ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.103 by root, Mon Nov 12 00:31:08 2007 UTC vs.
Revision 1.183 by root, Wed Dec 12 05:11:56 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
43# ifndef EV_USE_REALTIME 47# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
45# endif 49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
46# endif 57# endif
47 58
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 59# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
50# endif 65# endif
51 66
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 67# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
54# endif 73# endif
55 74
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
58# endif 81# endif
59 82
83# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
62# endif 105# endif
63 106
64#endif 107#endif
65 108
66#include <math.h> 109#include <math.h>
75#include <sys/types.h> 118#include <sys/types.h>
76#include <time.h> 119#include <time.h>
77 120
78#include <signal.h> 121#include <signal.h>
79 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
80#ifndef _WIN32 129#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 130# include <sys/time.h>
83# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
84#else 133#else
85# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 135# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
90#endif 139#endif
91 140
92/**/ 141/**/
93 142
94#ifndef EV_USE_MONOTONIC 143#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 144# define EV_USE_MONOTONIC 0
145#endif
146
147#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0
96#endif 149#endif
97 150
98#ifndef EV_USE_SELECT 151#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 152# define EV_USE_SELECT 1
100#endif 153#endif
101 154
102#ifndef EV_USE_POLL 155#ifndef EV_USE_POLL
103# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 156# ifdef _WIN32
157# define EV_USE_POLL 0
158# else
159# define EV_USE_POLL 1
160# endif
104#endif 161#endif
105 162
106#ifndef EV_USE_EPOLL 163#ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL 0 164# define EV_USE_EPOLL 0
108#endif 165#endif
109 166
110#ifndef EV_USE_KQUEUE 167#ifndef EV_USE_KQUEUE
111# define EV_USE_KQUEUE 0 168# define EV_USE_KQUEUE 0
112#endif 169#endif
113 170
114#ifndef EV_USE_REALTIME 171#ifndef EV_USE_PORT
115# define EV_USE_REALTIME 1 172# define EV_USE_PORT 0
173#endif
174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
116#endif 193#endif
117 194
118/**/ 195/**/
119 196
120#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
129 206
130#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
131# include <winsock.h> 208# include <winsock.h>
132#endif 209#endif
133 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
134/**/ 219/**/
135 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
136#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
137#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
138#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
139/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
140
141#ifdef EV_H
142# include EV_H
143#else
144# include "ev.h"
145#endif
146 234
147#if __GNUC__ >= 3 235#if __GNUC__ >= 3
148# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
149# define inline inline 237# define noinline __attribute__ ((noinline))
150#else 238#else
151# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
152# define inline static 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
153#endif 244#endif
154 245
155#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
156#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
157 255
158#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
159#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
160 258
161#define EMPTY /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
260#define EMPTY2(a,b) /* used to suppress some warnings */
162 261
163typedef struct ev_watcher *W; 262typedef ev_watcher *W;
164typedef struct ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
165typedef struct ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
166 265
167static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
168 267
169#ifdef _WIN32 268#ifdef _WIN32
170# include "ev_win32.c" 269# include "ev_win32.c"
172 271
173/*****************************************************************************/ 272/*****************************************************************************/
174 273
175static void (*syserr_cb)(const char *msg); 274static void (*syserr_cb)(const char *msg);
176 275
276void
177void ev_set_syserr_cb (void (*cb)(const char *msg)) 277ev_set_syserr_cb (void (*cb)(const char *msg))
178{ 278{
179 syserr_cb = cb; 279 syserr_cb = cb;
180} 280}
181 281
182static void 282static void noinline
183syserr (const char *msg) 283syserr (const char *msg)
184{ 284{
185 if (!msg) 285 if (!msg)
186 msg = "(libev) system error"; 286 msg = "(libev) system error";
187 287
194 } 294 }
195} 295}
196 296
197static void *(*alloc)(void *ptr, long size); 297static void *(*alloc)(void *ptr, long size);
198 298
299void
199void ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
200{ 301{
201 alloc = cb; 302 alloc = cb;
202} 303}
203 304
204static void * 305inline_speed void *
205ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
206{ 307{
207 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
208 309
209 if (!ptr && size) 310 if (!ptr && size)
233typedef struct 334typedef struct
234{ 335{
235 W w; 336 W w;
236 int events; 337 int events;
237} ANPENDING; 338} ANPENDING;
339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
238 346
239#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
240 348
241 struct ev_loop 349 struct ev_loop
242 { 350 {
246 #include "ev_vars.h" 354 #include "ev_vars.h"
247 #undef VAR 355 #undef VAR
248 }; 356 };
249 #include "ev_wrap.h" 357 #include "ev_wrap.h"
250 358
251 struct ev_loop default_loop_struct; 359 static struct ev_loop default_loop_struct;
252 static struct ev_loop *default_loop; 360 struct ev_loop *ev_default_loop_ptr;
253 361
254#else 362#else
255 363
256 ev_tstamp ev_rt_now; 364 ev_tstamp ev_rt_now;
257 #define VAR(name,decl) static decl; 365 #define VAR(name,decl) static decl;
258 #include "ev_vars.h" 366 #include "ev_vars.h"
259 #undef VAR 367 #undef VAR
260 368
261 static int default_loop; 369 static int ev_default_loop_ptr;
262 370
263#endif 371#endif
264 372
265/*****************************************************************************/ 373/*****************************************************************************/
266 374
276 gettimeofday (&tv, 0); 384 gettimeofday (&tv, 0);
277 return tv.tv_sec + tv.tv_usec * 1e-6; 385 return tv.tv_sec + tv.tv_usec * 1e-6;
278#endif 386#endif
279} 387}
280 388
281inline ev_tstamp 389ev_tstamp inline_size
282get_clock (void) 390get_clock (void)
283{ 391{
284#if EV_USE_MONOTONIC 392#if EV_USE_MONOTONIC
285 if (expect_true (have_monotonic)) 393 if (expect_true (have_monotonic))
286 { 394 {
299{ 407{
300 return ev_rt_now; 408 return ev_rt_now;
301} 409}
302#endif 410#endif
303 411
304#define array_roundsize(type,n) ((n) | 4 & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
305 439
306#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
307 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
308 { \ 442 { \
309 int newcnt = cur; \ 443 int ocur_ = (cur); \
310 do \ 444 (base) = (type *)array_realloc \
311 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
312 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
313 } \
314 while ((cnt) > newcnt); \
315 \
316 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
317 init (base + cur, newcnt - cur); \
318 cur = newcnt; \
319 } 447 }
320 448
449#if 0
321#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
322 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
323 { \ 452 { \
324 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
325 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
326 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
327 } 456 }
457#endif
328 458
329#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
330 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
331 461
332/*****************************************************************************/ 462/*****************************************************************************/
333 463
334static void 464void noinline
465ev_feed_event (EV_P_ void *w, int revents)
466{
467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
469
470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents;
478 }
479}
480
481void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type)
483{
484 int i;
485
486 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type);
488}
489
490/*****************************************************************************/
491
492void inline_size
335anfds_init (ANFD *base, int count) 493anfds_init (ANFD *base, int count)
336{ 494{
337 while (count--) 495 while (count--)
338 { 496 {
339 base->head = 0; 497 base->head = 0;
342 500
343 ++base; 501 ++base;
344 } 502 }
345} 503}
346 504
347void 505void inline_speed
348ev_feed_event (EV_P_ void *w, int revents)
349{
350 W w_ = (W)w;
351
352 if (w_->pending)
353 {
354 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
355 return;
356 }
357
358 w_->pending = ++pendingcnt [ABSPRI (w_)];
359 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
360 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
361 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
362}
363
364static void
365queue_events (EV_P_ W *events, int eventcnt, int type)
366{
367 int i;
368
369 for (i = 0; i < eventcnt; ++i)
370 ev_feed_event (EV_A_ events [i], type);
371}
372
373inline void
374fd_event (EV_P_ int fd, int revents) 506fd_event (EV_P_ int fd, int revents)
375{ 507{
376 ANFD *anfd = anfds + fd; 508 ANFD *anfd = anfds + fd;
377 struct ev_io *w; 509 ev_io *w;
378 510
379 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
380 { 512 {
381 int ev = w->events & revents; 513 int ev = w->events & revents;
382 514
383 if (ev) 515 if (ev)
384 ev_feed_event (EV_A_ (W)w, ev); 516 ev_feed_event (EV_A_ (W)w, ev);
386} 518}
387 519
388void 520void
389ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
390{ 522{
523 if (fd >= 0 && fd < anfdmax)
391 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
392} 525}
393 526
394/*****************************************************************************/ 527void inline_size
395
396static void
397fd_reify (EV_P) 528fd_reify (EV_P)
398{ 529{
399 int i; 530 int i;
400 531
401 for (i = 0; i < fdchangecnt; ++i) 532 for (i = 0; i < fdchangecnt; ++i)
402 { 533 {
403 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
404 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
405 struct ev_io *w; 536 ev_io *w;
406 537
407 int events = 0; 538 int events = 0;
408 539
409 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
410 events |= w->events; 541 events |= w->events;
411 542
412#if EV_SELECT_IS_WINSOCKET 543#if EV_SELECT_IS_WINSOCKET
413 if (events) 544 if (events)
414 { 545 {
418 } 549 }
419#endif 550#endif
420 551
421 anfd->reify = 0; 552 anfd->reify = 0;
422 553
423 method_modify (EV_A_ fd, anfd->events, events); 554 backend_modify (EV_A_ fd, anfd->events, events);
424 anfd->events = events; 555 anfd->events = events;
425 } 556 }
426 557
427 fdchangecnt = 0; 558 fdchangecnt = 0;
428} 559}
429 560
430static void 561void inline_size
431fd_change (EV_P_ int fd) 562fd_change (EV_P_ int fd, int flags)
432{ 563{
433 if (anfds [fd].reify) 564 unsigned char reify = anfds [fd].reify;
434 return;
435
436 anfds [fd].reify = 1; 565 anfds [fd].reify |= flags | 1;
437 566
567 if (expect_true (!reify))
568 {
438 ++fdchangecnt; 569 ++fdchangecnt;
439 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
440 fdchanges [fdchangecnt - 1] = fd; 571 fdchanges [fdchangecnt - 1] = fd;
572 }
441} 573}
442 574
443static void 575void inline_speed
444fd_kill (EV_P_ int fd) 576fd_kill (EV_P_ int fd)
445{ 577{
446 struct ev_io *w; 578 ev_io *w;
447 579
448 while ((w = (struct ev_io *)anfds [fd].head)) 580 while ((w = (ev_io *)anfds [fd].head))
449 { 581 {
450 ev_io_stop (EV_A_ w); 582 ev_io_stop (EV_A_ w);
451 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
452 } 584 }
453} 585}
454 586
455static int 587int inline_size
456fd_valid (int fd) 588fd_valid (int fd)
457{ 589{
458#ifdef _WIN32 590#ifdef _WIN32
459 return _get_osfhandle (fd) != -1; 591 return _get_osfhandle (fd) != -1;
460#else 592#else
461 return fcntl (fd, F_GETFD) != -1; 593 return fcntl (fd, F_GETFD) != -1;
462#endif 594#endif
463} 595}
464 596
465/* called on EBADF to verify fds */ 597/* called on EBADF to verify fds */
466static void 598static void noinline
467fd_ebadf (EV_P) 599fd_ebadf (EV_P)
468{ 600{
469 int fd; 601 int fd;
470 602
471 for (fd = 0; fd < anfdmax; ++fd) 603 for (fd = 0; fd < anfdmax; ++fd)
473 if (!fd_valid (fd) == -1 && errno == EBADF) 605 if (!fd_valid (fd) == -1 && errno == EBADF)
474 fd_kill (EV_A_ fd); 606 fd_kill (EV_A_ fd);
475} 607}
476 608
477/* called on ENOMEM in select/poll to kill some fds and retry */ 609/* called on ENOMEM in select/poll to kill some fds and retry */
478static void 610static void noinline
479fd_enomem (EV_P) 611fd_enomem (EV_P)
480{ 612{
481 int fd; 613 int fd;
482 614
483 for (fd = anfdmax; fd--; ) 615 for (fd = anfdmax; fd--; )
486 fd_kill (EV_A_ fd); 618 fd_kill (EV_A_ fd);
487 return; 619 return;
488 } 620 }
489} 621}
490 622
491/* usually called after fork if method needs to re-arm all fds from scratch */ 623/* usually called after fork if backend needs to re-arm all fds from scratch */
492static void 624static void noinline
493fd_rearm_all (EV_P) 625fd_rearm_all (EV_P)
494{ 626{
495 int fd; 627 int fd;
496 628
497 /* this should be highly optimised to not do anything but set a flag */
498 for (fd = 0; fd < anfdmax; ++fd) 629 for (fd = 0; fd < anfdmax; ++fd)
499 if (anfds [fd].events) 630 if (anfds [fd].events)
500 { 631 {
501 anfds [fd].events = 0; 632 anfds [fd].events = 0;
502 fd_change (EV_A_ fd); 633 fd_change (EV_A_ fd, EV_IOFDSET);
503 } 634 }
504} 635}
505 636
506/*****************************************************************************/ 637/*****************************************************************************/
507 638
508static void 639void inline_speed
509upheap (WT *heap, int k) 640upheap (WT *heap, int k)
510{ 641{
511 WT w = heap [k]; 642 WT w = heap [k];
512 643
513 while (k && heap [k >> 1]->at > w->at) 644 while (k)
514 { 645 {
646 int p = (k - 1) >> 1;
647
648 if (heap [p]->at <= w->at)
649 break;
650
515 heap [k] = heap [k >> 1]; 651 heap [k] = heap [p];
516 ((W)heap [k])->active = k + 1; 652 ((W)heap [k])->active = k + 1;
517 k >>= 1; 653 k = p;
518 } 654 }
519 655
520 heap [k] = w; 656 heap [k] = w;
521 ((W)heap [k])->active = k + 1; 657 ((W)heap [k])->active = k + 1;
522
523} 658}
524 659
525static void 660void inline_speed
526downheap (WT *heap, int N, int k) 661downheap (WT *heap, int N, int k)
527{ 662{
528 WT w = heap [k]; 663 WT w = heap [k];
529 664
530 while (k < (N >> 1)) 665 for (;;)
531 { 666 {
532 int j = k << 1; 667 int c = (k << 1) + 1;
533 668
534 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 669 if (c >= N)
535 ++j;
536
537 if (w->at <= heap [j]->at)
538 break; 670 break;
539 671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
540 heap [k] = heap [j]; 678 heap [k] = heap [c];
541 ((W)heap [k])->active = k + 1; 679 ((W)heap [k])->active = k + 1;
680
542 k = j; 681 k = c;
543 } 682 }
544 683
545 heap [k] = w; 684 heap [k] = w;
546 ((W)heap [k])->active = k + 1; 685 ((W)heap [k])->active = k + 1;
547} 686}
548 687
549inline void 688void inline_size
550adjustheap (WT *heap, int N, int k) 689adjustheap (WT *heap, int N, int k)
551{ 690{
552 upheap (heap, k); 691 upheap (heap, k);
553 downheap (heap, N, k); 692 downheap (heap, N, k);
554} 693}
564static ANSIG *signals; 703static ANSIG *signals;
565static int signalmax; 704static int signalmax;
566 705
567static int sigpipe [2]; 706static int sigpipe [2];
568static sig_atomic_t volatile gotsig; 707static sig_atomic_t volatile gotsig;
569static struct ev_io sigev; 708static ev_io sigev;
570 709
571static void 710void inline_size
572signals_init (ANSIG *base, int count) 711signals_init (ANSIG *base, int count)
573{ 712{
574 while (count--) 713 while (count--)
575 { 714 {
576 base->head = 0; 715 base->head = 0;
596 write (sigpipe [1], &signum, 1); 735 write (sigpipe [1], &signum, 1);
597 errno = old_errno; 736 errno = old_errno;
598 } 737 }
599} 738}
600 739
601void 740void noinline
602ev_feed_signal_event (EV_P_ int signum) 741ev_feed_signal_event (EV_P_ int signum)
603{ 742{
604 WL w; 743 WL w;
605 744
606#if EV_MULTIPLICITY 745#if EV_MULTIPLICITY
607 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 746 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
608#endif 747#endif
609 748
610 --signum; 749 --signum;
611 750
612 if (signum < 0 || signum >= signalmax) 751 if (signum < 0 || signum >= signalmax)
617 for (w = signals [signum].head; w; w = w->next) 756 for (w = signals [signum].head; w; w = w->next)
618 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
619} 758}
620 759
621static void 760static void
622sigcb (EV_P_ struct ev_io *iow, int revents) 761sigcb (EV_P_ ev_io *iow, int revents)
623{ 762{
624 int signum; 763 int signum;
625 764
626 read (sigpipe [0], &revents, 1); 765 read (sigpipe [0], &revents, 1);
627 gotsig = 0; 766 gotsig = 0;
629 for (signum = signalmax; signum--; ) 768 for (signum = signalmax; signum--; )
630 if (signals [signum].gotsig) 769 if (signals [signum].gotsig)
631 ev_feed_signal_event (EV_A_ signum + 1); 770 ev_feed_signal_event (EV_A_ signum + 1);
632} 771}
633 772
634inline void 773void inline_speed
635fd_intern (int fd) 774fd_intern (int fd)
636{ 775{
637#ifdef _WIN32 776#ifdef _WIN32
638 int arg = 1; 777 int arg = 1;
639 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
641 fcntl (fd, F_SETFD, FD_CLOEXEC); 780 fcntl (fd, F_SETFD, FD_CLOEXEC);
642 fcntl (fd, F_SETFL, O_NONBLOCK); 781 fcntl (fd, F_SETFL, O_NONBLOCK);
643#endif 782#endif
644} 783}
645 784
646static void 785static void noinline
647siginit (EV_P) 786siginit (EV_P)
648{ 787{
649 fd_intern (sigpipe [0]); 788 fd_intern (sigpipe [0]);
650 fd_intern (sigpipe [1]); 789 fd_intern (sigpipe [1]);
651 790
654 ev_unref (EV_A); /* child watcher should not keep loop alive */ 793 ev_unref (EV_A); /* child watcher should not keep loop alive */
655} 794}
656 795
657/*****************************************************************************/ 796/*****************************************************************************/
658 797
659static struct ev_child *childs [PID_HASHSIZE]; 798static WL childs [EV_PID_HASHSIZE];
660 799
661#ifndef _WIN32 800#ifndef _WIN32
662 801
663static struct ev_signal childev; 802static ev_signal childev;
803
804void inline_speed
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
806{
807 ev_child *w;
808
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
810 if (w->pid == pid || !w->pid)
811 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
813 w->rpid = pid;
814 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 }
817}
664 818
665#ifndef WCONTINUED 819#ifndef WCONTINUED
666# define WCONTINUED 0 820# define WCONTINUED 0
667#endif 821#endif
668 822
669static void 823static void
670child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
671{
672 struct ev_child *w;
673
674 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
675 if (w->pid == pid || !w->pid)
676 {
677 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
678 w->rpid = pid;
679 w->rstatus = status;
680 ev_feed_event (EV_A_ (W)w, EV_CHILD);
681 }
682}
683
684static void
685childcb (EV_P_ struct ev_signal *sw, int revents) 824childcb (EV_P_ ev_signal *sw, int revents)
686{ 825{
687 int pid, status; 826 int pid, status;
688 827
828 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
689 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 829 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
690 { 830 if (!WCONTINUED
831 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return;
834
691 /* make sure we are called again until all childs have been reaped */ 835 /* make sure we are called again until all childs have been reaped */
836 /* we need to do it this way so that the callback gets called before we continue */
692 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
693 838
694 child_reap (EV_A_ sw, pid, pid, status); 839 child_reap (EV_A_ sw, pid, pid, status);
840 if (EV_PID_HASHSIZE > 1)
695 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
696 }
697} 842}
698 843
699#endif 844#endif
700 845
701/*****************************************************************************/ 846/*****************************************************************************/
702 847
848#if EV_USE_PORT
849# include "ev_port.c"
850#endif
703#if EV_USE_KQUEUE 851#if EV_USE_KQUEUE
704# include "ev_kqueue.c" 852# include "ev_kqueue.c"
705#endif 853#endif
706#if EV_USE_EPOLL 854#if EV_USE_EPOLL
707# include "ev_epoll.c" 855# include "ev_epoll.c"
724{ 872{
725 return EV_VERSION_MINOR; 873 return EV_VERSION_MINOR;
726} 874}
727 875
728/* return true if we are running with elevated privileges and should ignore env variables */ 876/* return true if we are running with elevated privileges and should ignore env variables */
729static int 877int inline_size
730enable_secure (void) 878enable_secure (void)
731{ 879{
732#ifdef _WIN32 880#ifdef _WIN32
733 return 0; 881 return 0;
734#else 882#else
735 return getuid () != geteuid () 883 return getuid () != geteuid ()
736 || getgid () != getegid (); 884 || getgid () != getegid ();
737#endif 885#endif
738} 886}
739 887
740int 888unsigned int
741ev_method (EV_P) 889ev_supported_backends (void)
742{ 890{
743 return method; 891 unsigned int flags = 0;
744}
745 892
746static void 893 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
747loop_init (EV_P_ int methods) 894 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
895 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
896 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
897 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
898
899 return flags;
900}
901
902unsigned int
903ev_recommended_backends (void)
748{ 904{
749 if (!method) 905 unsigned int flags = ev_supported_backends ();
906
907#ifndef __NetBSD__
908 /* kqueue is borked on everything but netbsd apparently */
909 /* it usually doesn't work correctly on anything but sockets and pipes */
910 flags &= ~EVBACKEND_KQUEUE;
911#endif
912#ifdef __APPLE__
913 // flags &= ~EVBACKEND_KQUEUE; for documentation
914 flags &= ~EVBACKEND_POLL;
915#endif
916
917 return flags;
918}
919
920unsigned int
921ev_embeddable_backends (void)
922{
923 return EVBACKEND_EPOLL
924 | EVBACKEND_KQUEUE
925 | EVBACKEND_PORT;
926}
927
928unsigned int
929ev_backend (EV_P)
930{
931 return backend;
932}
933
934unsigned int
935ev_loop_count (EV_P)
936{
937 return loop_count;
938}
939
940static void noinline
941loop_init (EV_P_ unsigned int flags)
942{
943 if (!backend)
750 { 944 {
751#if EV_USE_MONOTONIC 945#if EV_USE_MONOTONIC
752 { 946 {
753 struct timespec ts; 947 struct timespec ts;
754 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 948 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
759 ev_rt_now = ev_time (); 953 ev_rt_now = ev_time ();
760 mn_now = get_clock (); 954 mn_now = get_clock ();
761 now_floor = mn_now; 955 now_floor = mn_now;
762 rtmn_diff = ev_rt_now - mn_now; 956 rtmn_diff = ev_rt_now - mn_now;
763 957
764 if (methods == EVMETHOD_AUTO) 958 /* pid check not overridable via env */
765 if (!enable_secure () && getenv ("LIBEV_METHODS")) 959#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid ();
962#endif
963
964 if (!(flags & EVFLAG_NOENV)
965 && !enable_secure ()
966 && getenv ("LIBEV_FLAGS"))
766 methods = atoi (getenv ("LIBEV_METHODS")); 967 flags = atoi (getenv ("LIBEV_FLAGS"));
767 else
768 methods = EVMETHOD_ANY;
769 968
770 method = 0; 969 if (!(flags & 0x0000ffffUL))
970 flags |= ev_recommended_backends ();
971
972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY
975 fs_fd = -2;
976#endif
977
978#if EV_USE_PORT
979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
980#endif
771#if EV_USE_KQUEUE 981#if EV_USE_KQUEUE
772 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 982 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
773#endif 983#endif
774#if EV_USE_EPOLL 984#if EV_USE_EPOLL
775 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 985 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
776#endif 986#endif
777#if EV_USE_POLL 987#if EV_USE_POLL
778 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 988 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
779#endif 989#endif
780#if EV_USE_SELECT 990#if EV_USE_SELECT
781 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 991 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
782#endif 992#endif
783 993
784 ev_init (&sigev, sigcb); 994 ev_init (&sigev, sigcb);
785 ev_set_priority (&sigev, EV_MAXPRI); 995 ev_set_priority (&sigev, EV_MAXPRI);
786 } 996 }
787} 997}
788 998
789void 999static void noinline
790loop_destroy (EV_P) 1000loop_destroy (EV_P)
791{ 1001{
792 int i; 1002 int i;
793 1003
1004#if EV_USE_INOTIFY
1005 if (fs_fd >= 0)
1006 close (fs_fd);
1007#endif
1008
1009 if (backend_fd >= 0)
1010 close (backend_fd);
1011
1012#if EV_USE_PORT
1013 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1014#endif
794#if EV_USE_KQUEUE 1015#if EV_USE_KQUEUE
795 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1016 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
796#endif 1017#endif
797#if EV_USE_EPOLL 1018#if EV_USE_EPOLL
798 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1019 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
799#endif 1020#endif
800#if EV_USE_POLL 1021#if EV_USE_POLL
801 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1022 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
802#endif 1023#endif
803#if EV_USE_SELECT 1024#if EV_USE_SELECT
804 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1025 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
805#endif 1026#endif
806 1027
807 for (i = NUMPRI; i--; ) 1028 for (i = NUMPRI; i--; )
1029 {
808 array_free (pending, [i]); 1030 array_free (pending, [i]);
1031#if EV_IDLE_ENABLE
1032 array_free (idle, [i]);
1033#endif
1034 }
809 1035
810 /* have to use the microsoft-never-gets-it-right macro */ 1036 /* have to use the microsoft-never-gets-it-right macro */
811 array_free (fdchange, EMPTY); 1037 array_free (fdchange, EMPTY);
812 array_free (timer, EMPTY); 1038 array_free (timer, EMPTY);
813#if EV_PERIODICS 1039#if EV_PERIODIC_ENABLE
814 array_free (periodic, EMPTY); 1040 array_free (periodic, EMPTY);
815#endif 1041#endif
816 array_free (idle, EMPTY);
817 array_free (prepare, EMPTY); 1042 array_free (prepare, EMPTY);
818 array_free (check, EMPTY); 1043 array_free (check, EMPTY);
819 1044
820 method = 0; 1045 backend = 0;
821} 1046}
822 1047
823static void 1048void inline_size infy_fork (EV_P);
1049
1050void inline_size
824loop_fork (EV_P) 1051loop_fork (EV_P)
825{ 1052{
1053#if EV_USE_PORT
1054 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1055#endif
1056#if EV_USE_KQUEUE
1057 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1058#endif
826#if EV_USE_EPOLL 1059#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1060 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
828#endif 1061#endif
829#if EV_USE_KQUEUE 1062#if EV_USE_INOTIFY
830 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1063 infy_fork (EV_A);
831#endif 1064#endif
832 1065
833 if (ev_is_active (&sigev)) 1066 if (ev_is_active (&sigev))
834 { 1067 {
835 /* default loop */ 1068 /* default loop */
848 postfork = 0; 1081 postfork = 0;
849} 1082}
850 1083
851#if EV_MULTIPLICITY 1084#if EV_MULTIPLICITY
852struct ev_loop * 1085struct ev_loop *
853ev_loop_new (int methods) 1086ev_loop_new (unsigned int flags)
854{ 1087{
855 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1088 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
856 1089
857 memset (loop, 0, sizeof (struct ev_loop)); 1090 memset (loop, 0, sizeof (struct ev_loop));
858 1091
859 loop_init (EV_A_ methods); 1092 loop_init (EV_A_ flags);
860 1093
861 if (ev_method (EV_A)) 1094 if (ev_backend (EV_A))
862 return loop; 1095 return loop;
863 1096
864 return 0; 1097 return 0;
865} 1098}
866 1099
879 1112
880#endif 1113#endif
881 1114
882#if EV_MULTIPLICITY 1115#if EV_MULTIPLICITY
883struct ev_loop * 1116struct ev_loop *
1117ev_default_loop_init (unsigned int flags)
884#else 1118#else
885int 1119int
1120ev_default_loop (unsigned int flags)
886#endif 1121#endif
887ev_default_loop (int methods)
888{ 1122{
889 if (sigpipe [0] == sigpipe [1]) 1123 if (sigpipe [0] == sigpipe [1])
890 if (pipe (sigpipe)) 1124 if (pipe (sigpipe))
891 return 0; 1125 return 0;
892 1126
893 if (!default_loop) 1127 if (!ev_default_loop_ptr)
894 { 1128 {
895#if EV_MULTIPLICITY 1129#if EV_MULTIPLICITY
896 struct ev_loop *loop = default_loop = &default_loop_struct; 1130 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
897#else 1131#else
898 default_loop = 1; 1132 ev_default_loop_ptr = 1;
899#endif 1133#endif
900 1134
901 loop_init (EV_A_ methods); 1135 loop_init (EV_A_ flags);
902 1136
903 if (ev_method (EV_A)) 1137 if (ev_backend (EV_A))
904 { 1138 {
905 siginit (EV_A); 1139 siginit (EV_A);
906 1140
907#ifndef _WIN32 1141#ifndef _WIN32
908 ev_signal_init (&childev, childcb, SIGCHLD); 1142 ev_signal_init (&childev, childcb, SIGCHLD);
910 ev_signal_start (EV_A_ &childev); 1144 ev_signal_start (EV_A_ &childev);
911 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1145 ev_unref (EV_A); /* child watcher should not keep loop alive */
912#endif 1146#endif
913 } 1147 }
914 else 1148 else
915 default_loop = 0; 1149 ev_default_loop_ptr = 0;
916 } 1150 }
917 1151
918 return default_loop; 1152 return ev_default_loop_ptr;
919} 1153}
920 1154
921void 1155void
922ev_default_destroy (void) 1156ev_default_destroy (void)
923{ 1157{
924#if EV_MULTIPLICITY 1158#if EV_MULTIPLICITY
925 struct ev_loop *loop = default_loop; 1159 struct ev_loop *loop = ev_default_loop_ptr;
926#endif 1160#endif
927 1161
928#ifndef _WIN32 1162#ifndef _WIN32
929 ev_ref (EV_A); /* child watcher */ 1163 ev_ref (EV_A); /* child watcher */
930 ev_signal_stop (EV_A_ &childev); 1164 ev_signal_stop (EV_A_ &childev);
941 1175
942void 1176void
943ev_default_fork (void) 1177ev_default_fork (void)
944{ 1178{
945#if EV_MULTIPLICITY 1179#if EV_MULTIPLICITY
946 struct ev_loop *loop = default_loop; 1180 struct ev_loop *loop = ev_default_loop_ptr;
947#endif 1181#endif
948 1182
949 if (method) 1183 if (backend)
950 postfork = 1; 1184 postfork = 1;
951} 1185}
952 1186
953/*****************************************************************************/ 1187/*****************************************************************************/
954 1188
955static int 1189void
956any_pending (EV_P) 1190ev_invoke (EV_P_ void *w, int revents)
957{ 1191{
958 int pri; 1192 EV_CB_INVOKE ((W)w, revents);
959
960 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri])
962 return 1;
963
964 return 0;
965} 1193}
966 1194
967static void 1195void inline_speed
968call_pending (EV_P) 1196call_pending (EV_P)
969{ 1197{
970 int pri; 1198 int pri;
971 1199
972 for (pri = NUMPRI; pri--; ) 1200 for (pri = NUMPRI; pri--; )
973 while (pendingcnt [pri]) 1201 while (pendingcnt [pri])
974 { 1202 {
975 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1203 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
976 1204
977 if (p->w) 1205 if (expect_true (p->w))
978 { 1206 {
1207 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1208
979 p->w->pending = 0; 1209 p->w->pending = 0;
980 EV_CB_INVOKE (p->w, p->events); 1210 EV_CB_INVOKE (p->w, p->events);
981 } 1211 }
982 } 1212 }
983} 1213}
984 1214
985static void 1215void inline_size
986timers_reify (EV_P) 1216timers_reify (EV_P)
987{ 1217{
988 while (timercnt && ((WT)timers [0])->at <= mn_now) 1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
989 { 1219 {
990 struct ev_timer *w = timers [0]; 1220 ev_timer *w = (ev_timer *)timers [0];
991 1221
992 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
993 1223
994 /* first reschedule or stop timer */ 1224 /* first reschedule or stop timer */
995 if (w->repeat) 1225 if (w->repeat)
996 { 1226 {
997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998 1228
999 ((WT)w)->at += w->repeat; 1229 ((WT)w)->at += w->repeat;
1000 if (((WT)w)->at < mn_now) 1230 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now; 1231 ((WT)w)->at = mn_now;
1002 1232
1003 downheap ((WT *)timers, timercnt, 0); 1233 downheap (timers, timercnt, 0);
1004 } 1234 }
1005 else 1235 else
1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1007 1237
1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1009 } 1239 }
1010} 1240}
1011 1241
1012#if EV_PERIODICS 1242#if EV_PERIODIC_ENABLE
1013static void 1243void inline_size
1014periodics_reify (EV_P) 1244periodics_reify (EV_P)
1015{ 1245{
1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1017 { 1247 {
1018 struct ev_periodic *w = periodics [0]; 1248 ev_periodic *w = (ev_periodic *)periodics [0];
1019 1249
1020 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1021 1251
1022 /* first reschedule or stop timer */ 1252 /* first reschedule or stop timer */
1023 if (w->reschedule_cb) 1253 if (w->reschedule_cb)
1024 { 1254 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1026
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0); 1257 downheap (periodics, periodiccnt, 0);
1029 } 1258 }
1030 else if (w->interval) 1259 else if (w->interval)
1031 { 1260 {
1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1034 downheap ((WT *)periodics, periodiccnt, 0); 1264 downheap (periodics, periodiccnt, 0);
1035 } 1265 }
1036 else 1266 else
1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1038 1268
1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1040 } 1270 }
1041} 1271}
1042 1272
1043static void 1273static void noinline
1044periodics_reschedule (EV_P) 1274periodics_reschedule (EV_P)
1045{ 1275{
1046 int i; 1276 int i;
1047 1277
1048 /* adjust periodics after time jump */ 1278 /* adjust periodics after time jump */
1049 for (i = 0; i < periodiccnt; ++i) 1279 for (i = 0; i < periodiccnt; ++i)
1050 { 1280 {
1051 struct ev_periodic *w = periodics [i]; 1281 ev_periodic *w = (ev_periodic *)periodics [i];
1052 1282
1053 if (w->reschedule_cb) 1283 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1055 else if (w->interval) 1285 else if (w->interval)
1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1057 } 1287 }
1058 1288
1059 /* now rebuild the heap */ 1289 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; ) 1290 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i); 1291 downheap (periodics, periodiccnt, i);
1062} 1292}
1063#endif 1293#endif
1064 1294
1065inline int 1295#if EV_IDLE_ENABLE
1066time_update_monotonic (EV_P) 1296void inline_size
1297idle_reify (EV_P)
1067{ 1298{
1299 if (expect_false (idleall))
1300 {
1301 int pri;
1302
1303 for (pri = NUMPRI; pri--; )
1304 {
1305 if (pendingcnt [pri])
1306 break;
1307
1308 if (idlecnt [pri])
1309 {
1310 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1311 break;
1312 }
1313 }
1314 }
1315}
1316#endif
1317
1318void inline_speed
1319time_update (EV_P_ ev_tstamp max_block)
1320{
1321 int i;
1322
1323#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic))
1325 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1068 mn_now = get_clock (); 1328 mn_now = get_clock ();
1069 1329
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1331 /* interpolate in the meantime */
1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1332 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1071 { 1333 {
1072 ev_rt_now = rtmn_diff + mn_now; 1334 ev_rt_now = rtmn_diff + mn_now;
1073 return 0; 1335 return;
1074 } 1336 }
1075 else 1337
1076 {
1077 now_floor = mn_now; 1338 now_floor = mn_now;
1078 ev_rt_now = ev_time (); 1339 ev_rt_now = ev_time ();
1079 return 1;
1080 }
1081}
1082 1340
1083static void 1341 /* loop a few times, before making important decisions.
1084time_update (EV_P) 1342 * on the choice of "4": one iteration isn't enough,
1085{ 1343 * in case we get preempted during the calls to
1086 int i; 1344 * ev_time and get_clock. a second call is almost guaranteed
1087 1345 * to succeed in that case, though. and looping a few more times
1088#if EV_USE_MONOTONIC 1346 * doesn't hurt either as we only do this on time-jumps or
1089 if (expect_true (have_monotonic)) 1347 * in the unlikely event of having been preempted here.
1090 { 1348 */
1091 if (time_update_monotonic (EV_A)) 1349 for (i = 4; --i; )
1092 { 1350 {
1093 ev_tstamp odiff = rtmn_diff;
1094
1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1096 {
1097 rtmn_diff = ev_rt_now - mn_now; 1351 rtmn_diff = ev_rt_now - mn_now;
1098 1352
1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1100 return; /* all is well */ 1354 return; /* all is well */
1101 1355
1102 ev_rt_now = ev_time (); 1356 ev_rt_now = ev_time ();
1103 mn_now = get_clock (); 1357 mn_now = get_clock ();
1104 now_floor = mn_now; 1358 now_floor = mn_now;
1105 } 1359 }
1106 1360
1107# if EV_PERIODICS 1361# if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A);
1363# endif
1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1366 }
1367 else
1368#endif
1369 {
1370 ev_rt_now = ev_time ();
1371
1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1373 {
1374#if EV_PERIODIC_ENABLE
1108 periodics_reschedule (EV_A); 1375 periodics_reschedule (EV_A);
1109# endif 1376#endif
1110 /* no timer adjustment, as the monotonic clock doesn't jump */
1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1112 }
1113 }
1114 else
1115#endif
1116 {
1117 ev_rt_now = ev_time ();
1118
1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1120 {
1121#if EV_PERIODICS
1122 periodics_reschedule (EV_A);
1123#endif
1124
1125 /* adjust timers. this is easy, as the offset is the same for all */ 1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1126 for (i = 0; i < timercnt; ++i) 1378 for (i = 0; i < timercnt; ++i)
1127 ((WT)timers [i])->at += ev_rt_now - mn_now; 1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1128 } 1380 }
1129 1381
1130 mn_now = ev_rt_now; 1382 mn_now = ev_rt_now;
1146static int loop_done; 1398static int loop_done;
1147 1399
1148void 1400void
1149ev_loop (EV_P_ int flags) 1401ev_loop (EV_P_ int flags)
1150{ 1402{
1151 double block;
1152 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1153 1408
1154 do 1409 do
1155 { 1410 {
1411#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid))
1414 {
1415 curpid = getpid ();
1416 postfork = 1;
1417 }
1418#endif
1419
1420#if EV_FORK_ENABLE
1421 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork))
1423 if (forkcnt)
1424 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A);
1427 }
1428#endif
1429
1156 /* queue check watchers (and execute them) */ 1430 /* queue prepare watchers (and execute them) */
1157 if (expect_false (preparecnt)) 1431 if (expect_false (preparecnt))
1158 { 1432 {
1159 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1160 call_pending (EV_A); 1434 call_pending (EV_A);
1161 } 1435 }
1162 1436
1437 if (expect_false (!activecnt))
1438 break;
1439
1163 /* we might have forked, so reify kernel state if necessary */ 1440 /* we might have forked, so reify kernel state if necessary */
1164 if (expect_false (postfork)) 1441 if (expect_false (postfork))
1165 loop_fork (EV_A); 1442 loop_fork (EV_A);
1166 1443
1167 /* update fd-related kernel structures */ 1444 /* update fd-related kernel structures */
1168 fd_reify (EV_A); 1445 fd_reify (EV_A);
1169 1446
1170 /* calculate blocking time */ 1447 /* calculate blocking time */
1448 {
1449 ev_tstamp block;
1171 1450
1172 /* we only need this for !monotonic clock or timers, but as we basically 1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1173 always have timers, we just calculate it always */ 1452 block = 0.; /* do not block at all */
1174#if EV_USE_MONOTONIC
1175 if (expect_true (have_monotonic))
1176 time_update_monotonic (EV_A);
1177 else 1453 else
1178#endif
1179 { 1454 {
1180 ev_rt_now = ev_time (); 1455 /* update time to cancel out callback processing overhead */
1181 mn_now = ev_rt_now; 1456 time_update (EV_A_ 1e100);
1182 }
1183 1457
1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
1185 block = 0.;
1186 else
1187 {
1188 block = MAX_BLOCKTIME; 1458 block = MAX_BLOCKTIME;
1189 1459
1190 if (timercnt) 1460 if (timercnt)
1191 { 1461 {
1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1193 if (block > to) block = to; 1463 if (block > to) block = to;
1194 } 1464 }
1195 1465
1196#if EV_PERIODICS 1466#if EV_PERIODIC_ENABLE
1197 if (periodiccnt) 1467 if (periodiccnt)
1198 { 1468 {
1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1200 if (block > to) block = to; 1470 if (block > to) block = to;
1201 } 1471 }
1202#endif 1472#endif
1203 1473
1204 if (block < 0.) block = 0.; 1474 if (expect_false (block < 0.)) block = 0.;
1205 } 1475 }
1206 1476
1477 ++loop_count;
1207 method_poll (EV_A_ block); 1478 backend_poll (EV_A_ block);
1208 1479
1209 /* update ev_rt_now, do magic */ 1480 /* update ev_rt_now, do magic */
1210 time_update (EV_A); 1481 time_update (EV_A_ block);
1482 }
1211 1483
1212 /* queue pending timers and reschedule them */ 1484 /* queue pending timers and reschedule them */
1213 timers_reify (EV_A); /* relative timers called last */ 1485 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS 1486#if EV_PERIODIC_ENABLE
1215 periodics_reify (EV_A); /* absolute timers called first */ 1487 periodics_reify (EV_A); /* absolute timers called first */
1216#endif 1488#endif
1217 1489
1490#if EV_IDLE_ENABLE
1218 /* queue idle watchers unless io or timers are pending */ 1491 /* queue idle watchers unless other events are pending */
1219 if (idlecnt && !any_pending (EV_A)) 1492 idle_reify (EV_A);
1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1493#endif
1221 1494
1222 /* queue check watchers, to be executed first */ 1495 /* queue check watchers, to be executed first */
1223 if (checkcnt) 1496 if (expect_false (checkcnt))
1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1225 1498
1226 call_pending (EV_A); 1499 call_pending (EV_A);
1500
1227 } 1501 }
1228 while (activecnt && !loop_done); 1502 while (expect_true (activecnt && !loop_done));
1229 1503
1230 if (loop_done != 2) 1504 if (loop_done == EVUNLOOP_ONE)
1231 loop_done = 0; 1505 loop_done = EVUNLOOP_CANCEL;
1232} 1506}
1233 1507
1234void 1508void
1235ev_unloop (EV_P_ int how) 1509ev_unloop (EV_P_ int how)
1236{ 1510{
1237 loop_done = how; 1511 loop_done = how;
1238} 1512}
1239 1513
1240/*****************************************************************************/ 1514/*****************************************************************************/
1241 1515
1242inline void 1516void inline_size
1243wlist_add (WL *head, WL elem) 1517wlist_add (WL *head, WL elem)
1244{ 1518{
1245 elem->next = *head; 1519 elem->next = *head;
1246 *head = elem; 1520 *head = elem;
1247} 1521}
1248 1522
1249inline void 1523void inline_size
1250wlist_del (WL *head, WL elem) 1524wlist_del (WL *head, WL elem)
1251{ 1525{
1252 while (*head) 1526 while (*head)
1253 { 1527 {
1254 if (*head == elem) 1528 if (*head == elem)
1259 1533
1260 head = &(*head)->next; 1534 head = &(*head)->next;
1261 } 1535 }
1262} 1536}
1263 1537
1264inline void 1538void inline_speed
1265ev_clear_pending (EV_P_ W w) 1539clear_pending (EV_P_ W w)
1266{ 1540{
1267 if (w->pending) 1541 if (w->pending)
1268 { 1542 {
1269 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1543 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1270 w->pending = 0; 1544 w->pending = 0;
1271 } 1545 }
1272} 1546}
1273 1547
1274inline void 1548int
1549ev_clear_pending (EV_P_ void *w)
1550{
1551 W w_ = (W)w;
1552 int pending = w_->pending;
1553
1554 if (expect_true (pending))
1555 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1557 w_->pending = 0;
1558 p->w = 0;
1559 return p->events;
1560 }
1561 else
1562 return 0;
1563}
1564
1565void inline_size
1566pri_adjust (EV_P_ W w)
1567{
1568 int pri = w->priority;
1569 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1570 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1571 w->priority = pri;
1572}
1573
1574void inline_speed
1275ev_start (EV_P_ W w, int active) 1575ev_start (EV_P_ W w, int active)
1276{ 1576{
1277 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1577 pri_adjust (EV_A_ w);
1278 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1279
1280 w->active = active; 1578 w->active = active;
1281 ev_ref (EV_A); 1579 ev_ref (EV_A);
1282} 1580}
1283 1581
1284inline void 1582void inline_size
1285ev_stop (EV_P_ W w) 1583ev_stop (EV_P_ W w)
1286{ 1584{
1287 ev_unref (EV_A); 1585 ev_unref (EV_A);
1288 w->active = 0; 1586 w->active = 0;
1289} 1587}
1290 1588
1291/*****************************************************************************/ 1589/*****************************************************************************/
1292 1590
1293void 1591void noinline
1294ev_io_start (EV_P_ struct ev_io *w) 1592ev_io_start (EV_P_ ev_io *w)
1295{ 1593{
1296 int fd = w->fd; 1594 int fd = w->fd;
1297 1595
1298 if (ev_is_active (w)) 1596 if (expect_false (ev_is_active (w)))
1299 return; 1597 return;
1300 1598
1301 assert (("ev_io_start called with negative fd", fd >= 0)); 1599 assert (("ev_io_start called with negative fd", fd >= 0));
1302 1600
1303 ev_start (EV_A_ (W)w, 1); 1601 ev_start (EV_A_ (W)w, 1);
1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1305 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1603 wlist_add (&anfds[fd].head, (WL)w);
1306 1604
1307 fd_change (EV_A_ fd); 1605 fd_change (EV_A_ fd, w->events & EV_IOFDSET);
1606 w->events &= ~ EV_IOFDSET;
1308} 1607}
1309 1608
1310void 1609void noinline
1311ev_io_stop (EV_P_ struct ev_io *w) 1610ev_io_stop (EV_P_ ev_io *w)
1312{ 1611{
1313 ev_clear_pending (EV_A_ (W)w); 1612 clear_pending (EV_A_ (W)w);
1314 if (!ev_is_active (w)) 1613 if (expect_false (!ev_is_active (w)))
1315 return; 1614 return;
1316 1615
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1616 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318 1617
1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1618 wlist_del (&anfds[w->fd].head, (WL)w);
1320 ev_stop (EV_A_ (W)w); 1619 ev_stop (EV_A_ (W)w);
1321 1620
1322 fd_change (EV_A_ w->fd); 1621 fd_change (EV_A_ w->fd, 0);
1323} 1622}
1324 1623
1325void 1624void noinline
1326ev_timer_start (EV_P_ struct ev_timer *w) 1625ev_timer_start (EV_P_ ev_timer *w)
1327{ 1626{
1328 if (ev_is_active (w)) 1627 if (expect_false (ev_is_active (w)))
1329 return; 1628 return;
1330 1629
1331 ((WT)w)->at += mn_now; 1630 ((WT)w)->at += mn_now;
1332 1631
1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1632 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1334 1633
1335 ev_start (EV_A_ (W)w, ++timercnt); 1634 ev_start (EV_A_ (W)w, ++timercnt);
1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1635 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1337 timers [timercnt - 1] = w; 1636 timers [timercnt - 1] = (WT)w;
1338 upheap ((WT *)timers, timercnt - 1); 1637 upheap (timers, timercnt - 1);
1339 1638
1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1639 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1341} 1640}
1342 1641
1343void 1642void noinline
1344ev_timer_stop (EV_P_ struct ev_timer *w) 1643ev_timer_stop (EV_P_ ev_timer *w)
1345{ 1644{
1346 ev_clear_pending (EV_A_ (W)w); 1645 clear_pending (EV_A_ (W)w);
1347 if (!ev_is_active (w)) 1646 if (expect_false (!ev_is_active (w)))
1348 return; 1647 return;
1349 1648
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1649 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1351 1650
1352 if (((W)w)->active < timercnt--) 1651 {
1652 int active = ((W)w)->active;
1653
1654 if (expect_true (--active < --timercnt))
1353 { 1655 {
1354 timers [((W)w)->active - 1] = timers [timercnt]; 1656 timers [active] = timers [timercnt];
1355 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1657 adjustheap (timers, timercnt, active);
1356 } 1658 }
1659 }
1357 1660
1358 ((WT)w)->at -= mn_now; 1661 ((WT)w)->at -= mn_now;
1359 1662
1360 ev_stop (EV_A_ (W)w); 1663 ev_stop (EV_A_ (W)w);
1361} 1664}
1362 1665
1363void 1666void noinline
1364ev_timer_again (EV_P_ struct ev_timer *w) 1667ev_timer_again (EV_P_ ev_timer *w)
1365{ 1668{
1366 if (ev_is_active (w)) 1669 if (ev_is_active (w))
1367 { 1670 {
1368 if (w->repeat) 1671 if (w->repeat)
1369 { 1672 {
1370 ((WT)w)->at = mn_now + w->repeat; 1673 ((WT)w)->at = mn_now + w->repeat;
1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1674 adjustheap (timers, timercnt, ((W)w)->active - 1);
1372 } 1675 }
1373 else 1676 else
1374 ev_timer_stop (EV_A_ w); 1677 ev_timer_stop (EV_A_ w);
1375 } 1678 }
1376 else if (w->repeat) 1679 else if (w->repeat)
1680 {
1681 w->at = w->repeat;
1377 ev_timer_start (EV_A_ w); 1682 ev_timer_start (EV_A_ w);
1683 }
1378} 1684}
1379 1685
1380#if EV_PERIODICS 1686#if EV_PERIODIC_ENABLE
1381void 1687void noinline
1382ev_periodic_start (EV_P_ struct ev_periodic *w) 1688ev_periodic_start (EV_P_ ev_periodic *w)
1383{ 1689{
1384 if (ev_is_active (w)) 1690 if (expect_false (ev_is_active (w)))
1385 return; 1691 return;
1386 1692
1387 if (w->reschedule_cb) 1693 if (w->reschedule_cb)
1388 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1694 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1389 else if (w->interval) 1695 else if (w->interval)
1390 { 1696 {
1391 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1697 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1392 /* this formula differs from the one in periodic_reify because we do not always round up */ 1698 /* this formula differs from the one in periodic_reify because we do not always round up */
1393 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1699 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1394 } 1700 }
1701 else
1702 ((WT)w)->at = w->offset;
1395 1703
1396 ev_start (EV_A_ (W)w, ++periodiccnt); 1704 ev_start (EV_A_ (W)w, ++periodiccnt);
1397 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1705 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1398 periodics [periodiccnt - 1] = w; 1706 periodics [periodiccnt - 1] = (WT)w;
1399 upheap ((WT *)periodics, periodiccnt - 1); 1707 upheap (periodics, periodiccnt - 1);
1400 1708
1401 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1709 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1402} 1710}
1403 1711
1404void 1712void noinline
1405ev_periodic_stop (EV_P_ struct ev_periodic *w) 1713ev_periodic_stop (EV_P_ ev_periodic *w)
1406{ 1714{
1407 ev_clear_pending (EV_A_ (W)w); 1715 clear_pending (EV_A_ (W)w);
1408 if (!ev_is_active (w)) 1716 if (expect_false (!ev_is_active (w)))
1409 return; 1717 return;
1410 1718
1411 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1719 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1412 1720
1413 if (((W)w)->active < periodiccnt--) 1721 {
1722 int active = ((W)w)->active;
1723
1724 if (expect_true (--active < --periodiccnt))
1414 { 1725 {
1415 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1726 periodics [active] = periodics [periodiccnt];
1416 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1727 adjustheap (periodics, periodiccnt, active);
1417 } 1728 }
1729 }
1418 1730
1419 ev_stop (EV_A_ (W)w); 1731 ev_stop (EV_A_ (W)w);
1420} 1732}
1421 1733
1422void 1734void noinline
1423ev_periodic_again (EV_P_ struct ev_periodic *w) 1735ev_periodic_again (EV_P_ ev_periodic *w)
1424{ 1736{
1425 /* TODO: use adjustheap and recalculation */ 1737 /* TODO: use adjustheap and recalculation */
1426 ev_periodic_stop (EV_A_ w); 1738 ev_periodic_stop (EV_A_ w);
1427 ev_periodic_start (EV_A_ w); 1739 ev_periodic_start (EV_A_ w);
1428} 1740}
1429#endif 1741#endif
1430 1742
1431void
1432ev_idle_start (EV_P_ struct ev_idle *w)
1433{
1434 if (ev_is_active (w))
1435 return;
1436
1437 ev_start (EV_A_ (W)w, ++idlecnt);
1438 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1439 idles [idlecnt - 1] = w;
1440}
1441
1442void
1443ev_idle_stop (EV_P_ struct ev_idle *w)
1444{
1445 ev_clear_pending (EV_A_ (W)w);
1446 if (!ev_is_active (w))
1447 return;
1448
1449 idles [((W)w)->active - 1] = idles [--idlecnt];
1450 ev_stop (EV_A_ (W)w);
1451}
1452
1453void
1454ev_prepare_start (EV_P_ struct ev_prepare *w)
1455{
1456 if (ev_is_active (w))
1457 return;
1458
1459 ev_start (EV_A_ (W)w, ++preparecnt);
1460 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1461 prepares [preparecnt - 1] = w;
1462}
1463
1464void
1465ev_prepare_stop (EV_P_ struct ev_prepare *w)
1466{
1467 ev_clear_pending (EV_A_ (W)w);
1468 if (!ev_is_active (w))
1469 return;
1470
1471 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1472 ev_stop (EV_A_ (W)w);
1473}
1474
1475void
1476ev_check_start (EV_P_ struct ev_check *w)
1477{
1478 if (ev_is_active (w))
1479 return;
1480
1481 ev_start (EV_A_ (W)w, ++checkcnt);
1482 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1483 checks [checkcnt - 1] = w;
1484}
1485
1486void
1487ev_check_stop (EV_P_ struct ev_check *w)
1488{
1489 ev_clear_pending (EV_A_ (W)w);
1490 if (!ev_is_active (w))
1491 return;
1492
1493 checks [((W)w)->active - 1] = checks [--checkcnt];
1494 ev_stop (EV_A_ (W)w);
1495}
1496
1497#ifndef SA_RESTART 1743#ifndef SA_RESTART
1498# define SA_RESTART 0 1744# define SA_RESTART 0
1499#endif 1745#endif
1500 1746
1501void 1747void noinline
1502ev_signal_start (EV_P_ struct ev_signal *w) 1748ev_signal_start (EV_P_ ev_signal *w)
1503{ 1749{
1504#if EV_MULTIPLICITY 1750#if EV_MULTIPLICITY
1505 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1751 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1506#endif 1752#endif
1507 if (ev_is_active (w)) 1753 if (expect_false (ev_is_active (w)))
1508 return; 1754 return;
1509 1755
1510 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1756 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1511 1757
1758 {
1759#ifndef _WIN32
1760 sigset_t full, prev;
1761 sigfillset (&full);
1762 sigprocmask (SIG_SETMASK, &full, &prev);
1763#endif
1764
1765 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1766
1767#ifndef _WIN32
1768 sigprocmask (SIG_SETMASK, &prev, 0);
1769#endif
1770 }
1771
1512 ev_start (EV_A_ (W)w, 1); 1772 ev_start (EV_A_ (W)w, 1);
1513 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1514 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1773 wlist_add (&signals [w->signum - 1].head, (WL)w);
1515 1774
1516 if (!((WL)w)->next) 1775 if (!((WL)w)->next)
1517 { 1776 {
1518#if _WIN32 1777#if _WIN32
1519 signal (w->signum, sighandler); 1778 signal (w->signum, sighandler);
1525 sigaction (w->signum, &sa, 0); 1784 sigaction (w->signum, &sa, 0);
1526#endif 1785#endif
1527 } 1786 }
1528} 1787}
1529 1788
1530void 1789void noinline
1531ev_signal_stop (EV_P_ struct ev_signal *w) 1790ev_signal_stop (EV_P_ ev_signal *w)
1532{ 1791{
1533 ev_clear_pending (EV_A_ (W)w); 1792 clear_pending (EV_A_ (W)w);
1534 if (!ev_is_active (w)) 1793 if (expect_false (!ev_is_active (w)))
1535 return; 1794 return;
1536 1795
1537 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1796 wlist_del (&signals [w->signum - 1].head, (WL)w);
1538 ev_stop (EV_A_ (W)w); 1797 ev_stop (EV_A_ (W)w);
1539 1798
1540 if (!signals [w->signum - 1].head) 1799 if (!signals [w->signum - 1].head)
1541 signal (w->signum, SIG_DFL); 1800 signal (w->signum, SIG_DFL);
1542} 1801}
1543 1802
1544void 1803void
1545ev_child_start (EV_P_ struct ev_child *w) 1804ev_child_start (EV_P_ ev_child *w)
1546{ 1805{
1547#if EV_MULTIPLICITY 1806#if EV_MULTIPLICITY
1548 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1807 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1549#endif 1808#endif
1550 if (ev_is_active (w)) 1809 if (expect_false (ev_is_active (w)))
1551 return; 1810 return;
1552 1811
1553 ev_start (EV_A_ (W)w, 1); 1812 ev_start (EV_A_ (W)w, 1);
1554 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1813 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1555} 1814}
1556 1815
1557void 1816void
1558ev_child_stop (EV_P_ struct ev_child *w) 1817ev_child_stop (EV_P_ ev_child *w)
1559{ 1818{
1560 ev_clear_pending (EV_A_ (W)w); 1819 clear_pending (EV_A_ (W)w);
1561 if (!ev_is_active (w)) 1820 if (expect_false (!ev_is_active (w)))
1562 return; 1821 return;
1563 1822
1564 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1823 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1565 ev_stop (EV_A_ (W)w); 1824 ev_stop (EV_A_ (W)w);
1566} 1825}
1567 1826
1827#if EV_STAT_ENABLE
1828
1829# ifdef _WIN32
1830# undef lstat
1831# define lstat(a,b) _stati64 (a,b)
1832# endif
1833
1834#define DEF_STAT_INTERVAL 5.0074891
1835#define MIN_STAT_INTERVAL 0.1074891
1836
1837static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1838
1839#if EV_USE_INOTIFY
1840# define EV_INOTIFY_BUFSIZE 8192
1841
1842static void noinline
1843infy_add (EV_P_ ev_stat *w)
1844{
1845 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1846
1847 if (w->wd < 0)
1848 {
1849 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1850
1851 /* monitor some parent directory for speedup hints */
1852 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1853 {
1854 char path [4096];
1855 strcpy (path, w->path);
1856
1857 do
1858 {
1859 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1860 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1861
1862 char *pend = strrchr (path, '/');
1863
1864 if (!pend)
1865 break; /* whoops, no '/', complain to your admin */
1866
1867 *pend = 0;
1868 w->wd = inotify_add_watch (fs_fd, path, mask);
1869 }
1870 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1871 }
1872 }
1873 else
1874 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1875
1876 if (w->wd >= 0)
1877 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1878}
1879
1880static void noinline
1881infy_del (EV_P_ ev_stat *w)
1882{
1883 int slot;
1884 int wd = w->wd;
1885
1886 if (wd < 0)
1887 return;
1888
1889 w->wd = -2;
1890 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1891 wlist_del (&fs_hash [slot].head, (WL)w);
1892
1893 /* remove this watcher, if others are watching it, they will rearm */
1894 inotify_rm_watch (fs_fd, wd);
1895}
1896
1897static void noinline
1898infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1899{
1900 if (slot < 0)
1901 /* overflow, need to check for all hahs slots */
1902 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1903 infy_wd (EV_A_ slot, wd, ev);
1904 else
1905 {
1906 WL w_;
1907
1908 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1909 {
1910 ev_stat *w = (ev_stat *)w_;
1911 w_ = w_->next; /* lets us remove this watcher and all before it */
1912
1913 if (w->wd == wd || wd == -1)
1914 {
1915 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1916 {
1917 w->wd = -1;
1918 infy_add (EV_A_ w); /* re-add, no matter what */
1919 }
1920
1921 stat_timer_cb (EV_A_ &w->timer, 0);
1922 }
1923 }
1924 }
1925}
1926
1927static void
1928infy_cb (EV_P_ ev_io *w, int revents)
1929{
1930 char buf [EV_INOTIFY_BUFSIZE];
1931 struct inotify_event *ev = (struct inotify_event *)buf;
1932 int ofs;
1933 int len = read (fs_fd, buf, sizeof (buf));
1934
1935 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1936 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1937}
1938
1939void inline_size
1940infy_init (EV_P)
1941{
1942 if (fs_fd != -2)
1943 return;
1944
1945 fs_fd = inotify_init ();
1946
1947 if (fs_fd >= 0)
1948 {
1949 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1950 ev_set_priority (&fs_w, EV_MAXPRI);
1951 ev_io_start (EV_A_ &fs_w);
1952 }
1953}
1954
1955void inline_size
1956infy_fork (EV_P)
1957{
1958 int slot;
1959
1960 if (fs_fd < 0)
1961 return;
1962
1963 close (fs_fd);
1964 fs_fd = inotify_init ();
1965
1966 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1967 {
1968 WL w_ = fs_hash [slot].head;
1969 fs_hash [slot].head = 0;
1970
1971 while (w_)
1972 {
1973 ev_stat *w = (ev_stat *)w_;
1974 w_ = w_->next; /* lets us add this watcher */
1975
1976 w->wd = -1;
1977
1978 if (fs_fd >= 0)
1979 infy_add (EV_A_ w); /* re-add, no matter what */
1980 else
1981 ev_timer_start (EV_A_ &w->timer);
1982 }
1983
1984 }
1985}
1986
1987#endif
1988
1989void
1990ev_stat_stat (EV_P_ ev_stat *w)
1991{
1992 if (lstat (w->path, &w->attr) < 0)
1993 w->attr.st_nlink = 0;
1994 else if (!w->attr.st_nlink)
1995 w->attr.st_nlink = 1;
1996}
1997
1998static void noinline
1999stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2000{
2001 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2002
2003 /* we copy this here each the time so that */
2004 /* prev has the old value when the callback gets invoked */
2005 w->prev = w->attr;
2006 ev_stat_stat (EV_A_ w);
2007
2008 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2009 if (
2010 w->prev.st_dev != w->attr.st_dev
2011 || w->prev.st_ino != w->attr.st_ino
2012 || w->prev.st_mode != w->attr.st_mode
2013 || w->prev.st_nlink != w->attr.st_nlink
2014 || w->prev.st_uid != w->attr.st_uid
2015 || w->prev.st_gid != w->attr.st_gid
2016 || w->prev.st_rdev != w->attr.st_rdev
2017 || w->prev.st_size != w->attr.st_size
2018 || w->prev.st_atime != w->attr.st_atime
2019 || w->prev.st_mtime != w->attr.st_mtime
2020 || w->prev.st_ctime != w->attr.st_ctime
2021 ) {
2022 #if EV_USE_INOTIFY
2023 infy_del (EV_A_ w);
2024 infy_add (EV_A_ w);
2025 ev_stat_stat (EV_A_ w); /* avoid race... */
2026 #endif
2027
2028 ev_feed_event (EV_A_ w, EV_STAT);
2029 }
2030}
2031
2032void
2033ev_stat_start (EV_P_ ev_stat *w)
2034{
2035 if (expect_false (ev_is_active (w)))
2036 return;
2037
2038 /* since we use memcmp, we need to clear any padding data etc. */
2039 memset (&w->prev, 0, sizeof (ev_statdata));
2040 memset (&w->attr, 0, sizeof (ev_statdata));
2041
2042 ev_stat_stat (EV_A_ w);
2043
2044 if (w->interval < MIN_STAT_INTERVAL)
2045 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2046
2047 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2048 ev_set_priority (&w->timer, ev_priority (w));
2049
2050#if EV_USE_INOTIFY
2051 infy_init (EV_A);
2052
2053 if (fs_fd >= 0)
2054 infy_add (EV_A_ w);
2055 else
2056#endif
2057 ev_timer_start (EV_A_ &w->timer);
2058
2059 ev_start (EV_A_ (W)w, 1);
2060}
2061
2062void
2063ev_stat_stop (EV_P_ ev_stat *w)
2064{
2065 clear_pending (EV_A_ (W)w);
2066 if (expect_false (!ev_is_active (w)))
2067 return;
2068
2069#if EV_USE_INOTIFY
2070 infy_del (EV_A_ w);
2071#endif
2072 ev_timer_stop (EV_A_ &w->timer);
2073
2074 ev_stop (EV_A_ (W)w);
2075}
2076#endif
2077
2078#if EV_IDLE_ENABLE
2079void
2080ev_idle_start (EV_P_ ev_idle *w)
2081{
2082 if (expect_false (ev_is_active (w)))
2083 return;
2084
2085 pri_adjust (EV_A_ (W)w);
2086
2087 {
2088 int active = ++idlecnt [ABSPRI (w)];
2089
2090 ++idleall;
2091 ev_start (EV_A_ (W)w, active);
2092
2093 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2094 idles [ABSPRI (w)][active - 1] = w;
2095 }
2096}
2097
2098void
2099ev_idle_stop (EV_P_ ev_idle *w)
2100{
2101 clear_pending (EV_A_ (W)w);
2102 if (expect_false (!ev_is_active (w)))
2103 return;
2104
2105 {
2106 int active = ((W)w)->active;
2107
2108 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2109 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2110
2111 ev_stop (EV_A_ (W)w);
2112 --idleall;
2113 }
2114}
2115#endif
2116
2117void
2118ev_prepare_start (EV_P_ ev_prepare *w)
2119{
2120 if (expect_false (ev_is_active (w)))
2121 return;
2122
2123 ev_start (EV_A_ (W)w, ++preparecnt);
2124 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2125 prepares [preparecnt - 1] = w;
2126}
2127
2128void
2129ev_prepare_stop (EV_P_ ev_prepare *w)
2130{
2131 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w)))
2133 return;
2134
2135 {
2136 int active = ((W)w)->active;
2137 prepares [active - 1] = prepares [--preparecnt];
2138 ((W)prepares [active - 1])->active = active;
2139 }
2140
2141 ev_stop (EV_A_ (W)w);
2142}
2143
2144void
2145ev_check_start (EV_P_ ev_check *w)
2146{
2147 if (expect_false (ev_is_active (w)))
2148 return;
2149
2150 ev_start (EV_A_ (W)w, ++checkcnt);
2151 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2152 checks [checkcnt - 1] = w;
2153}
2154
2155void
2156ev_check_stop (EV_P_ ev_check *w)
2157{
2158 clear_pending (EV_A_ (W)w);
2159 if (expect_false (!ev_is_active (w)))
2160 return;
2161
2162 {
2163 int active = ((W)w)->active;
2164 checks [active - 1] = checks [--checkcnt];
2165 ((W)checks [active - 1])->active = active;
2166 }
2167
2168 ev_stop (EV_A_ (W)w);
2169}
2170
2171#if EV_EMBED_ENABLE
2172void noinline
2173ev_embed_sweep (EV_P_ ev_embed *w)
2174{
2175 ev_loop (w->loop, EVLOOP_NONBLOCK);
2176}
2177
2178static void
2179embed_cb (EV_P_ ev_io *io, int revents)
2180{
2181 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2182
2183 if (ev_cb (w))
2184 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2185 else
2186 ev_embed_sweep (loop, w);
2187}
2188
2189void
2190ev_embed_start (EV_P_ ev_embed *w)
2191{
2192 if (expect_false (ev_is_active (w)))
2193 return;
2194
2195 {
2196 struct ev_loop *loop = w->loop;
2197 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2198 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2199 }
2200
2201 ev_set_priority (&w->io, ev_priority (w));
2202 ev_io_start (EV_A_ &w->io);
2203
2204 ev_start (EV_A_ (W)w, 1);
2205}
2206
2207void
2208ev_embed_stop (EV_P_ ev_embed *w)
2209{
2210 clear_pending (EV_A_ (W)w);
2211 if (expect_false (!ev_is_active (w)))
2212 return;
2213
2214 ev_io_stop (EV_A_ &w->io);
2215
2216 ev_stop (EV_A_ (W)w);
2217}
2218#endif
2219
2220#if EV_FORK_ENABLE
2221void
2222ev_fork_start (EV_P_ ev_fork *w)
2223{
2224 if (expect_false (ev_is_active (w)))
2225 return;
2226
2227 ev_start (EV_A_ (W)w, ++forkcnt);
2228 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2229 forks [forkcnt - 1] = w;
2230}
2231
2232void
2233ev_fork_stop (EV_P_ ev_fork *w)
2234{
2235 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w)))
2237 return;
2238
2239 {
2240 int active = ((W)w)->active;
2241 forks [active - 1] = forks [--forkcnt];
2242 ((W)forks [active - 1])->active = active;
2243 }
2244
2245 ev_stop (EV_A_ (W)w);
2246}
2247#endif
2248
1568/*****************************************************************************/ 2249/*****************************************************************************/
1569 2250
1570struct ev_once 2251struct ev_once
1571{ 2252{
1572 struct ev_io io; 2253 ev_io io;
1573 struct ev_timer to; 2254 ev_timer to;
1574 void (*cb)(int revents, void *arg); 2255 void (*cb)(int revents, void *arg);
1575 void *arg; 2256 void *arg;
1576}; 2257};
1577 2258
1578static void 2259static void
1587 2268
1588 cb (revents, arg); 2269 cb (revents, arg);
1589} 2270}
1590 2271
1591static void 2272static void
1592once_cb_io (EV_P_ struct ev_io *w, int revents) 2273once_cb_io (EV_P_ ev_io *w, int revents)
1593{ 2274{
1594 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1595} 2276}
1596 2277
1597static void 2278static void
1598once_cb_to (EV_P_ struct ev_timer *w, int revents) 2279once_cb_to (EV_P_ ev_timer *w, int revents)
1599{ 2280{
1600 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2281 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1601} 2282}
1602 2283
1603void 2284void
1604ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2285ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1605{ 2286{
1606 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2287 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1607 2288
1608 if (!once) 2289 if (expect_false (!once))
2290 {
1609 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2291 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1610 else 2292 return;
1611 { 2293 }
2294
1612 once->cb = cb; 2295 once->cb = cb;
1613 once->arg = arg; 2296 once->arg = arg;
1614 2297
1615 ev_init (&once->io, once_cb_io); 2298 ev_init (&once->io, once_cb_io);
1616 if (fd >= 0) 2299 if (fd >= 0)
1617 { 2300 {
1618 ev_io_set (&once->io, fd, events); 2301 ev_io_set (&once->io, fd, events);
1619 ev_io_start (EV_A_ &once->io); 2302 ev_io_start (EV_A_ &once->io);
1620 } 2303 }
1621 2304
1622 ev_init (&once->to, once_cb_to); 2305 ev_init (&once->to, once_cb_to);
1623 if (timeout >= 0.) 2306 if (timeout >= 0.)
1624 { 2307 {
1625 ev_timer_set (&once->to, timeout, 0.); 2308 ev_timer_set (&once->to, timeout, 0.);
1626 ev_timer_start (EV_A_ &once->to); 2309 ev_timer_start (EV_A_ &once->to);
1627 }
1628 } 2310 }
1629} 2311}
1630 2312
1631#ifdef __cplusplus 2313#ifdef __cplusplus
1632} 2314}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines