ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.101 by root, Sun Nov 11 04:04:23 2007 UTC vs.
Revision 1.358 by root, Sun Oct 24 14:44:40 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
38 61
39# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
42# endif 65# endif
43# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
68# endif
69# else
70# ifndef EV_USE_MONOTONIC
71# define EV_USE_MONOTONIC 0
72# endif
73# ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 0
45# endif 75# endif
46# endif 76# endif
47 77
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 78# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 79# ifndef EV_USE_NANOSLEEP
80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
50# endif 85# endif
51 86
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
90# endif
91# else
92# undef EV_USE_SELECT
53# define EV_USE_POLL 1 93# define EV_USE_SELECT 0
54# endif 94# endif
55 95
56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 102# define EV_USE_POLL 0
58# endif 103# endif
59 104
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 106# ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
62# endif 112# endif
113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115# ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
121# endif
122
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# ifndef EV_USE_PORT
125# define EV_USE_PORT EV_FEATURE_BACKENDS
126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
130# endif
63 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
64#endif 159#endif
65 160
66#include <math.h> 161#include <math.h>
67#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
68#include <fcntl.h> 164#include <fcntl.h>
69#include <stddef.h> 165#include <stddef.h>
70 166
71#include <stdio.h> 167#include <stdio.h>
72 168
73#include <assert.h> 169#include <assert.h>
74#include <errno.h> 170#include <errno.h>
75#include <sys/types.h> 171#include <sys/types.h>
76#include <time.h> 172#include <time.h>
173#include <limits.h>
77 174
78#include <signal.h> 175#include <signal.h>
79
80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
83# include <sys/wait.h>
84#endif
85/**/
86
87#ifndef EV_USE_MONOTONIC
88# define EV_USE_MONOTONIC 1
89#endif
90
91#ifndef EV_USE_SELECT
92# define EV_USE_SELECT 1
93#endif
94
95#ifndef EV_USE_POLL
96# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
97#endif
98
99#ifndef EV_USE_EPOLL
100# define EV_USE_EPOLL 0
101#endif
102
103#ifndef EV_USE_KQUEUE
104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
115#endif
116
117#ifndef EV_USE_REALTIME
118# define EV_USE_REALTIME 1
119#endif
120
121/**/
122
123#ifndef CLOCK_MONOTONIC
124# undef EV_USE_MONOTONIC
125# define EV_USE_MONOTONIC 0
126#endif
127
128#ifndef CLOCK_REALTIME
129# undef EV_USE_REALTIME
130# define EV_USE_REALTIME 0
131#endif
132
133/**/
134
135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
139 176
140#ifdef EV_H 177#ifdef EV_H
141# include EV_H 178# include EV_H
142#else 179#else
143# include "ev.h" 180# include "ev.h"
144#endif 181#endif
145 182
183EV_CPP(extern "C" {)
184
185#ifndef _WIN32
186# include <sys/time.h>
187# include <sys/wait.h>
188# include <unistd.h>
189#else
190# include <io.h>
191# define WIN32_LEAN_AND_MEAN
192# include <windows.h>
193# ifndef EV_SELECT_IS_WINSOCKET
194# define EV_SELECT_IS_WINSOCKET 1
195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
249# define EV_USE_MONOTONIC 0
250# endif
251#endif
252
253#ifndef EV_USE_REALTIME
254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
263#endif
264
265#ifndef EV_USE_SELECT
266# define EV_USE_SELECT EV_FEATURE_BACKENDS
267#endif
268
269#ifndef EV_USE_POLL
270# ifdef _WIN32
271# define EV_USE_POLL 0
272# else
273# define EV_USE_POLL EV_FEATURE_BACKENDS
274# endif
275#endif
276
277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
281# define EV_USE_EPOLL 0
282# endif
283#endif
284
285#ifndef EV_USE_KQUEUE
286# define EV_USE_KQUEUE 0
287#endif
288
289#ifndef EV_USE_PORT
290# define EV_USE_PORT 0
291#endif
292
293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
364
365#ifndef CLOCK_MONOTONIC
366# undef EV_USE_MONOTONIC
367# define EV_USE_MONOTONIC 0
368#endif
369
370#ifndef CLOCK_REALTIME
371# undef EV_USE_REALTIME
372# define EV_USE_REALTIME 0
373#endif
374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
396#if EV_SELECT_IS_WINSOCKET
397# include <winsock.h>
398#endif
399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
455
456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461
146#if __GNUC__ >= 3 462#if __GNUC__ >= 4
147# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
148# define inline inline 464# define noinline __attribute__ ((noinline))
149#else 465#else
150# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
151# define inline static 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
152#endif 471#endif
153 472
154#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
155#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
156 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
157#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
158#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
159 490
491#define EMPTY /* required for microsofts broken pseudo-c compiler */
492#define EMPTY2(a,b) /* used to suppress some warnings */
493
160typedef struct ev_watcher *W; 494typedef ev_watcher *W;
161typedef struct ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
162typedef struct ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
163 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
165 510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
520
166#ifdef WIN32 521#ifdef _WIN32
167# include "ev_win32.c" 522# include "ev_win32.c"
168#endif 523#endif
169 524
170/*****************************************************************************/ 525/*****************************************************************************/
171 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 struct utsname buf;
536 unsigned int v;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
172static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
173 578
579void
174void ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
175{ 581{
176 syserr_cb = cb; 582 syserr_cb = cb;
177} 583}
178 584
179static void 585static void noinline
180syserr (const char *msg) 586ev_syserr (const char *msg)
181{ 587{
182 if (!msg) 588 if (!msg)
183 msg = "(libev) system error"; 589 msg = "(libev) system error";
184 590
185 if (syserr_cb) 591 if (syserr_cb)
186 syserr_cb (msg); 592 syserr_cb (msg);
187 else 593 else
188 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
189 perror (msg); 603 perror (msg);
604#endif
190 abort (); 605 abort ();
191 } 606 }
192} 607}
193 608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
194static void *(*alloc)(void *ptr, long size); 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
195 629
630void
196void ev_set_allocator (void *(*cb)(void *ptr, long size)) 631ev_set_allocator (void *(*cb)(void *ptr, long size))
197{ 632{
198 alloc = cb; 633 alloc = cb;
199} 634}
200 635
201static void * 636inline_speed void *
202ev_realloc (void *ptr, long size) 637ev_realloc (void *ptr, long size)
203{ 638{
204 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 639 ptr = alloc (ptr, size);
205 640
206 if (!ptr && size) 641 if (!ptr && size)
207 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
208 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
209 abort (); 648 abort ();
210 } 649 }
211 650
212 return ptr; 651 return ptr;
213} 652}
215#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
216#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
217 656
218/*****************************************************************************/ 657/*****************************************************************************/
219 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
220typedef struct 663typedef struct
221{ 664{
222 WL head; 665 WL head;
223 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
224 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
674 SOCKET handle;
675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
225} ANFD; 679} ANFD;
226 680
681/* stores the pending event set for a given watcher */
227typedef struct 682typedef struct
228{ 683{
229 W w; 684 W w;
230 int events; 685 int events; /* the pending event set for the given watcher */
231} ANPENDING; 686} ANPENDING;
687
688#if EV_USE_INOTIFY
689/* hash table entry per inotify-id */
690typedef struct
691{
692 WL head;
693} ANFS;
694#endif
695
696/* Heap Entry */
697#if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707#else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
714#endif
232 715
233#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
234 717
235 struct ev_loop 718 struct ev_loop
236 { 719 {
240 #include "ev_vars.h" 723 #include "ev_vars.h"
241 #undef VAR 724 #undef VAR
242 }; 725 };
243 #include "ev_wrap.h" 726 #include "ev_wrap.h"
244 727
245 struct ev_loop default_loop_struct; 728 static struct ev_loop default_loop_struct;
246 static struct ev_loop *default_loop; 729 struct ev_loop *ev_default_loop_ptr;
247 730
248#else 731#else
249 732
250 ev_tstamp ev_rt_now; 733 ev_tstamp ev_rt_now;
251 #define VAR(name,decl) static decl; 734 #define VAR(name,decl) static decl;
252 #include "ev_vars.h" 735 #include "ev_vars.h"
253 #undef VAR 736 #undef VAR
254 737
255 static int default_loop; 738 static int ev_default_loop_ptr;
256 739
257#endif 740#endif
741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
258 753
259/*****************************************************************************/ 754/*****************************************************************************/
260 755
756#ifndef EV_HAVE_EV_TIME
261ev_tstamp 757ev_tstamp
262ev_time (void) 758ev_time (void)
263{ 759{
264#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
265 struct timespec ts; 763 struct timespec ts;
266 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
267 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
268#else 766 }
767#endif
768
269 struct timeval tv; 769 struct timeval tv;
270 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
271 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
272#endif
273} 772}
773#endif
274 774
275inline ev_tstamp 775inline_size ev_tstamp
276get_clock (void) 776get_clock (void)
277{ 777{
278#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
279 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
280 { 780 {
293{ 793{
294 return ev_rt_now; 794 return ev_rt_now;
295} 795}
296#endif 796#endif
297 797
298#define array_roundsize(type,n) ((n) | 4 & ~3) 798void
799ev_sleep (ev_tstamp delay)
800{
801 if (delay > 0.)
802 {
803#if EV_USE_NANOSLEEP
804 struct timespec ts;
805
806 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0);
808#elif defined(_WIN32)
809 Sleep ((unsigned long)(delay * 1e3));
810#else
811 struct timeval tv;
812
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 /* something not guaranteed by newer posix versions, but guaranteed */
815 /* by older ones */
816 EV_TV_SET (tv, delay);
817 select (0, 0, 0, 0, &tv);
818#endif
819 }
820}
821
822/*****************************************************************************/
823
824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
825
826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
829array_nextsize (int elem, int cur, int cnt)
830{
831 int ncur = cur + 1;
832
833 do
834 ncur <<= 1;
835 while (cnt > ncur);
836
837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
839 {
840 ncur *= elem;
841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
842 ncur = ncur - sizeof (void *) * 4;
843 ncur /= elem;
844 }
845
846 return ncur;
847}
848
849static noinline void *
850array_realloc (int elem, void *base, int *cur, int cnt)
851{
852 *cur = array_nextsize (elem, *cur, cnt);
853 return ev_realloc (base, elem * *cur);
854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
299 858
300#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
301 if (expect_false ((cnt) > cur)) \ 860 if (expect_false ((cnt) > (cur))) \
302 { \ 861 { \
303 int newcnt = cur; \ 862 int ocur_ = (cur); \
304 do \ 863 (base) = (type *)array_realloc \
305 { \ 864 (sizeof (type), (base), &(cur), (cnt)); \
306 newcnt = array_roundsize (type, newcnt << 1); \ 865 init ((base) + (ocur_), (cur) - ocur_); \
307 } \
308 while ((cnt) > newcnt); \
309 \
310 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
311 init (base + cur, newcnt - cur); \
312 cur = newcnt; \
313 } 866 }
314 867
868#if 0
315#define array_slim(type,stem) \ 869#define array_slim(type,stem) \
316 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 870 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
317 { \ 871 { \
318 stem ## max = array_roundsize (stem ## cnt >> 1); \ 872 stem ## max = array_roundsize (stem ## cnt >> 1); \
319 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 873 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
320 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
321 } 875 }
322 876#endif
323/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
324/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
325#define array_free_microshit(stem) \
326 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
327 877
328#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
329 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
330 880
331/*****************************************************************************/ 881/*****************************************************************************/
332 882
333static void 883/* dummy callback for pending events */
334anfds_init (ANFD *base, int count) 884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
335{ 886{
336 while (count--)
337 {
338 base->head = 0;
339 base->events = EV_NONE;
340 base->reify = 0;
341
342 ++base;
343 }
344} 887}
345 888
346void 889void noinline
347ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
348{ 891{
349 W w_ = (W)w; 892 W w_ = (W)w;
893 int pri = ABSPRI (w_);
350 894
351 if (w_->pending) 895 if (expect_false (w_->pending))
896 pendings [pri][w_->pending - 1].events |= revents;
897 else
352 { 898 {
899 w_->pending = ++pendingcnt [pri];
900 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
901 pendings [pri][w_->pending - 1].w = w_;
353 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 902 pendings [pri][w_->pending - 1].events = revents;
354 return;
355 } 903 }
356
357 w_->pending = ++pendingcnt [ABSPRI (w_)];
358 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
359 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
360 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
361} 904}
362 905
363static void 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
364queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
365{ 923{
366 int i; 924 int i;
367 925
368 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
369 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
370} 928}
371 929
930/*****************************************************************************/
931
372inline void 932inline_speed void
373fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
374{ 934{
375 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
376 struct ev_io *w; 936 ev_io *w;
377 937
378 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
379 { 939 {
380 int ev = w->events & revents; 940 int ev = w->events & revents;
381 941
382 if (ev) 942 if (ev)
383 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
384 } 944 }
385} 945}
386 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
387void 958void
388ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
389{ 960{
961 if (fd >= 0 && fd < anfdmax)
390 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
391} 963}
392 964
393/*****************************************************************************/ 965/* make sure the external fd watch events are in-sync */
394 966/* with the kernel/libev internal state */
395static void 967inline_size void
396fd_reify (EV_P) 968fd_reify (EV_P)
397{ 969{
398 int i; 970 int i;
399 971
400 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
401 { 973 {
402 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
403 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
404 struct ev_io *w; 976 ev_io *w;
405 977
406 int events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
407 980
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
409 events |= w->events;
410
411 anfd->reify = 0; 981 anfd->reify = 0;
412 982
413 method_modify (EV_A_ fd, anfd->events, events); 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
984 if (o_reify & EV__IOFDSET)
985 {
986 unsigned long arg;
987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
990 }
991#endif
992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994 {
414 anfd->events = events; 995 anfd->events = 0;
996
997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
1005 backend_modify (EV_A_ fd, o_events, anfd->events);
415 } 1006 }
416 1007
417 fdchangecnt = 0; 1008 fdchangecnt = 0;
418} 1009}
419 1010
420static void 1011/* something about the given fd changed */
1012inline_size void
421fd_change (EV_P_ int fd) 1013fd_change (EV_P_ int fd, int flags)
422{ 1014{
423 if (anfds [fd].reify) 1015 unsigned char reify = anfds [fd].reify;
424 return;
425
426 anfds [fd].reify = 1; 1016 anfds [fd].reify |= flags;
427 1017
1018 if (expect_true (!reify))
1019 {
428 ++fdchangecnt; 1020 ++fdchangecnt;
429 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
430 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
1023 }
431} 1024}
432 1025
433static void 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
434fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
435{ 1029{
436 struct ev_io *w; 1030 ev_io *w;
437 1031
438 while ((w = (struct ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
439 { 1033 {
440 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
441 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
442 } 1036 }
443} 1037}
444 1038
445static int 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
446fd_valid (int fd) 1041fd_valid (int fd)
447{ 1042{
448#ifdef WIN32 1043#ifdef _WIN32
449 return !!win32_get_osfhandle (fd); 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
450#else 1045#else
451 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
452#endif 1047#endif
453} 1048}
454 1049
455/* called on EBADF to verify fds */ 1050/* called on EBADF to verify fds */
456static void 1051static void noinline
457fd_ebadf (EV_P) 1052fd_ebadf (EV_P)
458{ 1053{
459 int fd; 1054 int fd;
460 1055
461 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
462 if (anfds [fd].events) 1057 if (anfds [fd].events)
463 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
464 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
465} 1060}
466 1061
467/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
468static void 1063static void noinline
469fd_enomem (EV_P) 1064fd_enomem (EV_P)
470{ 1065{
471 int fd; 1066 int fd;
472 1067
473 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
474 if (anfds [fd].events) 1069 if (anfds [fd].events)
475 { 1070 {
476 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
477 return; 1072 break;
478 } 1073 }
479} 1074}
480 1075
481/* usually called after fork if method needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
482static void 1077static void noinline
483fd_rearm_all (EV_P) 1078fd_rearm_all (EV_P)
484{ 1079{
485 int fd; 1080 int fd;
486 1081
487 /* this should be highly optimised to not do anything but set a flag */
488 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
489 if (anfds [fd].events) 1083 if (anfds [fd].events)
490 { 1084 {
491 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
492 fd_change (EV_A_ fd); 1086 anfds [fd].emask = 0;
1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
493 } 1088 }
494} 1089}
495 1090
1091/* used to prepare libev internal fd's */
1092/* this is not fork-safe */
1093inline_speed void
1094fd_intern (int fd)
1095{
1096#ifdef _WIN32
1097 unsigned long arg = 1;
1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099#else
1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
1101 fcntl (fd, F_SETFL, O_NONBLOCK);
1102#endif
1103}
1104
496/*****************************************************************************/ 1105/*****************************************************************************/
497 1106
1107/*
1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
1112
1113/*
1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119#if EV_USE_4HEAP
1120
1121#define DHEAP 4
1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124#define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126/* away from the root */
1127inline_speed void
1128downheap (ANHE *heap, int N, int k)
1129{
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168}
1169
1170#else /* 4HEAP */
1171
1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
1175
1176/* away from the root */
1177inline_speed void
1178downheap (ANHE *heap, int N, int k)
1179{
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203}
1204#endif
1205
1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
1230adjustheap (ANHE *heap, int N, int k)
1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
1250/*****************************************************************************/
1251
1252/* associate signal watchers to a signal signal */
1253typedef struct
1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
1259 WL head;
1260} ANSIG;
1261
1262static ANSIG signals [EV_NSIG - 1];
1263
1264/*****************************************************************************/
1265
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
1268static void noinline
1269evpipe_init (EV_P)
1270{
1271 if (!ev_is_active (&pipe_w))
1272 {
1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1279 {
1280 evpipe [0] = -1;
1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 ev_io_set (&pipe_w, evfd, EV_READ);
1283 }
1284 else
1285# endif
1286 {
1287 while (pipe (evpipe))
1288 ev_syserr ("(libev) error creating signal/async pipe");
1289
1290 fd_intern (evpipe [0]);
1291 fd_intern (evpipe [1]);
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 }
1294
1295 ev_io_start (EV_A_ &pipe_w);
1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298}
1299
1300inline_size void
1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302{
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310#if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324
1325 errno = old_errno;
1326 }
1327}
1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
498static void 1331static void
499upheap (WT *heap, int k) 1332pipecb (EV_P_ ev_io *iow, int revents)
500{ 1333{
501 WT w = heap [k]; 1334 int i;
502 1335
503 while (k && heap [k >> 1]->at > w->at) 1336#if EV_USE_EVENTFD
504 { 1337 if (evfd >= 0)
505 heap [k] = heap [k >> 1];
506 ((W)heap [k])->active = k + 1;
507 k >>= 1;
508 } 1338 {
1339 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t));
1341 }
1342 else
1343#endif
1344 {
1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 read (evpipe [0], &dummy, 1);
1348 }
509 1349
510 heap [k] = w; 1350 if (sig_pending)
511 ((W)heap [k])->active = k + 1; 1351 {
1352 sig_pending = 0;
512 1353
1354 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1);
1357 }
1358
1359#if EV_ASYNC_ENABLE
1360 if (async_pending)
1361 {
1362 async_pending = 0;
1363
1364 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent)
1366 {
1367 asyncs [i]->sent = 0;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 }
1370 }
1371#endif
513} 1372}
1373
1374/*****************************************************************************/
514 1375
515static void 1376static void
516downheap (WT *heap, int N, int k)
517{
518 WT w = heap [k];
519
520 while (k < (N >> 1))
521 {
522 int j = k << 1;
523
524 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
525 ++j;
526
527 if (w->at <= heap [j]->at)
528 break;
529
530 heap [k] = heap [j];
531 ((W)heap [k])->active = k + 1;
532 k = j;
533 }
534
535 heap [k] = w;
536 ((W)heap [k])->active = k + 1;
537}
538
539inline void
540adjustheap (WT *heap, int N, int k)
541{
542 upheap (heap, k);
543 downheap (heap, N, k);
544}
545
546/*****************************************************************************/
547
548typedef struct
549{
550 WL head;
551 sig_atomic_t volatile gotsig;
552} ANSIG;
553
554static ANSIG *signals;
555static int signalmax;
556
557static int sigpipe [2];
558static sig_atomic_t volatile gotsig;
559static struct ev_io sigev;
560
561static void
562signals_init (ANSIG *base, int count)
563{
564 while (count--)
565 {
566 base->head = 0;
567 base->gotsig = 0;
568
569 ++base;
570 }
571}
572
573static void
574sighandler (int signum) 1377ev_sighandler (int signum)
575{ 1378{
576#if WIN32 1379#if EV_MULTIPLICITY
577 signal (signum, sighandler); 1380 EV_P = signals [signum - 1].loop;
578#endif 1381#endif
579 1382
580 signals [signum - 1].gotsig = 1;
581
582 if (!gotsig)
583 {
584 int old_errno = errno;
585 gotsig = 1;
586#ifdef WIN32 1383#ifdef _WIN32
587 send (sigpipe [1], &signum, 1, MSG_DONTWAIT); 1384 signal (signum, ev_sighandler);
588#else
589 write (sigpipe [1], &signum, 1);
590#endif 1385#endif
591 errno = old_errno;
592 }
593}
594 1386
595void 1387 signals [signum - 1].pending = 1;
1388 evpipe_write (EV_A_ &sig_pending);
1389}
1390
1391void noinline
596ev_feed_signal_event (EV_P_ int signum) 1392ev_feed_signal_event (EV_P_ int signum)
597{ 1393{
598 WL w; 1394 WL w;
599 1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
600#if EV_MULTIPLICITY 1401#if EV_MULTIPLICITY
601 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1402 /* it is permissible to try to feed a signal to the wrong loop */
602#endif 1403 /* or, likely more useful, feeding a signal nobody is waiting for */
603 1404
604 --signum; 1405 if (expect_false (signals [signum].loop != EV_A))
605
606 if (signum < 0 || signum >= signalmax)
607 return; 1406 return;
1407#endif
608 1408
609 signals [signum].gotsig = 0; 1409 signals [signum].pending = 0;
610 1410
611 for (w = signals [signum].head; w; w = w->next) 1411 for (w = signals [signum].head; w; w = w->next)
612 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
613} 1413}
614 1414
1415#if EV_USE_SIGNALFD
615static void 1416static void
616sigcb (EV_P_ struct ev_io *iow, int revents) 1417sigfdcb (EV_P_ ev_io *iow, int revents)
617{ 1418{
618 int signum; 1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
619 1420
620#ifdef WIN32 1421 for (;;)
621 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1422 {
622#else 1423 ssize_t res = read (sigfd, si, sizeof (si));
623 read (sigpipe [0], &revents, 1);
624#endif
625 gotsig = 0;
626 1424
627 for (signum = signalmax; signum--; ) 1425 /* not ISO-C, as res might be -1, but works with SuS */
628 if (signals [signum].gotsig) 1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
629 ev_feed_signal_event (EV_A_ signum + 1); 1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
630}
631 1428
632static void 1429 if (res < (ssize_t)sizeof (si))
633siginit (EV_P) 1430 break;
634{ 1431 }
635#ifndef WIN32
636 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
637 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
638
639 /* rather than sort out wether we really need nb, set it */
640 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
641 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
642#endif
643
644 ev_io_set (&sigev, sigpipe [0], EV_READ);
645 ev_io_start (EV_A_ &sigev);
646 ev_unref (EV_A); /* child watcher should not keep loop alive */
647} 1432}
1433#endif
1434
1435#endif
648 1436
649/*****************************************************************************/ 1437/*****************************************************************************/
650 1438
651static struct ev_child *childs [PID_HASHSIZE]; 1439#if EV_CHILD_ENABLE
1440static WL childs [EV_PID_HASHSIZE];
652 1441
653#ifndef WIN32
654
655static struct ev_signal childev; 1442static ev_signal childev;
1443
1444#ifndef WIFCONTINUED
1445# define WIFCONTINUED(status) 0
1446#endif
1447
1448/* handle a single child status event */
1449inline_speed void
1450child_reap (EV_P_ int chain, int pid, int status)
1451{
1452 ev_child *w;
1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1454
1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1456 {
1457 if ((w->pid == pid || !w->pid)
1458 && (!traced || (w->flags & 1)))
1459 {
1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1461 w->rpid = pid;
1462 w->rstatus = status;
1463 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1464 }
1465 }
1466}
656 1467
657#ifndef WCONTINUED 1468#ifndef WCONTINUED
658# define WCONTINUED 0 1469# define WCONTINUED 0
659#endif 1470#endif
660 1471
1472/* called on sigchld etc., calls waitpid */
661static void 1473static void
662child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
663{
664 struct ev_child *w;
665
666 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
667 if (w->pid == pid || !w->pid)
668 {
669 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
670 w->rpid = pid;
671 w->rstatus = status;
672 ev_feed_event (EV_A_ (W)w, EV_CHILD);
673 }
674}
675
676static void
677childcb (EV_P_ struct ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
678{ 1475{
679 int pid, status; 1476 int pid, status;
680 1477
1478 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
681 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1479 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
682 { 1480 if (!WCONTINUED
1481 || errno != EINVAL
1482 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1483 return;
1484
683 /* make sure we are called again until all childs have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
1486 /* we need to do it this way so that the callback gets called before we continue */
684 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
685 1488
686 child_reap (EV_A_ sw, pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1490 if ((EV_PID_HASHSIZE) > 1)
687 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
688 }
689} 1492}
690 1493
691#endif 1494#endif
692 1495
693/*****************************************************************************/ 1496/*****************************************************************************/
694 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
1501#if EV_USE_PORT
1502# include "ev_port.c"
1503#endif
695#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
696# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
697#endif 1506#endif
698#if EV_USE_EPOLL 1507#if EV_USE_EPOLL
699# include "ev_epoll.c" 1508# include "ev_epoll.c"
716{ 1525{
717 return EV_VERSION_MINOR; 1526 return EV_VERSION_MINOR;
718} 1527}
719 1528
720/* return true if we are running with elevated privileges and should ignore env variables */ 1529/* return true if we are running with elevated privileges and should ignore env variables */
721static int 1530int inline_size
722enable_secure (void) 1531enable_secure (void)
723{ 1532{
724#ifdef WIN32 1533#ifdef _WIN32
725 return 0; 1534 return 0;
726#else 1535#else
727 return getuid () != geteuid () 1536 return getuid () != geteuid ()
728 || getgid () != getegid (); 1537 || getgid () != getegid ();
729#endif 1538#endif
730} 1539}
731 1540
732int 1541unsigned int
1542ev_supported_backends (void)
1543{
1544 unsigned int flags = 0;
1545
1546 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1547 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1548 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1549 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1550 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1551
1552 return flags;
1553}
1554
1555unsigned int
1556ev_recommended_backends (void)
1557{
1558 unsigned int flags = ev_supported_backends ();
1559
1560#ifndef __NetBSD__
1561 /* kqueue is borked on everything but netbsd apparently */
1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1563 flags &= ~EVBACKEND_KQUEUE;
1564#endif
1565#ifdef __APPLE__
1566 /* only select works correctly on that "unix-certified" platform */
1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1572#endif
1573
1574 return flags;
1575}
1576
1577unsigned int
1578ev_embeddable_backends (void)
1579{
1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1581
1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1584 flags &= ~EVBACKEND_EPOLL;
1585
1586 return flags;
1587}
1588
1589unsigned int
1590ev_backend (EV_P)
1591{
1592 return backend;
1593}
1594
1595#if EV_FEATURE_API
1596unsigned int
1597ev_iteration (EV_P)
1598{
1599 return loop_count;
1600}
1601
1602unsigned int
733ev_method (EV_P) 1603ev_depth (EV_P)
734{ 1604{
735 return method; 1605 return loop_depth;
736} 1606}
737 1607
738static void 1608void
739loop_init (EV_P_ int methods) 1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
740{ 1610{
741 if (!method) 1611 io_blocktime = interval;
1612}
1613
1614void
1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616{
1617 timeout_blocktime = interval;
1618}
1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1645static void noinline
1646loop_init (EV_P_ unsigned int flags)
1647{
1648 if (!backend)
742 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
743#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
744 { 1662 {
745 struct timespec ts; 1663 struct timespec ts;
1664
746 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
747 have_monotonic = 1; 1666 have_monotonic = 1;
748 } 1667 }
749#endif 1668#endif
750 1669
1670 /* pid check not overridable via env */
1671#ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674#endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1680
751 ev_rt_now = ev_time (); 1681 ev_rt_now = ev_time ();
752 mn_now = get_clock (); 1682 mn_now = get_clock ();
753 now_floor = mn_now; 1683 now_floor = mn_now;
754 rtmn_diff = ev_rt_now - mn_now; 1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
755 1688
756 if (methods == EVMETHOD_AUTO) 1689 io_blocktime = 0.;
757 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1690 timeout_blocktime = 0.;
758 methods = atoi (getenv ("LIBEV_METHODS")); 1691 backend = 0;
759 else 1692 backend_fd = -1;
760 methods = EVMETHOD_ANY; 1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1697#if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699#endif
1700#if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702#endif
761 1703
762 method = 0; 1704 if (!(flags & 0x0000ffffU))
1705 flags |= ev_recommended_backends ();
1706
763#if EV_USE_WIN32 1707#if EV_USE_IOCP
764 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
1710#if EV_USE_PORT
1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
765#endif 1712#endif
766#if EV_USE_KQUEUE 1713#if EV_USE_KQUEUE
767 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
768#endif 1715#endif
769#if EV_USE_EPOLL 1716#if EV_USE_EPOLL
770 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1717 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
771#endif 1718#endif
772#if EV_USE_POLL 1719#if EV_USE_POLL
773 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1720 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
774#endif 1721#endif
775#if EV_USE_SELECT 1722#if EV_USE_SELECT
776 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
777#endif 1724#endif
778 1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
779 ev_init (&sigev, sigcb); 1729 ev_init (&pipe_w, pipecb);
780 ev_set_priority (&sigev, EV_MAXPRI); 1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
781 } 1732 }
782} 1733}
783 1734
784void 1735/* free up a loop structure */
1736static void noinline
785loop_destroy (EV_P) 1737loop_destroy (EV_P)
786{ 1738{
787 int i; 1739 int i;
788 1740
1741 if (ev_is_active (&pipe_w))
1742 {
1743 /*ev_ref (EV_A);*/
1744 /*ev_io_stop (EV_A_ &pipe_w);*/
1745
1746#if EV_USE_EVENTFD
1747 if (evfd >= 0)
1748 close (evfd);
1749#endif
1750
1751 if (evpipe [0] >= 0)
1752 {
1753 EV_WIN32_CLOSE_FD (evpipe [0]);
1754 EV_WIN32_CLOSE_FD (evpipe [1]);
1755 }
1756 }
1757
1758#if EV_USE_SIGNALFD
1759 if (ev_is_active (&sigfd_w))
1760 close (sigfd);
1761#endif
1762
1763#if EV_USE_INOTIFY
1764 if (fs_fd >= 0)
1765 close (fs_fd);
1766#endif
1767
1768 if (backend_fd >= 0)
1769 close (backend_fd);
1770
789#if EV_USE_WIN32 1771#if EV_USE_IOCP
790 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1772 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1773#endif
1774#if EV_USE_PORT
1775 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
791#endif 1776#endif
792#if EV_USE_KQUEUE 1777#if EV_USE_KQUEUE
793 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1778 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
794#endif 1779#endif
795#if EV_USE_EPOLL 1780#if EV_USE_EPOLL
796 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1781 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
797#endif 1782#endif
798#if EV_USE_POLL 1783#if EV_USE_POLL
799 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1784 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
800#endif 1785#endif
801#if EV_USE_SELECT 1786#if EV_USE_SELECT
802 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1787 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
803#endif 1788#endif
804 1789
805 for (i = NUMPRI; i--; ) 1790 for (i = NUMPRI; i--; )
1791 {
806 array_free (pending, [i]); 1792 array_free (pending, [i]);
1793#if EV_IDLE_ENABLE
1794 array_free (idle, [i]);
1795#endif
1796 }
1797
1798 ev_free (anfds); anfds = 0; anfdmax = 0;
807 1799
808 /* have to use the microsoft-never-gets-it-right macro */ 1800 /* have to use the microsoft-never-gets-it-right macro */
809 array_free_microshit (fdchange); 1801 array_free (rfeed, EMPTY);
810 array_free_microshit (timer); 1802 array_free (fdchange, EMPTY);
1803 array_free (timer, EMPTY);
811#if EV_PERIODICS 1804#if EV_PERIODIC_ENABLE
812 array_free_microshit (periodic); 1805 array_free (periodic, EMPTY);
813#endif 1806#endif
814 array_free_microshit (idle); 1807#if EV_FORK_ENABLE
815 array_free_microshit (prepare); 1808 array_free (fork, EMPTY);
816 array_free_microshit (check); 1809#endif
1810 array_free (prepare, EMPTY);
1811 array_free (check, EMPTY);
1812#if EV_ASYNC_ENABLE
1813 array_free (async, EMPTY);
1814#endif
817 1815
818 method = 0; 1816 backend = 0;
819} 1817}
820 1818
821static void 1819#if EV_USE_INOTIFY
1820inline_size void infy_fork (EV_P);
1821#endif
1822
1823inline_size void
822loop_fork (EV_P) 1824loop_fork (EV_P)
823{ 1825{
1826#if EV_USE_PORT
1827 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1828#endif
1829#if EV_USE_KQUEUE
1830 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1831#endif
824#if EV_USE_EPOLL 1832#if EV_USE_EPOLL
825 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1833 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
826#endif 1834#endif
827#if EV_USE_KQUEUE 1835#if EV_USE_INOTIFY
828 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1836 infy_fork (EV_A);
829#endif 1837#endif
830 1838
831 if (ev_is_active (&sigev)) 1839 if (ev_is_active (&pipe_w))
832 { 1840 {
833 /* default loop */ 1841 /* this "locks" the handlers against writing to the pipe */
1842 /* while we modify the fd vars */
1843 sig_pending = 1;
1844#if EV_ASYNC_ENABLE
1845 async_pending = 1;
1846#endif
834 1847
835 ev_ref (EV_A); 1848 ev_ref (EV_A);
836 ev_io_stop (EV_A_ &sigev); 1849 ev_io_stop (EV_A_ &pipe_w);
837 close (sigpipe [0]);
838 close (sigpipe [1]);
839 1850
840 while (pipe (sigpipe)) 1851#if EV_USE_EVENTFD
841 syserr ("(libev) error creating pipe"); 1852 if (evfd >= 0)
1853 close (evfd);
1854#endif
842 1855
1856 if (evpipe [0] >= 0)
1857 {
1858 EV_WIN32_CLOSE_FD (evpipe [0]);
1859 EV_WIN32_CLOSE_FD (evpipe [1]);
1860 }
1861
1862#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
843 siginit (EV_A); 1863 evpipe_init (EV_A);
1864 /* now iterate over everything, in case we missed something */
1865 pipecb (EV_A_ &pipe_w, EV_READ);
1866#endif
844 } 1867 }
845 1868
846 postfork = 0; 1869 postfork = 0;
847} 1870}
848 1871
849#if EV_MULTIPLICITY 1872#if EV_MULTIPLICITY
1873
850struct ev_loop * 1874struct ev_loop *
851ev_loop_new (int methods) 1875ev_loop_new (unsigned int flags)
852{ 1876{
853 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1877 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
854 1878
855 memset (loop, 0, sizeof (struct ev_loop)); 1879 memset (EV_A, 0, sizeof (struct ev_loop));
856
857 loop_init (EV_A_ methods); 1880 loop_init (EV_A_ flags);
858 1881
859 if (ev_method (EV_A)) 1882 if (ev_backend (EV_A))
860 return loop; 1883 return EV_A;
861 1884
862 return 0; 1885 return 0;
863} 1886}
864 1887
865void 1888void
870} 1893}
871 1894
872void 1895void
873ev_loop_fork (EV_P) 1896ev_loop_fork (EV_P)
874{ 1897{
875 postfork = 1; 1898 postfork = 1; /* must be in line with ev_default_fork */
876} 1899}
1900#endif /* multiplicity */
877 1901
1902#if EV_VERIFY
1903static void noinline
1904verify_watcher (EV_P_ W w)
1905{
1906 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1907
1908 if (w->pending)
1909 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1910}
1911
1912static void noinline
1913verify_heap (EV_P_ ANHE *heap, int N)
1914{
1915 int i;
1916
1917 for (i = HEAP0; i < N + HEAP0; ++i)
1918 {
1919 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1920 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1921 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1922
1923 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1924 }
1925}
1926
1927static void noinline
1928array_verify (EV_P_ W *ws, int cnt)
1929{
1930 while (cnt--)
1931 {
1932 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1933 verify_watcher (EV_A_ ws [cnt]);
1934 }
1935}
1936#endif
1937
1938#if EV_FEATURE_API
1939void
1940ev_verify (EV_P)
1941{
1942#if EV_VERIFY
1943 int i;
1944 WL w;
1945
1946 assert (activecnt >= -1);
1947
1948 assert (fdchangemax >= fdchangecnt);
1949 for (i = 0; i < fdchangecnt; ++i)
1950 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1951
1952 assert (anfdmax >= 0);
1953 for (i = 0; i < anfdmax; ++i)
1954 for (w = anfds [i].head; w; w = w->next)
1955 {
1956 verify_watcher (EV_A_ (W)w);
1957 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1958 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1959 }
1960
1961 assert (timermax >= timercnt);
1962 verify_heap (EV_A_ timers, timercnt);
1963
1964#if EV_PERIODIC_ENABLE
1965 assert (periodicmax >= periodiccnt);
1966 verify_heap (EV_A_ periodics, periodiccnt);
1967#endif
1968
1969 for (i = NUMPRI; i--; )
1970 {
1971 assert (pendingmax [i] >= pendingcnt [i]);
1972#if EV_IDLE_ENABLE
1973 assert (idleall >= 0);
1974 assert (idlemax [i] >= idlecnt [i]);
1975 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1976#endif
1977 }
1978
1979#if EV_FORK_ENABLE
1980 assert (forkmax >= forkcnt);
1981 array_verify (EV_A_ (W *)forks, forkcnt);
1982#endif
1983
1984#if EV_ASYNC_ENABLE
1985 assert (asyncmax >= asynccnt);
1986 array_verify (EV_A_ (W *)asyncs, asynccnt);
1987#endif
1988
1989#if EV_PREPARE_ENABLE
1990 assert (preparemax >= preparecnt);
1991 array_verify (EV_A_ (W *)prepares, preparecnt);
1992#endif
1993
1994#if EV_CHECK_ENABLE
1995 assert (checkmax >= checkcnt);
1996 array_verify (EV_A_ (W *)checks, checkcnt);
1997#endif
1998
1999# if 0
2000#if EV_CHILD_ENABLE
2001 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2002 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2003#endif
2004# endif
2005#endif
2006}
878#endif 2007#endif
879 2008
880#if EV_MULTIPLICITY 2009#if EV_MULTIPLICITY
881struct ev_loop * 2010struct ev_loop *
882#else 2011#else
883int 2012int
884#endif 2013#endif
885ev_default_loop (int methods) 2014ev_default_loop (unsigned int flags)
886{ 2015{
887 if (sigpipe [0] == sigpipe [1])
888 if (pipe (sigpipe))
889 return 0;
890
891 if (!default_loop) 2016 if (!ev_default_loop_ptr)
892 { 2017 {
893#if EV_MULTIPLICITY 2018#if EV_MULTIPLICITY
894 struct ev_loop *loop = default_loop = &default_loop_struct; 2019 EV_P = ev_default_loop_ptr = &default_loop_struct;
895#else 2020#else
896 default_loop = 1; 2021 ev_default_loop_ptr = 1;
897#endif 2022#endif
898 2023
899 loop_init (EV_A_ methods); 2024 loop_init (EV_A_ flags);
900 2025
901 if (ev_method (EV_A)) 2026 if (ev_backend (EV_A))
902 { 2027 {
903 siginit (EV_A); 2028#if EV_CHILD_ENABLE
904
905#ifndef WIN32
906 ev_signal_init (&childev, childcb, SIGCHLD); 2029 ev_signal_init (&childev, childcb, SIGCHLD);
907 ev_set_priority (&childev, EV_MAXPRI); 2030 ev_set_priority (&childev, EV_MAXPRI);
908 ev_signal_start (EV_A_ &childev); 2031 ev_signal_start (EV_A_ &childev);
909 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2032 ev_unref (EV_A); /* child watcher should not keep loop alive */
910#endif 2033#endif
911 } 2034 }
912 else 2035 else
913 default_loop = 0; 2036 ev_default_loop_ptr = 0;
914 } 2037 }
915 2038
916 return default_loop; 2039 return ev_default_loop_ptr;
917} 2040}
918 2041
919void 2042void
920ev_default_destroy (void) 2043ev_default_destroy (void)
921{ 2044{
922#if EV_MULTIPLICITY 2045#if EV_MULTIPLICITY
923 struct ev_loop *loop = default_loop; 2046 EV_P = ev_default_loop_ptr;
924#endif 2047#endif
925 2048
926#ifndef WIN32 2049 ev_default_loop_ptr = 0;
2050
2051#if EV_CHILD_ENABLE
927 ev_ref (EV_A); /* child watcher */ 2052 ev_ref (EV_A); /* child watcher */
928 ev_signal_stop (EV_A_ &childev); 2053 ev_signal_stop (EV_A_ &childev);
929#endif 2054#endif
930 2055
931 ev_ref (EV_A); /* signal watcher */
932 ev_io_stop (EV_A_ &sigev);
933
934 close (sigpipe [0]); sigpipe [0] = 0;
935 close (sigpipe [1]); sigpipe [1] = 0;
936
937 loop_destroy (EV_A); 2056 loop_destroy (EV_A);
938} 2057}
939 2058
940void 2059void
941ev_default_fork (void) 2060ev_default_fork (void)
942{ 2061{
943#if EV_MULTIPLICITY 2062#if EV_MULTIPLICITY
944 struct ev_loop *loop = default_loop; 2063 EV_P = ev_default_loop_ptr;
945#endif 2064#endif
946 2065
947 if (method) 2066 postfork = 1; /* must be in line with ev_loop_fork */
948 postfork = 1;
949} 2067}
950 2068
951/*****************************************************************************/ 2069/*****************************************************************************/
952 2070
953static int 2071void
954any_pending (EV_P) 2072ev_invoke (EV_P_ void *w, int revents)
2073{
2074 EV_CB_INVOKE ((W)w, revents);
2075}
2076
2077unsigned int
2078ev_pending_count (EV_P)
955{ 2079{
956 int pri; 2080 int pri;
2081 unsigned int count = 0;
957 2082
958 for (pri = NUMPRI; pri--; ) 2083 for (pri = NUMPRI; pri--; )
959 if (pendingcnt [pri]) 2084 count += pendingcnt [pri];
960 return 1;
961 2085
962 return 0; 2086 return count;
963} 2087}
964 2088
965static void 2089void noinline
966call_pending (EV_P) 2090ev_invoke_pending (EV_P)
967{ 2091{
968 int pri; 2092 int pri;
969 2093
970 for (pri = NUMPRI; pri--; ) 2094 for (pri = NUMPRI; pri--; )
971 while (pendingcnt [pri]) 2095 while (pendingcnt [pri])
972 { 2096 {
973 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2097 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
974 2098
975 if (p->w) 2099 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
976 { 2100 /* ^ this is no longer true, as pending_w could be here */
2101
977 p->w->pending = 0; 2102 p->w->pending = 0;
978 EV_CB_INVOKE (p->w, p->events); 2103 EV_CB_INVOKE (p->w, p->events);
979 } 2104 EV_FREQUENT_CHECK;
980 } 2105 }
981} 2106}
982 2107
983static void 2108#if EV_IDLE_ENABLE
2109/* make idle watchers pending. this handles the "call-idle */
2110/* only when higher priorities are idle" logic */
2111inline_size void
2112idle_reify (EV_P)
2113{
2114 if (expect_false (idleall))
2115 {
2116 int pri;
2117
2118 for (pri = NUMPRI; pri--; )
2119 {
2120 if (pendingcnt [pri])
2121 break;
2122
2123 if (idlecnt [pri])
2124 {
2125 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2126 break;
2127 }
2128 }
2129 }
2130}
2131#endif
2132
2133/* make timers pending */
2134inline_size void
984timers_reify (EV_P) 2135timers_reify (EV_P)
985{ 2136{
2137 EV_FREQUENT_CHECK;
2138
986 while (timercnt && ((WT)timers [0])->at <= mn_now) 2139 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
987 { 2140 {
988 struct ev_timer *w = timers [0]; 2141 do
989
990 assert (("inactive timer on timer heap detected", ev_is_active (w)));
991
992 /* first reschedule or stop timer */
993 if (w->repeat)
994 { 2142 {
2143 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2144
2145 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2146
2147 /* first reschedule or stop timer */
2148 if (w->repeat)
2149 {
2150 ev_at (w) += w->repeat;
2151 if (ev_at (w) < mn_now)
2152 ev_at (w) = mn_now;
2153
995 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2154 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
996 2155
997 ((WT)w)->at += w->repeat; 2156 ANHE_at_cache (timers [HEAP0]);
998 if (((WT)w)->at < mn_now)
999 ((WT)w)->at = mn_now;
1000
1001 downheap ((WT *)timers, timercnt, 0); 2157 downheap (timers, timercnt, HEAP0);
2158 }
2159 else
2160 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2161
2162 EV_FREQUENT_CHECK;
2163 feed_reverse (EV_A_ (W)w);
1002 } 2164 }
1003 else 2165 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1004 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1005 2166
1006 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2167 feed_reverse_done (EV_A_ EV_TIMER);
1007 } 2168 }
1008} 2169}
1009 2170
1010#if EV_PERIODICS 2171#if EV_PERIODIC_ENABLE
1011static void 2172/* make periodics pending */
2173inline_size void
1012periodics_reify (EV_P) 2174periodics_reify (EV_P)
1013{ 2175{
2176 EV_FREQUENT_CHECK;
2177
1014 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2178 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1015 { 2179 {
1016 struct ev_periodic *w = periodics [0]; 2180 int feed_count = 0;
1017 2181
2182 do
2183 {
2184 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2185
1018 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2186 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1019 2187
1020 /* first reschedule or stop timer */ 2188 /* first reschedule or stop timer */
2189 if (w->reschedule_cb)
2190 {
2191 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2192
2193 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2194
2195 ANHE_at_cache (periodics [HEAP0]);
2196 downheap (periodics, periodiccnt, HEAP0);
2197 }
2198 else if (w->interval)
2199 {
2200 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2201 /* if next trigger time is not sufficiently in the future, put it there */
2202 /* this might happen because of floating point inexactness */
2203 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2204 {
2205 ev_at (w) += w->interval;
2206
2207 /* if interval is unreasonably low we might still have a time in the past */
2208 /* so correct this. this will make the periodic very inexact, but the user */
2209 /* has effectively asked to get triggered more often than possible */
2210 if (ev_at (w) < ev_rt_now)
2211 ev_at (w) = ev_rt_now;
2212 }
2213
2214 ANHE_at_cache (periodics [HEAP0]);
2215 downheap (periodics, periodiccnt, HEAP0);
2216 }
2217 else
2218 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2219
2220 EV_FREQUENT_CHECK;
2221 feed_reverse (EV_A_ (W)w);
2222 }
2223 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2224
2225 feed_reverse_done (EV_A_ EV_PERIODIC);
2226 }
2227}
2228
2229/* simply recalculate all periodics */
2230/* TODO: maybe ensure that at least one event happens when jumping forward? */
2231static void noinline
2232periodics_reschedule (EV_P)
2233{
2234 int i;
2235
2236 /* adjust periodics after time jump */
2237 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2238 {
2239 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2240
1021 if (w->reschedule_cb) 2241 if (w->reschedule_cb)
2242 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2243 else if (w->interval)
2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2245
2246 ANHE_at_cache (periodics [i]);
2247 }
2248
2249 reheap (periodics, periodiccnt);
2250}
2251#endif
2252
2253/* adjust all timers by a given offset */
2254static void noinline
2255timers_reschedule (EV_P_ ev_tstamp adjust)
2256{
2257 int i;
2258
2259 for (i = 0; i < timercnt; ++i)
2260 {
2261 ANHE *he = timers + i + HEAP0;
2262 ANHE_w (*he)->at += adjust;
2263 ANHE_at_cache (*he);
2264 }
2265}
2266
2267/* fetch new monotonic and realtime times from the kernel */
2268/* also detect if there was a timejump, and act accordingly */
2269inline_speed void
2270time_update (EV_P_ ev_tstamp max_block)
2271{
2272#if EV_USE_MONOTONIC
2273 if (expect_true (have_monotonic))
2274 {
2275 int i;
2276 ev_tstamp odiff = rtmn_diff;
2277
2278 mn_now = get_clock ();
2279
2280 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2281 /* interpolate in the meantime */
2282 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1022 { 2283 {
1023 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2284 ev_rt_now = rtmn_diff + mn_now;
1024 2285 return;
1025 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1026 downheap ((WT *)periodics, periodiccnt, 0);
1027 } 2286 }
1028 else if (w->interval)
1029 {
1030 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1031 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1032 downheap ((WT *)periodics, periodiccnt, 0);
1033 }
1034 else
1035 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1036 2287
1037 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1038 }
1039}
1040
1041static void
1042periodics_reschedule (EV_P)
1043{
1044 int i;
1045
1046 /* adjust periodics after time jump */
1047 for (i = 0; i < periodiccnt; ++i)
1048 {
1049 struct ev_periodic *w = periodics [i];
1050
1051 if (w->reschedule_cb)
1052 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1053 else if (w->interval)
1054 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1055 }
1056
1057 /* now rebuild the heap */
1058 for (i = periodiccnt >> 1; i--; )
1059 downheap ((WT *)periodics, periodiccnt, i);
1060}
1061#endif
1062
1063inline int
1064time_update_monotonic (EV_P)
1065{
1066 mn_now = get_clock ();
1067
1068 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1069 {
1070 ev_rt_now = rtmn_diff + mn_now;
1071 return 0;
1072 }
1073 else
1074 {
1075 now_floor = mn_now; 2288 now_floor = mn_now;
1076 ev_rt_now = ev_time (); 2289 ev_rt_now = ev_time ();
1077 return 1;
1078 }
1079}
1080 2290
1081static void 2291 /* loop a few times, before making important decisions.
1082time_update (EV_P) 2292 * on the choice of "4": one iteration isn't enough,
1083{ 2293 * in case we get preempted during the calls to
1084 int i; 2294 * ev_time and get_clock. a second call is almost guaranteed
1085 2295 * to succeed in that case, though. and looping a few more times
1086#if EV_USE_MONOTONIC 2296 * doesn't hurt either as we only do this on time-jumps or
1087 if (expect_true (have_monotonic)) 2297 * in the unlikely event of having been preempted here.
1088 { 2298 */
1089 if (time_update_monotonic (EV_A)) 2299 for (i = 4; --i; )
1090 { 2300 {
1091 ev_tstamp odiff = rtmn_diff;
1092
1093 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1094 {
1095 rtmn_diff = ev_rt_now - mn_now; 2301 rtmn_diff = ev_rt_now - mn_now;
1096 2302
1097 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2303 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1098 return; /* all is well */ 2304 return; /* all is well */
1099 2305
1100 ev_rt_now = ev_time (); 2306 ev_rt_now = ev_time ();
1101 mn_now = get_clock (); 2307 mn_now = get_clock ();
1102 now_floor = mn_now; 2308 now_floor = mn_now;
1103 } 2309 }
1104 2310
2311 /* no timer adjustment, as the monotonic clock doesn't jump */
2312 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1105# if EV_PERIODICS 2313# if EV_PERIODIC_ENABLE
2314 periodics_reschedule (EV_A);
2315# endif
2316 }
2317 else
2318#endif
2319 {
2320 ev_rt_now = ev_time ();
2321
2322 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2323 {
2324 /* adjust timers. this is easy, as the offset is the same for all of them */
2325 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2326#if EV_PERIODIC_ENABLE
1106 periodics_reschedule (EV_A); 2327 periodics_reschedule (EV_A);
1107# endif 2328#endif
1108 /* no timer adjustment, as the monotonic clock doesn't jump */
1109 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1110 } 2329 }
1111 }
1112 else
1113#endif
1114 {
1115 ev_rt_now = ev_time ();
1116
1117 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1118 {
1119#if EV_PERIODICS
1120 periodics_reschedule (EV_A);
1121#endif
1122
1123 /* adjust timers. this is easy, as the offset is the same for all */
1124 for (i = 0; i < timercnt; ++i)
1125 ((WT)timers [i])->at += ev_rt_now - mn_now;
1126 }
1127 2330
1128 mn_now = ev_rt_now; 2331 mn_now = ev_rt_now;
1129 } 2332 }
1130} 2333}
1131 2334
1132void 2335void
1133ev_ref (EV_P)
1134{
1135 ++activecnt;
1136}
1137
1138void
1139ev_unref (EV_P)
1140{
1141 --activecnt;
1142}
1143
1144static int loop_done;
1145
1146void
1147ev_loop (EV_P_ int flags) 2336ev_run (EV_P_ int flags)
1148{ 2337{
1149 double block; 2338#if EV_FEATURE_API
1150 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2339 ++loop_depth;
2340#endif
2341
2342 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2343
2344 loop_done = EVBREAK_CANCEL;
2345
2346 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1151 2347
1152 do 2348 do
1153 { 2349 {
2350#if EV_VERIFY >= 2
2351 ev_verify (EV_A);
2352#endif
2353
2354#ifndef _WIN32
2355 if (expect_false (curpid)) /* penalise the forking check even more */
2356 if (expect_false (getpid () != curpid))
2357 {
2358 curpid = getpid ();
2359 postfork = 1;
2360 }
2361#endif
2362
2363#if EV_FORK_ENABLE
2364 /* we might have forked, so queue fork handlers */
2365 if (expect_false (postfork))
2366 if (forkcnt)
2367 {
2368 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2369 EV_INVOKE_PENDING;
2370 }
2371#endif
2372
2373#if EV_PREPARE_ENABLE
1154 /* queue check watchers (and execute them) */ 2374 /* queue prepare watchers (and execute them) */
1155 if (expect_false (preparecnt)) 2375 if (expect_false (preparecnt))
1156 { 2376 {
1157 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2377 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1158 call_pending (EV_A); 2378 EV_INVOKE_PENDING;
1159 } 2379 }
2380#endif
2381
2382 if (expect_false (loop_done))
2383 break;
1160 2384
1161 /* we might have forked, so reify kernel state if necessary */ 2385 /* we might have forked, so reify kernel state if necessary */
1162 if (expect_false (postfork)) 2386 if (expect_false (postfork))
1163 loop_fork (EV_A); 2387 loop_fork (EV_A);
1164 2388
1165 /* update fd-related kernel structures */ 2389 /* update fd-related kernel structures */
1166 fd_reify (EV_A); 2390 fd_reify (EV_A);
1167 2391
1168 /* calculate blocking time */ 2392 /* calculate blocking time */
2393 {
2394 ev_tstamp waittime = 0.;
2395 ev_tstamp sleeptime = 0.;
1169 2396
1170 /* we only need this for !monotonic clock or timers, but as we basically 2397 /* remember old timestamp for io_blocktime calculation */
1171 always have timers, we just calculate it always */ 2398 ev_tstamp prev_mn_now = mn_now;
1172#if EV_USE_MONOTONIC 2399
1173 if (expect_true (have_monotonic)) 2400 /* update time to cancel out callback processing overhead */
1174 time_update_monotonic (EV_A); 2401 time_update (EV_A_ 1e100);
1175 else 2402
1176#endif 2403 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1177 { 2404 {
1178 ev_rt_now = ev_time ();
1179 mn_now = ev_rt_now;
1180 }
1181
1182 if (flags & EVLOOP_NONBLOCK || idlecnt)
1183 block = 0.;
1184 else
1185 {
1186 block = MAX_BLOCKTIME; 2405 waittime = MAX_BLOCKTIME;
1187 2406
1188 if (timercnt) 2407 if (timercnt)
1189 { 2408 {
1190 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2409 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1191 if (block > to) block = to; 2410 if (waittime > to) waittime = to;
1192 } 2411 }
1193 2412
1194#if EV_PERIODICS 2413#if EV_PERIODIC_ENABLE
1195 if (periodiccnt) 2414 if (periodiccnt)
1196 { 2415 {
1197 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2416 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1198 if (block > to) block = to; 2417 if (waittime > to) waittime = to;
1199 } 2418 }
1200#endif 2419#endif
1201 2420
1202 if (block < 0.) block = 0.; 2421 /* don't let timeouts decrease the waittime below timeout_blocktime */
2422 if (expect_false (waittime < timeout_blocktime))
2423 waittime = timeout_blocktime;
2424
2425 /* extra check because io_blocktime is commonly 0 */
2426 if (expect_false (io_blocktime))
2427 {
2428 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2429
2430 if (sleeptime > waittime - backend_fudge)
2431 sleeptime = waittime - backend_fudge;
2432
2433 if (expect_true (sleeptime > 0.))
2434 {
2435 ev_sleep (sleeptime);
2436 waittime -= sleeptime;
2437 }
2438 }
1203 } 2439 }
1204 2440
1205 method_poll (EV_A_ block); 2441#if EV_FEATURE_API
2442 ++loop_count;
2443#endif
2444 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2445 backend_poll (EV_A_ waittime);
2446 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1206 2447
1207 /* update ev_rt_now, do magic */ 2448 /* update ev_rt_now, do magic */
1208 time_update (EV_A); 2449 time_update (EV_A_ waittime + sleeptime);
2450 }
1209 2451
1210 /* queue pending timers and reschedule them */ 2452 /* queue pending timers and reschedule them */
1211 timers_reify (EV_A); /* relative timers called last */ 2453 timers_reify (EV_A); /* relative timers called last */
1212#if EV_PERIODICS 2454#if EV_PERIODIC_ENABLE
1213 periodics_reify (EV_A); /* absolute timers called first */ 2455 periodics_reify (EV_A); /* absolute timers called first */
1214#endif 2456#endif
1215 2457
2458#if EV_IDLE_ENABLE
1216 /* queue idle watchers unless io or timers are pending */ 2459 /* queue idle watchers unless other events are pending */
1217 if (idlecnt && !any_pending (EV_A)) 2460 idle_reify (EV_A);
1218 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2461#endif
1219 2462
2463#if EV_CHECK_ENABLE
1220 /* queue check watchers, to be executed first */ 2464 /* queue check watchers, to be executed first */
1221 if (checkcnt) 2465 if (expect_false (checkcnt))
1222 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2466 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2467#endif
1223 2468
1224 call_pending (EV_A); 2469 EV_INVOKE_PENDING;
1225 } 2470 }
1226 while (activecnt && !loop_done); 2471 while (expect_true (
2472 activecnt
2473 && !loop_done
2474 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2475 ));
1227 2476
1228 if (loop_done != 2) 2477 if (loop_done == EVBREAK_ONE)
1229 loop_done = 0; 2478 loop_done = EVBREAK_CANCEL;
1230}
1231 2479
2480#if EV_FEATURE_API
2481 --loop_depth;
2482#endif
2483}
2484
1232void 2485void
1233ev_unloop (EV_P_ int how) 2486ev_break (EV_P_ int how)
1234{ 2487{
1235 loop_done = how; 2488 loop_done = how;
1236} 2489}
1237 2490
2491void
2492ev_ref (EV_P)
2493{
2494 ++activecnt;
2495}
2496
2497void
2498ev_unref (EV_P)
2499{
2500 --activecnt;
2501}
2502
2503void
2504ev_now_update (EV_P)
2505{
2506 time_update (EV_A_ 1e100);
2507}
2508
2509void
2510ev_suspend (EV_P)
2511{
2512 ev_now_update (EV_A);
2513}
2514
2515void
2516ev_resume (EV_P)
2517{
2518 ev_tstamp mn_prev = mn_now;
2519
2520 ev_now_update (EV_A);
2521 timers_reschedule (EV_A_ mn_now - mn_prev);
2522#if EV_PERIODIC_ENABLE
2523 /* TODO: really do this? */
2524 periodics_reschedule (EV_A);
2525#endif
2526}
2527
1238/*****************************************************************************/ 2528/*****************************************************************************/
2529/* singly-linked list management, used when the expected list length is short */
1239 2530
1240inline void 2531inline_size void
1241wlist_add (WL *head, WL elem) 2532wlist_add (WL *head, WL elem)
1242{ 2533{
1243 elem->next = *head; 2534 elem->next = *head;
1244 *head = elem; 2535 *head = elem;
1245} 2536}
1246 2537
1247inline void 2538inline_size void
1248wlist_del (WL *head, WL elem) 2539wlist_del (WL *head, WL elem)
1249{ 2540{
1250 while (*head) 2541 while (*head)
1251 { 2542 {
1252 if (*head == elem) 2543 if (expect_true (*head == elem))
1253 { 2544 {
1254 *head = elem->next; 2545 *head = elem->next;
1255 return; 2546 break;
1256 } 2547 }
1257 2548
1258 head = &(*head)->next; 2549 head = &(*head)->next;
1259 } 2550 }
1260} 2551}
1261 2552
2553/* internal, faster, version of ev_clear_pending */
1262inline void 2554inline_speed void
1263ev_clear_pending (EV_P_ W w) 2555clear_pending (EV_P_ W w)
1264{ 2556{
1265 if (w->pending) 2557 if (w->pending)
1266 { 2558 {
1267 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2559 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1268 w->pending = 0; 2560 w->pending = 0;
1269 } 2561 }
1270} 2562}
1271 2563
2564int
2565ev_clear_pending (EV_P_ void *w)
2566{
2567 W w_ = (W)w;
2568 int pending = w_->pending;
2569
2570 if (expect_true (pending))
2571 {
2572 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2573 p->w = (W)&pending_w;
2574 w_->pending = 0;
2575 return p->events;
2576 }
2577 else
2578 return 0;
2579}
2580
1272inline void 2581inline_size void
2582pri_adjust (EV_P_ W w)
2583{
2584 int pri = ev_priority (w);
2585 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2586 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2587 ev_set_priority (w, pri);
2588}
2589
2590inline_speed void
1273ev_start (EV_P_ W w, int active) 2591ev_start (EV_P_ W w, int active)
1274{ 2592{
1275 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2593 pri_adjust (EV_A_ w);
1276 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1277
1278 w->active = active; 2594 w->active = active;
1279 ev_ref (EV_A); 2595 ev_ref (EV_A);
1280} 2596}
1281 2597
1282inline void 2598inline_size void
1283ev_stop (EV_P_ W w) 2599ev_stop (EV_P_ W w)
1284{ 2600{
1285 ev_unref (EV_A); 2601 ev_unref (EV_A);
1286 w->active = 0; 2602 w->active = 0;
1287} 2603}
1288 2604
1289/*****************************************************************************/ 2605/*****************************************************************************/
1290 2606
1291void 2607void noinline
1292ev_io_start (EV_P_ struct ev_io *w) 2608ev_io_start (EV_P_ ev_io *w)
1293{ 2609{
1294 int fd = w->fd; 2610 int fd = w->fd;
1295 2611
1296 if (ev_is_active (w)) 2612 if (expect_false (ev_is_active (w)))
1297 return; 2613 return;
1298 2614
1299 assert (("ev_io_start called with negative fd", fd >= 0)); 2615 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2616 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2617
2618 EV_FREQUENT_CHECK;
1300 2619
1301 ev_start (EV_A_ (W)w, 1); 2620 ev_start (EV_A_ (W)w, 1);
1302 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2621 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1303 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2622 wlist_add (&anfds[fd].head, (WL)w);
1304 2623
1305 fd_change (EV_A_ fd); 2624 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1306} 2625 w->events &= ~EV__IOFDSET;
1307 2626
1308void 2627 EV_FREQUENT_CHECK;
2628}
2629
2630void noinline
1309ev_io_stop (EV_P_ struct ev_io *w) 2631ev_io_stop (EV_P_ ev_io *w)
1310{ 2632{
1311 ev_clear_pending (EV_A_ (W)w); 2633 clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 2634 if (expect_false (!ev_is_active (w)))
1313 return; 2635 return;
1314 2636
1315 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2637 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1316 2638
2639 EV_FREQUENT_CHECK;
2640
1317 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2641 wlist_del (&anfds[w->fd].head, (WL)w);
1318 ev_stop (EV_A_ (W)w); 2642 ev_stop (EV_A_ (W)w);
1319 2643
1320 fd_change (EV_A_ w->fd); 2644 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1321}
1322 2645
1323void 2646 EV_FREQUENT_CHECK;
2647}
2648
2649void noinline
1324ev_timer_start (EV_P_ struct ev_timer *w) 2650ev_timer_start (EV_P_ ev_timer *w)
1325{ 2651{
1326 if (ev_is_active (w)) 2652 if (expect_false (ev_is_active (w)))
1327 return; 2653 return;
1328 2654
1329 ((WT)w)->at += mn_now; 2655 ev_at (w) += mn_now;
1330 2656
1331 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2657 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1332 2658
2659 EV_FREQUENT_CHECK;
2660
2661 ++timercnt;
1333 ev_start (EV_A_ (W)w, ++timercnt); 2662 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1334 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2663 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1335 timers [timercnt - 1] = w; 2664 ANHE_w (timers [ev_active (w)]) = (WT)w;
1336 upheap ((WT *)timers, timercnt - 1); 2665 ANHE_at_cache (timers [ev_active (w)]);
2666 upheap (timers, ev_active (w));
1337 2667
2668 EV_FREQUENT_CHECK;
2669
1338 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2670 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1339} 2671}
1340 2672
1341void 2673void noinline
1342ev_timer_stop (EV_P_ struct ev_timer *w) 2674ev_timer_stop (EV_P_ ev_timer *w)
1343{ 2675{
1344 ev_clear_pending (EV_A_ (W)w); 2676 clear_pending (EV_A_ (W)w);
1345 if (!ev_is_active (w)) 2677 if (expect_false (!ev_is_active (w)))
1346 return; 2678 return;
1347 2679
2680 EV_FREQUENT_CHECK;
2681
2682 {
2683 int active = ev_active (w);
2684
1348 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2685 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1349 2686
1350 if (((W)w)->active < timercnt--) 2687 --timercnt;
2688
2689 if (expect_true (active < timercnt + HEAP0))
1351 { 2690 {
1352 timers [((W)w)->active - 1] = timers [timercnt]; 2691 timers [active] = timers [timercnt + HEAP0];
1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2692 adjustheap (timers, timercnt, active);
1354 } 2693 }
2694 }
1355 2695
1356 ((WT)w)->at -= mn_now; 2696 ev_at (w) -= mn_now;
1357 2697
1358 ev_stop (EV_A_ (W)w); 2698 ev_stop (EV_A_ (W)w);
1359}
1360 2699
1361void 2700 EV_FREQUENT_CHECK;
2701}
2702
2703void noinline
1362ev_timer_again (EV_P_ struct ev_timer *w) 2704ev_timer_again (EV_P_ ev_timer *w)
1363{ 2705{
2706 EV_FREQUENT_CHECK;
2707
1364 if (ev_is_active (w)) 2708 if (ev_is_active (w))
1365 { 2709 {
1366 if (w->repeat) 2710 if (w->repeat)
1367 { 2711 {
1368 ((WT)w)->at = mn_now + w->repeat; 2712 ev_at (w) = mn_now + w->repeat;
2713 ANHE_at_cache (timers [ev_active (w)]);
1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2714 adjustheap (timers, timercnt, ev_active (w));
1370 } 2715 }
1371 else 2716 else
1372 ev_timer_stop (EV_A_ w); 2717 ev_timer_stop (EV_A_ w);
1373 } 2718 }
1374 else if (w->repeat) 2719 else if (w->repeat)
2720 {
2721 ev_at (w) = w->repeat;
1375 ev_timer_start (EV_A_ w); 2722 ev_timer_start (EV_A_ w);
1376} 2723 }
1377 2724
2725 EV_FREQUENT_CHECK;
2726}
2727
2728ev_tstamp
2729ev_timer_remaining (EV_P_ ev_timer *w)
2730{
2731 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2732}
2733
1378#if EV_PERIODICS 2734#if EV_PERIODIC_ENABLE
1379void 2735void noinline
1380ev_periodic_start (EV_P_ struct ev_periodic *w) 2736ev_periodic_start (EV_P_ ev_periodic *w)
1381{ 2737{
1382 if (ev_is_active (w)) 2738 if (expect_false (ev_is_active (w)))
1383 return; 2739 return;
1384 2740
1385 if (w->reschedule_cb) 2741 if (w->reschedule_cb)
1386 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2742 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1387 else if (w->interval) 2743 else if (w->interval)
1388 { 2744 {
1389 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2745 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1390 /* this formula differs from the one in periodic_reify because we do not always round up */ 2746 /* this formula differs from the one in periodic_reify because we do not always round up */
1391 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2747 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1392 } 2748 }
2749 else
2750 ev_at (w) = w->offset;
1393 2751
2752 EV_FREQUENT_CHECK;
2753
2754 ++periodiccnt;
1394 ev_start (EV_A_ (W)w, ++periodiccnt); 2755 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1395 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2756 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1396 periodics [periodiccnt - 1] = w; 2757 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1397 upheap ((WT *)periodics, periodiccnt - 1); 2758 ANHE_at_cache (periodics [ev_active (w)]);
2759 upheap (periodics, ev_active (w));
1398 2760
2761 EV_FREQUENT_CHECK;
2762
1399 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2763 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1400} 2764}
1401 2765
1402void 2766void noinline
1403ev_periodic_stop (EV_P_ struct ev_periodic *w) 2767ev_periodic_stop (EV_P_ ev_periodic *w)
1404{ 2768{
1405 ev_clear_pending (EV_A_ (W)w); 2769 clear_pending (EV_A_ (W)w);
1406 if (!ev_is_active (w)) 2770 if (expect_false (!ev_is_active (w)))
1407 return; 2771 return;
1408 2772
2773 EV_FREQUENT_CHECK;
2774
2775 {
2776 int active = ev_active (w);
2777
1409 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2778 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1410 2779
1411 if (((W)w)->active < periodiccnt--) 2780 --periodiccnt;
2781
2782 if (expect_true (active < periodiccnt + HEAP0))
1412 { 2783 {
1413 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2784 periodics [active] = periodics [periodiccnt + HEAP0];
1414 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2785 adjustheap (periodics, periodiccnt, active);
1415 } 2786 }
2787 }
1416 2788
1417 ev_stop (EV_A_ (W)w); 2789 ev_stop (EV_A_ (W)w);
1418}
1419 2790
1420void 2791 EV_FREQUENT_CHECK;
2792}
2793
2794void noinline
1421ev_periodic_again (EV_P_ struct ev_periodic *w) 2795ev_periodic_again (EV_P_ ev_periodic *w)
1422{ 2796{
1423 /* TODO: use adjustheap and recalculation */ 2797 /* TODO: use adjustheap and recalculation */
1424 ev_periodic_stop (EV_A_ w); 2798 ev_periodic_stop (EV_A_ w);
1425 ev_periodic_start (EV_A_ w); 2799 ev_periodic_start (EV_A_ w);
1426} 2800}
1427#endif 2801#endif
1428 2802
1429void
1430ev_idle_start (EV_P_ struct ev_idle *w)
1431{
1432 if (ev_is_active (w))
1433 return;
1434
1435 ev_start (EV_A_ (W)w, ++idlecnt);
1436 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1437 idles [idlecnt - 1] = w;
1438}
1439
1440void
1441ev_idle_stop (EV_P_ struct ev_idle *w)
1442{
1443 ev_clear_pending (EV_A_ (W)w);
1444 if (!ev_is_active (w))
1445 return;
1446
1447 idles [((W)w)->active - 1] = idles [--idlecnt];
1448 ev_stop (EV_A_ (W)w);
1449}
1450
1451void
1452ev_prepare_start (EV_P_ struct ev_prepare *w)
1453{
1454 if (ev_is_active (w))
1455 return;
1456
1457 ev_start (EV_A_ (W)w, ++preparecnt);
1458 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1459 prepares [preparecnt - 1] = w;
1460}
1461
1462void
1463ev_prepare_stop (EV_P_ struct ev_prepare *w)
1464{
1465 ev_clear_pending (EV_A_ (W)w);
1466 if (!ev_is_active (w))
1467 return;
1468
1469 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1470 ev_stop (EV_A_ (W)w);
1471}
1472
1473void
1474ev_check_start (EV_P_ struct ev_check *w)
1475{
1476 if (ev_is_active (w))
1477 return;
1478
1479 ev_start (EV_A_ (W)w, ++checkcnt);
1480 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1481 checks [checkcnt - 1] = w;
1482}
1483
1484void
1485ev_check_stop (EV_P_ struct ev_check *w)
1486{
1487 ev_clear_pending (EV_A_ (W)w);
1488 if (!ev_is_active (w))
1489 return;
1490
1491 checks [((W)w)->active - 1] = checks [--checkcnt];
1492 ev_stop (EV_A_ (W)w);
1493}
1494
1495#ifndef SA_RESTART 2803#ifndef SA_RESTART
1496# define SA_RESTART 0 2804# define SA_RESTART 0
1497#endif 2805#endif
1498 2806
1499void 2807#if EV_SIGNAL_ENABLE
2808
2809void noinline
1500ev_signal_start (EV_P_ struct ev_signal *w) 2810ev_signal_start (EV_P_ ev_signal *w)
1501{ 2811{
2812 if (expect_false (ev_is_active (w)))
2813 return;
2814
2815 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2816
1502#if EV_MULTIPLICITY 2817#if EV_MULTIPLICITY
1503 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2818 assert (("libev: a signal must not be attached to two different loops",
2819 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2820
2821 signals [w->signum - 1].loop = EV_A;
2822#endif
2823
2824 EV_FREQUENT_CHECK;
2825
2826#if EV_USE_SIGNALFD
2827 if (sigfd == -2)
2828 {
2829 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2830 if (sigfd < 0 && errno == EINVAL)
2831 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2832
2833 if (sigfd >= 0)
2834 {
2835 fd_intern (sigfd); /* doing it twice will not hurt */
2836
2837 sigemptyset (&sigfd_set);
2838
2839 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2840 ev_set_priority (&sigfd_w, EV_MAXPRI);
2841 ev_io_start (EV_A_ &sigfd_w);
2842 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2843 }
2844 }
2845
2846 if (sigfd >= 0)
2847 {
2848 /* TODO: check .head */
2849 sigaddset (&sigfd_set, w->signum);
2850 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2851
2852 signalfd (sigfd, &sigfd_set, 0);
2853 }
2854#endif
2855
2856 ev_start (EV_A_ (W)w, 1);
2857 wlist_add (&signals [w->signum - 1].head, (WL)w);
2858
2859 if (!((WL)w)->next)
2860# if EV_USE_SIGNALFD
2861 if (sigfd < 0) /*TODO*/
1504#endif 2862# endif
1505 if (ev_is_active (w)) 2863 {
2864# ifdef _WIN32
2865 evpipe_init (EV_A);
2866
2867 signal (w->signum, ev_sighandler);
2868# else
2869 struct sigaction sa;
2870
2871 evpipe_init (EV_A);
2872
2873 sa.sa_handler = ev_sighandler;
2874 sigfillset (&sa.sa_mask);
2875 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2876 sigaction (w->signum, &sa, 0);
2877
2878 sigemptyset (&sa.sa_mask);
2879 sigaddset (&sa.sa_mask, w->signum);
2880 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2881#endif
2882 }
2883
2884 EV_FREQUENT_CHECK;
2885}
2886
2887void noinline
2888ev_signal_stop (EV_P_ ev_signal *w)
2889{
2890 clear_pending (EV_A_ (W)w);
2891 if (expect_false (!ev_is_active (w)))
1506 return; 2892 return;
1507 2893
1508 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2894 EV_FREQUENT_CHECK;
2895
2896 wlist_del (&signals [w->signum - 1].head, (WL)w);
2897 ev_stop (EV_A_ (W)w);
2898
2899 if (!signals [w->signum - 1].head)
2900 {
2901#if EV_MULTIPLICITY
2902 signals [w->signum - 1].loop = 0; /* unattach from signal */
2903#endif
2904#if EV_USE_SIGNALFD
2905 if (sigfd >= 0)
2906 {
2907 sigset_t ss;
2908
2909 sigemptyset (&ss);
2910 sigaddset (&ss, w->signum);
2911 sigdelset (&sigfd_set, w->signum);
2912
2913 signalfd (sigfd, &sigfd_set, 0);
2914 sigprocmask (SIG_UNBLOCK, &ss, 0);
2915 }
2916 else
2917#endif
2918 signal (w->signum, SIG_DFL);
2919 }
2920
2921 EV_FREQUENT_CHECK;
2922}
2923
2924#endif
2925
2926#if EV_CHILD_ENABLE
2927
2928void
2929ev_child_start (EV_P_ ev_child *w)
2930{
2931#if EV_MULTIPLICITY
2932 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2933#endif
2934 if (expect_false (ev_is_active (w)))
2935 return;
2936
2937 EV_FREQUENT_CHECK;
1509 2938
1510 ev_start (EV_A_ (W)w, 1); 2939 ev_start (EV_A_ (W)w, 1);
1511 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2940 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1512 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1513 2941
1514 if (!((WL)w)->next) 2942 EV_FREQUENT_CHECK;
2943}
2944
2945void
2946ev_child_stop (EV_P_ ev_child *w)
2947{
2948 clear_pending (EV_A_ (W)w);
2949 if (expect_false (!ev_is_active (w)))
2950 return;
2951
2952 EV_FREQUENT_CHECK;
2953
2954 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2958}
2959
2960#endif
2961
2962#if EV_STAT_ENABLE
2963
2964# ifdef _WIN32
2965# undef lstat
2966# define lstat(a,b) _stati64 (a,b)
2967# endif
2968
2969#define DEF_STAT_INTERVAL 5.0074891
2970#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2971#define MIN_STAT_INTERVAL 0.1074891
2972
2973static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2974
2975#if EV_USE_INOTIFY
2976
2977/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2978# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2979
2980static void noinline
2981infy_add (EV_P_ ev_stat *w)
2982{
2983 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2984
2985 if (w->wd >= 0)
2986 {
2987 struct statfs sfs;
2988
2989 /* now local changes will be tracked by inotify, but remote changes won't */
2990 /* unless the filesystem is known to be local, we therefore still poll */
2991 /* also do poll on <2.6.25, but with normal frequency */
2992
2993 if (!fs_2625)
2994 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2995 else if (!statfs (w->path, &sfs)
2996 && (sfs.f_type == 0x1373 /* devfs */
2997 || sfs.f_type == 0xEF53 /* ext2/3 */
2998 || sfs.f_type == 0x3153464a /* jfs */
2999 || sfs.f_type == 0x52654973 /* reiser3 */
3000 || sfs.f_type == 0x01021994 /* tempfs */
3001 || sfs.f_type == 0x58465342 /* xfs */))
3002 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3003 else
3004 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1515 { 3005 }
1516#if WIN32 3006 else
1517 signal (w->signum, sighandler); 3007 {
3008 /* can't use inotify, continue to stat */
3009 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3010
3011 /* if path is not there, monitor some parent directory for speedup hints */
3012 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3013 /* but an efficiency issue only */
3014 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3015 {
3016 char path [4096];
3017 strcpy (path, w->path);
3018
3019 do
3020 {
3021 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3022 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3023
3024 char *pend = strrchr (path, '/');
3025
3026 if (!pend || pend == path)
3027 break;
3028
3029 *pend = 0;
3030 w->wd = inotify_add_watch (fs_fd, path, mask);
3031 }
3032 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3033 }
3034 }
3035
3036 if (w->wd >= 0)
3037 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3038
3039 /* now re-arm timer, if required */
3040 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3041 ev_timer_again (EV_A_ &w->timer);
3042 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3043}
3044
3045static void noinline
3046infy_del (EV_P_ ev_stat *w)
3047{
3048 int slot;
3049 int wd = w->wd;
3050
3051 if (wd < 0)
3052 return;
3053
3054 w->wd = -2;
3055 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3056 wlist_del (&fs_hash [slot].head, (WL)w);
3057
3058 /* remove this watcher, if others are watching it, they will rearm */
3059 inotify_rm_watch (fs_fd, wd);
3060}
3061
3062static void noinline
3063infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3064{
3065 if (slot < 0)
3066 /* overflow, need to check for all hash slots */
3067 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3068 infy_wd (EV_A_ slot, wd, ev);
3069 else
3070 {
3071 WL w_;
3072
3073 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3074 {
3075 ev_stat *w = (ev_stat *)w_;
3076 w_ = w_->next; /* lets us remove this watcher and all before it */
3077
3078 if (w->wd == wd || wd == -1)
3079 {
3080 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3081 {
3082 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3083 w->wd = -1;
3084 infy_add (EV_A_ w); /* re-add, no matter what */
3085 }
3086
3087 stat_timer_cb (EV_A_ &w->timer, 0);
3088 }
3089 }
3090 }
3091}
3092
3093static void
3094infy_cb (EV_P_ ev_io *w, int revents)
3095{
3096 char buf [EV_INOTIFY_BUFSIZE];
3097 int ofs;
3098 int len = read (fs_fd, buf, sizeof (buf));
3099
3100 for (ofs = 0; ofs < len; )
3101 {
3102 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3103 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3104 ofs += sizeof (struct inotify_event) + ev->len;
3105 }
3106}
3107
3108inline_size void
3109ev_check_2625 (EV_P)
3110{
3111 /* kernels < 2.6.25 are borked
3112 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3113 */
3114 if (ev_linux_version () < 0x020619)
3115 return;
3116
3117 fs_2625 = 1;
3118}
3119
3120inline_size int
3121infy_newfd (void)
3122{
3123#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3124 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3125 if (fd >= 0)
3126 return fd;
3127#endif
3128 return inotify_init ();
3129}
3130
3131inline_size void
3132infy_init (EV_P)
3133{
3134 if (fs_fd != -2)
3135 return;
3136
3137 fs_fd = -1;
3138
3139 ev_check_2625 (EV_A);
3140
3141 fs_fd = infy_newfd ();
3142
3143 if (fs_fd >= 0)
3144 {
3145 fd_intern (fs_fd);
3146 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3147 ev_set_priority (&fs_w, EV_MAXPRI);
3148 ev_io_start (EV_A_ &fs_w);
3149 ev_unref (EV_A);
3150 }
3151}
3152
3153inline_size void
3154infy_fork (EV_P)
3155{
3156 int slot;
3157
3158 if (fs_fd < 0)
3159 return;
3160
3161 ev_ref (EV_A);
3162 ev_io_stop (EV_A_ &fs_w);
3163 close (fs_fd);
3164 fs_fd = infy_newfd ();
3165
3166 if (fs_fd >= 0)
3167 {
3168 fd_intern (fs_fd);
3169 ev_io_set (&fs_w, fs_fd, EV_READ);
3170 ev_io_start (EV_A_ &fs_w);
3171 ev_unref (EV_A);
3172 }
3173
3174 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3175 {
3176 WL w_ = fs_hash [slot].head;
3177 fs_hash [slot].head = 0;
3178
3179 while (w_)
3180 {
3181 ev_stat *w = (ev_stat *)w_;
3182 w_ = w_->next; /* lets us add this watcher */
3183
3184 w->wd = -1;
3185
3186 if (fs_fd >= 0)
3187 infy_add (EV_A_ w); /* re-add, no matter what */
3188 else
3189 {
3190 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3191 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3192 ev_timer_again (EV_A_ &w->timer);
3193 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3194 }
3195 }
3196 }
3197}
3198
3199#endif
3200
3201#ifdef _WIN32
3202# define EV_LSTAT(p,b) _stati64 (p, b)
1518#else 3203#else
1519 struct sigaction sa; 3204# define EV_LSTAT(p,b) lstat (p, b)
1520 sa.sa_handler = sighandler;
1521 sigfillset (&sa.sa_mask);
1522 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1523 sigaction (w->signum, &sa, 0);
1524#endif 3205#endif
1525 }
1526}
1527 3206
1528void 3207void
1529ev_signal_stop (EV_P_ struct ev_signal *w) 3208ev_stat_stat (EV_P_ ev_stat *w)
1530{ 3209{
1531 ev_clear_pending (EV_A_ (W)w); 3210 if (lstat (w->path, &w->attr) < 0)
1532 if (!ev_is_active (w)) 3211 w->attr.st_nlink = 0;
3212 else if (!w->attr.st_nlink)
3213 w->attr.st_nlink = 1;
3214}
3215
3216static void noinline
3217stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3218{
3219 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3220
3221 ev_statdata prev = w->attr;
3222 ev_stat_stat (EV_A_ w);
3223
3224 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3225 if (
3226 prev.st_dev != w->attr.st_dev
3227 || prev.st_ino != w->attr.st_ino
3228 || prev.st_mode != w->attr.st_mode
3229 || prev.st_nlink != w->attr.st_nlink
3230 || prev.st_uid != w->attr.st_uid
3231 || prev.st_gid != w->attr.st_gid
3232 || prev.st_rdev != w->attr.st_rdev
3233 || prev.st_size != w->attr.st_size
3234 || prev.st_atime != w->attr.st_atime
3235 || prev.st_mtime != w->attr.st_mtime
3236 || prev.st_ctime != w->attr.st_ctime
3237 ) {
3238 /* we only update w->prev on actual differences */
3239 /* in case we test more often than invoke the callback, */
3240 /* to ensure that prev is always different to attr */
3241 w->prev = prev;
3242
3243 #if EV_USE_INOTIFY
3244 if (fs_fd >= 0)
3245 {
3246 infy_del (EV_A_ w);
3247 infy_add (EV_A_ w);
3248 ev_stat_stat (EV_A_ w); /* avoid race... */
3249 }
3250 #endif
3251
3252 ev_feed_event (EV_A_ w, EV_STAT);
3253 }
3254}
3255
3256void
3257ev_stat_start (EV_P_ ev_stat *w)
3258{
3259 if (expect_false (ev_is_active (w)))
1533 return; 3260 return;
1534 3261
1535 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3262 ev_stat_stat (EV_A_ w);
3263
3264 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3265 w->interval = MIN_STAT_INTERVAL;
3266
3267 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3268 ev_set_priority (&w->timer, ev_priority (w));
3269
3270#if EV_USE_INOTIFY
3271 infy_init (EV_A);
3272
3273 if (fs_fd >= 0)
3274 infy_add (EV_A_ w);
3275 else
3276#endif
3277 {
3278 ev_timer_again (EV_A_ &w->timer);
3279 ev_unref (EV_A);
3280 }
3281
3282 ev_start (EV_A_ (W)w, 1);
3283
3284 EV_FREQUENT_CHECK;
3285}
3286
3287void
3288ev_stat_stop (EV_P_ ev_stat *w)
3289{
3290 clear_pending (EV_A_ (W)w);
3291 if (expect_false (!ev_is_active (w)))
3292 return;
3293
3294 EV_FREQUENT_CHECK;
3295
3296#if EV_USE_INOTIFY
3297 infy_del (EV_A_ w);
3298#endif
3299
3300 if (ev_is_active (&w->timer))
3301 {
3302 ev_ref (EV_A);
3303 ev_timer_stop (EV_A_ &w->timer);
3304 }
3305
1536 ev_stop (EV_A_ (W)w); 3306 ev_stop (EV_A_ (W)w);
1537 3307
1538 if (!signals [w->signum - 1].head) 3308 EV_FREQUENT_CHECK;
1539 signal (w->signum, SIG_DFL);
1540} 3309}
3310#endif
1541 3311
3312#if EV_IDLE_ENABLE
1542void 3313void
1543ev_child_start (EV_P_ struct ev_child *w) 3314ev_idle_start (EV_P_ ev_idle *w)
1544{ 3315{
1545#if EV_MULTIPLICITY
1546 assert (("child watchers are only supported in the default loop", loop == default_loop));
1547#endif
1548 if (ev_is_active (w)) 3316 if (expect_false (ev_is_active (w)))
1549 return; 3317 return;
1550 3318
3319 pri_adjust (EV_A_ (W)w);
3320
3321 EV_FREQUENT_CHECK;
3322
3323 {
3324 int active = ++idlecnt [ABSPRI (w)];
3325
3326 ++idleall;
3327 ev_start (EV_A_ (W)w, active);
3328
3329 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3330 idles [ABSPRI (w)][active - 1] = w;
3331 }
3332
3333 EV_FREQUENT_CHECK;
3334}
3335
3336void
3337ev_idle_stop (EV_P_ ev_idle *w)
3338{
3339 clear_pending (EV_A_ (W)w);
3340 if (expect_false (!ev_is_active (w)))
3341 return;
3342
3343 EV_FREQUENT_CHECK;
3344
3345 {
3346 int active = ev_active (w);
3347
3348 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3349 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3350
3351 ev_stop (EV_A_ (W)w);
3352 --idleall;
3353 }
3354
3355 EV_FREQUENT_CHECK;
3356}
3357#endif
3358
3359#if EV_PREPARE_ENABLE
3360void
3361ev_prepare_start (EV_P_ ev_prepare *w)
3362{
3363 if (expect_false (ev_is_active (w)))
3364 return;
3365
3366 EV_FREQUENT_CHECK;
3367
3368 ev_start (EV_A_ (W)w, ++preparecnt);
3369 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3370 prepares [preparecnt - 1] = w;
3371
3372 EV_FREQUENT_CHECK;
3373}
3374
3375void
3376ev_prepare_stop (EV_P_ ev_prepare *w)
3377{
3378 clear_pending (EV_A_ (W)w);
3379 if (expect_false (!ev_is_active (w)))
3380 return;
3381
3382 EV_FREQUENT_CHECK;
3383
3384 {
3385 int active = ev_active (w);
3386
3387 prepares [active - 1] = prepares [--preparecnt];
3388 ev_active (prepares [active - 1]) = active;
3389 }
3390
3391 ev_stop (EV_A_ (W)w);
3392
3393 EV_FREQUENT_CHECK;
3394}
3395#endif
3396
3397#if EV_CHECK_ENABLE
3398void
3399ev_check_start (EV_P_ ev_check *w)
3400{
3401 if (expect_false (ev_is_active (w)))
3402 return;
3403
3404 EV_FREQUENT_CHECK;
3405
3406 ev_start (EV_A_ (W)w, ++checkcnt);
3407 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3408 checks [checkcnt - 1] = w;
3409
3410 EV_FREQUENT_CHECK;
3411}
3412
3413void
3414ev_check_stop (EV_P_ ev_check *w)
3415{
3416 clear_pending (EV_A_ (W)w);
3417 if (expect_false (!ev_is_active (w)))
3418 return;
3419
3420 EV_FREQUENT_CHECK;
3421
3422 {
3423 int active = ev_active (w);
3424
3425 checks [active - 1] = checks [--checkcnt];
3426 ev_active (checks [active - 1]) = active;
3427 }
3428
3429 ev_stop (EV_A_ (W)w);
3430
3431 EV_FREQUENT_CHECK;
3432}
3433#endif
3434
3435#if EV_EMBED_ENABLE
3436void noinline
3437ev_embed_sweep (EV_P_ ev_embed *w)
3438{
3439 ev_run (w->other, EVRUN_NOWAIT);
3440}
3441
3442static void
3443embed_io_cb (EV_P_ ev_io *io, int revents)
3444{
3445 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3446
3447 if (ev_cb (w))
3448 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3449 else
3450 ev_run (w->other, EVRUN_NOWAIT);
3451}
3452
3453static void
3454embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3455{
3456 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3457
3458 {
3459 EV_P = w->other;
3460
3461 while (fdchangecnt)
3462 {
3463 fd_reify (EV_A);
3464 ev_run (EV_A_ EVRUN_NOWAIT);
3465 }
3466 }
3467}
3468
3469static void
3470embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3471{
3472 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3473
3474 ev_embed_stop (EV_A_ w);
3475
3476 {
3477 EV_P = w->other;
3478
3479 ev_loop_fork (EV_A);
3480 ev_run (EV_A_ EVRUN_NOWAIT);
3481 }
3482
3483 ev_embed_start (EV_A_ w);
3484}
3485
3486#if 0
3487static void
3488embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3489{
3490 ev_idle_stop (EV_A_ idle);
3491}
3492#endif
3493
3494void
3495ev_embed_start (EV_P_ ev_embed *w)
3496{
3497 if (expect_false (ev_is_active (w)))
3498 return;
3499
3500 {
3501 EV_P = w->other;
3502 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3503 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3504 }
3505
3506 EV_FREQUENT_CHECK;
3507
3508 ev_set_priority (&w->io, ev_priority (w));
3509 ev_io_start (EV_A_ &w->io);
3510
3511 ev_prepare_init (&w->prepare, embed_prepare_cb);
3512 ev_set_priority (&w->prepare, EV_MINPRI);
3513 ev_prepare_start (EV_A_ &w->prepare);
3514
3515 ev_fork_init (&w->fork, embed_fork_cb);
3516 ev_fork_start (EV_A_ &w->fork);
3517
3518 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3519
1551 ev_start (EV_A_ (W)w, 1); 3520 ev_start (EV_A_ (W)w, 1);
1552 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1553}
1554 3521
3522 EV_FREQUENT_CHECK;
3523}
3524
1555void 3525void
1556ev_child_stop (EV_P_ struct ev_child *w) 3526ev_embed_stop (EV_P_ ev_embed *w)
1557{ 3527{
1558 ev_clear_pending (EV_A_ (W)w); 3528 clear_pending (EV_A_ (W)w);
1559 if (!ev_is_active (w)) 3529 if (expect_false (!ev_is_active (w)))
1560 return; 3530 return;
1561 3531
1562 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3532 EV_FREQUENT_CHECK;
3533
3534 ev_io_stop (EV_A_ &w->io);
3535 ev_prepare_stop (EV_A_ &w->prepare);
3536 ev_fork_stop (EV_A_ &w->fork);
3537
1563 ev_stop (EV_A_ (W)w); 3538 ev_stop (EV_A_ (W)w);
3539
3540 EV_FREQUENT_CHECK;
1564} 3541}
3542#endif
3543
3544#if EV_FORK_ENABLE
3545void
3546ev_fork_start (EV_P_ ev_fork *w)
3547{
3548 if (expect_false (ev_is_active (w)))
3549 return;
3550
3551 EV_FREQUENT_CHECK;
3552
3553 ev_start (EV_A_ (W)w, ++forkcnt);
3554 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3555 forks [forkcnt - 1] = w;
3556
3557 EV_FREQUENT_CHECK;
3558}
3559
3560void
3561ev_fork_stop (EV_P_ ev_fork *w)
3562{
3563 clear_pending (EV_A_ (W)w);
3564 if (expect_false (!ev_is_active (w)))
3565 return;
3566
3567 EV_FREQUENT_CHECK;
3568
3569 {
3570 int active = ev_active (w);
3571
3572 forks [active - 1] = forks [--forkcnt];
3573 ev_active (forks [active - 1]) = active;
3574 }
3575
3576 ev_stop (EV_A_ (W)w);
3577
3578 EV_FREQUENT_CHECK;
3579}
3580#endif
3581
3582#if EV_ASYNC_ENABLE
3583void
3584ev_async_start (EV_P_ ev_async *w)
3585{
3586 if (expect_false (ev_is_active (w)))
3587 return;
3588
3589 w->sent = 0;
3590
3591 evpipe_init (EV_A);
3592
3593 EV_FREQUENT_CHECK;
3594
3595 ev_start (EV_A_ (W)w, ++asynccnt);
3596 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3597 asyncs [asynccnt - 1] = w;
3598
3599 EV_FREQUENT_CHECK;
3600}
3601
3602void
3603ev_async_stop (EV_P_ ev_async *w)
3604{
3605 clear_pending (EV_A_ (W)w);
3606 if (expect_false (!ev_is_active (w)))
3607 return;
3608
3609 EV_FREQUENT_CHECK;
3610
3611 {
3612 int active = ev_active (w);
3613
3614 asyncs [active - 1] = asyncs [--asynccnt];
3615 ev_active (asyncs [active - 1]) = active;
3616 }
3617
3618 ev_stop (EV_A_ (W)w);
3619
3620 EV_FREQUENT_CHECK;
3621}
3622
3623void
3624ev_async_send (EV_P_ ev_async *w)
3625{
3626 w->sent = 1;
3627 evpipe_write (EV_A_ &async_pending);
3628}
3629#endif
1565 3630
1566/*****************************************************************************/ 3631/*****************************************************************************/
1567 3632
1568struct ev_once 3633struct ev_once
1569{ 3634{
1570 struct ev_io io; 3635 ev_io io;
1571 struct ev_timer to; 3636 ev_timer to;
1572 void (*cb)(int revents, void *arg); 3637 void (*cb)(int revents, void *arg);
1573 void *arg; 3638 void *arg;
1574}; 3639};
1575 3640
1576static void 3641static void
1577once_cb (EV_P_ struct ev_once *once, int revents) 3642once_cb (EV_P_ struct ev_once *once, int revents)
1578{ 3643{
1579 void (*cb)(int revents, void *arg) = once->cb; 3644 void (*cb)(int revents, void *arg) = once->cb;
1580 void *arg = once->arg; 3645 void *arg = once->arg;
1581 3646
1582 ev_io_stop (EV_A_ &once->io); 3647 ev_io_stop (EV_A_ &once->io);
1583 ev_timer_stop (EV_A_ &once->to); 3648 ev_timer_stop (EV_A_ &once->to);
1584 ev_free (once); 3649 ev_free (once);
1585 3650
1586 cb (revents, arg); 3651 cb (revents, arg);
1587} 3652}
1588 3653
1589static void 3654static void
1590once_cb_io (EV_P_ struct ev_io *w, int revents) 3655once_cb_io (EV_P_ ev_io *w, int revents)
1591{ 3656{
1592 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3657 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3658
3659 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1593} 3660}
1594 3661
1595static void 3662static void
1596once_cb_to (EV_P_ struct ev_timer *w, int revents) 3663once_cb_to (EV_P_ ev_timer *w, int revents)
1597{ 3664{
1598 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3665 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3666
3667 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1599} 3668}
1600 3669
1601void 3670void
1602ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3671ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1603{ 3672{
1604 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3673 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1605 3674
1606 if (!once) 3675 if (expect_false (!once))
3676 {
1607 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3677 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1608 else 3678 return;
1609 { 3679 }
3680
1610 once->cb = cb; 3681 once->cb = cb;
1611 once->arg = arg; 3682 once->arg = arg;
1612 3683
1613 ev_init (&once->io, once_cb_io); 3684 ev_init (&once->io, once_cb_io);
1614 if (fd >= 0) 3685 if (fd >= 0)
3686 {
3687 ev_io_set (&once->io, fd, events);
3688 ev_io_start (EV_A_ &once->io);
3689 }
3690
3691 ev_init (&once->to, once_cb_to);
3692 if (timeout >= 0.)
3693 {
3694 ev_timer_set (&once->to, timeout, 0.);
3695 ev_timer_start (EV_A_ &once->to);
3696 }
3697}
3698
3699/*****************************************************************************/
3700
3701#if EV_WALK_ENABLE
3702void
3703ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3704{
3705 int i, j;
3706 ev_watcher_list *wl, *wn;
3707
3708 if (types & (EV_IO | EV_EMBED))
3709 for (i = 0; i < anfdmax; ++i)
3710 for (wl = anfds [i].head; wl; )
1615 { 3711 {
1616 ev_io_set (&once->io, fd, events); 3712 wn = wl->next;
1617 ev_io_start (EV_A_ &once->io); 3713
3714#if EV_EMBED_ENABLE
3715 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3716 {
3717 if (types & EV_EMBED)
3718 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3719 }
3720 else
3721#endif
3722#if EV_USE_INOTIFY
3723 if (ev_cb ((ev_io *)wl) == infy_cb)
3724 ;
3725 else
3726#endif
3727 if ((ev_io *)wl != &pipe_w)
3728 if (types & EV_IO)
3729 cb (EV_A_ EV_IO, wl);
3730
3731 wl = wn;
1618 } 3732 }
1619 3733
1620 ev_init (&once->to, once_cb_to); 3734 if (types & (EV_TIMER | EV_STAT))
1621 if (timeout >= 0.) 3735 for (i = timercnt + HEAP0; i-- > HEAP0; )
3736#if EV_STAT_ENABLE
3737 /*TODO: timer is not always active*/
3738 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1622 { 3739 {
1623 ev_timer_set (&once->to, timeout, 0.); 3740 if (types & EV_STAT)
1624 ev_timer_start (EV_A_ &once->to); 3741 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1625 } 3742 }
1626 } 3743 else
1627} 3744#endif
3745 if (types & EV_TIMER)
3746 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1628 3747
1629#ifdef __cplusplus 3748#if EV_PERIODIC_ENABLE
1630} 3749 if (types & EV_PERIODIC)
3750 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3751 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3752#endif
3753
3754#if EV_IDLE_ENABLE
3755 if (types & EV_IDLE)
3756 for (j = NUMPRI; i--; )
3757 for (i = idlecnt [j]; i--; )
3758 cb (EV_A_ EV_IDLE, idles [j][i]);
3759#endif
3760
3761#if EV_FORK_ENABLE
3762 if (types & EV_FORK)
3763 for (i = forkcnt; i--; )
3764 if (ev_cb (forks [i]) != embed_fork_cb)
3765 cb (EV_A_ EV_FORK, forks [i]);
3766#endif
3767
3768#if EV_ASYNC_ENABLE
3769 if (types & EV_ASYNC)
3770 for (i = asynccnt; i--; )
3771 cb (EV_A_ EV_ASYNC, asyncs [i]);
3772#endif
3773
3774#if EV_PREPARE_ENABLE
3775 if (types & EV_PREPARE)
3776 for (i = preparecnt; i--; )
3777# if EV_EMBED_ENABLE
3778 if (ev_cb (prepares [i]) != embed_prepare_cb)
1631#endif 3779# endif
3780 cb (EV_A_ EV_PREPARE, prepares [i]);
3781#endif
1632 3782
3783#if EV_CHECK_ENABLE
3784 if (types & EV_CHECK)
3785 for (i = checkcnt; i--; )
3786 cb (EV_A_ EV_CHECK, checks [i]);
3787#endif
3788
3789#if EV_SIGNAL_ENABLE
3790 if (types & EV_SIGNAL)
3791 for (i = 0; i < EV_NSIG - 1; ++i)
3792 for (wl = signals [i].head; wl; )
3793 {
3794 wn = wl->next;
3795 cb (EV_A_ EV_SIGNAL, wl);
3796 wl = wn;
3797 }
3798#endif
3799
3800#if EV_CHILD_ENABLE
3801 if (types & EV_CHILD)
3802 for (i = (EV_PID_HASHSIZE); i--; )
3803 for (wl = childs [i]; wl; )
3804 {
3805 wn = wl->next;
3806 cb (EV_A_ EV_CHILD, wl);
3807 wl = wn;
3808 }
3809#endif
3810/* EV_STAT 0x00001000 /* stat data changed */
3811/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3812}
3813#endif
3814
3815#if EV_MULTIPLICITY
3816 #include "ev_wrap.h"
3817#endif
3818
3819EV_CPP(})
3820

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines