watcher_init (&sigev, sigcb); 779 ev_init (&sigev, sigcb);
703 ev_set_priority (&sigev, EV_MAXPRI); 780 ev_set_priority (&sigev, EV_MAXPRI);
704 } 781 }
705} 782}
706 783
707void 784void
726#endif 803#endif
727 804
728 for (i = NUMPRI; i--; ) 805 for (i = NUMPRI; i--; )
729 array_free (pending, [i]); 806 array_free (pending, [i]);
730 807
808 /* have to use the microsoft-never-gets-it-right macro */
731 array_free (fdchange, ); 809 array_free_microshit (fdchange);
732 array_free (timer, ); 810 array_free_microshit (timer);
811#if EV_PERIODICS
733 array_free (periodic, ); 812 array_free_microshit (periodic);
813#endif
734 array_free (idle, ); 814 array_free_microshit (idle);
735 array_free (prepare, ); 815 array_free_microshit (prepare);
736 array_free (check, ); 816 array_free_microshit (check);
737 817
738 method = 0; 818 method = 0;
739} 819}
740 820
741static void 821static void
796} 876}
797 877
798#endif 878#endif
799 879
800#if EV_MULTIPLICITY 880#if EV_MULTIPLICITY
801struct ev_loop default_loop_struct;
802static struct ev_loop *default_loop;
803
804struct ev_loop * 881struct ev_loop *
805#else 882#else
806static int default_loop;
807
808int 883int
809#endif 884#endif
810ev_default_loop (int methods) 885ev_default_loop (int methods)
811{ 886{
812 if (sigpipe [0] == sigpipe [1]) 887 if (sigpipe [0] == sigpipe [1])
846{ 921{
847#if EV_MULTIPLICITY 922#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop; 923 struct ev_loop *loop = default_loop;
849#endif 924#endif
850 925
926#ifndef WIN32
851 ev_ref (EV_A); /* child watcher */ 927 ev_ref (EV_A); /* child watcher */
852 ev_signal_stop (EV_A_ &childev); 928 ev_signal_stop (EV_A_ &childev);
929#endif
853 930
854 ev_ref (EV_A); /* signal watcher */ 931 ev_ref (EV_A); /* signal watcher */
855 ev_io_stop (EV_A_ &sigev); 932 ev_io_stop (EV_A_ &sigev);
856 933
857 close (sigpipe [0]); sigpipe [0] = 0; 934 close (sigpipe [0]); sigpipe [0] = 0;
870 if (method) 947 if (method)
871 postfork = 1; 948 postfork = 1;
872} 949}
873 950
874/*****************************************************************************/ 951/*****************************************************************************/
952
953static int
954any_pending (EV_P)
955{
956 int pri;
957
958 for (pri = NUMPRI; pri--; )
959 if (pendingcnt [pri])
960 return 1;
961
962 return 0;
963}
875 964
876static void 965static void
877call_pending (EV_P) 966call_pending (EV_P)
878{ 967{
879 int pri; 968 int pri;
884 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 973 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
885 974
886 if (p->w) 975 if (p->w)
887 { 976 {
888 p->w->pending = 0; 977 p->w->pending = 0;
889 p->w->cb (EV_A_ p->w, p->events); 978 EV_CB_INVOKE (p->w, p->events);
890 } 979 }
891 } 980 }
892} 981}
893 982
894static void 983static void
902 991
903 /* first reschedule or stop timer */ 992 /* first reschedule or stop timer */
904 if (w->repeat) 993 if (w->repeat)
905 { 994 {
906 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 995 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
996
907 ((WT)w)->at = mn_now + w->repeat; 997 ((WT)w)->at += w->repeat;
998 if (((WT)w)->at < mn_now)
999 ((WT)w)->at = mn_now;
1000
908 downheap ((WT *)timers, timercnt, 0); 1001 downheap ((WT *)timers, timercnt, 0);
909 } 1002 }
910 else 1003 else
911 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1004 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
912 1005
913 event (EV_A_ (W)w, EV_TIMEOUT); 1006 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
914 } 1007 }
915} 1008}
916 1009
1010#if EV_PERIODICS
917static void 1011static void
918periodics_reify (EV_P) 1012periodics_reify (EV_P)
919{ 1013{
920 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1014 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
921 { 1015 {
922 struct ev_periodic *w = periodics [0]; 1016 struct ev_periodic *w = periodics [0];
923 1017
924 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1018 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
925 1019
926 /* first reschedule or stop timer */ 1020 /* first reschedule or stop timer */
927 if (w->interval) 1021 if (w->reschedule_cb)
928 { 1022 {
1023 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1024
1025 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1026 downheap ((WT *)periodics, periodiccnt, 0);
1027 }
1028 else if (w->interval)
1029 {
929 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1030 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
930 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1031 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
931 downheap ((WT *)periodics, periodiccnt, 0); 1032 downheap ((WT *)periodics, periodiccnt, 0);
932 } 1033 }
933 else 1034 else
934 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1035 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
935 1036
936 event (EV_A_ (W)w, EV_PERIODIC); 1037 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
937 } 1038 }
938} 1039}
939 1040
940static void 1041static void
941periodics_reschedule (EV_P) 1042periodics_reschedule (EV_P)
945 /* adjust periodics after time jump */ 1046 /* adjust periodics after time jump */
946 for (i = 0; i < periodiccnt; ++i) 1047 for (i = 0; i < periodiccnt; ++i)
947 { 1048 {
948 struct ev_periodic *w = periodics [i]; 1049 struct ev_periodic *w = periodics [i];
949 1050
1051 if (w->reschedule_cb)
1052 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
950 if (w->interval) 1053 else if (w->interval)
951 {
952 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1054 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
953
954 if (fabs (diff) >= 1e-4)
955 {
956 ev_periodic_stop (EV_A_ w);
957 ev_periodic_start (EV_A_ w);
958
959 i = 0; /* restart loop, inefficient, but time jumps should be rare */
960 }
961 }
962 } 1055 }
1056
1057 /* now rebuild the heap */
1058 for (i = periodiccnt >> 1; i--; )
1059 downheap ((WT *)periodics, periodiccnt, i);
963} 1060}
1061#endif
964 1062
965inline int 1063inline int
966time_update_monotonic (EV_P) 1064time_update_monotonic (EV_P)
967{ 1065{
968 mn_now = get_clock (); 1066 mn_now = get_clock ();
969 1067
970 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1068 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
971 { 1069 {
972 rt_now = rtmn_diff + mn_now; 1070 ev_rt_now = rtmn_diff + mn_now;
973 return 0; 1071 return 0;
974 } 1072 }
975 else 1073 else
976 { 1074 {
977 now_floor = mn_now; 1075 now_floor = mn_now;
978 rt_now = ev_time (); 1076 ev_rt_now = ev_time ();
979 return 1; 1077 return 1;
980 } 1078 }
981} 1079}
982 1080
983static void 1081static void
992 { 1090 {
993 ev_tstamp odiff = rtmn_diff; 1091 ev_tstamp odiff = rtmn_diff;
994 1092
995 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1093 for (i = 4; --i; ) /* loop a few times, before making important decisions */
996 { 1094 {
997 rtmn_diff = rt_now - mn_now; 1095 rtmn_diff = ev_rt_now - mn_now;
998 1096
999 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1097 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1000 return; /* all is well */ 1098 return; /* all is well */
1001 1099
1002 rt_now = ev_time (); 1100 ev_rt_now = ev_time ();
1003 mn_now = get_clock (); 1101 mn_now = get_clock ();
1004 now_floor = mn_now; 1102 now_floor = mn_now;
1005 } 1103 }
1006 1104
1105# if EV_PERIODICS
1007 periodics_reschedule (EV_A); 1106 periodics_reschedule (EV_A);
1107# endif
1008 /* no timer adjustment, as the monotonic clock doesn't jump */ 1108 /* no timer adjustment, as the monotonic clock doesn't jump */
1009 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1109 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1010 } 1110 }
1011 } 1111 }
1012 else 1112 else
1013#endif 1113#endif
1014 { 1114 {
1015 rt_now = ev_time (); 1115 ev_rt_now = ev_time ();
1016 1116
1017 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1117 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1018 { 1118 {
1119#if EV_PERIODICS
1019 periodics_reschedule (EV_A); 1120 periodics_reschedule (EV_A);
1121#endif
1020 1122
1021 /* adjust timers. this is easy, as the offset is the same for all */ 1123 /* adjust timers. this is easy, as the offset is the same for all */
1022 for (i = 0; i < timercnt; ++i) 1124 for (i = 0; i < timercnt; ++i)
1023 ((WT)timers [i])->at += rt_now - mn_now; 1125 ((WT)timers [i])->at += ev_rt_now - mn_now;
1024 } 1126 }
1025 1127
1026 mn_now = rt_now; 1128 mn_now = ev_rt_now;
1027 } 1129 }
1028} 1130}
1029 1131
1030void 1132void
1031ev_ref (EV_P) 1133ev_ref (EV_P)
1063 /* update fd-related kernel structures */ 1165 /* update fd-related kernel structures */
1064 fd_reify (EV_A); 1166 fd_reify (EV_A);
1065 1167
1066 /* calculate blocking time */ 1168 /* calculate blocking time */
1067 1169
1068 /* we only need this for !monotonic clockor timers, but as we basically 1170 /* we only need this for !monotonic clock or timers, but as we basically
1069 always have timers, we just calculate it always */ 1171 always have timers, we just calculate it always */
1070#if EV_USE_MONOTONIC 1172#if EV_USE_MONOTONIC
1071 if (expect_true (have_monotonic)) 1173 if (expect_true (have_monotonic))
1072 time_update_monotonic (EV_A); 1174 time_update_monotonic (EV_A);
1073 else 1175 else
1074#endif 1176#endif
1075 { 1177 {
1076 rt_now = ev_time (); 1178 ev_rt_now = ev_time ();
1077 mn_now = rt_now; 1179 mn_now = ev_rt_now;
1078 } 1180 }
1079 1181
1080 if (flags & EVLOOP_NONBLOCK || idlecnt) 1182 if (flags & EVLOOP_NONBLOCK || idlecnt)
1081 block = 0.; 1183 block = 0.;
1082 else 1184 else
1087 { 1189 {
1088 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1190 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1089 if (block > to) block = to; 1191 if (block > to) block = to;
1090 } 1192 }
1091 1193
1194#if EV_PERIODICS
1092 if (periodiccnt) 1195 if (periodiccnt)
1093 { 1196 {
1094 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1197 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1095 if (block > to) block = to; 1198 if (block > to) block = to;
1096 } 1199 }
1200#endif
1097 1201
1098 if (block < 0.) block = 0.; 1202 if (block < 0.) block = 0.;
1099 } 1203 }
1100 1204
1101 method_poll (EV_A_ block); 1205 method_poll (EV_A_ block);
1102 1206
1103 /* update rt_now, do magic */ 1207 /* update ev_rt_now, do magic */
1104 time_update (EV_A); 1208 time_update (EV_A);
1105 1209
1106 /* queue pending timers and reschedule them */ 1210 /* queue pending timers and reschedule them */
1107 timers_reify (EV_A); /* relative timers called last */ 1211 timers_reify (EV_A); /* relative timers called last */
1212#if EV_PERIODICS
1108 periodics_reify (EV_A); /* absolute timers called first */ 1213 periodics_reify (EV_A); /* absolute timers called first */
1214#endif
1109 1215
1110 /* queue idle watchers unless io or timers are pending */ 1216 /* queue idle watchers unless io or timers are pending */
1111 if (!pendingcnt) 1217 if (idlecnt && !any_pending (EV_A))
1112 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1218 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1113 1219
1114 /* queue check watchers, to be executed first */ 1220 /* queue check watchers, to be executed first */
1115 if (checkcnt) 1221 if (checkcnt)
1116 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1222 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1191 return; 1297 return;
1192 1298
1193 assert (("ev_io_start called with negative fd", fd >= 0)); 1299 assert (("ev_io_start called with negative fd", fd >= 0));
1194 1300
1195 ev_start (EV_A_ (W)w, 1); 1301 ev_start (EV_A_ (W)w, 1);
1196 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1302 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1197 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1303 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1198 1304
1199 fd_change (EV_A_ fd); 1305 fd_change (EV_A_ fd);
1200} 1306}
1201 1307
1204{ 1310{
1205 ev_clear_pending (EV_A_ (W)w); 1311 ev_clear_pending (EV_A_ (W)w);
1206 if (!ev_is_active (w)) 1312 if (!ev_is_active (w))
1207 return; 1313 return;
1208 1314
1315 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1316
1209 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1317 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1210 ev_stop (EV_A_ (W)w); 1318 ev_stop (EV_A_ (W)w);
1211 1319
1212 fd_change (EV_A_ w->fd); 1320 fd_change (EV_A_ w->fd);
1213} 1321}
1221 ((WT)w)->at += mn_now; 1329 ((WT)w)->at += mn_now;
1222 1330
1223 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1331 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1224 1332
1225 ev_start (EV_A_ (W)w, ++timercnt); 1333 ev_start (EV_A_ (W)w, ++timercnt);
1226 array_needsize (timers, timermax, timercnt, ); 1334 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1227 timers [timercnt - 1] = w; 1335 timers [timercnt - 1] = w;
1228 upheap ((WT *)timers, timercnt - 1); 1336 upheap ((WT *)timers, timercnt - 1);
1229 1337
1230 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1338 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1231} 1339}
1240 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1348 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1241 1349
1242 if (((W)w)->active < timercnt--) 1350 if (((W)w)->active < timercnt--)
1243 { 1351 {
1244 timers [((W)w)->active - 1] = timers [timercnt]; 1352 timers [((W)w)->active - 1] = timers [timercnt];
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1246 } 1354 }
1247 1355
1248 ((WT)w)->at = w->repeat; 1356 ((WT)w)->at -= mn_now;
1249 1357
1250 ev_stop (EV_A_ (W)w); 1358 ev_stop (EV_A_ (W)w);
1251} 1359}
1252 1360
1253void 1361void
1256 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1257 { 1365 {
1258 if (w->repeat) 1366 if (w->repeat)
1259 { 1367 {
1260 ((WT)w)->at = mn_now + w->repeat; 1368 ((WT)w)->at = mn_now + w->repeat;
1261 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1262 } 1370 }
1263 else 1371 else
1264 ev_timer_stop (EV_A_ w); 1372 ev_timer_stop (EV_A_ w);
1265 } 1373 }
1266 else if (w->repeat) 1374 else if (w->repeat)
1267 ev_timer_start (EV_A_ w); 1375 ev_timer_start (EV_A_ w);
1268} 1376}
1269 1377
1378#if EV_PERIODICS
1270void 1379void
1271ev_periodic_start (EV_P_ struct ev_periodic *w) 1380ev_periodic_start (EV_P_ struct ev_periodic *w)
1272{ 1381{
1273 if (ev_is_active (w)) 1382 if (ev_is_active (w))
1274 return; 1383 return;
1275 1384
1385 if (w->reschedule_cb)
1386 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1387 else if (w->interval)
1388 {
1276 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1389 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1277
1278 /* this formula differs from the one in periodic_reify because we do not always round up */ 1390 /* this formula differs from the one in periodic_reify because we do not always round up */
1279 if (w->interval)
1280 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1391 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1392 }
1281 1393
1282 ev_start (EV_A_ (W)w, ++periodiccnt); 1394 ev_start (EV_A_ (W)w, ++periodiccnt);
1283 array_needsize (periodics, periodicmax, periodiccnt, ); 1395 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1284 periodics [periodiccnt - 1] = w; 1396 periodics [periodiccnt - 1] = w;
1285 upheap ((WT *)periodics, periodiccnt - 1); 1397 upheap ((WT *)periodics, periodiccnt - 1);
1286 1398
1287 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1399 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1288} 1400}
1297 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1409 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1298 1410
1299 if (((W)w)->active < periodiccnt--) 1411 if (((W)w)->active < periodiccnt--)
1300 { 1412 {
1301 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1413 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1302 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1414 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1303 } 1415 }
1304 1416
1305 ev_stop (EV_A_ (W)w); 1417 ev_stop (EV_A_ (W)w);
1306} 1418}
1307 1419
1308void 1420void
1421ev_periodic_again (EV_P_ struct ev_periodic *w)
1422{
1423 /* TODO: use adjustheap and recalculation */
1424 ev_periodic_stop (EV_A_ w);
1425 ev_periodic_start (EV_A_ w);
1426}
1427#endif
1428
1429void
1309ev_idle_start (EV_P_ struct ev_idle *w) 1430ev_idle_start (EV_P_ struct ev_idle *w)
1310{ 1431{
1311 if (ev_is_active (w)) 1432 if (ev_is_active (w))
1312 return; 1433 return;
1313 1434
1314 ev_start (EV_A_ (W)w, ++idlecnt); 1435 ev_start (EV_A_ (W)w, ++idlecnt);
1315 array_needsize (idles, idlemax, idlecnt, ); 1436 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1316 idles [idlecnt - 1] = w; 1437 idles [idlecnt - 1] = w;
1317} 1438}
1318 1439
1319void 1440void
1320ev_idle_stop (EV_P_ struct ev_idle *w) 1441ev_idle_stop (EV_P_ struct ev_idle *w)
1332{ 1453{
1333 if (ev_is_active (w)) 1454 if (ev_is_active (w))
1334 return; 1455 return;
1335 1456
1336 ev_start (EV_A_ (W)w, ++preparecnt); 1457 ev_start (EV_A_ (W)w, ++preparecnt);
1337 array_needsize (prepares, preparemax, preparecnt, ); 1458 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1338 prepares [preparecnt - 1] = w; 1459 prepares [preparecnt - 1] = w;
1339} 1460}
1340 1461
1341void 1462void
1342ev_prepare_stop (EV_P_ struct ev_prepare *w) 1463ev_prepare_stop (EV_P_ struct ev_prepare *w)
1343{ 1464{
1344 ev_clear_pending (EV_A_ (W)w); 1465 ev_clear_pending (EV_A_ (W)w);
1345 if (ev_is_active (w)) 1466 if (!ev_is_active (w))
1346 return; 1467 return;
1347 1468
1348 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1469 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1349 ev_stop (EV_A_ (W)w); 1470 ev_stop (EV_A_ (W)w);
1350} 1471}
1354{ 1475{
1355 if (ev_is_active (w)) 1476 if (ev_is_active (w))
1356 return; 1477 return;
1357 1478
1358 ev_start (EV_A_ (W)w, ++checkcnt); 1479 ev_start (EV_A_ (W)w, ++checkcnt);
1359 array_needsize (checks, checkmax, checkcnt, ); 1480 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1360 checks [checkcnt - 1] = w; 1481 checks [checkcnt - 1] = w;
1361} 1482}
1362 1483
1363void 1484void
1364ev_check_stop (EV_P_ struct ev_check *w) 1485ev_check_stop (EV_P_ struct ev_check *w)
1365{ 1486{
1366 ev_clear_pending (EV_A_ (W)w); 1487 ev_clear_pending (EV_A_ (W)w);
1367 if (ev_is_active (w)) 1488 if (!ev_is_active (w))
1368 return; 1489 return;
1369 1490
1370 checks [((W)w)->active - 1] = checks [--checkcnt]; 1491 checks [((W)w)->active - 1] = checks [--checkcnt];
1371 ev_stop (EV_A_ (W)w); 1492 ev_stop (EV_A_ (W)w);
1372} 1493}
1385 return; 1506 return;
1386 1507
1387 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1508 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1388 1509
1389 ev_start (EV_A_ (W)w, 1); 1510 ev_start (EV_A_ (W)w, 1);
1390 array_needsize (signals, signalmax, w->signum, signals_init); 1511 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1391 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1512 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1392 1513
1393 if (!((WL)w)->next) 1514 if (!((WL)w)->next)
1394 { 1515 {
1395#if WIN32 1516#if WIN32
1433 1554
1434void 1555void
1435ev_child_stop (EV_P_ struct ev_child *w) 1556ev_child_stop (EV_P_ struct ev_child *w)
1436{ 1557{
1437 ev_clear_pending (EV_A_ (W)w); 1558 ev_clear_pending (EV_A_ (W)w);
1438 if (ev_is_active (w)) 1559 if (!ev_is_active (w))
1439 return; 1560 return;
1440 1561
1441 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1562 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1442 ev_stop (EV_A_ (W)w); 1563 ev_stop (EV_A_ (W)w);
1443} 1564}
1478} 1599}
1479 1600
1480void 1601void
1481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1602ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1482{ 1603{
1483 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1604 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1484 1605
1485 if (!once) 1606 if (!once)
1486 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1607 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1487 else 1608 else
1488 { 1609 {
1489 once->cb = cb; 1610 once->cb = cb;
1490 once->arg = arg; 1611 once->arg = arg;
1491 1612
1492 ev_watcher_init (&once->io, once_cb_io); 1613 ev_init (&once->io, once_cb_io);
1493 if (fd >= 0) 1614 if (fd >= 0)
1494 { 1615 {
1495 ev_io_set (&once->io, fd, events); 1616 ev_io_set (&once->io, fd, events);
1496 ev_io_start (EV_A_ &once->io); 1617 ev_io_start (EV_A_ &once->io);
1497 } 1618 }
1498 1619
1499 ev_watcher_init (&once->to, once_cb_to); 1620 ev_init (&once->to, once_cb_to);
1500 if (timeout >= 0.) 1621 if (timeout >= 0.)
1501 { 1622 {
1502 ev_timer_set (&once->to, timeout, 0.); 1623 ev_timer_set (&once->to, timeout, 0.);
1503 ev_timer_start (EV_A_ &once->to); 1624 ev_timer_start (EV_A_ &once->to);
1504 } 1625 }
1505 } 1626 }
1506} 1627}
1507 1628
1629#ifdef __cplusplus
1630}
1631#endif
1632

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines