ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC vs.
Revision 1.102 by root, Sun Nov 11 17:56:11 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_EMBED 31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
38
39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1
45# endif
46# endif
47
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
49# define EV_USE_SELECT 1
50# endif
51
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
53# define EV_USE_POLL 1
54# endif
55
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
57# define EV_USE_EPOLL 1
58# endif
59
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
61# define EV_USE_KQUEUE 1
62# endif
63
33#endif 64#endif
34 65
35#include <math.h> 66#include <math.h>
36#include <stdlib.h> 67#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 68#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 69#include <stddef.h>
41 70
42#include <stdio.h> 71#include <stdio.h>
43 72
44#include <assert.h> 73#include <assert.h>
45#include <errno.h> 74#include <errno.h>
46#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
47#ifndef WIN32 80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
48# include <sys/wait.h> 83# include <sys/wait.h>
49#endif 84#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 85/**/
54 86
55#ifndef EV_USE_MONOTONIC 87#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 88# define EV_USE_MONOTONIC 1
57#endif 89#endif
58 90
59#ifndef EV_USE_SELECT 91#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
61#endif 93#endif
62 94
63#ifndef EV_USEV_POLL 95#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 96# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 97#endif
66 98
67#ifndef EV_USE_EPOLL 99#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 100# define EV_USE_EPOLL 0
69#endif 101#endif
70 102
71#ifndef EV_USE_KQUEUE 103#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
73#endif 115#endif
74 116
75#ifndef EV_USE_REALTIME 117#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 118# define EV_USE_REALTIME 1
77#endif 119#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 139
98#ifndef EV_EMBED 140#ifdef EV_H
141# include EV_H
142#else
99# include "ev.h" 143# include "ev.h"
100#endif 144#endif
101 145
102#if __GNUC__ >= 3 146#if __GNUC__ >= 3
103# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
117typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
118typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
119 163
120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
121 165
166#ifdef WIN32
167# include "ev_win32.c"
168#endif
169
122/*****************************************************************************/ 170/*****************************************************************************/
123 171
172static void (*syserr_cb)(const char *msg);
173
174void ev_set_syserr_cb (void (*cb)(const char *msg))
175{
176 syserr_cb = cb;
177}
178
179static void
180syserr (const char *msg)
181{
182 if (!msg)
183 msg = "(libev) system error";
184
185 if (syserr_cb)
186 syserr_cb (msg);
187 else
188 {
189 perror (msg);
190 abort ();
191 }
192}
193
194static void *(*alloc)(void *ptr, long size);
195
196void ev_set_allocator (void *(*cb)(void *ptr, long size))
197{
198 alloc = cb;
199}
200
201static void *
202ev_realloc (void *ptr, long size)
203{
204 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
205
206 if (!ptr && size)
207 {
208 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
209 abort ();
210 }
211
212 return ptr;
213}
214
215#define ev_malloc(size) ev_realloc (0, (size))
216#define ev_free(ptr) ev_realloc ((ptr), 0)
217
218/*****************************************************************************/
219
124typedef struct 220typedef struct
125{ 221{
126 struct ev_watcher_list *head; 222 WL head;
127 unsigned char events; 223 unsigned char events;
128 unsigned char reify; 224 unsigned char reify;
129} ANFD; 225} ANFD;
130 226
131typedef struct 227typedef struct
134 int events; 230 int events;
135} ANPENDING; 231} ANPENDING;
136 232
137#if EV_MULTIPLICITY 233#if EV_MULTIPLICITY
138 234
139struct ev_loop 235 struct ev_loop
140{ 236 {
237 ev_tstamp ev_rt_now;
238 #define ev_rt_now ((loop)->ev_rt_now)
141# define VAR(name,decl) decl; 239 #define VAR(name,decl) decl;
142# include "ev_vars.h" 240 #include "ev_vars.h"
143};
144# undef VAR 241 #undef VAR
242 };
145# include "ev_wrap.h" 243 #include "ev_wrap.h"
244
245 struct ev_loop default_loop_struct;
246 static struct ev_loop *default_loop;
146 247
147#else 248#else
148 249
250 ev_tstamp ev_rt_now;
149# define VAR(name,decl) static decl; 251 #define VAR(name,decl) static decl;
150# include "ev_vars.h" 252 #include "ev_vars.h"
151# undef VAR 253 #undef VAR
254
255 static int default_loop;
152 256
153#endif 257#endif
154 258
155/*****************************************************************************/ 259/*****************************************************************************/
156 260
157inline ev_tstamp 261ev_tstamp
158ev_time (void) 262ev_time (void)
159{ 263{
160#if EV_USE_REALTIME 264#if EV_USE_REALTIME
161 struct timespec ts; 265 struct timespec ts;
162 clock_gettime (CLOCK_REALTIME, &ts); 266 clock_gettime (CLOCK_REALTIME, &ts);
181#endif 285#endif
182 286
183 return ev_time (); 287 return ev_time ();
184} 288}
185 289
290#if EV_MULTIPLICITY
186ev_tstamp 291ev_tstamp
187ev_now (EV_P) 292ev_now (EV_P)
188{ 293{
189 return rt_now; 294 return ev_rt_now;
190} 295}
296#endif
191 297
192#define array_roundsize(base,n) ((n) | 4 & ~3) 298#define array_roundsize(type,n) ((n) | 4 & ~3)
193 299
194#define array_needsize(base,cur,cnt,init) \ 300#define array_needsize(type,base,cur,cnt,init) \
195 if (expect_false ((cnt) > cur)) \ 301 if (expect_false ((cnt) > cur)) \
196 { \ 302 { \
197 int newcnt = cur; \ 303 int newcnt = cur; \
198 do \ 304 do \
199 { \ 305 { \
200 newcnt = array_roundsize (base, newcnt << 1); \ 306 newcnt = array_roundsize (type, newcnt << 1); \
201 } \ 307 } \
202 while ((cnt) > newcnt); \ 308 while ((cnt) > newcnt); \
203 \ 309 \
204 base = realloc (base, sizeof (*base) * (newcnt)); \ 310 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
205 init (base + cur, newcnt - cur); \ 311 init (base + cur, newcnt - cur); \
206 cur = newcnt; \ 312 cur = newcnt; \
207 } 313 }
314
315#define array_slim(type,stem) \
316 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
317 { \
318 stem ## max = array_roundsize (stem ## cnt >> 1); \
319 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
320 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
321 }
322
323/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
324/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
325#define array_free_microshit(stem) \
326 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
327
328#define array_free(stem, idx) \
329 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
208 330
209/*****************************************************************************/ 331/*****************************************************************************/
210 332
211static void 333static void
212anfds_init (ANFD *base, int count) 334anfds_init (ANFD *base, int count)
219 341
220 ++base; 342 ++base;
221 } 343 }
222} 344}
223 345
224static void 346void
225event (EV_P_ W w, int events) 347ev_feed_event (EV_P_ void *w, int revents)
226{ 348{
349 W w_ = (W)w;
350
227 if (w->pending) 351 if (w_->pending)
228 { 352 {
229 pendings [ABSPRI (w)][w->pending - 1].events |= events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
230 return; 354 return;
231 } 355 }
232 356
233 w->pending = ++pendingcnt [ABSPRI (w)]; 357 w_->pending = ++pendingcnt [ABSPRI (w_)];
234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 358 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
235 pendings [ABSPRI (w)][w->pending - 1].w = w; 359 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
236 pendings [ABSPRI (w)][w->pending - 1].events = events; 360 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
237} 361}
238 362
239static void 363static void
240queue_events (EV_P_ W *events, int eventcnt, int type) 364queue_events (EV_P_ W *events, int eventcnt, int type)
241{ 365{
242 int i; 366 int i;
243 367
244 for (i = 0; i < eventcnt; ++i) 368 for (i = 0; i < eventcnt; ++i)
245 event (EV_A_ events [i], type); 369 ev_feed_event (EV_A_ events [i], type);
246} 370}
247 371
248static void 372inline void
249fd_event (EV_P_ int fd, int events) 373fd_event (EV_P_ int fd, int revents)
250{ 374{
251 ANFD *anfd = anfds + fd; 375 ANFD *anfd = anfds + fd;
252 struct ev_io *w; 376 struct ev_io *w;
253 377
254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 378 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
255 { 379 {
256 int ev = w->events & events; 380 int ev = w->events & revents;
257 381
258 if (ev) 382 if (ev)
259 event (EV_A_ (W)w, ev); 383 ev_feed_event (EV_A_ (W)w, ev);
260 } 384 }
385}
386
387void
388ev_feed_fd_event (EV_P_ int fd, int revents)
389{
390 fd_event (EV_A_ fd, revents);
261} 391}
262 392
263/*****************************************************************************/ 393/*****************************************************************************/
264 394
265static void 395static void
278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
279 events |= w->events; 409 events |= w->events;
280 410
281 anfd->reify = 0; 411 anfd->reify = 0;
282 412
283 if (anfd->events != events)
284 {
285 method_modify (EV_A_ fd, anfd->events, events); 413 method_modify (EV_A_ fd, anfd->events, events);
286 anfd->events = events; 414 anfd->events = events;
287 }
288 } 415 }
289 416
290 fdchangecnt = 0; 417 fdchangecnt = 0;
291} 418}
292 419
293static void 420static void
294fd_change (EV_P_ int fd) 421fd_change (EV_P_ int fd)
295{ 422{
296 if (anfds [fd].reify || fdchangecnt < 0) 423 if (anfds [fd].reify)
297 return; 424 return;
298 425
299 anfds [fd].reify = 1; 426 anfds [fd].reify = 1;
300 427
301 ++fdchangecnt; 428 ++fdchangecnt;
302 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 429 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
303 fdchanges [fdchangecnt - 1] = fd; 430 fdchanges [fdchangecnt - 1] = fd;
304} 431}
305 432
306static void 433static void
307fd_kill (EV_P_ int fd) 434fd_kill (EV_P_ int fd)
309 struct ev_io *w; 436 struct ev_io *w;
310 437
311 while ((w = (struct ev_io *)anfds [fd].head)) 438 while ((w = (struct ev_io *)anfds [fd].head))
312 { 439 {
313 ev_io_stop (EV_A_ w); 440 ev_io_stop (EV_A_ w);
314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 441 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 } 442 }
443}
444
445static int
446fd_valid (int fd)
447{
448#ifdef WIN32
449 return !!win32_get_osfhandle (fd);
450#else
451 return fcntl (fd, F_GETFD) != -1;
452#endif
316} 453}
317 454
318/* called on EBADF to verify fds */ 455/* called on EBADF to verify fds */
319static void 456static void
320fd_ebadf (EV_P) 457fd_ebadf (EV_P)
321{ 458{
322 int fd; 459 int fd;
323 460
324 for (fd = 0; fd < anfdmax; ++fd) 461 for (fd = 0; fd < anfdmax; ++fd)
325 if (anfds [fd].events) 462 if (anfds [fd].events)
326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 463 if (!fd_valid (fd) == -1 && errno == EBADF)
327 fd_kill (EV_A_ fd); 464 fd_kill (EV_A_ fd);
328} 465}
329 466
330/* called on ENOMEM in select/poll to kill some fds and retry */ 467/* called on ENOMEM in select/poll to kill some fds and retry */
331static void 468static void
332fd_enomem (EV_P) 469fd_enomem (EV_P)
333{ 470{
334 int fd = anfdmax; 471 int fd;
335 472
336 while (fd--) 473 for (fd = anfdmax; fd--; )
337 if (anfds [fd].events) 474 if (anfds [fd].events)
338 { 475 {
339 close (fd);
340 fd_kill (EV_A_ fd); 476 fd_kill (EV_A_ fd);
341 return; 477 return;
342 } 478 }
343} 479}
344 480
345/* susually called after fork if method needs to re-arm all fds from scratch */ 481/* usually called after fork if method needs to re-arm all fds from scratch */
346static void 482static void
347fd_rearm_all (EV_P) 483fd_rearm_all (EV_P)
348{ 484{
349 int fd; 485 int fd;
350 486
351 /* this should be highly optimised to not do anything but set a flag */ 487 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd) 488 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 489 if (anfds [fd].events)
354 { 490 {
355 anfds [fd].events = 0; 491 anfds [fd].events = 0;
356 fd_change (fd); 492 fd_change (EV_A_ fd);
357 } 493 }
358} 494}
359 495
360/*****************************************************************************/ 496/*****************************************************************************/
361 497
365 WT w = heap [k]; 501 WT w = heap [k];
366 502
367 while (k && heap [k >> 1]->at > w->at) 503 while (k && heap [k >> 1]->at > w->at)
368 { 504 {
369 heap [k] = heap [k >> 1]; 505 heap [k] = heap [k >> 1];
370 heap [k]->active = k + 1; 506 ((W)heap [k])->active = k + 1;
371 k >>= 1; 507 k >>= 1;
372 } 508 }
373 509
374 heap [k] = w; 510 heap [k] = w;
375 heap [k]->active = k + 1; 511 ((W)heap [k])->active = k + 1;
376 512
377} 513}
378 514
379static void 515static void
380downheap (WT *heap, int N, int k) 516downheap (WT *heap, int N, int k)
390 526
391 if (w->at <= heap [j]->at) 527 if (w->at <= heap [j]->at)
392 break; 528 break;
393 529
394 heap [k] = heap [j]; 530 heap [k] = heap [j];
395 heap [k]->active = k + 1; 531 ((W)heap [k])->active = k + 1;
396 k = j; 532 k = j;
397 } 533 }
398 534
399 heap [k] = w; 535 heap [k] = w;
400 heap [k]->active = k + 1; 536 ((W)heap [k])->active = k + 1;
537}
538
539inline void
540adjustheap (WT *heap, int N, int k)
541{
542 upheap (heap, k);
543 downheap (heap, N, k);
401} 544}
402 545
403/*****************************************************************************/ 546/*****************************************************************************/
404 547
405typedef struct 548typedef struct
406{ 549{
407 struct ev_watcher_list *head; 550 WL head;
408 sig_atomic_t volatile gotsig; 551 sig_atomic_t volatile gotsig;
409} ANSIG; 552} ANSIG;
410 553
411static ANSIG *signals; 554static ANSIG *signals;
412static int signalmax; 555static int signalmax;
413 556
414static int sigpipe [2]; 557static int sigpipe [2];
415static sig_atomic_t volatile gotsig; 558static sig_atomic_t volatile gotsig;
559static struct ev_io sigev;
416 560
417static void 561static void
418signals_init (ANSIG *base, int count) 562signals_init (ANSIG *base, int count)
419{ 563{
420 while (count--) 564 while (count--)
427} 571}
428 572
429static void 573static void
430sighandler (int signum) 574sighandler (int signum)
431{ 575{
576#if WIN32
577 signal (signum, sighandler);
578#endif
579
432 signals [signum - 1].gotsig = 1; 580 signals [signum - 1].gotsig = 1;
433 581
434 if (!gotsig) 582 if (!gotsig)
435 { 583 {
436 int old_errno = errno; 584 int old_errno = errno;
437 gotsig = 1; 585 gotsig = 1;
586#ifdef WIN32
587 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
588#else
438 write (sigpipe [1], &signum, 1); 589 write (sigpipe [1], &signum, 1);
590#endif
439 errno = old_errno; 591 errno = old_errno;
440 } 592 }
441} 593}
442 594
595void
596ev_feed_signal_event (EV_P_ int signum)
597{
598 WL w;
599
600#if EV_MULTIPLICITY
601 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
602#endif
603
604 --signum;
605
606 if (signum < 0 || signum >= signalmax)
607 return;
608
609 signals [signum].gotsig = 0;
610
611 for (w = signals [signum].head; w; w = w->next)
612 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
613}
614
443static void 615static void
444sigcb (EV_P_ struct ev_io *iow, int revents) 616sigcb (EV_P_ struct ev_io *iow, int revents)
445{ 617{
446 struct ev_watcher_list *w;
447 int signum; 618 int signum;
448 619
620#ifdef WIN32
621 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
622#else
449 read (sigpipe [0], &revents, 1); 623 read (sigpipe [0], &revents, 1);
624#endif
450 gotsig = 0; 625 gotsig = 0;
451 626
452 for (signum = signalmax; signum--; ) 627 for (signum = signalmax; signum--; )
453 if (signals [signum].gotsig) 628 if (signals [signum].gotsig)
454 { 629 ev_feed_signal_event (EV_A_ signum + 1);
455 signals [signum].gotsig = 0;
456
457 for (w = signals [signum].head; w; w = w->next)
458 event (EV_A_ (W)w, EV_SIGNAL);
459 }
460} 630}
461 631
462static void 632static void
463siginit (EV_P) 633siginit (EV_P)
464{ 634{
476 ev_unref (EV_A); /* child watcher should not keep loop alive */ 646 ev_unref (EV_A); /* child watcher should not keep loop alive */
477} 647}
478 648
479/*****************************************************************************/ 649/*****************************************************************************/
480 650
651static struct ev_child *childs [PID_HASHSIZE];
652
481#ifndef WIN32 653#ifndef WIN32
654
655static struct ev_signal childev;
482 656
483#ifndef WCONTINUED 657#ifndef WCONTINUED
484# define WCONTINUED 0 658# define WCONTINUED 0
485#endif 659#endif
486 660
490 struct ev_child *w; 664 struct ev_child *w;
491 665
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 666 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid) 667 if (w->pid == pid || !w->pid)
494 { 668 {
495 w->priority = sw->priority; /* need to do it *now* */ 669 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
496 w->rpid = pid; 670 w->rpid = pid;
497 w->rstatus = status; 671 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD); 672 ev_feed_event (EV_A_ (W)w, EV_CHILD);
499 } 673 }
500} 674}
501 675
502static void 676static void
503childcb (EV_P_ struct ev_signal *sw, int revents) 677childcb (EV_P_ struct ev_signal *sw, int revents)
505 int pid, status; 679 int pid, status;
506 680
507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 681 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
508 { 682 {
509 /* make sure we are called again until all childs have been reaped */ 683 /* make sure we are called again until all childs have been reaped */
510 event (EV_A_ (W)sw, EV_SIGNAL); 684 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
511 685
512 child_reap (EV_A_ sw, pid, pid, status); 686 child_reap (EV_A_ sw, pid, pid, status);
513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 687 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
514 } 688 }
515} 689}
522# include "ev_kqueue.c" 696# include "ev_kqueue.c"
523#endif 697#endif
524#if EV_USE_EPOLL 698#if EV_USE_EPOLL
525# include "ev_epoll.c" 699# include "ev_epoll.c"
526#endif 700#endif
527#if EV_USEV_POLL 701#if EV_USE_POLL
528# include "ev_poll.c" 702# include "ev_poll.c"
529#endif 703#endif
530#if EV_USE_SELECT 704#if EV_USE_SELECT
531# include "ev_select.c" 705# include "ev_select.c"
532#endif 706#endif
572 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 746 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
573 have_monotonic = 1; 747 have_monotonic = 1;
574 } 748 }
575#endif 749#endif
576 750
577 rt_now = ev_time (); 751 ev_rt_now = ev_time ();
578 mn_now = get_clock (); 752 mn_now = get_clock ();
579 now_floor = mn_now; 753 now_floor = mn_now;
580 rtmn_diff = rt_now - mn_now; 754 rtmn_diff = ev_rt_now - mn_now;
581 755
582 if (methods == EVMETHOD_AUTO) 756 if (methods == EVMETHOD_AUTO)
583 if (!enable_secure () && getenv ("LIBEV_METHODS")) 757 if (!enable_secure () && getenv ("LIBEV_METHODS"))
584 methods = atoi (getenv ("LIBEV_METHODS")); 758 methods = atoi (getenv ("LIBEV_METHODS"));
585 else 759 else
586 methods = EVMETHOD_ANY; 760 methods = EVMETHOD_ANY;
587 761
588 method = 0; 762 method = 0;
763#if EV_USE_WIN32
764 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
765#endif
589#if EV_USE_KQUEUE 766#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 767 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif 768#endif
592#if EV_USE_EPOLL 769#if EV_USE_EPOLL
593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 770 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif 771#endif
595#if EV_USEV_POLL 772#if EV_USE_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 773 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
597#endif 774#endif
598#if EV_USE_SELECT 775#if EV_USE_SELECT
599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 776 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
600#endif 777#endif
778
779 ev_init (&sigev, sigcb);
780 ev_set_priority (&sigev, EV_MAXPRI);
601 } 781 }
602} 782}
603 783
604void 784void
605loop_destroy (EV_P) 785loop_destroy (EV_P)
606{ 786{
787 int i;
788
789#if EV_USE_WIN32
790 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
791#endif
607#if EV_USE_KQUEUE 792#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 793 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif 794#endif
610#if EV_USE_EPOLL 795#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 796 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif 797#endif
613#if EV_USEV_POLL 798#if EV_USE_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 799 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif 800#endif
616#if EV_USE_SELECT 801#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 802 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif 803#endif
619 804
805 for (i = NUMPRI; i--; )
806 array_free (pending, [i]);
807
808 /* have to use the microsoft-never-gets-it-right macro */
809 array_free_microshit (fdchange);
810 array_free_microshit (timer);
811#if EV_PERIODICS
812 array_free_microshit (periodic);
813#endif
814 array_free_microshit (idle);
815 array_free_microshit (prepare);
816 array_free_microshit (check);
817
620 method = 0; 818 method = 0;
621 /*TODO*/
622} 819}
623 820
624void 821static void
625loop_fork (EV_P) 822loop_fork (EV_P)
626{ 823{
627 /*TODO*/
628#if EV_USE_EPOLL 824#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 825 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif 826#endif
631#if EV_USE_KQUEUE 827#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 828 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif 829#endif
830
831 if (ev_is_active (&sigev))
832 {
833 /* default loop */
834
835 ev_ref (EV_A);
836 ev_io_stop (EV_A_ &sigev);
837 close (sigpipe [0]);
838 close (sigpipe [1]);
839
840 while (pipe (sigpipe))
841 syserr ("(libev) error creating pipe");
842
843 siginit (EV_A);
844 }
845
846 postfork = 0;
634} 847}
635 848
636#if EV_MULTIPLICITY 849#if EV_MULTIPLICITY
637struct ev_loop * 850struct ev_loop *
638ev_loop_new (int methods) 851ev_loop_new (int methods)
639{ 852{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 853 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
854
855 memset (loop, 0, sizeof (struct ev_loop));
641 856
642 loop_init (EV_A_ methods); 857 loop_init (EV_A_ methods);
643 858
644 if (ev_methods (EV_A)) 859 if (ev_method (EV_A))
645 return loop; 860 return loop;
646 861
647 return 0; 862 return 0;
648} 863}
649 864
650void 865void
651ev_loop_destroy (EV_P) 866ev_loop_destroy (EV_P)
652{ 867{
653 loop_destroy (EV_A); 868 loop_destroy (EV_A);
654 free (loop); 869 ev_free (loop);
655} 870}
656 871
657void 872void
658ev_loop_fork (EV_P) 873ev_loop_fork (EV_P)
659{ 874{
660 loop_fork (EV_A); 875 postfork = 1;
661} 876}
662 877
663#endif 878#endif
664 879
665#if EV_MULTIPLICITY 880#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop * 881struct ev_loop *
670#else 882#else
671static int default_loop;
672
673int 883int
674#endif 884#endif
675ev_default_loop (int methods) 885ev_default_loop (int methods)
676{ 886{
677 if (sigpipe [0] == sigpipe [1]) 887 if (sigpipe [0] == sigpipe [1])
688 898
689 loop_init (EV_A_ methods); 899 loop_init (EV_A_ methods);
690 900
691 if (ev_method (EV_A)) 901 if (ev_method (EV_A))
692 { 902 {
693 ev_watcher_init (&sigev, sigcb);
694 ev_set_priority (&sigev, EV_MAXPRI);
695 siginit (EV_A); 903 siginit (EV_A);
696 904
697#ifndef WIN32 905#ifndef WIN32
698 ev_signal_init (&childev, childcb, SIGCHLD); 906 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI); 907 ev_set_priority (&childev, EV_MAXPRI);
713{ 921{
714#if EV_MULTIPLICITY 922#if EV_MULTIPLICITY
715 struct ev_loop *loop = default_loop; 923 struct ev_loop *loop = default_loop;
716#endif 924#endif
717 925
926#ifndef WIN32
718 ev_ref (EV_A); /* child watcher */ 927 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev); 928 ev_signal_stop (EV_A_ &childev);
929#endif
720 930
721 ev_ref (EV_A); /* signal watcher */ 931 ev_ref (EV_A); /* signal watcher */
722 ev_io_stop (EV_A_ &sigev); 932 ev_io_stop (EV_A_ &sigev);
723 933
724 close (sigpipe [0]); sigpipe [0] = 0; 934 close (sigpipe [0]); sigpipe [0] = 0;
726 936
727 loop_destroy (EV_A); 937 loop_destroy (EV_A);
728} 938}
729 939
730void 940void
731ev_default_fork (EV_P) 941ev_default_fork (void)
732{ 942{
733 loop_fork (EV_A); 943#if EV_MULTIPLICITY
944 struct ev_loop *loop = default_loop;
945#endif
734 946
735 ev_io_stop (EV_A_ &sigev); 947 if (method)
736 close (sigpipe [0]); 948 postfork = 1;
737 close (sigpipe [1]);
738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
741 siginit (EV_A);
742} 949}
743 950
744/*****************************************************************************/ 951/*****************************************************************************/
952
953static int
954any_pending (EV_P)
955{
956 int pri;
957
958 for (pri = NUMPRI; pri--; )
959 if (pendingcnt [pri])
960 return 1;
961
962 return 0;
963}
745 964
746static void 965static void
747call_pending (EV_P) 966call_pending (EV_P)
748{ 967{
749 int pri; 968 int pri;
754 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 973 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
755 974
756 if (p->w) 975 if (p->w)
757 { 976 {
758 p->w->pending = 0; 977 p->w->pending = 0;
759 p->w->cb (EV_A_ p->w, p->events); 978 EV_CB_INVOKE (p->w, p->events);
760 } 979 }
761 } 980 }
762} 981}
763 982
764static void 983static void
765timers_reify (EV_P) 984timers_reify (EV_P)
766{ 985{
767 while (timercnt && timers [0]->at <= mn_now) 986 while (timercnt && ((WT)timers [0])->at <= mn_now)
768 { 987 {
769 struct ev_timer *w = timers [0]; 988 struct ev_timer *w = timers [0];
989
990 assert (("inactive timer on timer heap detected", ev_is_active (w)));
770 991
771 /* first reschedule or stop timer */ 992 /* first reschedule or stop timer */
772 if (w->repeat) 993 if (w->repeat)
773 { 994 {
774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 995 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
996
775 w->at = mn_now + w->repeat; 997 ((WT)w)->at += w->repeat;
998 if (((WT)w)->at < mn_now)
999 ((WT)w)->at = mn_now;
1000
776 downheap ((WT *)timers, timercnt, 0); 1001 downheap ((WT *)timers, timercnt, 0);
777 } 1002 }
778 else 1003 else
779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1004 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
780 1005
781 event (EV_A_ (W)w, EV_TIMEOUT); 1006 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
782 } 1007 }
783} 1008}
784 1009
1010#if EV_PERIODICS
785static void 1011static void
786periodics_reify (EV_P) 1012periodics_reify (EV_P)
787{ 1013{
788 while (periodiccnt && periodics [0]->at <= rt_now) 1014 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
789 { 1015 {
790 struct ev_periodic *w = periodics [0]; 1016 struct ev_periodic *w = periodics [0];
791 1017
1018 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1019
792 /* first reschedule or stop timer */ 1020 /* first reschedule or stop timer */
793 if (w->interval) 1021 if (w->reschedule_cb)
794 { 1022 {
1023 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1024
1025 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1026 downheap ((WT *)periodics, periodiccnt, 0);
1027 }
1028 else if (w->interval)
1029 {
795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1030 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1031 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
797 downheap ((WT *)periodics, periodiccnt, 0); 1032 downheap ((WT *)periodics, periodiccnt, 0);
798 } 1033 }
799 else 1034 else
800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1035 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
801 1036
802 event (EV_A_ (W)w, EV_PERIODIC); 1037 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
803 } 1038 }
804} 1039}
805 1040
806static void 1041static void
807periodics_reschedule (EV_P) 1042periodics_reschedule (EV_P)
811 /* adjust periodics after time jump */ 1046 /* adjust periodics after time jump */
812 for (i = 0; i < periodiccnt; ++i) 1047 for (i = 0; i < periodiccnt; ++i)
813 { 1048 {
814 struct ev_periodic *w = periodics [i]; 1049 struct ev_periodic *w = periodics [i];
815 1050
1051 if (w->reschedule_cb)
1052 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
816 if (w->interval) 1053 else if (w->interval)
817 {
818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1054 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
819
820 if (fabs (diff) >= 1e-4)
821 {
822 ev_periodic_stop (EV_A_ w);
823 ev_periodic_start (EV_A_ w);
824
825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
826 }
827 }
828 } 1055 }
1056
1057 /* now rebuild the heap */
1058 for (i = periodiccnt >> 1; i--; )
1059 downheap ((WT *)periodics, periodiccnt, i);
829} 1060}
1061#endif
830 1062
831inline int 1063inline int
832time_update_monotonic (EV_P) 1064time_update_monotonic (EV_P)
833{ 1065{
834 mn_now = get_clock (); 1066 mn_now = get_clock ();
835 1067
836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1068 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
837 { 1069 {
838 rt_now = rtmn_diff + mn_now; 1070 ev_rt_now = rtmn_diff + mn_now;
839 return 0; 1071 return 0;
840 } 1072 }
841 else 1073 else
842 { 1074 {
843 now_floor = mn_now; 1075 now_floor = mn_now;
844 rt_now = ev_time (); 1076 ev_rt_now = ev_time ();
845 return 1; 1077 return 1;
846 } 1078 }
847} 1079}
848 1080
849static void 1081static void
858 { 1090 {
859 ev_tstamp odiff = rtmn_diff; 1091 ev_tstamp odiff = rtmn_diff;
860 1092
861 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1093 for (i = 4; --i; ) /* loop a few times, before making important decisions */
862 { 1094 {
863 rtmn_diff = rt_now - mn_now; 1095 rtmn_diff = ev_rt_now - mn_now;
864 1096
865 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1097 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
866 return; /* all is well */ 1098 return; /* all is well */
867 1099
868 rt_now = ev_time (); 1100 ev_rt_now = ev_time ();
869 mn_now = get_clock (); 1101 mn_now = get_clock ();
870 now_floor = mn_now; 1102 now_floor = mn_now;
871 } 1103 }
872 1104
1105# if EV_PERIODICS
873 periodics_reschedule (EV_A); 1106 periodics_reschedule (EV_A);
1107# endif
874 /* no timer adjustment, as the monotonic clock doesn't jump */ 1108 /* no timer adjustment, as the monotonic clock doesn't jump */
875 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1109 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
876 } 1110 }
877 } 1111 }
878 else 1112 else
879#endif 1113#endif
880 { 1114 {
881 rt_now = ev_time (); 1115 ev_rt_now = ev_time ();
882 1116
883 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1117 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
884 { 1118 {
1119#if EV_PERIODICS
885 periodics_reschedule (EV_A); 1120 periodics_reschedule (EV_A);
1121#endif
886 1122
887 /* adjust timers. this is easy, as the offset is the same for all */ 1123 /* adjust timers. this is easy, as the offset is the same for all */
888 for (i = 0; i < timercnt; ++i) 1124 for (i = 0; i < timercnt; ++i)
889 timers [i]->at += rt_now - mn_now; 1125 ((WT)timers [i])->at += ev_rt_now - mn_now;
890 } 1126 }
891 1127
892 mn_now = rt_now; 1128 mn_now = ev_rt_now;
893 } 1129 }
894} 1130}
895 1131
896void 1132void
897ev_ref (EV_P) 1133ev_ref (EV_P)
920 { 1156 {
921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1157 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
922 call_pending (EV_A); 1158 call_pending (EV_A);
923 } 1159 }
924 1160
1161 /* we might have forked, so reify kernel state if necessary */
1162 if (expect_false (postfork))
1163 loop_fork (EV_A);
1164
925 /* update fd-related kernel structures */ 1165 /* update fd-related kernel structures */
926 fd_reify (EV_A); 1166 fd_reify (EV_A);
927 1167
928 /* calculate blocking time */ 1168 /* calculate blocking time */
929 1169
930 /* we only need this for !monotonic clockor timers, but as we basically 1170 /* we only need this for !monotonic clock or timers, but as we basically
931 always have timers, we just calculate it always */ 1171 always have timers, we just calculate it always */
932#if EV_USE_MONOTONIC 1172#if EV_USE_MONOTONIC
933 if (expect_true (have_monotonic)) 1173 if (expect_true (have_monotonic))
934 time_update_monotonic (EV_A); 1174 time_update_monotonic (EV_A);
935 else 1175 else
936#endif 1176#endif
937 { 1177 {
938 rt_now = ev_time (); 1178 ev_rt_now = ev_time ();
939 mn_now = rt_now; 1179 mn_now = ev_rt_now;
940 } 1180 }
941 1181
942 if (flags & EVLOOP_NONBLOCK || idlecnt) 1182 if (flags & EVLOOP_NONBLOCK || idlecnt)
943 block = 0.; 1183 block = 0.;
944 else 1184 else
945 { 1185 {
946 block = MAX_BLOCKTIME; 1186 block = MAX_BLOCKTIME;
947 1187
948 if (timercnt) 1188 if (timercnt)
949 { 1189 {
950 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1190 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
951 if (block > to) block = to; 1191 if (block > to) block = to;
952 } 1192 }
953 1193
1194#if EV_PERIODICS
954 if (periodiccnt) 1195 if (periodiccnt)
955 { 1196 {
956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1197 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
957 if (block > to) block = to; 1198 if (block > to) block = to;
958 } 1199 }
1200#endif
959 1201
960 if (block < 0.) block = 0.; 1202 if (block < 0.) block = 0.;
961 } 1203 }
962 1204
963 method_poll (EV_A_ block); 1205 method_poll (EV_A_ block);
964 1206
965 /* update rt_now, do magic */ 1207 /* update ev_rt_now, do magic */
966 time_update (EV_A); 1208 time_update (EV_A);
967 1209
968 /* queue pending timers and reschedule them */ 1210 /* queue pending timers and reschedule them */
969 timers_reify (EV_A); /* relative timers called last */ 1211 timers_reify (EV_A); /* relative timers called last */
1212#if EV_PERIODICS
970 periodics_reify (EV_A); /* absolute timers called first */ 1213 periodics_reify (EV_A); /* absolute timers called first */
1214#endif
971 1215
972 /* queue idle watchers unless io or timers are pending */ 1216 /* queue idle watchers unless io or timers are pending */
973 if (!pendingcnt) 1217 if (idlecnt && !any_pending (EV_A))
974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1218 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
975 1219
976 /* queue check watchers, to be executed first */ 1220 /* queue check watchers, to be executed first */
977 if (checkcnt) 1221 if (checkcnt)
978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1222 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1053 return; 1297 return;
1054 1298
1055 assert (("ev_io_start called with negative fd", fd >= 0)); 1299 assert (("ev_io_start called with negative fd", fd >= 0));
1056 1300
1057 ev_start (EV_A_ (W)w, 1); 1301 ev_start (EV_A_ (W)w, 1);
1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1302 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1059 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1303 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1060 1304
1061 fd_change (EV_A_ fd); 1305 fd_change (EV_A_ fd);
1062} 1306}
1063 1307
1066{ 1310{
1067 ev_clear_pending (EV_A_ (W)w); 1311 ev_clear_pending (EV_A_ (W)w);
1068 if (!ev_is_active (w)) 1312 if (!ev_is_active (w))
1069 return; 1313 return;
1070 1314
1315 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1316
1071 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1317 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1072 ev_stop (EV_A_ (W)w); 1318 ev_stop (EV_A_ (W)w);
1073 1319
1074 fd_change (EV_A_ w->fd); 1320 fd_change (EV_A_ w->fd);
1075} 1321}
1078ev_timer_start (EV_P_ struct ev_timer *w) 1324ev_timer_start (EV_P_ struct ev_timer *w)
1079{ 1325{
1080 if (ev_is_active (w)) 1326 if (ev_is_active (w))
1081 return; 1327 return;
1082 1328
1083 w->at += mn_now; 1329 ((WT)w)->at += mn_now;
1084 1330
1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1331 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1086 1332
1087 ev_start (EV_A_ (W)w, ++timercnt); 1333 ev_start (EV_A_ (W)w, ++timercnt);
1088 array_needsize (timers, timermax, timercnt, ); 1334 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1089 timers [timercnt - 1] = w; 1335 timers [timercnt - 1] = w;
1090 upheap ((WT *)timers, timercnt - 1); 1336 upheap ((WT *)timers, timercnt - 1);
1337
1338 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1091} 1339}
1092 1340
1093void 1341void
1094ev_timer_stop (EV_P_ struct ev_timer *w) 1342ev_timer_stop (EV_P_ struct ev_timer *w)
1095{ 1343{
1096 ev_clear_pending (EV_A_ (W)w); 1344 ev_clear_pending (EV_A_ (W)w);
1097 if (!ev_is_active (w)) 1345 if (!ev_is_active (w))
1098 return; 1346 return;
1099 1347
1348 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1349
1100 if (w->active < timercnt--) 1350 if (((W)w)->active < timercnt--)
1101 { 1351 {
1102 timers [w->active - 1] = timers [timercnt]; 1352 timers [((W)w)->active - 1] = timers [timercnt];
1103 downheap ((WT *)timers, timercnt, w->active - 1); 1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1104 } 1354 }
1105 1355
1106 w->at = w->repeat; 1356 ((WT)w)->at -= mn_now;
1107 1357
1108 ev_stop (EV_A_ (W)w); 1358 ev_stop (EV_A_ (W)w);
1109} 1359}
1110 1360
1111void 1361void
1113{ 1363{
1114 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1115 { 1365 {
1116 if (w->repeat) 1366 if (w->repeat)
1117 { 1367 {
1118 w->at = mn_now + w->repeat; 1368 ((WT)w)->at = mn_now + w->repeat;
1119 downheap ((WT *)timers, timercnt, w->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1120 } 1370 }
1121 else 1371 else
1122 ev_timer_stop (EV_A_ w); 1372 ev_timer_stop (EV_A_ w);
1123 } 1373 }
1124 else if (w->repeat) 1374 else if (w->repeat)
1125 ev_timer_start (EV_A_ w); 1375 ev_timer_start (EV_A_ w);
1126} 1376}
1127 1377
1378#if EV_PERIODICS
1128void 1379void
1129ev_periodic_start (EV_P_ struct ev_periodic *w) 1380ev_periodic_start (EV_P_ struct ev_periodic *w)
1130{ 1381{
1131 if (ev_is_active (w)) 1382 if (ev_is_active (w))
1132 return; 1383 return;
1133 1384
1385 if (w->reschedule_cb)
1386 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1387 else if (w->interval)
1388 {
1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1389 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1135
1136 /* this formula differs from the one in periodic_reify because we do not always round up */ 1390 /* this formula differs from the one in periodic_reify because we do not always round up */
1137 if (w->interval)
1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1391 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1392 }
1139 1393
1140 ev_start (EV_A_ (W)w, ++periodiccnt); 1394 ev_start (EV_A_ (W)w, ++periodiccnt);
1141 array_needsize (periodics, periodicmax, periodiccnt, ); 1395 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1142 periodics [periodiccnt - 1] = w; 1396 periodics [periodiccnt - 1] = w;
1143 upheap ((WT *)periodics, periodiccnt - 1); 1397 upheap ((WT *)periodics, periodiccnt - 1);
1398
1399 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1144} 1400}
1145 1401
1146void 1402void
1147ev_periodic_stop (EV_P_ struct ev_periodic *w) 1403ev_periodic_stop (EV_P_ struct ev_periodic *w)
1148{ 1404{
1149 ev_clear_pending (EV_A_ (W)w); 1405 ev_clear_pending (EV_A_ (W)w);
1150 if (!ev_is_active (w)) 1406 if (!ev_is_active (w))
1151 return; 1407 return;
1152 1408
1409 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1410
1153 if (w->active < periodiccnt--) 1411 if (((W)w)->active < periodiccnt--)
1154 { 1412 {
1155 periodics [w->active - 1] = periodics [periodiccnt]; 1413 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1156 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1414 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1157 } 1415 }
1158 1416
1159 ev_stop (EV_A_ (W)w); 1417 ev_stop (EV_A_ (W)w);
1160} 1418}
1161 1419
1162void 1420void
1421ev_periodic_again (EV_P_ struct ev_periodic *w)
1422{
1423 /* TODO: use adjustheap and recalculation */
1424 ev_periodic_stop (EV_A_ w);
1425 ev_periodic_start (EV_A_ w);
1426}
1427#endif
1428
1429void
1163ev_idle_start (EV_P_ struct ev_idle *w) 1430ev_idle_start (EV_P_ struct ev_idle *w)
1164{ 1431{
1165 if (ev_is_active (w)) 1432 if (ev_is_active (w))
1166 return; 1433 return;
1167 1434
1168 ev_start (EV_A_ (W)w, ++idlecnt); 1435 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, ); 1436 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1170 idles [idlecnt - 1] = w; 1437 idles [idlecnt - 1] = w;
1171} 1438}
1172 1439
1173void 1440void
1174ev_idle_stop (EV_P_ struct ev_idle *w) 1441ev_idle_stop (EV_P_ struct ev_idle *w)
1175{ 1442{
1176 ev_clear_pending (EV_A_ (W)w); 1443 ev_clear_pending (EV_A_ (W)w);
1444 if (!ev_is_active (w))
1445 return;
1446
1447 idles [((W)w)->active - 1] = idles [--idlecnt];
1448 ev_stop (EV_A_ (W)w);
1449}
1450
1451void
1452ev_prepare_start (EV_P_ struct ev_prepare *w)
1453{
1177 if (ev_is_active (w)) 1454 if (ev_is_active (w))
1178 return; 1455 return;
1179 1456
1180 idles [w->active - 1] = idles [--idlecnt]; 1457 ev_start (EV_A_ (W)w, ++preparecnt);
1458 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1459 prepares [preparecnt - 1] = w;
1460}
1461
1462void
1463ev_prepare_stop (EV_P_ struct ev_prepare *w)
1464{
1465 ev_clear_pending (EV_A_ (W)w);
1466 if (!ev_is_active (w))
1467 return;
1468
1469 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1181 ev_stop (EV_A_ (W)w); 1470 ev_stop (EV_A_ (W)w);
1182} 1471}
1183 1472
1184void 1473void
1185ev_prepare_start (EV_P_ struct ev_prepare *w) 1474ev_check_start (EV_P_ struct ev_check *w)
1186{ 1475{
1187 if (ev_is_active (w)) 1476 if (ev_is_active (w))
1188 return; 1477 return;
1189 1478
1190 ev_start (EV_A_ (W)w, ++preparecnt); 1479 ev_start (EV_A_ (W)w, ++checkcnt);
1191 array_needsize (prepares, preparemax, preparecnt, ); 1480 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1192 prepares [preparecnt - 1] = w; 1481 checks [checkcnt - 1] = w;
1193} 1482}
1194 1483
1195void 1484void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w) 1485ev_check_stop (EV_P_ struct ev_check *w)
1197{ 1486{
1198 ev_clear_pending (EV_A_ (W)w); 1487 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w)) 1488 if (!ev_is_active (w))
1200 return; 1489 return;
1201 1490
1202 prepares [w->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w);
1204}
1205
1206void
1207ev_check_start (EV_P_ struct ev_check *w)
1208{
1209 if (ev_is_active (w))
1210 return;
1211
1212 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, );
1214 checks [checkcnt - 1] = w;
1215}
1216
1217void
1218ev_check_stop (EV_P_ struct ev_check *w)
1219{
1220 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w))
1222 return;
1223
1224 checks [w->active - 1] = checks [--checkcnt]; 1491 checks [((W)w)->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w); 1492 ev_stop (EV_A_ (W)w);
1226} 1493}
1227 1494
1228#ifndef SA_RESTART 1495#ifndef SA_RESTART
1229# define SA_RESTART 0 1496# define SA_RESTART 0
1239 return; 1506 return;
1240 1507
1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1508 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1242 1509
1243 ev_start (EV_A_ (W)w, 1); 1510 ev_start (EV_A_ (W)w, 1);
1244 array_needsize (signals, signalmax, w->signum, signals_init); 1511 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1512 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1246 1513
1247 if (!w->next) 1514 if (!((WL)w)->next)
1248 { 1515 {
1516#if WIN32
1517 signal (w->signum, sighandler);
1518#else
1249 struct sigaction sa; 1519 struct sigaction sa;
1250 sa.sa_handler = sighandler; 1520 sa.sa_handler = sighandler;
1251 sigfillset (&sa.sa_mask); 1521 sigfillset (&sa.sa_mask);
1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1522 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1253 sigaction (w->signum, &sa, 0); 1523 sigaction (w->signum, &sa, 0);
1524#endif
1254 } 1525 }
1255} 1526}
1256 1527
1257void 1528void
1258ev_signal_stop (EV_P_ struct ev_signal *w) 1529ev_signal_stop (EV_P_ struct ev_signal *w)
1283 1554
1284void 1555void
1285ev_child_stop (EV_P_ struct ev_child *w) 1556ev_child_stop (EV_P_ struct ev_child *w)
1286{ 1557{
1287 ev_clear_pending (EV_A_ (W)w); 1558 ev_clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w)) 1559 if (!ev_is_active (w))
1289 return; 1560 return;
1290 1561
1291 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1562 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1292 ev_stop (EV_A_ (W)w); 1563 ev_stop (EV_A_ (W)w);
1293} 1564}
1308 void (*cb)(int revents, void *arg) = once->cb; 1579 void (*cb)(int revents, void *arg) = once->cb;
1309 void *arg = once->arg; 1580 void *arg = once->arg;
1310 1581
1311 ev_io_stop (EV_A_ &once->io); 1582 ev_io_stop (EV_A_ &once->io);
1312 ev_timer_stop (EV_A_ &once->to); 1583 ev_timer_stop (EV_A_ &once->to);
1313 free (once); 1584 ev_free (once);
1314 1585
1315 cb (revents, arg); 1586 cb (revents, arg);
1316} 1587}
1317 1588
1318static void 1589static void
1328} 1599}
1329 1600
1330void 1601void
1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1602ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1332{ 1603{
1333 struct ev_once *once = malloc (sizeof (struct ev_once)); 1604 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1334 1605
1335 if (!once) 1606 if (!once)
1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1607 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1337 else 1608 else
1338 { 1609 {
1339 once->cb = cb; 1610 once->cb = cb;
1340 once->arg = arg; 1611 once->arg = arg;
1341 1612
1342 ev_watcher_init (&once->io, once_cb_io); 1613 ev_init (&once->io, once_cb_io);
1343 if (fd >= 0) 1614 if (fd >= 0)
1344 { 1615 {
1345 ev_io_set (&once->io, fd, events); 1616 ev_io_set (&once->io, fd, events);
1346 ev_io_start (EV_A_ &once->io); 1617 ev_io_start (EV_A_ &once->io);
1347 } 1618 }
1348 1619
1349 ev_watcher_init (&once->to, once_cb_to); 1620 ev_init (&once->to, once_cb_to);
1350 if (timeout >= 0.) 1621 if (timeout >= 0.)
1351 { 1622 {
1352 ev_timer_set (&once->to, timeout, 0.); 1623 ev_timer_set (&once->to, timeout, 0.);
1353 ev_timer_start (EV_A_ &once->to); 1624 ev_timer_start (EV_A_ &once->to);
1354 } 1625 }
1355 } 1626 }
1356} 1627}
1357 1628
1629#ifdef __cplusplus
1630}
1631#endif
1632

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines