ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.59 by root, Sun Nov 4 18:15:16 2007 UTC vs.
Revision 1.101 by root, Sun Nov 11 04:04:23 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
38
39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1
45# endif
46# endif
47
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
49# define EV_USE_SELECT 1
50# endif
51
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
53# define EV_USE_POLL 1
54# endif
55
56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
57# define EV_USE_EPOLL 1
58# endif
59
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
61# define EV_USE_KQUEUE 1
62# endif
63
33#endif 64#endif
34 65
35#include <math.h> 66#include <math.h>
36#include <stdlib.h> 67#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 68#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 69#include <stddef.h>
41 70
42#include <stdio.h> 71#include <stdio.h>
43 72
44#include <assert.h> 73#include <assert.h>
45#include <errno.h> 74#include <errno.h>
46#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
47#ifndef WIN32 80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
48# include <sys/wait.h> 83# include <sys/wait.h>
49#endif 84#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 85/**/
54 86
55#ifndef EV_USE_MONOTONIC 87#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 88# define EV_USE_MONOTONIC 1
57#endif 89#endif
68# define EV_USE_EPOLL 0 100# define EV_USE_EPOLL 0
69#endif 101#endif
70 102
71#ifndef EV_USE_KQUEUE 103#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
73#endif 115#endif
74 116
75#ifndef EV_USE_REALTIME 117#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 118# define EV_USE_REALTIME 1
77#endif 119#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 139
140#ifdef EV_H
141# include EV_H
142#else
98#include "ev.h" 143# include "ev.h"
144#endif
99 145
100#if __GNUC__ >= 3 146#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 148# define inline inline
103#else 149#else
115typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
117 163
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119 165
166#ifdef WIN32
167# include "ev_win32.c"
168#endif
169
120/*****************************************************************************/ 170/*****************************************************************************/
121 171
172static void (*syserr_cb)(const char *msg);
173
174void ev_set_syserr_cb (void (*cb)(const char *msg))
175{
176 syserr_cb = cb;
177}
178
179static void
180syserr (const char *msg)
181{
182 if (!msg)
183 msg = "(libev) system error";
184
185 if (syserr_cb)
186 syserr_cb (msg);
187 else
188 {
189 perror (msg);
190 abort ();
191 }
192}
193
194static void *(*alloc)(void *ptr, long size);
195
196void ev_set_allocator (void *(*cb)(void *ptr, long size))
197{
198 alloc = cb;
199}
200
201static void *
202ev_realloc (void *ptr, long size)
203{
204 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
205
206 if (!ptr && size)
207 {
208 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
209 abort ();
210 }
211
212 return ptr;
213}
214
215#define ev_malloc(size) ev_realloc (0, (size))
216#define ev_free(ptr) ev_realloc ((ptr), 0)
217
218/*****************************************************************************/
219
122typedef struct 220typedef struct
123{ 221{
124 struct ev_watcher_list *head; 222 WL head;
125 unsigned char events; 223 unsigned char events;
126 unsigned char reify; 224 unsigned char reify;
127} ANFD; 225} ANFD;
128 226
129typedef struct 227typedef struct
132 int events; 230 int events;
133} ANPENDING; 231} ANPENDING;
134 232
135#if EV_MULTIPLICITY 233#if EV_MULTIPLICITY
136 234
137struct ev_loop 235 struct ev_loop
138{ 236 {
237 ev_tstamp ev_rt_now;
238 #define ev_rt_now ((loop)->ev_rt_now)
139# define VAR(name,decl) decl; 239 #define VAR(name,decl) decl;
140# include "ev_vars.h" 240 #include "ev_vars.h"
141};
142# undef VAR 241 #undef VAR
242 };
143# include "ev_wrap.h" 243 #include "ev_wrap.h"
244
245 struct ev_loop default_loop_struct;
246 static struct ev_loop *default_loop;
144 247
145#else 248#else
146 249
250 ev_tstamp ev_rt_now;
147# define VAR(name,decl) static decl; 251 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 252 #include "ev_vars.h"
149# undef VAR 253 #undef VAR
254
255 static int default_loop;
150 256
151#endif 257#endif
152 258
153/*****************************************************************************/ 259/*****************************************************************************/
154 260
155inline ev_tstamp 261ev_tstamp
156ev_time (void) 262ev_time (void)
157{ 263{
158#if EV_USE_REALTIME 264#if EV_USE_REALTIME
159 struct timespec ts; 265 struct timespec ts;
160 clock_gettime (CLOCK_REALTIME, &ts); 266 clock_gettime (CLOCK_REALTIME, &ts);
179#endif 285#endif
180 286
181 return ev_time (); 287 return ev_time ();
182} 288}
183 289
290#if EV_MULTIPLICITY
184ev_tstamp 291ev_tstamp
185ev_now (EV_P) 292ev_now (EV_P)
186{ 293{
187 return rt_now; 294 return ev_rt_now;
188} 295}
296#endif
189 297
190#define array_roundsize(base,n) ((n) | 4 & ~3) 298#define array_roundsize(type,n) ((n) | 4 & ~3)
191 299
192#define array_needsize(base,cur,cnt,init) \ 300#define array_needsize(type,base,cur,cnt,init) \
193 if (expect_false ((cnt) > cur)) \ 301 if (expect_false ((cnt) > cur)) \
194 { \ 302 { \
195 int newcnt = cur; \ 303 int newcnt = cur; \
196 do \ 304 do \
197 { \ 305 { \
198 newcnt = array_roundsize (base, newcnt << 1); \ 306 newcnt = array_roundsize (type, newcnt << 1); \
199 } \ 307 } \
200 while ((cnt) > newcnt); \ 308 while ((cnt) > newcnt); \
201 \ 309 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \ 310 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
203 init (base + cur, newcnt - cur); \ 311 init (base + cur, newcnt - cur); \
204 cur = newcnt; \ 312 cur = newcnt; \
205 } 313 }
314
315#define array_slim(type,stem) \
316 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
317 { \
318 stem ## max = array_roundsize (stem ## cnt >> 1); \
319 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
320 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
321 }
322
323/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
324/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
325#define array_free_microshit(stem) \
326 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
327
328#define array_free(stem, idx) \
329 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
206 330
207/*****************************************************************************/ 331/*****************************************************************************/
208 332
209static void 333static void
210anfds_init (ANFD *base, int count) 334anfds_init (ANFD *base, int count)
217 341
218 ++base; 342 ++base;
219 } 343 }
220} 344}
221 345
222static void 346void
223event (EV_P_ W w, int events) 347ev_feed_event (EV_P_ void *w, int revents)
224{ 348{
349 W w_ = (W)w;
350
225 if (w->pending) 351 if (w_->pending)
226 { 352 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
228 return; 354 return;
229 } 355 }
230 356
231 w->pending = ++pendingcnt [ABSPRI (w)]; 357 w_->pending = ++pendingcnt [ABSPRI (w_)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 358 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
233 pendings [ABSPRI (w)][w->pending - 1].w = w; 359 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
234 pendings [ABSPRI (w)][w->pending - 1].events = events; 360 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
235} 361}
236 362
237static void 363static void
238queue_events (EV_P_ W *events, int eventcnt, int type) 364queue_events (EV_P_ W *events, int eventcnt, int type)
239{ 365{
240 int i; 366 int i;
241 367
242 for (i = 0; i < eventcnt; ++i) 368 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type); 369 ev_feed_event (EV_A_ events [i], type);
244} 370}
245 371
246static void 372inline void
247fd_event (EV_P_ int fd, int events) 373fd_event (EV_P_ int fd, int revents)
248{ 374{
249 ANFD *anfd = anfds + fd; 375 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 376 struct ev_io *w;
251 377
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 378 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
253 { 379 {
254 int ev = w->events & events; 380 int ev = w->events & revents;
255 381
256 if (ev) 382 if (ev)
257 event (EV_A_ (W)w, ev); 383 ev_feed_event (EV_A_ (W)w, ev);
258 } 384 }
385}
386
387void
388ev_feed_fd_event (EV_P_ int fd, int revents)
389{
390 fd_event (EV_A_ fd, revents);
259} 391}
260 392
261/*****************************************************************************/ 393/*****************************************************************************/
262 394
263static void 395static void
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 events |= w->events; 409 events |= w->events;
278 410
279 anfd->reify = 0; 411 anfd->reify = 0;
280 412
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events); 413 method_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events; 414 anfd->events = events;
285 }
286 } 415 }
287 416
288 fdchangecnt = 0; 417 fdchangecnt = 0;
289} 418}
290 419
291static void 420static void
292fd_change (EV_P_ int fd) 421fd_change (EV_P_ int fd)
293{ 422{
294 if (anfds [fd].reify || fdchangecnt < 0) 423 if (anfds [fd].reify)
295 return; 424 return;
296 425
297 anfds [fd].reify = 1; 426 anfds [fd].reify = 1;
298 427
299 ++fdchangecnt; 428 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 429 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
301 fdchanges [fdchangecnt - 1] = fd; 430 fdchanges [fdchangecnt - 1] = fd;
302} 431}
303 432
304static void 433static void
305fd_kill (EV_P_ int fd) 434fd_kill (EV_P_ int fd)
307 struct ev_io *w; 436 struct ev_io *w;
308 437
309 while ((w = (struct ev_io *)anfds [fd].head)) 438 while ((w = (struct ev_io *)anfds [fd].head))
310 { 439 {
311 ev_io_stop (EV_A_ w); 440 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 441 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 442 }
443}
444
445static int
446fd_valid (int fd)
447{
448#ifdef WIN32
449 return !!win32_get_osfhandle (fd);
450#else
451 return fcntl (fd, F_GETFD) != -1;
452#endif
314} 453}
315 454
316/* called on EBADF to verify fds */ 455/* called on EBADF to verify fds */
317static void 456static void
318fd_ebadf (EV_P) 457fd_ebadf (EV_P)
319{ 458{
320 int fd; 459 int fd;
321 460
322 for (fd = 0; fd < anfdmax; ++fd) 461 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 462 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 463 if (!fd_valid (fd) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd); 464 fd_kill (EV_A_ fd);
326} 465}
327 466
328/* called on ENOMEM in select/poll to kill some fds and retry */ 467/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 468static void
330fd_enomem (EV_P) 469fd_enomem (EV_P)
331{ 470{
332 int fd = anfdmax; 471 int fd;
333 472
334 while (fd--) 473 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 474 if (anfds [fd].events)
336 { 475 {
337 close (fd);
338 fd_kill (EV_A_ fd); 476 fd_kill (EV_A_ fd);
339 return; 477 return;
340 } 478 }
341} 479}
342 480
343/* susually called after fork if method needs to re-arm all fds from scratch */ 481/* usually called after fork if method needs to re-arm all fds from scratch */
344static void 482static void
345fd_rearm_all (EV_P) 483fd_rearm_all (EV_P)
346{ 484{
347 int fd; 485 int fd;
348 486
349 /* this should be highly optimised to not do anything but set a flag */ 487 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd) 488 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events) 489 if (anfds [fd].events)
352 { 490 {
353 anfds [fd].events = 0; 491 anfds [fd].events = 0;
354 fd_change (fd); 492 fd_change (EV_A_ fd);
355 } 493 }
356} 494}
357 495
358/*****************************************************************************/ 496/*****************************************************************************/
359 497
363 WT w = heap [k]; 501 WT w = heap [k];
364 502
365 while (k && heap [k >> 1]->at > w->at) 503 while (k && heap [k >> 1]->at > w->at)
366 { 504 {
367 heap [k] = heap [k >> 1]; 505 heap [k] = heap [k >> 1];
368 heap [k]->active = k + 1; 506 ((W)heap [k])->active = k + 1;
369 k >>= 1; 507 k >>= 1;
370 } 508 }
371 509
372 heap [k] = w; 510 heap [k] = w;
373 heap [k]->active = k + 1; 511 ((W)heap [k])->active = k + 1;
374 512
375} 513}
376 514
377static void 515static void
378downheap (WT *heap, int N, int k) 516downheap (WT *heap, int N, int k)
388 526
389 if (w->at <= heap [j]->at) 527 if (w->at <= heap [j]->at)
390 break; 528 break;
391 529
392 heap [k] = heap [j]; 530 heap [k] = heap [j];
393 heap [k]->active = k + 1; 531 ((W)heap [k])->active = k + 1;
394 k = j; 532 k = j;
395 } 533 }
396 534
397 heap [k] = w; 535 heap [k] = w;
398 heap [k]->active = k + 1; 536 ((W)heap [k])->active = k + 1;
537}
538
539inline void
540adjustheap (WT *heap, int N, int k)
541{
542 upheap (heap, k);
543 downheap (heap, N, k);
399} 544}
400 545
401/*****************************************************************************/ 546/*****************************************************************************/
402 547
403typedef struct 548typedef struct
404{ 549{
405 struct ev_watcher_list *head; 550 WL head;
406 sig_atomic_t volatile gotsig; 551 sig_atomic_t volatile gotsig;
407} ANSIG; 552} ANSIG;
408 553
409static ANSIG *signals; 554static ANSIG *signals;
410static int signalmax; 555static int signalmax;
426} 571}
427 572
428static void 573static void
429sighandler (int signum) 574sighandler (int signum)
430{ 575{
576#if WIN32
577 signal (signum, sighandler);
578#endif
579
431 signals [signum - 1].gotsig = 1; 580 signals [signum - 1].gotsig = 1;
432 581
433 if (!gotsig) 582 if (!gotsig)
434 { 583 {
435 int old_errno = errno; 584 int old_errno = errno;
436 gotsig = 1; 585 gotsig = 1;
586#ifdef WIN32
587 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
588#else
437 write (sigpipe [1], &signum, 1); 589 write (sigpipe [1], &signum, 1);
590#endif
438 errno = old_errno; 591 errno = old_errno;
439 } 592 }
440} 593}
441 594
595void
596ev_feed_signal_event (EV_P_ int signum)
597{
598 WL w;
599
600#if EV_MULTIPLICITY
601 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
602#endif
603
604 --signum;
605
606 if (signum < 0 || signum >= signalmax)
607 return;
608
609 signals [signum].gotsig = 0;
610
611 for (w = signals [signum].head; w; w = w->next)
612 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
613}
614
442static void 615static void
443sigcb (EV_P_ struct ev_io *iow, int revents) 616sigcb (EV_P_ struct ev_io *iow, int revents)
444{ 617{
445 struct ev_watcher_list *w;
446 int signum; 618 int signum;
447 619
620#ifdef WIN32
621 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
622#else
448 read (sigpipe [0], &revents, 1); 623 read (sigpipe [0], &revents, 1);
624#endif
449 gotsig = 0; 625 gotsig = 0;
450 626
451 for (signum = signalmax; signum--; ) 627 for (signum = signalmax; signum--; )
452 if (signals [signum].gotsig) 628 if (signals [signum].gotsig)
453 { 629 ev_feed_signal_event (EV_A_ signum + 1);
454 signals [signum].gotsig = 0;
455
456 for (w = signals [signum].head; w; w = w->next)
457 event (EV_A_ (W)w, EV_SIGNAL);
458 }
459} 630}
460 631
461static void 632static void
462siginit (EV_P) 633siginit (EV_P)
463{ 634{
475 ev_unref (EV_A); /* child watcher should not keep loop alive */ 646 ev_unref (EV_A); /* child watcher should not keep loop alive */
476} 647}
477 648
478/*****************************************************************************/ 649/*****************************************************************************/
479 650
651static struct ev_child *childs [PID_HASHSIZE];
652
480#ifndef WIN32 653#ifndef WIN32
481 654
482static struct ev_child *childs [PID_HASHSIZE];
483static struct ev_signal childev; 655static struct ev_signal childev;
484 656
485#ifndef WCONTINUED 657#ifndef WCONTINUED
486# define WCONTINUED 0 658# define WCONTINUED 0
487#endif 659#endif
492 struct ev_child *w; 664 struct ev_child *w;
493 665
494 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 666 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
495 if (w->pid == pid || !w->pid) 667 if (w->pid == pid || !w->pid)
496 { 668 {
497 w->priority = sw->priority; /* need to do it *now* */ 669 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
498 w->rpid = pid; 670 w->rpid = pid;
499 w->rstatus = status; 671 w->rstatus = status;
500 event (EV_A_ (W)w, EV_CHILD); 672 ev_feed_event (EV_A_ (W)w, EV_CHILD);
501 } 673 }
502} 674}
503 675
504static void 676static void
505childcb (EV_P_ struct ev_signal *sw, int revents) 677childcb (EV_P_ struct ev_signal *sw, int revents)
507 int pid, status; 679 int pid, status;
508 680
509 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 681 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
510 { 682 {
511 /* make sure we are called again until all childs have been reaped */ 683 /* make sure we are called again until all childs have been reaped */
512 event (EV_A_ (W)sw, EV_SIGNAL); 684 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
513 685
514 child_reap (EV_A_ sw, pid, pid, status); 686 child_reap (EV_A_ sw, pid, pid, status);
515 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 687 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
516 } 688 }
517} 689}
574 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 746 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
575 have_monotonic = 1; 747 have_monotonic = 1;
576 } 748 }
577#endif 749#endif
578 750
579 rt_now = ev_time (); 751 ev_rt_now = ev_time ();
580 mn_now = get_clock (); 752 mn_now = get_clock ();
581 now_floor = mn_now; 753 now_floor = mn_now;
582 rtmn_diff = rt_now - mn_now; 754 rtmn_diff = ev_rt_now - mn_now;
583 755
584 if (methods == EVMETHOD_AUTO) 756 if (methods == EVMETHOD_AUTO)
585 if (!enable_secure () && getenv ("LIBEV_METHODS")) 757 if (!enable_secure () && getenv ("LIBEV_METHODS"))
586 methods = atoi (getenv ("LIBEV_METHODS")); 758 methods = atoi (getenv ("LIBEV_METHODS"));
587 else 759 else
588 methods = EVMETHOD_ANY; 760 methods = EVMETHOD_ANY;
589 761
590 method = 0; 762 method = 0;
763#if EV_USE_WIN32
764 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
765#endif
591#if EV_USE_KQUEUE 766#if EV_USE_KQUEUE
592 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 767 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
593#endif 768#endif
594#if EV_USE_EPOLL 769#if EV_USE_EPOLL
595 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 770 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
598 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 773 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
599#endif 774#endif
600#if EV_USE_SELECT 775#if EV_USE_SELECT
601 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 776 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
602#endif 777#endif
778
779 ev_init (&sigev, sigcb);
780 ev_set_priority (&sigev, EV_MAXPRI);
603 } 781 }
604} 782}
605 783
606void 784void
607loop_destroy (EV_P) 785loop_destroy (EV_P)
608{ 786{
787 int i;
788
789#if EV_USE_WIN32
790 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
791#endif
609#if EV_USE_KQUEUE 792#if EV_USE_KQUEUE
610 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 793 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
611#endif 794#endif
612#if EV_USE_EPOLL 795#if EV_USE_EPOLL
613 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 796 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
617#endif 800#endif
618#if EV_USE_SELECT 801#if EV_USE_SELECT
619 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 802 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
620#endif 803#endif
621 804
805 for (i = NUMPRI; i--; )
806 array_free (pending, [i]);
807
808 /* have to use the microsoft-never-gets-it-right macro */
809 array_free_microshit (fdchange);
810 array_free_microshit (timer);
811#if EV_PERIODICS
812 array_free_microshit (periodic);
813#endif
814 array_free_microshit (idle);
815 array_free_microshit (prepare);
816 array_free_microshit (check);
817
622 method = 0; 818 method = 0;
623 /*TODO*/
624} 819}
625 820
626void 821static void
627loop_fork (EV_P) 822loop_fork (EV_P)
628{ 823{
629 /*TODO*/
630#if EV_USE_EPOLL 824#if EV_USE_EPOLL
631 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 825 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
632#endif 826#endif
633#if EV_USE_KQUEUE 827#if EV_USE_KQUEUE
634 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 828 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
635#endif 829#endif
830
831 if (ev_is_active (&sigev))
832 {
833 /* default loop */
834
835 ev_ref (EV_A);
836 ev_io_stop (EV_A_ &sigev);
837 close (sigpipe [0]);
838 close (sigpipe [1]);
839
840 while (pipe (sigpipe))
841 syserr ("(libev) error creating pipe");
842
843 siginit (EV_A);
844 }
845
846 postfork = 0;
636} 847}
637 848
638#if EV_MULTIPLICITY 849#if EV_MULTIPLICITY
639struct ev_loop * 850struct ev_loop *
640ev_loop_new (int methods) 851ev_loop_new (int methods)
641{ 852{
642 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 853 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
854
855 memset (loop, 0, sizeof (struct ev_loop));
643 856
644 loop_init (EV_A_ methods); 857 loop_init (EV_A_ methods);
645 858
646 if (ev_methods (EV_A)) 859 if (ev_method (EV_A))
647 return loop; 860 return loop;
648 861
649 return 0; 862 return 0;
650} 863}
651 864
652void 865void
653ev_loop_destroy (EV_P) 866ev_loop_destroy (EV_P)
654{ 867{
655 loop_destroy (EV_A); 868 loop_destroy (EV_A);
656 free (loop); 869 ev_free (loop);
657} 870}
658 871
659void 872void
660ev_loop_fork (EV_P) 873ev_loop_fork (EV_P)
661{ 874{
662 loop_fork (EV_A); 875 postfork = 1;
663} 876}
664 877
665#endif 878#endif
666 879
667#if EV_MULTIPLICITY 880#if EV_MULTIPLICITY
668struct ev_loop default_loop_struct;
669static struct ev_loop *default_loop;
670
671struct ev_loop * 881struct ev_loop *
672#else 882#else
673static int default_loop;
674
675int 883int
676#endif 884#endif
677ev_default_loop (int methods) 885ev_default_loop (int methods)
678{ 886{
679 if (sigpipe [0] == sigpipe [1]) 887 if (sigpipe [0] == sigpipe [1])
690 898
691 loop_init (EV_A_ methods); 899 loop_init (EV_A_ methods);
692 900
693 if (ev_method (EV_A)) 901 if (ev_method (EV_A))
694 { 902 {
695 ev_watcher_init (&sigev, sigcb);
696 ev_set_priority (&sigev, EV_MAXPRI);
697 siginit (EV_A); 903 siginit (EV_A);
698 904
699#ifndef WIN32 905#ifndef WIN32
700 ev_signal_init (&childev, childcb, SIGCHLD); 906 ev_signal_init (&childev, childcb, SIGCHLD);
701 ev_set_priority (&childev, EV_MAXPRI); 907 ev_set_priority (&childev, EV_MAXPRI);
715{ 921{
716#if EV_MULTIPLICITY 922#if EV_MULTIPLICITY
717 struct ev_loop *loop = default_loop; 923 struct ev_loop *loop = default_loop;
718#endif 924#endif
719 925
926#ifndef WIN32
720 ev_ref (EV_A); /* child watcher */ 927 ev_ref (EV_A); /* child watcher */
721 ev_signal_stop (EV_A_ &childev); 928 ev_signal_stop (EV_A_ &childev);
929#endif
722 930
723 ev_ref (EV_A); /* signal watcher */ 931 ev_ref (EV_A); /* signal watcher */
724 ev_io_stop (EV_A_ &sigev); 932 ev_io_stop (EV_A_ &sigev);
725 933
726 close (sigpipe [0]); sigpipe [0] = 0; 934 close (sigpipe [0]); sigpipe [0] = 0;
728 936
729 loop_destroy (EV_A); 937 loop_destroy (EV_A);
730} 938}
731 939
732void 940void
733ev_default_fork (EV_P) 941ev_default_fork (void)
734{ 942{
735 loop_fork (EV_A); 943#if EV_MULTIPLICITY
944 struct ev_loop *loop = default_loop;
945#endif
736 946
737 ev_io_stop (EV_A_ &sigev); 947 if (method)
738 close (sigpipe [0]); 948 postfork = 1;
739 close (sigpipe [1]);
740 pipe (sigpipe);
741
742 ev_ref (EV_A); /* signal watcher */
743 siginit (EV_A);
744} 949}
745 950
746/*****************************************************************************/ 951/*****************************************************************************/
952
953static int
954any_pending (EV_P)
955{
956 int pri;
957
958 for (pri = NUMPRI; pri--; )
959 if (pendingcnt [pri])
960 return 1;
961
962 return 0;
963}
747 964
748static void 965static void
749call_pending (EV_P) 966call_pending (EV_P)
750{ 967{
751 int pri; 968 int pri;
756 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 973 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
757 974
758 if (p->w) 975 if (p->w)
759 { 976 {
760 p->w->pending = 0; 977 p->w->pending = 0;
761 p->w->cb (EV_A_ p->w, p->events); 978 EV_CB_INVOKE (p->w, p->events);
762 } 979 }
763 } 980 }
764} 981}
765 982
766static void 983static void
767timers_reify (EV_P) 984timers_reify (EV_P)
768{ 985{
769 while (timercnt && timers [0]->at <= mn_now) 986 while (timercnt && ((WT)timers [0])->at <= mn_now)
770 { 987 {
771 struct ev_timer *w = timers [0]; 988 struct ev_timer *w = timers [0];
989
990 assert (("inactive timer on timer heap detected", ev_is_active (w)));
772 991
773 /* first reschedule or stop timer */ 992 /* first reschedule or stop timer */
774 if (w->repeat) 993 if (w->repeat)
775 { 994 {
776 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 995 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
996
777 w->at = mn_now + w->repeat; 997 ((WT)w)->at += w->repeat;
998 if (((WT)w)->at < mn_now)
999 ((WT)w)->at = mn_now;
1000
778 downheap ((WT *)timers, timercnt, 0); 1001 downheap ((WT *)timers, timercnt, 0);
779 } 1002 }
780 else 1003 else
781 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1004 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
782 1005
783 event (EV_A_ (W)w, EV_TIMEOUT); 1006 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
784 } 1007 }
785} 1008}
786 1009
1010#if EV_PERIODICS
787static void 1011static void
788periodics_reify (EV_P) 1012periodics_reify (EV_P)
789{ 1013{
790 while (periodiccnt && periodics [0]->at <= rt_now) 1014 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
791 { 1015 {
792 struct ev_periodic *w = periodics [0]; 1016 struct ev_periodic *w = periodics [0];
793 1017
1018 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1019
794 /* first reschedule or stop timer */ 1020 /* first reschedule or stop timer */
795 if (w->interval) 1021 if (w->reschedule_cb)
796 { 1022 {
1023 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1024
1025 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1026 downheap ((WT *)periodics, periodiccnt, 0);
1027 }
1028 else if (w->interval)
1029 {
797 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1030 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
798 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1031 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
799 downheap ((WT *)periodics, periodiccnt, 0); 1032 downheap ((WT *)periodics, periodiccnt, 0);
800 } 1033 }
801 else 1034 else
802 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1035 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
803 1036
804 event (EV_A_ (W)w, EV_PERIODIC); 1037 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
805 } 1038 }
806} 1039}
807 1040
808static void 1041static void
809periodics_reschedule (EV_P) 1042periodics_reschedule (EV_P)
813 /* adjust periodics after time jump */ 1046 /* adjust periodics after time jump */
814 for (i = 0; i < periodiccnt; ++i) 1047 for (i = 0; i < periodiccnt; ++i)
815 { 1048 {
816 struct ev_periodic *w = periodics [i]; 1049 struct ev_periodic *w = periodics [i];
817 1050
1051 if (w->reschedule_cb)
1052 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
818 if (w->interval) 1053 else if (w->interval)
819 {
820 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1054 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
821
822 if (fabs (diff) >= 1e-4)
823 {
824 ev_periodic_stop (EV_A_ w);
825 ev_periodic_start (EV_A_ w);
826
827 i = 0; /* restart loop, inefficient, but time jumps should be rare */
828 }
829 }
830 } 1055 }
1056
1057 /* now rebuild the heap */
1058 for (i = periodiccnt >> 1; i--; )
1059 downheap ((WT *)periodics, periodiccnt, i);
831} 1060}
1061#endif
832 1062
833inline int 1063inline int
834time_update_monotonic (EV_P) 1064time_update_monotonic (EV_P)
835{ 1065{
836 mn_now = get_clock (); 1066 mn_now = get_clock ();
837 1067
838 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1068 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
839 { 1069 {
840 rt_now = rtmn_diff + mn_now; 1070 ev_rt_now = rtmn_diff + mn_now;
841 return 0; 1071 return 0;
842 } 1072 }
843 else 1073 else
844 { 1074 {
845 now_floor = mn_now; 1075 now_floor = mn_now;
846 rt_now = ev_time (); 1076 ev_rt_now = ev_time ();
847 return 1; 1077 return 1;
848 } 1078 }
849} 1079}
850 1080
851static void 1081static void
860 { 1090 {
861 ev_tstamp odiff = rtmn_diff; 1091 ev_tstamp odiff = rtmn_diff;
862 1092
863 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1093 for (i = 4; --i; ) /* loop a few times, before making important decisions */
864 { 1094 {
865 rtmn_diff = rt_now - mn_now; 1095 rtmn_diff = ev_rt_now - mn_now;
866 1096
867 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1097 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
868 return; /* all is well */ 1098 return; /* all is well */
869 1099
870 rt_now = ev_time (); 1100 ev_rt_now = ev_time ();
871 mn_now = get_clock (); 1101 mn_now = get_clock ();
872 now_floor = mn_now; 1102 now_floor = mn_now;
873 } 1103 }
874 1104
1105# if EV_PERIODICS
875 periodics_reschedule (EV_A); 1106 periodics_reschedule (EV_A);
1107# endif
876 /* no timer adjustment, as the monotonic clock doesn't jump */ 1108 /* no timer adjustment, as the monotonic clock doesn't jump */
877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1109 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
878 } 1110 }
879 } 1111 }
880 else 1112 else
881#endif 1113#endif
882 { 1114 {
883 rt_now = ev_time (); 1115 ev_rt_now = ev_time ();
884 1116
885 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1117 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
886 { 1118 {
1119#if EV_PERIODICS
887 periodics_reschedule (EV_A); 1120 periodics_reschedule (EV_A);
1121#endif
888 1122
889 /* adjust timers. this is easy, as the offset is the same for all */ 1123 /* adjust timers. this is easy, as the offset is the same for all */
890 for (i = 0; i < timercnt; ++i) 1124 for (i = 0; i < timercnt; ++i)
891 timers [i]->at += rt_now - mn_now; 1125 ((WT)timers [i])->at += ev_rt_now - mn_now;
892 } 1126 }
893 1127
894 mn_now = rt_now; 1128 mn_now = ev_rt_now;
895 } 1129 }
896} 1130}
897 1131
898void 1132void
899ev_ref (EV_P) 1133ev_ref (EV_P)
922 { 1156 {
923 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1157 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
924 call_pending (EV_A); 1158 call_pending (EV_A);
925 } 1159 }
926 1160
1161 /* we might have forked, so reify kernel state if necessary */
1162 if (expect_false (postfork))
1163 loop_fork (EV_A);
1164
927 /* update fd-related kernel structures */ 1165 /* update fd-related kernel structures */
928 fd_reify (EV_A); 1166 fd_reify (EV_A);
929 1167
930 /* calculate blocking time */ 1168 /* calculate blocking time */
931 1169
932 /* we only need this for !monotonic clockor timers, but as we basically 1170 /* we only need this for !monotonic clock or timers, but as we basically
933 always have timers, we just calculate it always */ 1171 always have timers, we just calculate it always */
934#if EV_USE_MONOTONIC 1172#if EV_USE_MONOTONIC
935 if (expect_true (have_monotonic)) 1173 if (expect_true (have_monotonic))
936 time_update_monotonic (EV_A); 1174 time_update_monotonic (EV_A);
937 else 1175 else
938#endif 1176#endif
939 { 1177 {
940 rt_now = ev_time (); 1178 ev_rt_now = ev_time ();
941 mn_now = rt_now; 1179 mn_now = ev_rt_now;
942 } 1180 }
943 1181
944 if (flags & EVLOOP_NONBLOCK || idlecnt) 1182 if (flags & EVLOOP_NONBLOCK || idlecnt)
945 block = 0.; 1183 block = 0.;
946 else 1184 else
947 { 1185 {
948 block = MAX_BLOCKTIME; 1186 block = MAX_BLOCKTIME;
949 1187
950 if (timercnt) 1188 if (timercnt)
951 { 1189 {
952 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1190 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
953 if (block > to) block = to; 1191 if (block > to) block = to;
954 } 1192 }
955 1193
1194#if EV_PERIODICS
956 if (periodiccnt) 1195 if (periodiccnt)
957 { 1196 {
958 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1197 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
959 if (block > to) block = to; 1198 if (block > to) block = to;
960 } 1199 }
1200#endif
961 1201
962 if (block < 0.) block = 0.; 1202 if (block < 0.) block = 0.;
963 } 1203 }
964 1204
965 method_poll (EV_A_ block); 1205 method_poll (EV_A_ block);
966 1206
967 /* update rt_now, do magic */ 1207 /* update ev_rt_now, do magic */
968 time_update (EV_A); 1208 time_update (EV_A);
969 1209
970 /* queue pending timers and reschedule them */ 1210 /* queue pending timers and reschedule them */
971 timers_reify (EV_A); /* relative timers called last */ 1211 timers_reify (EV_A); /* relative timers called last */
1212#if EV_PERIODICS
972 periodics_reify (EV_A); /* absolute timers called first */ 1213 periodics_reify (EV_A); /* absolute timers called first */
1214#endif
973 1215
974 /* queue idle watchers unless io or timers are pending */ 1216 /* queue idle watchers unless io or timers are pending */
975 if (!pendingcnt) 1217 if (idlecnt && !any_pending (EV_A))
976 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1218 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
977 1219
978 /* queue check watchers, to be executed first */ 1220 /* queue check watchers, to be executed first */
979 if (checkcnt) 1221 if (checkcnt)
980 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1222 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1055 return; 1297 return;
1056 1298
1057 assert (("ev_io_start called with negative fd", fd >= 0)); 1299 assert (("ev_io_start called with negative fd", fd >= 0));
1058 1300
1059 ev_start (EV_A_ (W)w, 1); 1301 ev_start (EV_A_ (W)w, 1);
1060 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1302 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1061 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1303 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1062 1304
1063 fd_change (EV_A_ fd); 1305 fd_change (EV_A_ fd);
1064} 1306}
1065 1307
1068{ 1310{
1069 ev_clear_pending (EV_A_ (W)w); 1311 ev_clear_pending (EV_A_ (W)w);
1070 if (!ev_is_active (w)) 1312 if (!ev_is_active (w))
1071 return; 1313 return;
1072 1314
1315 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1316
1073 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1317 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1074 ev_stop (EV_A_ (W)w); 1318 ev_stop (EV_A_ (W)w);
1075 1319
1076 fd_change (EV_A_ w->fd); 1320 fd_change (EV_A_ w->fd);
1077} 1321}
1080ev_timer_start (EV_P_ struct ev_timer *w) 1324ev_timer_start (EV_P_ struct ev_timer *w)
1081{ 1325{
1082 if (ev_is_active (w)) 1326 if (ev_is_active (w))
1083 return; 1327 return;
1084 1328
1085 w->at += mn_now; 1329 ((WT)w)->at += mn_now;
1086 1330
1087 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1331 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1088 1332
1089 ev_start (EV_A_ (W)w, ++timercnt); 1333 ev_start (EV_A_ (W)w, ++timercnt);
1090 array_needsize (timers, timermax, timercnt, ); 1334 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1091 timers [timercnt - 1] = w; 1335 timers [timercnt - 1] = w;
1092 upheap ((WT *)timers, timercnt - 1); 1336 upheap ((WT *)timers, timercnt - 1);
1337
1338 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1093} 1339}
1094 1340
1095void 1341void
1096ev_timer_stop (EV_P_ struct ev_timer *w) 1342ev_timer_stop (EV_P_ struct ev_timer *w)
1097{ 1343{
1098 ev_clear_pending (EV_A_ (W)w); 1344 ev_clear_pending (EV_A_ (W)w);
1099 if (!ev_is_active (w)) 1345 if (!ev_is_active (w))
1100 return; 1346 return;
1101 1347
1348 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1349
1102 if (w->active < timercnt--) 1350 if (((W)w)->active < timercnt--)
1103 { 1351 {
1104 timers [w->active - 1] = timers [timercnt]; 1352 timers [((W)w)->active - 1] = timers [timercnt];
1105 downheap ((WT *)timers, timercnt, w->active - 1); 1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1106 } 1354 }
1107 1355
1108 w->at = w->repeat; 1356 ((WT)w)->at -= mn_now;
1109 1357
1110 ev_stop (EV_A_ (W)w); 1358 ev_stop (EV_A_ (W)w);
1111} 1359}
1112 1360
1113void 1361void
1115{ 1363{
1116 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1117 { 1365 {
1118 if (w->repeat) 1366 if (w->repeat)
1119 { 1367 {
1120 w->at = mn_now + w->repeat; 1368 ((WT)w)->at = mn_now + w->repeat;
1121 downheap ((WT *)timers, timercnt, w->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1122 } 1370 }
1123 else 1371 else
1124 ev_timer_stop (EV_A_ w); 1372 ev_timer_stop (EV_A_ w);
1125 } 1373 }
1126 else if (w->repeat) 1374 else if (w->repeat)
1127 ev_timer_start (EV_A_ w); 1375 ev_timer_start (EV_A_ w);
1128} 1376}
1129 1377
1378#if EV_PERIODICS
1130void 1379void
1131ev_periodic_start (EV_P_ struct ev_periodic *w) 1380ev_periodic_start (EV_P_ struct ev_periodic *w)
1132{ 1381{
1133 if (ev_is_active (w)) 1382 if (ev_is_active (w))
1134 return; 1383 return;
1135 1384
1385 if (w->reschedule_cb)
1386 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1387 else if (w->interval)
1388 {
1136 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1389 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1137
1138 /* this formula differs from the one in periodic_reify because we do not always round up */ 1390 /* this formula differs from the one in periodic_reify because we do not always round up */
1139 if (w->interval)
1140 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1391 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1392 }
1141 1393
1142 ev_start (EV_A_ (W)w, ++periodiccnt); 1394 ev_start (EV_A_ (W)w, ++periodiccnt);
1143 array_needsize (periodics, periodicmax, periodiccnt, ); 1395 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1144 periodics [periodiccnt - 1] = w; 1396 periodics [periodiccnt - 1] = w;
1145 upheap ((WT *)periodics, periodiccnt - 1); 1397 upheap ((WT *)periodics, periodiccnt - 1);
1398
1399 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1146} 1400}
1147 1401
1148void 1402void
1149ev_periodic_stop (EV_P_ struct ev_periodic *w) 1403ev_periodic_stop (EV_P_ struct ev_periodic *w)
1150{ 1404{
1151 ev_clear_pending (EV_A_ (W)w); 1405 ev_clear_pending (EV_A_ (W)w);
1152 if (!ev_is_active (w)) 1406 if (!ev_is_active (w))
1153 return; 1407 return;
1154 1408
1409 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1410
1155 if (w->active < periodiccnt--) 1411 if (((W)w)->active < periodiccnt--)
1156 { 1412 {
1157 periodics [w->active - 1] = periodics [periodiccnt]; 1413 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1158 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1414 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1159 } 1415 }
1160 1416
1161 ev_stop (EV_A_ (W)w); 1417 ev_stop (EV_A_ (W)w);
1162} 1418}
1163 1419
1164void 1420void
1421ev_periodic_again (EV_P_ struct ev_periodic *w)
1422{
1423 /* TODO: use adjustheap and recalculation */
1424 ev_periodic_stop (EV_A_ w);
1425 ev_periodic_start (EV_A_ w);
1426}
1427#endif
1428
1429void
1165ev_idle_start (EV_P_ struct ev_idle *w) 1430ev_idle_start (EV_P_ struct ev_idle *w)
1166{ 1431{
1167 if (ev_is_active (w)) 1432 if (ev_is_active (w))
1168 return; 1433 return;
1169 1434
1170 ev_start (EV_A_ (W)w, ++idlecnt); 1435 ev_start (EV_A_ (W)w, ++idlecnt);
1171 array_needsize (idles, idlemax, idlecnt, ); 1436 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1172 idles [idlecnt - 1] = w; 1437 idles [idlecnt - 1] = w;
1173} 1438}
1174 1439
1175void 1440void
1176ev_idle_stop (EV_P_ struct ev_idle *w) 1441ev_idle_stop (EV_P_ struct ev_idle *w)
1177{ 1442{
1178 ev_clear_pending (EV_A_ (W)w); 1443 ev_clear_pending (EV_A_ (W)w);
1444 if (!ev_is_active (w))
1445 return;
1446
1447 idles [((W)w)->active - 1] = idles [--idlecnt];
1448 ev_stop (EV_A_ (W)w);
1449}
1450
1451void
1452ev_prepare_start (EV_P_ struct ev_prepare *w)
1453{
1179 if (ev_is_active (w)) 1454 if (ev_is_active (w))
1180 return; 1455 return;
1181 1456
1182 idles [w->active - 1] = idles [--idlecnt]; 1457 ev_start (EV_A_ (W)w, ++preparecnt);
1458 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1459 prepares [preparecnt - 1] = w;
1460}
1461
1462void
1463ev_prepare_stop (EV_P_ struct ev_prepare *w)
1464{
1465 ev_clear_pending (EV_A_ (W)w);
1466 if (!ev_is_active (w))
1467 return;
1468
1469 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1183 ev_stop (EV_A_ (W)w); 1470 ev_stop (EV_A_ (W)w);
1184} 1471}
1185 1472
1186void 1473void
1187ev_prepare_start (EV_P_ struct ev_prepare *w) 1474ev_check_start (EV_P_ struct ev_check *w)
1188{ 1475{
1189 if (ev_is_active (w)) 1476 if (ev_is_active (w))
1190 return; 1477 return;
1191 1478
1192 ev_start (EV_A_ (W)w, ++preparecnt); 1479 ev_start (EV_A_ (W)w, ++checkcnt);
1193 array_needsize (prepares, preparemax, preparecnt, ); 1480 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1194 prepares [preparecnt - 1] = w; 1481 checks [checkcnt - 1] = w;
1195} 1482}
1196 1483
1197void 1484void
1198ev_prepare_stop (EV_P_ struct ev_prepare *w) 1485ev_check_stop (EV_P_ struct ev_check *w)
1199{ 1486{
1200 ev_clear_pending (EV_A_ (W)w); 1487 ev_clear_pending (EV_A_ (W)w);
1201 if (ev_is_active (w)) 1488 if (!ev_is_active (w))
1202 return; 1489 return;
1203 1490
1204 prepares [w->active - 1] = prepares [--preparecnt];
1205 ev_stop (EV_A_ (W)w);
1206}
1207
1208void
1209ev_check_start (EV_P_ struct ev_check *w)
1210{
1211 if (ev_is_active (w))
1212 return;
1213
1214 ev_start (EV_A_ (W)w, ++checkcnt);
1215 array_needsize (checks, checkmax, checkcnt, );
1216 checks [checkcnt - 1] = w;
1217}
1218
1219void
1220ev_check_stop (EV_P_ struct ev_check *w)
1221{
1222 ev_clear_pending (EV_A_ (W)w);
1223 if (ev_is_active (w))
1224 return;
1225
1226 checks [w->active - 1] = checks [--checkcnt]; 1491 checks [((W)w)->active - 1] = checks [--checkcnt];
1227 ev_stop (EV_A_ (W)w); 1492 ev_stop (EV_A_ (W)w);
1228} 1493}
1229 1494
1230#ifndef SA_RESTART 1495#ifndef SA_RESTART
1231# define SA_RESTART 0 1496# define SA_RESTART 0
1241 return; 1506 return;
1242 1507
1243 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1508 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1244 1509
1245 ev_start (EV_A_ (W)w, 1); 1510 ev_start (EV_A_ (W)w, 1);
1246 array_needsize (signals, signalmax, w->signum, signals_init); 1511 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1247 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1512 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1248 1513
1249 if (!w->next) 1514 if (!((WL)w)->next)
1250 { 1515 {
1516#if WIN32
1517 signal (w->signum, sighandler);
1518#else
1251 struct sigaction sa; 1519 struct sigaction sa;
1252 sa.sa_handler = sighandler; 1520 sa.sa_handler = sighandler;
1253 sigfillset (&sa.sa_mask); 1521 sigfillset (&sa.sa_mask);
1254 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1522 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1255 sigaction (w->signum, &sa, 0); 1523 sigaction (w->signum, &sa, 0);
1524#endif
1256 } 1525 }
1257} 1526}
1258 1527
1259void 1528void
1260ev_signal_stop (EV_P_ struct ev_signal *w) 1529ev_signal_stop (EV_P_ struct ev_signal *w)
1285 1554
1286void 1555void
1287ev_child_stop (EV_P_ struct ev_child *w) 1556ev_child_stop (EV_P_ struct ev_child *w)
1288{ 1557{
1289 ev_clear_pending (EV_A_ (W)w); 1558 ev_clear_pending (EV_A_ (W)w);
1290 if (ev_is_active (w)) 1559 if (!ev_is_active (w))
1291 return; 1560 return;
1292 1561
1293 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1562 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1294 ev_stop (EV_A_ (W)w); 1563 ev_stop (EV_A_ (W)w);
1295} 1564}
1310 void (*cb)(int revents, void *arg) = once->cb; 1579 void (*cb)(int revents, void *arg) = once->cb;
1311 void *arg = once->arg; 1580 void *arg = once->arg;
1312 1581
1313 ev_io_stop (EV_A_ &once->io); 1582 ev_io_stop (EV_A_ &once->io);
1314 ev_timer_stop (EV_A_ &once->to); 1583 ev_timer_stop (EV_A_ &once->to);
1315 free (once); 1584 ev_free (once);
1316 1585
1317 cb (revents, arg); 1586 cb (revents, arg);
1318} 1587}
1319 1588
1320static void 1589static void
1330} 1599}
1331 1600
1332void 1601void
1333ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1602ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1334{ 1603{
1335 struct ev_once *once = malloc (sizeof (struct ev_once)); 1604 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1336 1605
1337 if (!once) 1606 if (!once)
1338 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1607 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1339 else 1608 else
1340 { 1609 {
1341 once->cb = cb; 1610 once->cb = cb;
1342 once->arg = arg; 1611 once->arg = arg;
1343 1612
1344 ev_watcher_init (&once->io, once_cb_io); 1613 ev_init (&once->io, once_cb_io);
1345 if (fd >= 0) 1614 if (fd >= 0)
1346 { 1615 {
1347 ev_io_set (&once->io, fd, events); 1616 ev_io_set (&once->io, fd, events);
1348 ev_io_start (EV_A_ &once->io); 1617 ev_io_start (EV_A_ &once->io);
1349 } 1618 }
1350 1619
1351 ev_watcher_init (&once->to, once_cb_to); 1620 ev_init (&once->to, once_cb_to);
1352 if (timeout >= 0.) 1621 if (timeout >= 0.)
1353 { 1622 {
1354 ev_timer_set (&once->to, timeout, 0.); 1623 ev_timer_set (&once->to, timeout, 0.);
1355 ev_timer_start (EV_A_ &once->to); 1624 ev_timer_start (EV_A_ &once->to);
1356 } 1625 }
1357 } 1626 }
1358} 1627}
1359 1628
1629#ifdef __cplusplus
1630}
1631#endif
1632

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines