ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.73 by root, Tue Nov 6 16:27:10 2007 UTC vs.
Revision 1.101 by root, Sun Nov 11 04:04:23 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 139
140#ifdef EV_H
141# include EV_H
142#else
131#include "ev.h" 143# include "ev.h"
144#endif
132 145
133#if __GNUC__ >= 3 146#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 148# define inline inline
136#else 149#else
148typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
150 163
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 165
166#ifdef WIN32
153#include "ev_win32.c" 167# include "ev_win32.c"
168#endif
154 169
155/*****************************************************************************/ 170/*****************************************************************************/
156 171
157static void (*syserr_cb)(const char *msg); 172static void (*syserr_cb)(const char *msg);
158 173
215 int events; 230 int events;
216} ANPENDING; 231} ANPENDING;
217 232
218#if EV_MULTIPLICITY 233#if EV_MULTIPLICITY
219 234
220struct ev_loop 235 struct ev_loop
221{ 236 {
237 ev_tstamp ev_rt_now;
238 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 239 #define VAR(name,decl) decl;
223# include "ev_vars.h" 240 #include "ev_vars.h"
224};
225# undef VAR 241 #undef VAR
242 };
226# include "ev_wrap.h" 243 #include "ev_wrap.h"
244
245 struct ev_loop default_loop_struct;
246 static struct ev_loop *default_loop;
227 247
228#else 248#else
229 249
250 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 251 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 252 #include "ev_vars.h"
232# undef VAR 253 #undef VAR
254
255 static int default_loop;
233 256
234#endif 257#endif
235 258
236/*****************************************************************************/ 259/*****************************************************************************/
237 260
238inline ev_tstamp 261ev_tstamp
239ev_time (void) 262ev_time (void)
240{ 263{
241#if EV_USE_REALTIME 264#if EV_USE_REALTIME
242 struct timespec ts; 265 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 266 clock_gettime (CLOCK_REALTIME, &ts);
262#endif 285#endif
263 286
264 return ev_time (); 287 return ev_time ();
265} 288}
266 289
290#if EV_MULTIPLICITY
267ev_tstamp 291ev_tstamp
268ev_now (EV_P) 292ev_now (EV_P)
269{ 293{
270 return rt_now; 294 return ev_rt_now;
271} 295}
296#endif
272 297
273#define array_roundsize(base,n) ((n) | 4 & ~3) 298#define array_roundsize(type,n) ((n) | 4 & ~3)
274 299
275#define array_needsize(base,cur,cnt,init) \ 300#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 301 if (expect_false ((cnt) > cur)) \
277 { \ 302 { \
278 int newcnt = cur; \ 303 int newcnt = cur; \
279 do \ 304 do \
280 { \ 305 { \
281 newcnt = array_roundsize (base, newcnt << 1); \ 306 newcnt = array_roundsize (type, newcnt << 1); \
282 } \ 307 } \
283 while ((cnt) > newcnt); \ 308 while ((cnt) > newcnt); \
284 \ 309 \
285 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 310 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \ 311 init (base + cur, newcnt - cur); \
287 cur = newcnt; \ 312 cur = newcnt; \
288 } 313 }
289 314
290#define array_slim(stem) \ 315#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 316 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 317 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 318 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 319 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 320 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 321 }
297 322
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */ 323/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */ 324/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
316 341
317 ++base; 342 ++base;
318 } 343 }
319} 344}
320 345
321static void 346void
322event (EV_P_ W w, int events) 347ev_feed_event (EV_P_ void *w, int revents)
323{ 348{
349 W w_ = (W)w;
350
324 if (w->pending) 351 if (w_->pending)
325 { 352 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
327 return; 354 return;
328 } 355 }
329 356
330 w->pending = ++pendingcnt [ABSPRI (w)]; 357 w_->pending = ++pendingcnt [ABSPRI (w_)];
331 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 358 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w; 359 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
333 pendings [ABSPRI (w)][w->pending - 1].events = events; 360 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
334} 361}
335 362
336static void 363static void
337queue_events (EV_P_ W *events, int eventcnt, int type) 364queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 365{
339 int i; 366 int i;
340 367
341 for (i = 0; i < eventcnt; ++i) 368 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 369 ev_feed_event (EV_A_ events [i], type);
343} 370}
344 371
345static void 372inline void
346fd_event (EV_P_ int fd, int events) 373fd_event (EV_P_ int fd, int revents)
347{ 374{
348 ANFD *anfd = anfds + fd; 375 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 376 struct ev_io *w;
350 377
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 378 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
352 { 379 {
353 int ev = w->events & events; 380 int ev = w->events & revents;
354 381
355 if (ev) 382 if (ev)
356 event (EV_A_ (W)w, ev); 383 ev_feed_event (EV_A_ (W)w, ev);
357 } 384 }
385}
386
387void
388ev_feed_fd_event (EV_P_ int fd, int revents)
389{
390 fd_event (EV_A_ fd, revents);
358} 391}
359 392
360/*****************************************************************************/ 393/*****************************************************************************/
361 394
362static void 395static void
391 return; 424 return;
392 425
393 anfds [fd].reify = 1; 426 anfds [fd].reify = 1;
394 427
395 ++fdchangecnt; 428 ++fdchangecnt;
396 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 429 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
397 fdchanges [fdchangecnt - 1] = fd; 430 fdchanges [fdchangecnt - 1] = fd;
398} 431}
399 432
400static void 433static void
401fd_kill (EV_P_ int fd) 434fd_kill (EV_P_ int fd)
403 struct ev_io *w; 436 struct ev_io *w;
404 437
405 while ((w = (struct ev_io *)anfds [fd].head)) 438 while ((w = (struct ev_io *)anfds [fd].head))
406 { 439 {
407 ev_io_stop (EV_A_ w); 440 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 441 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 442 }
410} 443}
411 444
412static int 445static int
413fd_valid (int fd) 446fd_valid (int fd)
501 534
502 heap [k] = w; 535 heap [k] = w;
503 ((W)heap [k])->active = k + 1; 536 ((W)heap [k])->active = k + 1;
504} 537}
505 538
539inline void
540adjustheap (WT *heap, int N, int k)
541{
542 upheap (heap, k);
543 downheap (heap, N, k);
544}
545
506/*****************************************************************************/ 546/*****************************************************************************/
507 547
508typedef struct 548typedef struct
509{ 549{
510 WL head; 550 WL head;
541 581
542 if (!gotsig) 582 if (!gotsig)
543 { 583 {
544 int old_errno = errno; 584 int old_errno = errno;
545 gotsig = 1; 585 gotsig = 1;
586#ifdef WIN32
587 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
588#else
546 write (sigpipe [1], &signum, 1); 589 write (sigpipe [1], &signum, 1);
590#endif
547 errno = old_errno; 591 errno = old_errno;
548 } 592 }
549} 593}
550 594
595void
596ev_feed_signal_event (EV_P_ int signum)
597{
598 WL w;
599
600#if EV_MULTIPLICITY
601 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
602#endif
603
604 --signum;
605
606 if (signum < 0 || signum >= signalmax)
607 return;
608
609 signals [signum].gotsig = 0;
610
611 for (w = signals [signum].head; w; w = w->next)
612 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
613}
614
551static void 615static void
552sigcb (EV_P_ struct ev_io *iow, int revents) 616sigcb (EV_P_ struct ev_io *iow, int revents)
553{ 617{
554 WL w;
555 int signum; 618 int signum;
556 619
620#ifdef WIN32
621 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
622#else
557 read (sigpipe [0], &revents, 1); 623 read (sigpipe [0], &revents, 1);
624#endif
558 gotsig = 0; 625 gotsig = 0;
559 626
560 for (signum = signalmax; signum--; ) 627 for (signum = signalmax; signum--; )
561 if (signals [signum].gotsig) 628 if (signals [signum].gotsig)
562 { 629 ev_feed_signal_event (EV_A_ signum + 1);
563 signals [signum].gotsig = 0;
564
565 for (w = signals [signum].head; w; w = w->next)
566 event (EV_A_ (W)w, EV_SIGNAL);
567 }
568} 630}
569 631
570static void 632static void
571siginit (EV_P) 633siginit (EV_P)
572{ 634{
605 if (w->pid == pid || !w->pid) 667 if (w->pid == pid || !w->pid)
606 { 668 {
607 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 669 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
608 w->rpid = pid; 670 w->rpid = pid;
609 w->rstatus = status; 671 w->rstatus = status;
610 event (EV_A_ (W)w, EV_CHILD); 672 ev_feed_event (EV_A_ (W)w, EV_CHILD);
611 } 673 }
612} 674}
613 675
614static void 676static void
615childcb (EV_P_ struct ev_signal *sw, int revents) 677childcb (EV_P_ struct ev_signal *sw, int revents)
617 int pid, status; 679 int pid, status;
618 680
619 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 681 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
620 { 682 {
621 /* make sure we are called again until all childs have been reaped */ 683 /* make sure we are called again until all childs have been reaped */
622 event (EV_A_ (W)sw, EV_SIGNAL); 684 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
623 685
624 child_reap (EV_A_ sw, pid, pid, status); 686 child_reap (EV_A_ sw, pid, pid, status);
625 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 687 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
626 } 688 }
627} 689}
684 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 746 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
685 have_monotonic = 1; 747 have_monotonic = 1;
686 } 748 }
687#endif 749#endif
688 750
689 rt_now = ev_time (); 751 ev_rt_now = ev_time ();
690 mn_now = get_clock (); 752 mn_now = get_clock ();
691 now_floor = mn_now; 753 now_floor = mn_now;
692 rtmn_diff = rt_now - mn_now; 754 rtmn_diff = ev_rt_now - mn_now;
693 755
694 if (methods == EVMETHOD_AUTO) 756 if (methods == EVMETHOD_AUTO)
695 if (!enable_secure () && getenv ("LIBEV_METHODS")) 757 if (!enable_secure () && getenv ("LIBEV_METHODS"))
696 methods = atoi (getenv ("LIBEV_METHODS")); 758 methods = atoi (getenv ("LIBEV_METHODS"));
697 else 759 else
712#endif 774#endif
713#if EV_USE_SELECT 775#if EV_USE_SELECT
714 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 776 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
715#endif 777#endif
716 778
717 ev_watcher_init (&sigev, sigcb); 779 ev_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI); 780 ev_set_priority (&sigev, EV_MAXPRI);
719 } 781 }
720} 782}
721 783
722void 784void
744 array_free (pending, [i]); 806 array_free (pending, [i]);
745 807
746 /* have to use the microsoft-never-gets-it-right macro */ 808 /* have to use the microsoft-never-gets-it-right macro */
747 array_free_microshit (fdchange); 809 array_free_microshit (fdchange);
748 array_free_microshit (timer); 810 array_free_microshit (timer);
811#if EV_PERIODICS
749 array_free_microshit (periodic); 812 array_free_microshit (periodic);
813#endif
750 array_free_microshit (idle); 814 array_free_microshit (idle);
751 array_free_microshit (prepare); 815 array_free_microshit (prepare);
752 array_free_microshit (check); 816 array_free_microshit (check);
753 817
754 method = 0; 818 method = 0;
812} 876}
813 877
814#endif 878#endif
815 879
816#if EV_MULTIPLICITY 880#if EV_MULTIPLICITY
817struct ev_loop default_loop_struct;
818static struct ev_loop *default_loop;
819
820struct ev_loop * 881struct ev_loop *
821#else 882#else
822static int default_loop;
823
824int 883int
825#endif 884#endif
826ev_default_loop (int methods) 885ev_default_loop (int methods)
827{ 886{
828 if (sigpipe [0] == sigpipe [1]) 887 if (sigpipe [0] == sigpipe [1])
889 postfork = 1; 948 postfork = 1;
890} 949}
891 950
892/*****************************************************************************/ 951/*****************************************************************************/
893 952
953static int
954any_pending (EV_P)
955{
956 int pri;
957
958 for (pri = NUMPRI; pri--; )
959 if (pendingcnt [pri])
960 return 1;
961
962 return 0;
963}
964
894static void 965static void
895call_pending (EV_P) 966call_pending (EV_P)
896{ 967{
897 int pri; 968 int pri;
898 969
902 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 973 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
903 974
904 if (p->w) 975 if (p->w)
905 { 976 {
906 p->w->pending = 0; 977 p->w->pending = 0;
907 p->w->cb (EV_A_ p->w, p->events); 978 EV_CB_INVOKE (p->w, p->events);
908 } 979 }
909 } 980 }
910} 981}
911 982
912static void 983static void
920 991
921 /* first reschedule or stop timer */ 992 /* first reschedule or stop timer */
922 if (w->repeat) 993 if (w->repeat)
923 { 994 {
924 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 995 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
996
925 ((WT)w)->at = mn_now + w->repeat; 997 ((WT)w)->at += w->repeat;
998 if (((WT)w)->at < mn_now)
999 ((WT)w)->at = mn_now;
1000
926 downheap ((WT *)timers, timercnt, 0); 1001 downheap ((WT *)timers, timercnt, 0);
927 } 1002 }
928 else 1003 else
929 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1004 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
930 1005
931 event (EV_A_ (W)w, EV_TIMEOUT); 1006 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
932 } 1007 }
933} 1008}
934 1009
1010#if EV_PERIODICS
935static void 1011static void
936periodics_reify (EV_P) 1012periodics_reify (EV_P)
937{ 1013{
938 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1014 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
939 { 1015 {
940 struct ev_periodic *w = periodics [0]; 1016 struct ev_periodic *w = periodics [0];
941 1017
942 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1018 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
943 1019
944 /* first reschedule or stop timer */ 1020 /* first reschedule or stop timer */
945 if (w->interval) 1021 if (w->reschedule_cb)
946 { 1022 {
1023 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1024
1025 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1026 downheap ((WT *)periodics, periodiccnt, 0);
1027 }
1028 else if (w->interval)
1029 {
947 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1030 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
948 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1031 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
949 downheap ((WT *)periodics, periodiccnt, 0); 1032 downheap ((WT *)periodics, periodiccnt, 0);
950 } 1033 }
951 else 1034 else
952 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1035 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
953 1036
954 event (EV_A_ (W)w, EV_PERIODIC); 1037 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
955 } 1038 }
956} 1039}
957 1040
958static void 1041static void
959periodics_reschedule (EV_P) 1042periodics_reschedule (EV_P)
963 /* adjust periodics after time jump */ 1046 /* adjust periodics after time jump */
964 for (i = 0; i < periodiccnt; ++i) 1047 for (i = 0; i < periodiccnt; ++i)
965 { 1048 {
966 struct ev_periodic *w = periodics [i]; 1049 struct ev_periodic *w = periodics [i];
967 1050
1051 if (w->reschedule_cb)
1052 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
968 if (w->interval) 1053 else if (w->interval)
969 {
970 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1054 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
971
972 if (fabs (diff) >= 1e-4)
973 {
974 ev_periodic_stop (EV_A_ w);
975 ev_periodic_start (EV_A_ w);
976
977 i = 0; /* restart loop, inefficient, but time jumps should be rare */
978 }
979 }
980 } 1055 }
1056
1057 /* now rebuild the heap */
1058 for (i = periodiccnt >> 1; i--; )
1059 downheap ((WT *)periodics, periodiccnt, i);
981} 1060}
1061#endif
982 1062
983inline int 1063inline int
984time_update_monotonic (EV_P) 1064time_update_monotonic (EV_P)
985{ 1065{
986 mn_now = get_clock (); 1066 mn_now = get_clock ();
987 1067
988 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1068 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
989 { 1069 {
990 rt_now = rtmn_diff + mn_now; 1070 ev_rt_now = rtmn_diff + mn_now;
991 return 0; 1071 return 0;
992 } 1072 }
993 else 1073 else
994 { 1074 {
995 now_floor = mn_now; 1075 now_floor = mn_now;
996 rt_now = ev_time (); 1076 ev_rt_now = ev_time ();
997 return 1; 1077 return 1;
998 } 1078 }
999} 1079}
1000 1080
1001static void 1081static void
1010 { 1090 {
1011 ev_tstamp odiff = rtmn_diff; 1091 ev_tstamp odiff = rtmn_diff;
1012 1092
1013 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1093 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1014 { 1094 {
1015 rtmn_diff = rt_now - mn_now; 1095 rtmn_diff = ev_rt_now - mn_now;
1016 1096
1017 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1097 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1018 return; /* all is well */ 1098 return; /* all is well */
1019 1099
1020 rt_now = ev_time (); 1100 ev_rt_now = ev_time ();
1021 mn_now = get_clock (); 1101 mn_now = get_clock ();
1022 now_floor = mn_now; 1102 now_floor = mn_now;
1023 } 1103 }
1024 1104
1105# if EV_PERIODICS
1025 periodics_reschedule (EV_A); 1106 periodics_reschedule (EV_A);
1107# endif
1026 /* no timer adjustment, as the monotonic clock doesn't jump */ 1108 /* no timer adjustment, as the monotonic clock doesn't jump */
1027 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1109 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1028 } 1110 }
1029 } 1111 }
1030 else 1112 else
1031#endif 1113#endif
1032 { 1114 {
1033 rt_now = ev_time (); 1115 ev_rt_now = ev_time ();
1034 1116
1035 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1117 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1036 { 1118 {
1119#if EV_PERIODICS
1037 periodics_reschedule (EV_A); 1120 periodics_reschedule (EV_A);
1121#endif
1038 1122
1039 /* adjust timers. this is easy, as the offset is the same for all */ 1123 /* adjust timers. this is easy, as the offset is the same for all */
1040 for (i = 0; i < timercnt; ++i) 1124 for (i = 0; i < timercnt; ++i)
1041 ((WT)timers [i])->at += rt_now - mn_now; 1125 ((WT)timers [i])->at += ev_rt_now - mn_now;
1042 } 1126 }
1043 1127
1044 mn_now = rt_now; 1128 mn_now = ev_rt_now;
1045 } 1129 }
1046} 1130}
1047 1131
1048void 1132void
1049ev_ref (EV_P) 1133ev_ref (EV_P)
1081 /* update fd-related kernel structures */ 1165 /* update fd-related kernel structures */
1082 fd_reify (EV_A); 1166 fd_reify (EV_A);
1083 1167
1084 /* calculate blocking time */ 1168 /* calculate blocking time */
1085 1169
1086 /* we only need this for !monotonic clockor timers, but as we basically 1170 /* we only need this for !monotonic clock or timers, but as we basically
1087 always have timers, we just calculate it always */ 1171 always have timers, we just calculate it always */
1088#if EV_USE_MONOTONIC 1172#if EV_USE_MONOTONIC
1089 if (expect_true (have_monotonic)) 1173 if (expect_true (have_monotonic))
1090 time_update_monotonic (EV_A); 1174 time_update_monotonic (EV_A);
1091 else 1175 else
1092#endif 1176#endif
1093 { 1177 {
1094 rt_now = ev_time (); 1178 ev_rt_now = ev_time ();
1095 mn_now = rt_now; 1179 mn_now = ev_rt_now;
1096 } 1180 }
1097 1181
1098 if (flags & EVLOOP_NONBLOCK || idlecnt) 1182 if (flags & EVLOOP_NONBLOCK || idlecnt)
1099 block = 0.; 1183 block = 0.;
1100 else 1184 else
1105 { 1189 {
1106 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1190 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1107 if (block > to) block = to; 1191 if (block > to) block = to;
1108 } 1192 }
1109 1193
1194#if EV_PERIODICS
1110 if (periodiccnt) 1195 if (periodiccnt)
1111 { 1196 {
1112 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1197 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1113 if (block > to) block = to; 1198 if (block > to) block = to;
1114 } 1199 }
1200#endif
1115 1201
1116 if (block < 0.) block = 0.; 1202 if (block < 0.) block = 0.;
1117 } 1203 }
1118 1204
1119 method_poll (EV_A_ block); 1205 method_poll (EV_A_ block);
1120 1206
1121 /* update rt_now, do magic */ 1207 /* update ev_rt_now, do magic */
1122 time_update (EV_A); 1208 time_update (EV_A);
1123 1209
1124 /* queue pending timers and reschedule them */ 1210 /* queue pending timers and reschedule them */
1125 timers_reify (EV_A); /* relative timers called last */ 1211 timers_reify (EV_A); /* relative timers called last */
1212#if EV_PERIODICS
1126 periodics_reify (EV_A); /* absolute timers called first */ 1213 periodics_reify (EV_A); /* absolute timers called first */
1214#endif
1127 1215
1128 /* queue idle watchers unless io or timers are pending */ 1216 /* queue idle watchers unless io or timers are pending */
1129 if (!pendingcnt) 1217 if (idlecnt && !any_pending (EV_A))
1130 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1218 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1131 1219
1132 /* queue check watchers, to be executed first */ 1220 /* queue check watchers, to be executed first */
1133 if (checkcnt) 1221 if (checkcnt)
1134 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1222 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1209 return; 1297 return;
1210 1298
1211 assert (("ev_io_start called with negative fd", fd >= 0)); 1299 assert (("ev_io_start called with negative fd", fd >= 0));
1212 1300
1213 ev_start (EV_A_ (W)w, 1); 1301 ev_start (EV_A_ (W)w, 1);
1214 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1302 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1215 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1303 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1216 1304
1217 fd_change (EV_A_ fd); 1305 fd_change (EV_A_ fd);
1218} 1306}
1219 1307
1222{ 1310{
1223 ev_clear_pending (EV_A_ (W)w); 1311 ev_clear_pending (EV_A_ (W)w);
1224 if (!ev_is_active (w)) 1312 if (!ev_is_active (w))
1225 return; 1313 return;
1226 1314
1315 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1316
1227 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1317 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1228 ev_stop (EV_A_ (W)w); 1318 ev_stop (EV_A_ (W)w);
1229 1319
1230 fd_change (EV_A_ w->fd); 1320 fd_change (EV_A_ w->fd);
1231} 1321}
1239 ((WT)w)->at += mn_now; 1329 ((WT)w)->at += mn_now;
1240 1330
1241 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1331 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1242 1332
1243 ev_start (EV_A_ (W)w, ++timercnt); 1333 ev_start (EV_A_ (W)w, ++timercnt);
1244 array_needsize (timers, timermax, timercnt, (void)); 1334 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1245 timers [timercnt - 1] = w; 1335 timers [timercnt - 1] = w;
1246 upheap ((WT *)timers, timercnt - 1); 1336 upheap ((WT *)timers, timercnt - 1);
1247 1337
1248 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1338 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1249} 1339}
1258 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1348 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1259 1349
1260 if (((W)w)->active < timercnt--) 1350 if (((W)w)->active < timercnt--)
1261 { 1351 {
1262 timers [((W)w)->active - 1] = timers [timercnt]; 1352 timers [((W)w)->active - 1] = timers [timercnt];
1263 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1264 } 1354 }
1265 1355
1266 ((WT)w)->at = w->repeat; 1356 ((WT)w)->at -= mn_now;
1267 1357
1268 ev_stop (EV_A_ (W)w); 1358 ev_stop (EV_A_ (W)w);
1269} 1359}
1270 1360
1271void 1361void
1274 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1275 { 1365 {
1276 if (w->repeat) 1366 if (w->repeat)
1277 { 1367 {
1278 ((WT)w)->at = mn_now + w->repeat; 1368 ((WT)w)->at = mn_now + w->repeat;
1279 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1280 } 1370 }
1281 else 1371 else
1282 ev_timer_stop (EV_A_ w); 1372 ev_timer_stop (EV_A_ w);
1283 } 1373 }
1284 else if (w->repeat) 1374 else if (w->repeat)
1285 ev_timer_start (EV_A_ w); 1375 ev_timer_start (EV_A_ w);
1286} 1376}
1287 1377
1378#if EV_PERIODICS
1288void 1379void
1289ev_periodic_start (EV_P_ struct ev_periodic *w) 1380ev_periodic_start (EV_P_ struct ev_periodic *w)
1290{ 1381{
1291 if (ev_is_active (w)) 1382 if (ev_is_active (w))
1292 return; 1383 return;
1293 1384
1385 if (w->reschedule_cb)
1386 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1387 else if (w->interval)
1388 {
1294 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1389 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1295
1296 /* this formula differs from the one in periodic_reify because we do not always round up */ 1390 /* this formula differs from the one in periodic_reify because we do not always round up */
1297 if (w->interval)
1298 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1391 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1392 }
1299 1393
1300 ev_start (EV_A_ (W)w, ++periodiccnt); 1394 ev_start (EV_A_ (W)w, ++periodiccnt);
1301 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1395 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1302 periodics [periodiccnt - 1] = w; 1396 periodics [periodiccnt - 1] = w;
1303 upheap ((WT *)periodics, periodiccnt - 1); 1397 upheap ((WT *)periodics, periodiccnt - 1);
1304 1398
1305 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1399 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1306} 1400}
1315 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1409 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1316 1410
1317 if (((W)w)->active < periodiccnt--) 1411 if (((W)w)->active < periodiccnt--)
1318 { 1412 {
1319 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1413 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1320 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1414 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1321 } 1415 }
1322 1416
1323 ev_stop (EV_A_ (W)w); 1417 ev_stop (EV_A_ (W)w);
1324} 1418}
1325 1419
1326void 1420void
1421ev_periodic_again (EV_P_ struct ev_periodic *w)
1422{
1423 /* TODO: use adjustheap and recalculation */
1424 ev_periodic_stop (EV_A_ w);
1425 ev_periodic_start (EV_A_ w);
1426}
1427#endif
1428
1429void
1327ev_idle_start (EV_P_ struct ev_idle *w) 1430ev_idle_start (EV_P_ struct ev_idle *w)
1328{ 1431{
1329 if (ev_is_active (w)) 1432 if (ev_is_active (w))
1330 return; 1433 return;
1331 1434
1332 ev_start (EV_A_ (W)w, ++idlecnt); 1435 ev_start (EV_A_ (W)w, ++idlecnt);
1333 array_needsize (idles, idlemax, idlecnt, (void)); 1436 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1334 idles [idlecnt - 1] = w; 1437 idles [idlecnt - 1] = w;
1335} 1438}
1336 1439
1337void 1440void
1338ev_idle_stop (EV_P_ struct ev_idle *w) 1441ev_idle_stop (EV_P_ struct ev_idle *w)
1339{ 1442{
1340 ev_clear_pending (EV_A_ (W)w); 1443 ev_clear_pending (EV_A_ (W)w);
1341 if (ev_is_active (w)) 1444 if (!ev_is_active (w))
1342 return; 1445 return;
1343 1446
1344 idles [((W)w)->active - 1] = idles [--idlecnt]; 1447 idles [((W)w)->active - 1] = idles [--idlecnt];
1345 ev_stop (EV_A_ (W)w); 1448 ev_stop (EV_A_ (W)w);
1346} 1449}
1350{ 1453{
1351 if (ev_is_active (w)) 1454 if (ev_is_active (w))
1352 return; 1455 return;
1353 1456
1354 ev_start (EV_A_ (W)w, ++preparecnt); 1457 ev_start (EV_A_ (W)w, ++preparecnt);
1355 array_needsize (prepares, preparemax, preparecnt, (void)); 1458 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1356 prepares [preparecnt - 1] = w; 1459 prepares [preparecnt - 1] = w;
1357} 1460}
1358 1461
1359void 1462void
1360ev_prepare_stop (EV_P_ struct ev_prepare *w) 1463ev_prepare_stop (EV_P_ struct ev_prepare *w)
1361{ 1464{
1362 ev_clear_pending (EV_A_ (W)w); 1465 ev_clear_pending (EV_A_ (W)w);
1363 if (ev_is_active (w)) 1466 if (!ev_is_active (w))
1364 return; 1467 return;
1365 1468
1366 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1469 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1367 ev_stop (EV_A_ (W)w); 1470 ev_stop (EV_A_ (W)w);
1368} 1471}
1372{ 1475{
1373 if (ev_is_active (w)) 1476 if (ev_is_active (w))
1374 return; 1477 return;
1375 1478
1376 ev_start (EV_A_ (W)w, ++checkcnt); 1479 ev_start (EV_A_ (W)w, ++checkcnt);
1377 array_needsize (checks, checkmax, checkcnt, (void)); 1480 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1378 checks [checkcnt - 1] = w; 1481 checks [checkcnt - 1] = w;
1379} 1482}
1380 1483
1381void 1484void
1382ev_check_stop (EV_P_ struct ev_check *w) 1485ev_check_stop (EV_P_ struct ev_check *w)
1383{ 1486{
1384 ev_clear_pending (EV_A_ (W)w); 1487 ev_clear_pending (EV_A_ (W)w);
1385 if (ev_is_active (w)) 1488 if (!ev_is_active (w))
1386 return; 1489 return;
1387 1490
1388 checks [((W)w)->active - 1] = checks [--checkcnt]; 1491 checks [((W)w)->active - 1] = checks [--checkcnt];
1389 ev_stop (EV_A_ (W)w); 1492 ev_stop (EV_A_ (W)w);
1390} 1493}
1403 return; 1506 return;
1404 1507
1405 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1508 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1406 1509
1407 ev_start (EV_A_ (W)w, 1); 1510 ev_start (EV_A_ (W)w, 1);
1408 array_needsize (signals, signalmax, w->signum, signals_init); 1511 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1409 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1512 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1410 1513
1411 if (!((WL)w)->next) 1514 if (!((WL)w)->next)
1412 { 1515 {
1413#if WIN32 1516#if WIN32
1451 1554
1452void 1555void
1453ev_child_stop (EV_P_ struct ev_child *w) 1556ev_child_stop (EV_P_ struct ev_child *w)
1454{ 1557{
1455 ev_clear_pending (EV_A_ (W)w); 1558 ev_clear_pending (EV_A_ (W)w);
1456 if (ev_is_active (w)) 1559 if (!ev_is_active (w))
1457 return; 1560 return;
1458 1561
1459 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1562 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1460 ev_stop (EV_A_ (W)w); 1563 ev_stop (EV_A_ (W)w);
1461} 1564}
1496} 1599}
1497 1600
1498void 1601void
1499ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1602ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1500{ 1603{
1501 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1604 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1502 1605
1503 if (!once) 1606 if (!once)
1504 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1607 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1505 else 1608 else
1506 { 1609 {
1507 once->cb = cb; 1610 once->cb = cb;
1508 once->arg = arg; 1611 once->arg = arg;
1509 1612
1510 ev_watcher_init (&once->io, once_cb_io); 1613 ev_init (&once->io, once_cb_io);
1511 if (fd >= 0) 1614 if (fd >= 0)
1512 { 1615 {
1513 ev_io_set (&once->io, fd, events); 1616 ev_io_set (&once->io, fd, events);
1514 ev_io_start (EV_A_ &once->io); 1617 ev_io_start (EV_A_ &once->io);
1515 } 1618 }
1516 1619
1517 ev_watcher_init (&once->to, once_cb_to); 1620 ev_init (&once->to, once_cb_to);
1518 if (timeout >= 0.) 1621 if (timeout >= 0.)
1519 { 1622 {
1520 ev_timer_set (&once->to, timeout, 0.); 1623 ev_timer_set (&once->to, timeout, 0.);
1521 ev_timer_start (EV_A_ &once->to); 1624 ev_timer_start (EV_A_ &once->to);
1522 } 1625 }
1523 } 1626 }
1524} 1627}
1525 1628
1629#ifdef __cplusplus
1630}
1631#endif
1632

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines