ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.103 by root, Mon Nov 12 00:31:08 2007 UTC vs.
Revision 1.221 by root, Sun Apr 6 12:44:49 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
63 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
64#endif 132#endif
65 133
66#include <math.h> 134#include <math.h>
67#include <stdlib.h> 135#include <stdlib.h>
68#include <fcntl.h> 136#include <fcntl.h>
75#include <sys/types.h> 143#include <sys/types.h>
76#include <time.h> 144#include <time.h>
77 145
78#include <signal.h> 146#include <signal.h>
79 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
80#ifndef _WIN32 154#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 155# include <sys/time.h>
83# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
84#else 158#else
85# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 160# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
89# endif 163# endif
90#endif 164#endif
91 165
92/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
93 167
94#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
96#endif 178#endif
97 179
98#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
100#endif 182#endif
101 183
102#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
103# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
104#endif 190#endif
105 191
106#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
107# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
108#endif 198#endif
109 199
110#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
111# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
112#endif 202#endif
113 203
114#ifndef EV_USE_REALTIME 204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
115# define EV_USE_REALTIME 1 210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
116#endif 213# endif
214#endif
117 215
118/**/ 216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
119 241
120#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
121# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
122# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
123#endif 245#endif
125#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
126# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
127# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
128#endif 250#endif
129 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
130#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
131# include <winsock.h> 268# include <winsock.h>
132#endif 269#endif
133 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274int eventfd (unsigned int initval, int flags);
275#endif
276
134/**/ 277/**/
135 278
279/*
280 * This is used to avoid floating point rounding problems.
281 * It is added to ev_rt_now when scheduling periodics
282 * to ensure progress, time-wise, even when rounding
283 * errors are against us.
284 * This value is good at least till the year 4000.
285 * Better solutions welcome.
286 */
287#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
288
136#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 289#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
137#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 290#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
138#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
139/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 291/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
140 292
141#ifdef EV_H
142# include EV_H
143#else
144# include "ev.h"
145#endif
146
147#if __GNUC__ >= 3 293#if __GNUC__ >= 4
148# define expect(expr,value) __builtin_expect ((expr),(value)) 294# define expect(expr,value) __builtin_expect ((expr),(value))
149# define inline inline 295# define noinline __attribute__ ((noinline))
150#else 296#else
151# define expect(expr,value) (expr) 297# define expect(expr,value) (expr)
152# define inline static 298# define noinline
299# if __STDC_VERSION__ < 199901L
300# define inline
301# endif
153#endif 302#endif
154 303
155#define expect_false(expr) expect ((expr) != 0, 0) 304#define expect_false(expr) expect ((expr) != 0, 0)
156#define expect_true(expr) expect ((expr) != 0, 1) 305#define expect_true(expr) expect ((expr) != 0, 1)
306#define inline_size static inline
307
308#if EV_MINIMAL
309# define inline_speed static noinline
310#else
311# define inline_speed static inline
312#endif
157 313
158#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 314#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
159#define ABSPRI(w) ((w)->priority - EV_MINPRI) 315#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
160 316
161#define EMPTY /* required for microsofts broken pseudo-c compiler */ 317#define EMPTY /* required for microsofts broken pseudo-c compiler */
318#define EMPTY2(a,b) /* used to suppress some warnings */
162 319
163typedef struct ev_watcher *W; 320typedef ev_watcher *W;
164typedef struct ev_watcher_list *WL; 321typedef ev_watcher_list *WL;
165typedef struct ev_watcher_time *WT; 322typedef ev_watcher_time *WT;
166 323
324#if EV_USE_MONOTONIC
325/* sig_atomic_t is used to avoid per-thread variables or locking but still */
326/* giving it a reasonably high chance of working on typical architetcures */
167static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 327static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
328#endif
168 329
169#ifdef _WIN32 330#ifdef _WIN32
170# include "ev_win32.c" 331# include "ev_win32.c"
171#endif 332#endif
172 333
173/*****************************************************************************/ 334/*****************************************************************************/
174 335
175static void (*syserr_cb)(const char *msg); 336static void (*syserr_cb)(const char *msg);
176 337
338void
177void ev_set_syserr_cb (void (*cb)(const char *msg)) 339ev_set_syserr_cb (void (*cb)(const char *msg))
178{ 340{
179 syserr_cb = cb; 341 syserr_cb = cb;
180} 342}
181 343
182static void 344static void noinline
183syserr (const char *msg) 345syserr (const char *msg)
184{ 346{
185 if (!msg) 347 if (!msg)
186 msg = "(libev) system error"; 348 msg = "(libev) system error";
187 349
194 } 356 }
195} 357}
196 358
197static void *(*alloc)(void *ptr, long size); 359static void *(*alloc)(void *ptr, long size);
198 360
361void
199void ev_set_allocator (void *(*cb)(void *ptr, long size)) 362ev_set_allocator (void *(*cb)(void *ptr, long size))
200{ 363{
201 alloc = cb; 364 alloc = cb;
202} 365}
203 366
204static void * 367inline_speed void *
205ev_realloc (void *ptr, long size) 368ev_realloc (void *ptr, long size)
206{ 369{
207 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 370 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
208 371
209 if (!ptr && size) 372 if (!ptr && size)
233typedef struct 396typedef struct
234{ 397{
235 W w; 398 W w;
236 int events; 399 int events;
237} ANPENDING; 400} ANPENDING;
401
402#if EV_USE_INOTIFY
403typedef struct
404{
405 WL head;
406} ANFS;
407#endif
238 408
239#if EV_MULTIPLICITY 409#if EV_MULTIPLICITY
240 410
241 struct ev_loop 411 struct ev_loop
242 { 412 {
246 #include "ev_vars.h" 416 #include "ev_vars.h"
247 #undef VAR 417 #undef VAR
248 }; 418 };
249 #include "ev_wrap.h" 419 #include "ev_wrap.h"
250 420
251 struct ev_loop default_loop_struct; 421 static struct ev_loop default_loop_struct;
252 static struct ev_loop *default_loop; 422 struct ev_loop *ev_default_loop_ptr;
253 423
254#else 424#else
255 425
256 ev_tstamp ev_rt_now; 426 ev_tstamp ev_rt_now;
257 #define VAR(name,decl) static decl; 427 #define VAR(name,decl) static decl;
258 #include "ev_vars.h" 428 #include "ev_vars.h"
259 #undef VAR 429 #undef VAR
260 430
261 static int default_loop; 431 static int ev_default_loop_ptr;
262 432
263#endif 433#endif
264 434
265/*****************************************************************************/ 435/*****************************************************************************/
266 436
276 gettimeofday (&tv, 0); 446 gettimeofday (&tv, 0);
277 return tv.tv_sec + tv.tv_usec * 1e-6; 447 return tv.tv_sec + tv.tv_usec * 1e-6;
278#endif 448#endif
279} 449}
280 450
281inline ev_tstamp 451ev_tstamp inline_size
282get_clock (void) 452get_clock (void)
283{ 453{
284#if EV_USE_MONOTONIC 454#if EV_USE_MONOTONIC
285 if (expect_true (have_monotonic)) 455 if (expect_true (have_monotonic))
286 { 456 {
299{ 469{
300 return ev_rt_now; 470 return ev_rt_now;
301} 471}
302#endif 472#endif
303 473
304#define array_roundsize(type,n) ((n) | 4 & ~3) 474void
475ev_sleep (ev_tstamp delay)
476{
477 if (delay > 0.)
478 {
479#if EV_USE_NANOSLEEP
480 struct timespec ts;
481
482 ts.tv_sec = (time_t)delay;
483 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
484
485 nanosleep (&ts, 0);
486#elif defined(_WIN32)
487 Sleep ((unsigned long)(delay * 1e3));
488#else
489 struct timeval tv;
490
491 tv.tv_sec = (time_t)delay;
492 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
493
494 select (0, 0, 0, 0, &tv);
495#endif
496 }
497}
498
499/*****************************************************************************/
500
501int inline_size
502array_nextsize (int elem, int cur, int cnt)
503{
504 int ncur = cur + 1;
505
506 do
507 ncur <<= 1;
508 while (cnt > ncur);
509
510 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
511 if (elem * ncur > 4096)
512 {
513 ncur *= elem;
514 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
515 ncur = ncur - sizeof (void *) * 4;
516 ncur /= elem;
517 }
518
519 return ncur;
520}
521
522static noinline void *
523array_realloc (int elem, void *base, int *cur, int cnt)
524{
525 *cur = array_nextsize (elem, *cur, cnt);
526 return ev_realloc (base, elem * *cur);
527}
305 528
306#define array_needsize(type,base,cur,cnt,init) \ 529#define array_needsize(type,base,cur,cnt,init) \
307 if (expect_false ((cnt) > cur)) \ 530 if (expect_false ((cnt) > (cur))) \
308 { \ 531 { \
309 int newcnt = cur; \ 532 int ocur_ = (cur); \
310 do \ 533 (base) = (type *)array_realloc \
311 { \ 534 (sizeof (type), (base), &(cur), (cnt)); \
312 newcnt = array_roundsize (type, newcnt << 1); \ 535 init ((base) + (ocur_), (cur) - ocur_); \
313 } \
314 while ((cnt) > newcnt); \
315 \
316 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
317 init (base + cur, newcnt - cur); \
318 cur = newcnt; \
319 } 536 }
320 537
538#if 0
321#define array_slim(type,stem) \ 539#define array_slim(type,stem) \
322 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 540 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
323 { \ 541 { \
324 stem ## max = array_roundsize (stem ## cnt >> 1); \ 542 stem ## max = array_roundsize (stem ## cnt >> 1); \
325 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 543 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
326 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 544 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
327 } 545 }
546#endif
328 547
329#define array_free(stem, idx) \ 548#define array_free(stem, idx) \
330 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 549 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
331 550
332/*****************************************************************************/ 551/*****************************************************************************/
333 552
334static void 553void noinline
554ev_feed_event (EV_P_ void *w, int revents)
555{
556 W w_ = (W)w;
557 int pri = ABSPRI (w_);
558
559 if (expect_false (w_->pending))
560 pendings [pri][w_->pending - 1].events |= revents;
561 else
562 {
563 w_->pending = ++pendingcnt [pri];
564 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
565 pendings [pri][w_->pending - 1].w = w_;
566 pendings [pri][w_->pending - 1].events = revents;
567 }
568}
569
570void inline_speed
571queue_events (EV_P_ W *events, int eventcnt, int type)
572{
573 int i;
574
575 for (i = 0; i < eventcnt; ++i)
576 ev_feed_event (EV_A_ events [i], type);
577}
578
579/*****************************************************************************/
580
581void inline_size
335anfds_init (ANFD *base, int count) 582anfds_init (ANFD *base, int count)
336{ 583{
337 while (count--) 584 while (count--)
338 { 585 {
339 base->head = 0; 586 base->head = 0;
342 589
343 ++base; 590 ++base;
344 } 591 }
345} 592}
346 593
347void 594void inline_speed
348ev_feed_event (EV_P_ void *w, int revents)
349{
350 W w_ = (W)w;
351
352 if (w_->pending)
353 {
354 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
355 return;
356 }
357
358 w_->pending = ++pendingcnt [ABSPRI (w_)];
359 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
360 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
361 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
362}
363
364static void
365queue_events (EV_P_ W *events, int eventcnt, int type)
366{
367 int i;
368
369 for (i = 0; i < eventcnt; ++i)
370 ev_feed_event (EV_A_ events [i], type);
371}
372
373inline void
374fd_event (EV_P_ int fd, int revents) 595fd_event (EV_P_ int fd, int revents)
375{ 596{
376 ANFD *anfd = anfds + fd; 597 ANFD *anfd = anfds + fd;
377 struct ev_io *w; 598 ev_io *w;
378 599
379 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 600 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
380 { 601 {
381 int ev = w->events & revents; 602 int ev = w->events & revents;
382 603
383 if (ev) 604 if (ev)
384 ev_feed_event (EV_A_ (W)w, ev); 605 ev_feed_event (EV_A_ (W)w, ev);
386} 607}
387 608
388void 609void
389ev_feed_fd_event (EV_P_ int fd, int revents) 610ev_feed_fd_event (EV_P_ int fd, int revents)
390{ 611{
612 if (fd >= 0 && fd < anfdmax)
391 fd_event (EV_A_ fd, revents); 613 fd_event (EV_A_ fd, revents);
392} 614}
393 615
394/*****************************************************************************/ 616void inline_size
395
396static void
397fd_reify (EV_P) 617fd_reify (EV_P)
398{ 618{
399 int i; 619 int i;
400 620
401 for (i = 0; i < fdchangecnt; ++i) 621 for (i = 0; i < fdchangecnt; ++i)
402 { 622 {
403 int fd = fdchanges [i]; 623 int fd = fdchanges [i];
404 ANFD *anfd = anfds + fd; 624 ANFD *anfd = anfds + fd;
405 struct ev_io *w; 625 ev_io *w;
406 626
407 int events = 0; 627 unsigned char events = 0;
408 628
409 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 629 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
410 events |= w->events; 630 events |= (unsigned char)w->events;
411 631
412#if EV_SELECT_IS_WINSOCKET 632#if EV_SELECT_IS_WINSOCKET
413 if (events) 633 if (events)
414 { 634 {
415 unsigned long argp; 635 unsigned long argp;
636 #ifdef EV_FD_TO_WIN32_HANDLE
637 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
638 #else
416 anfd->handle = _get_osfhandle (fd); 639 anfd->handle = _get_osfhandle (fd);
640 #endif
417 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 641 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
418 } 642 }
419#endif 643#endif
420 644
645 {
646 unsigned char o_events = anfd->events;
647 unsigned char o_reify = anfd->reify;
648
421 anfd->reify = 0; 649 anfd->reify = 0;
422
423 method_modify (EV_A_ fd, anfd->events, events);
424 anfd->events = events; 650 anfd->events = events;
651
652 if (o_events != events || o_reify & EV_IOFDSET)
653 backend_modify (EV_A_ fd, o_events, events);
654 }
425 } 655 }
426 656
427 fdchangecnt = 0; 657 fdchangecnt = 0;
428} 658}
429 659
430static void 660void inline_size
431fd_change (EV_P_ int fd) 661fd_change (EV_P_ int fd, int flags)
432{ 662{
433 if (anfds [fd].reify) 663 unsigned char reify = anfds [fd].reify;
434 return;
435
436 anfds [fd].reify = 1; 664 anfds [fd].reify |= flags;
437 665
666 if (expect_true (!reify))
667 {
438 ++fdchangecnt; 668 ++fdchangecnt;
439 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 669 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
440 fdchanges [fdchangecnt - 1] = fd; 670 fdchanges [fdchangecnt - 1] = fd;
671 }
441} 672}
442 673
443static void 674void inline_speed
444fd_kill (EV_P_ int fd) 675fd_kill (EV_P_ int fd)
445{ 676{
446 struct ev_io *w; 677 ev_io *w;
447 678
448 while ((w = (struct ev_io *)anfds [fd].head)) 679 while ((w = (ev_io *)anfds [fd].head))
449 { 680 {
450 ev_io_stop (EV_A_ w); 681 ev_io_stop (EV_A_ w);
451 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 682 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
452 } 683 }
453} 684}
454 685
455static int 686int inline_size
456fd_valid (int fd) 687fd_valid (int fd)
457{ 688{
458#ifdef _WIN32 689#ifdef _WIN32
459 return _get_osfhandle (fd) != -1; 690 return _get_osfhandle (fd) != -1;
460#else 691#else
461 return fcntl (fd, F_GETFD) != -1; 692 return fcntl (fd, F_GETFD) != -1;
462#endif 693#endif
463} 694}
464 695
465/* called on EBADF to verify fds */ 696/* called on EBADF to verify fds */
466static void 697static void noinline
467fd_ebadf (EV_P) 698fd_ebadf (EV_P)
468{ 699{
469 int fd; 700 int fd;
470 701
471 for (fd = 0; fd < anfdmax; ++fd) 702 for (fd = 0; fd < anfdmax; ++fd)
473 if (!fd_valid (fd) == -1 && errno == EBADF) 704 if (!fd_valid (fd) == -1 && errno == EBADF)
474 fd_kill (EV_A_ fd); 705 fd_kill (EV_A_ fd);
475} 706}
476 707
477/* called on ENOMEM in select/poll to kill some fds and retry */ 708/* called on ENOMEM in select/poll to kill some fds and retry */
478static void 709static void noinline
479fd_enomem (EV_P) 710fd_enomem (EV_P)
480{ 711{
481 int fd; 712 int fd;
482 713
483 for (fd = anfdmax; fd--; ) 714 for (fd = anfdmax; fd--; )
486 fd_kill (EV_A_ fd); 717 fd_kill (EV_A_ fd);
487 return; 718 return;
488 } 719 }
489} 720}
490 721
491/* usually called after fork if method needs to re-arm all fds from scratch */ 722/* usually called after fork if backend needs to re-arm all fds from scratch */
492static void 723static void noinline
493fd_rearm_all (EV_P) 724fd_rearm_all (EV_P)
494{ 725{
495 int fd; 726 int fd;
496 727
497 /* this should be highly optimised to not do anything but set a flag */
498 for (fd = 0; fd < anfdmax; ++fd) 728 for (fd = 0; fd < anfdmax; ++fd)
499 if (anfds [fd].events) 729 if (anfds [fd].events)
500 { 730 {
501 anfds [fd].events = 0; 731 anfds [fd].events = 0;
502 fd_change (EV_A_ fd); 732 fd_change (EV_A_ fd, EV_IOFDSET | 1);
503 } 733 }
504} 734}
505 735
506/*****************************************************************************/ 736/*****************************************************************************/
507 737
508static void 738void inline_speed
509upheap (WT *heap, int k) 739upheap (WT *heap, int k)
510{ 740{
511 WT w = heap [k]; 741 WT w = heap [k];
512 742
513 while (k && heap [k >> 1]->at > w->at) 743 while (k)
514 { 744 {
745 int p = (k - 1) >> 1;
746
747 if (heap [p]->at <= w->at)
748 break;
749
515 heap [k] = heap [k >> 1]; 750 heap [k] = heap [p];
516 ((W)heap [k])->active = k + 1; 751 ((W)heap [k])->active = k + 1;
517 k >>= 1; 752 k = p;
518 } 753 }
519 754
520 heap [k] = w; 755 heap [k] = w;
521 ((W)heap [k])->active = k + 1; 756 ((W)heap [k])->active = k + 1;
522
523} 757}
524 758
525static void 759void inline_speed
526downheap (WT *heap, int N, int k) 760downheap (WT *heap, int N, int k)
527{ 761{
528 WT w = heap [k]; 762 WT w = heap [k];
529 763
530 while (k < (N >> 1)) 764 for (;;)
531 { 765 {
532 int j = k << 1; 766 int c = (k << 1) + 1;
533 767
534 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 768 if (c >= N)
535 ++j;
536
537 if (w->at <= heap [j]->at)
538 break; 769 break;
539 770
771 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
772 ? 1 : 0;
773
774 if (w->at <= heap [c]->at)
775 break;
776
540 heap [k] = heap [j]; 777 heap [k] = heap [c];
541 ((W)heap [k])->active = k + 1; 778 ((W)heap [k])->active = k + 1;
779
542 k = j; 780 k = c;
543 } 781 }
544 782
545 heap [k] = w; 783 heap [k] = w;
546 ((W)heap [k])->active = k + 1; 784 ((W)heap [k])->active = k + 1;
547} 785}
548 786
549inline void 787void inline_size
550adjustheap (WT *heap, int N, int k) 788adjustheap (WT *heap, int N, int k)
551{ 789{
552 upheap (heap, k); 790 upheap (heap, k);
553 downheap (heap, N, k); 791 downheap (heap, N, k);
554} 792}
556/*****************************************************************************/ 794/*****************************************************************************/
557 795
558typedef struct 796typedef struct
559{ 797{
560 WL head; 798 WL head;
561 sig_atomic_t volatile gotsig; 799 EV_ATOMIC_T gotsig;
562} ANSIG; 800} ANSIG;
563 801
564static ANSIG *signals; 802static ANSIG *signals;
565static int signalmax; 803static int signalmax;
566 804
567static int sigpipe [2]; 805static EV_ATOMIC_T gotsig;
568static sig_atomic_t volatile gotsig;
569static struct ev_io sigev;
570 806
571static void 807void inline_size
572signals_init (ANSIG *base, int count) 808signals_init (ANSIG *base, int count)
573{ 809{
574 while (count--) 810 while (count--)
575 { 811 {
576 base->head = 0; 812 base->head = 0;
578 814
579 ++base; 815 ++base;
580 } 816 }
581} 817}
582 818
583static void 819/*****************************************************************************/
584sighandler (int signum)
585{
586#if _WIN32
587 signal (signum, sighandler);
588#endif
589 820
590 signals [signum - 1].gotsig = 1; 821void inline_speed
591
592 if (!gotsig)
593 {
594 int old_errno = errno;
595 gotsig = 1;
596 write (sigpipe [1], &signum, 1);
597 errno = old_errno;
598 }
599}
600
601void
602ev_feed_signal_event (EV_P_ int signum)
603{
604 WL w;
605
606#if EV_MULTIPLICITY
607 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
608#endif
609
610 --signum;
611
612 if (signum < 0 || signum >= signalmax)
613 return;
614
615 signals [signum].gotsig = 0;
616
617 for (w = signals [signum].head; w; w = w->next)
618 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
619}
620
621static void
622sigcb (EV_P_ struct ev_io *iow, int revents)
623{
624 int signum;
625
626 read (sigpipe [0], &revents, 1);
627 gotsig = 0;
628
629 for (signum = signalmax; signum--; )
630 if (signals [signum].gotsig)
631 ev_feed_signal_event (EV_A_ signum + 1);
632}
633
634inline void
635fd_intern (int fd) 822fd_intern (int fd)
636{ 823{
637#ifdef _WIN32 824#ifdef _WIN32
638 int arg = 1; 825 int arg = 1;
639 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 826 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
641 fcntl (fd, F_SETFD, FD_CLOEXEC); 828 fcntl (fd, F_SETFD, FD_CLOEXEC);
642 fcntl (fd, F_SETFL, O_NONBLOCK); 829 fcntl (fd, F_SETFL, O_NONBLOCK);
643#endif 830#endif
644} 831}
645 832
833static void noinline
834evpipe_init (EV_P)
835{
836 if (!ev_is_active (&pipeev))
837 {
838#if EV_USE_EVENTFD
839 if ((evfd = eventfd (0, 0)) >= 0)
840 {
841 evpipe [0] = -1;
842 fd_intern (evfd);
843 ev_io_set (&pipeev, evfd, EV_READ);
844 }
845 else
846#endif
847 {
848 while (pipe (evpipe))
849 syserr ("(libev) error creating signal/async pipe");
850
851 fd_intern (evpipe [0]);
852 fd_intern (evpipe [1]);
853 ev_io_set (&pipeev, evpipe [0], EV_READ);
854 }
855
856 ev_io_start (EV_A_ &pipeev);
857 ev_unref (EV_A); /* watcher should not keep loop alive */
858 }
859}
860
861void inline_size
862evpipe_write (EV_P_ EV_ATOMIC_T *flag)
863{
864 if (!*flag)
865 {
866 int old_errno = errno; /* save errno because write might clobber it */
867
868 *flag = 1;
869
870#if EV_USE_EVENTFD
871 if (evfd >= 0)
872 {
873 uint64_t counter = 1;
874 write (evfd, &counter, sizeof (uint64_t));
875 }
876 else
877#endif
878 write (evpipe [1], &old_errno, 1);
879
880 errno = old_errno;
881 }
882}
883
646static void 884static void
647siginit (EV_P) 885pipecb (EV_P_ ev_io *iow, int revents)
648{ 886{
649 fd_intern (sigpipe [0]); 887#if EV_USE_EVENTFD
650 fd_intern (sigpipe [1]); 888 if (evfd >= 0)
889 {
890 uint64_t counter = 1;
891 read (evfd, &counter, sizeof (uint64_t));
892 }
893 else
894#endif
895 {
896 char dummy;
897 read (evpipe [0], &dummy, 1);
898 }
651 899
652 ev_io_set (&sigev, sigpipe [0], EV_READ); 900 if (gotsig && ev_is_default_loop (EV_A))
653 ev_io_start (EV_A_ &sigev); 901 {
654 ev_unref (EV_A); /* child watcher should not keep loop alive */ 902 int signum;
903 gotsig = 0;
904
905 for (signum = signalmax; signum--; )
906 if (signals [signum].gotsig)
907 ev_feed_signal_event (EV_A_ signum + 1);
908 }
909
910#if EV_ASYNC_ENABLE
911 if (gotasync)
912 {
913 int i;
914 gotasync = 0;
915
916 for (i = asynccnt; i--; )
917 if (asyncs [i]->sent)
918 {
919 asyncs [i]->sent = 0;
920 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
921 }
922 }
923#endif
655} 924}
656 925
657/*****************************************************************************/ 926/*****************************************************************************/
658 927
659static struct ev_child *childs [PID_HASHSIZE]; 928static void
929ev_sighandler (int signum)
930{
931#if EV_MULTIPLICITY
932 struct ev_loop *loop = &default_loop_struct;
933#endif
934
935#if _WIN32
936 signal (signum, ev_sighandler);
937#endif
938
939 signals [signum - 1].gotsig = 1;
940 evpipe_write (EV_A_ &gotsig);
941}
942
943void noinline
944ev_feed_signal_event (EV_P_ int signum)
945{
946 WL w;
947
948#if EV_MULTIPLICITY
949 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
950#endif
951
952 --signum;
953
954 if (signum < 0 || signum >= signalmax)
955 return;
956
957 signals [signum].gotsig = 0;
958
959 for (w = signals [signum].head; w; w = w->next)
960 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
961}
962
963/*****************************************************************************/
964
965static WL childs [EV_PID_HASHSIZE];
660 966
661#ifndef _WIN32 967#ifndef _WIN32
662 968
663static struct ev_signal childev; 969static ev_signal childev;
970
971#ifndef WIFCONTINUED
972# define WIFCONTINUED(status) 0
973#endif
974
975void inline_speed
976child_reap (EV_P_ int chain, int pid, int status)
977{
978 ev_child *w;
979 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
980
981 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
982 {
983 if ((w->pid == pid || !w->pid)
984 && (!traced || (w->flags & 1)))
985 {
986 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
987 w->rpid = pid;
988 w->rstatus = status;
989 ev_feed_event (EV_A_ (W)w, EV_CHILD);
990 }
991 }
992}
664 993
665#ifndef WCONTINUED 994#ifndef WCONTINUED
666# define WCONTINUED 0 995# define WCONTINUED 0
667#endif 996#endif
668 997
669static void 998static void
670child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
671{
672 struct ev_child *w;
673
674 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
675 if (w->pid == pid || !w->pid)
676 {
677 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
678 w->rpid = pid;
679 w->rstatus = status;
680 ev_feed_event (EV_A_ (W)w, EV_CHILD);
681 }
682}
683
684static void
685childcb (EV_P_ struct ev_signal *sw, int revents) 999childcb (EV_P_ ev_signal *sw, int revents)
686{ 1000{
687 int pid, status; 1001 int pid, status;
688 1002
1003 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
689 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1004 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
690 { 1005 if (!WCONTINUED
1006 || errno != EINVAL
1007 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1008 return;
1009
691 /* make sure we are called again until all childs have been reaped */ 1010 /* make sure we are called again until all children have been reaped */
1011 /* we need to do it this way so that the callback gets called before we continue */
692 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1012 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
693 1013
694 child_reap (EV_A_ sw, pid, pid, status); 1014 child_reap (EV_A_ pid, pid, status);
1015 if (EV_PID_HASHSIZE > 1)
695 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1016 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
696 }
697} 1017}
698 1018
699#endif 1019#endif
700 1020
701/*****************************************************************************/ 1021/*****************************************************************************/
702 1022
1023#if EV_USE_PORT
1024# include "ev_port.c"
1025#endif
703#if EV_USE_KQUEUE 1026#if EV_USE_KQUEUE
704# include "ev_kqueue.c" 1027# include "ev_kqueue.c"
705#endif 1028#endif
706#if EV_USE_EPOLL 1029#if EV_USE_EPOLL
707# include "ev_epoll.c" 1030# include "ev_epoll.c"
724{ 1047{
725 return EV_VERSION_MINOR; 1048 return EV_VERSION_MINOR;
726} 1049}
727 1050
728/* return true if we are running with elevated privileges and should ignore env variables */ 1051/* return true if we are running with elevated privileges and should ignore env variables */
729static int 1052int inline_size
730enable_secure (void) 1053enable_secure (void)
731{ 1054{
732#ifdef _WIN32 1055#ifdef _WIN32
733 return 0; 1056 return 0;
734#else 1057#else
735 return getuid () != geteuid () 1058 return getuid () != geteuid ()
736 || getgid () != getegid (); 1059 || getgid () != getegid ();
737#endif 1060#endif
738} 1061}
739 1062
740int 1063unsigned int
741ev_method (EV_P) 1064ev_supported_backends (void)
742{ 1065{
743 return method; 1066 unsigned int flags = 0;
744}
745 1067
746static void 1068 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
747loop_init (EV_P_ int methods) 1069 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1070 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1071 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1072 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1073
1074 return flags;
1075}
1076
1077unsigned int
1078ev_recommended_backends (void)
748{ 1079{
749 if (!method) 1080 unsigned int flags = ev_supported_backends ();
1081
1082#ifndef __NetBSD__
1083 /* kqueue is borked on everything but netbsd apparently */
1084 /* it usually doesn't work correctly on anything but sockets and pipes */
1085 flags &= ~EVBACKEND_KQUEUE;
1086#endif
1087#ifdef __APPLE__
1088 // flags &= ~EVBACKEND_KQUEUE; for documentation
1089 flags &= ~EVBACKEND_POLL;
1090#endif
1091
1092 return flags;
1093}
1094
1095unsigned int
1096ev_embeddable_backends (void)
1097{
1098 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1099
1100 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1101 /* please fix it and tell me how to detect the fix */
1102 flags &= ~EVBACKEND_EPOLL;
1103
1104 return flags;
1105}
1106
1107unsigned int
1108ev_backend (EV_P)
1109{
1110 return backend;
1111}
1112
1113unsigned int
1114ev_loop_count (EV_P)
1115{
1116 return loop_count;
1117}
1118
1119void
1120ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1121{
1122 io_blocktime = interval;
1123}
1124
1125void
1126ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1127{
1128 timeout_blocktime = interval;
1129}
1130
1131static void noinline
1132loop_init (EV_P_ unsigned int flags)
1133{
1134 if (!backend)
750 { 1135 {
751#if EV_USE_MONOTONIC 1136#if EV_USE_MONOTONIC
752 { 1137 {
753 struct timespec ts; 1138 struct timespec ts;
754 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1139 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
755 have_monotonic = 1; 1140 have_monotonic = 1;
756 } 1141 }
757#endif 1142#endif
758 1143
759 ev_rt_now = ev_time (); 1144 ev_rt_now = ev_time ();
760 mn_now = get_clock (); 1145 mn_now = get_clock ();
761 now_floor = mn_now; 1146 now_floor = mn_now;
762 rtmn_diff = ev_rt_now - mn_now; 1147 rtmn_diff = ev_rt_now - mn_now;
763 1148
764 if (methods == EVMETHOD_AUTO) 1149 io_blocktime = 0.;
765 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1150 timeout_blocktime = 0.;
1151 backend = 0;
1152 backend_fd = -1;
1153 gotasync = 0;
1154#if EV_USE_INOTIFY
1155 fs_fd = -2;
1156#endif
1157
1158 /* pid check not overridable via env */
1159#ifndef _WIN32
1160 if (flags & EVFLAG_FORKCHECK)
1161 curpid = getpid ();
1162#endif
1163
1164 if (!(flags & EVFLAG_NOENV)
1165 && !enable_secure ()
1166 && getenv ("LIBEV_FLAGS"))
766 methods = atoi (getenv ("LIBEV_METHODS")); 1167 flags = atoi (getenv ("LIBEV_FLAGS"));
767 else
768 methods = EVMETHOD_ANY;
769 1168
770 method = 0; 1169 if (!(flags & 0x0000ffffUL))
1170 flags |= ev_recommended_backends ();
1171
1172#if EV_USE_PORT
1173 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1174#endif
771#if EV_USE_KQUEUE 1175#if EV_USE_KQUEUE
772 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1176 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
773#endif 1177#endif
774#if EV_USE_EPOLL 1178#if EV_USE_EPOLL
775 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1179 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
776#endif 1180#endif
777#if EV_USE_POLL 1181#if EV_USE_POLL
778 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1182 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
779#endif 1183#endif
780#if EV_USE_SELECT 1184#if EV_USE_SELECT
781 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1185 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
782#endif 1186#endif
783 1187
784 ev_init (&sigev, sigcb); 1188 ev_init (&pipeev, pipecb);
785 ev_set_priority (&sigev, EV_MAXPRI); 1189 ev_set_priority (&pipeev, EV_MAXPRI);
786 } 1190 }
787} 1191}
788 1192
789void 1193static void noinline
790loop_destroy (EV_P) 1194loop_destroy (EV_P)
791{ 1195{
792 int i; 1196 int i;
793 1197
1198 if (ev_is_active (&pipeev))
1199 {
1200 ev_ref (EV_A); /* signal watcher */
1201 ev_io_stop (EV_A_ &pipeev);
1202
1203#if EV_USE_EVENTFD
1204 if (evfd >= 0)
1205 close (evfd);
1206#endif
1207
1208 if (evpipe [0] >= 0)
1209 {
1210 close (evpipe [0]);
1211 close (evpipe [1]);
1212 }
1213 }
1214
1215#if EV_USE_INOTIFY
1216 if (fs_fd >= 0)
1217 close (fs_fd);
1218#endif
1219
1220 if (backend_fd >= 0)
1221 close (backend_fd);
1222
1223#if EV_USE_PORT
1224 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1225#endif
794#if EV_USE_KQUEUE 1226#if EV_USE_KQUEUE
795 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1227 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
796#endif 1228#endif
797#if EV_USE_EPOLL 1229#if EV_USE_EPOLL
798 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1230 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
799#endif 1231#endif
800#if EV_USE_POLL 1232#if EV_USE_POLL
801 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1233 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
802#endif 1234#endif
803#if EV_USE_SELECT 1235#if EV_USE_SELECT
804 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1236 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
805#endif 1237#endif
806 1238
807 for (i = NUMPRI; i--; ) 1239 for (i = NUMPRI; i--; )
1240 {
808 array_free (pending, [i]); 1241 array_free (pending, [i]);
1242#if EV_IDLE_ENABLE
1243 array_free (idle, [i]);
1244#endif
1245 }
1246
1247 ev_free (anfds); anfdmax = 0;
809 1248
810 /* have to use the microsoft-never-gets-it-right macro */ 1249 /* have to use the microsoft-never-gets-it-right macro */
811 array_free (fdchange, EMPTY); 1250 array_free (fdchange, EMPTY);
812 array_free (timer, EMPTY); 1251 array_free (timer, EMPTY);
813#if EV_PERIODICS 1252#if EV_PERIODIC_ENABLE
814 array_free (periodic, EMPTY); 1253 array_free (periodic, EMPTY);
815#endif 1254#endif
1255#if EV_FORK_ENABLE
816 array_free (idle, EMPTY); 1256 array_free (fork, EMPTY);
1257#endif
817 array_free (prepare, EMPTY); 1258 array_free (prepare, EMPTY);
818 array_free (check, EMPTY); 1259 array_free (check, EMPTY);
1260#if EV_ASYNC_ENABLE
1261 array_free (async, EMPTY);
1262#endif
819 1263
820 method = 0; 1264 backend = 0;
821} 1265}
822 1266
823static void 1267void inline_size infy_fork (EV_P);
1268
1269void inline_size
824loop_fork (EV_P) 1270loop_fork (EV_P)
825{ 1271{
1272#if EV_USE_PORT
1273 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1274#endif
1275#if EV_USE_KQUEUE
1276 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1277#endif
826#if EV_USE_EPOLL 1278#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1279 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
828#endif 1280#endif
829#if EV_USE_KQUEUE 1281#if EV_USE_INOTIFY
830 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1282 infy_fork (EV_A);
831#endif 1283#endif
832 1284
833 if (ev_is_active (&sigev)) 1285 if (ev_is_active (&pipeev))
834 { 1286 {
835 /* default loop */ 1287 /* this "locks" the handlers against writing to the pipe */
1288 /* while we modify the fd vars */
1289 gotsig = 1;
1290#if EV_ASYNC_ENABLE
1291 gotasync = 1;
1292#endif
836 1293
837 ev_ref (EV_A); 1294 ev_ref (EV_A);
838 ev_io_stop (EV_A_ &sigev); 1295 ev_io_stop (EV_A_ &pipeev);
1296
1297#if EV_USE_EVENTFD
1298 if (evfd >= 0)
1299 close (evfd);
1300#endif
1301
1302 if (evpipe [0] >= 0)
1303 {
839 close (sigpipe [0]); 1304 close (evpipe [0]);
840 close (sigpipe [1]); 1305 close (evpipe [1]);
1306 }
841 1307
842 while (pipe (sigpipe))
843 syserr ("(libev) error creating pipe");
844
845 siginit (EV_A); 1308 evpipe_init (EV_A);
1309 /* now iterate over everything, in case we missed something */
1310 pipecb (EV_A_ &pipeev, EV_READ);
846 } 1311 }
847 1312
848 postfork = 0; 1313 postfork = 0;
849} 1314}
850 1315
851#if EV_MULTIPLICITY 1316#if EV_MULTIPLICITY
852struct ev_loop * 1317struct ev_loop *
853ev_loop_new (int methods) 1318ev_loop_new (unsigned int flags)
854{ 1319{
855 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1320 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
856 1321
857 memset (loop, 0, sizeof (struct ev_loop)); 1322 memset (loop, 0, sizeof (struct ev_loop));
858 1323
859 loop_init (EV_A_ methods); 1324 loop_init (EV_A_ flags);
860 1325
861 if (ev_method (EV_A)) 1326 if (ev_backend (EV_A))
862 return loop; 1327 return loop;
863 1328
864 return 0; 1329 return 0;
865} 1330}
866 1331
872} 1337}
873 1338
874void 1339void
875ev_loop_fork (EV_P) 1340ev_loop_fork (EV_P)
876{ 1341{
877 postfork = 1; 1342 postfork = 1; /* must be in line with ev_default_fork */
878} 1343}
879 1344
880#endif 1345#endif
881 1346
882#if EV_MULTIPLICITY 1347#if EV_MULTIPLICITY
883struct ev_loop * 1348struct ev_loop *
1349ev_default_loop_init (unsigned int flags)
884#else 1350#else
885int 1351int
1352ev_default_loop (unsigned int flags)
886#endif 1353#endif
887ev_default_loop (int methods)
888{ 1354{
889 if (sigpipe [0] == sigpipe [1])
890 if (pipe (sigpipe))
891 return 0;
892
893 if (!default_loop) 1355 if (!ev_default_loop_ptr)
894 { 1356 {
895#if EV_MULTIPLICITY 1357#if EV_MULTIPLICITY
896 struct ev_loop *loop = default_loop = &default_loop_struct; 1358 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
897#else 1359#else
898 default_loop = 1; 1360 ev_default_loop_ptr = 1;
899#endif 1361#endif
900 1362
901 loop_init (EV_A_ methods); 1363 loop_init (EV_A_ flags);
902 1364
903 if (ev_method (EV_A)) 1365 if (ev_backend (EV_A))
904 { 1366 {
905 siginit (EV_A);
906
907#ifndef _WIN32 1367#ifndef _WIN32
908 ev_signal_init (&childev, childcb, SIGCHLD); 1368 ev_signal_init (&childev, childcb, SIGCHLD);
909 ev_set_priority (&childev, EV_MAXPRI); 1369 ev_set_priority (&childev, EV_MAXPRI);
910 ev_signal_start (EV_A_ &childev); 1370 ev_signal_start (EV_A_ &childev);
911 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1371 ev_unref (EV_A); /* child watcher should not keep loop alive */
912#endif 1372#endif
913 } 1373 }
914 else 1374 else
915 default_loop = 0; 1375 ev_default_loop_ptr = 0;
916 } 1376 }
917 1377
918 return default_loop; 1378 return ev_default_loop_ptr;
919} 1379}
920 1380
921void 1381void
922ev_default_destroy (void) 1382ev_default_destroy (void)
923{ 1383{
924#if EV_MULTIPLICITY 1384#if EV_MULTIPLICITY
925 struct ev_loop *loop = default_loop; 1385 struct ev_loop *loop = ev_default_loop_ptr;
926#endif 1386#endif
927 1387
928#ifndef _WIN32 1388#ifndef _WIN32
929 ev_ref (EV_A); /* child watcher */ 1389 ev_ref (EV_A); /* child watcher */
930 ev_signal_stop (EV_A_ &childev); 1390 ev_signal_stop (EV_A_ &childev);
931#endif 1391#endif
932 1392
933 ev_ref (EV_A); /* signal watcher */
934 ev_io_stop (EV_A_ &sigev);
935
936 close (sigpipe [0]); sigpipe [0] = 0;
937 close (sigpipe [1]); sigpipe [1] = 0;
938
939 loop_destroy (EV_A); 1393 loop_destroy (EV_A);
940} 1394}
941 1395
942void 1396void
943ev_default_fork (void) 1397ev_default_fork (void)
944{ 1398{
945#if EV_MULTIPLICITY 1399#if EV_MULTIPLICITY
946 struct ev_loop *loop = default_loop; 1400 struct ev_loop *loop = ev_default_loop_ptr;
947#endif 1401#endif
948 1402
949 if (method) 1403 if (backend)
950 postfork = 1; 1404 postfork = 1; /* must be in line with ev_loop_fork */
951} 1405}
952 1406
953/*****************************************************************************/ 1407/*****************************************************************************/
954 1408
955static int 1409void
956any_pending (EV_P) 1410ev_invoke (EV_P_ void *w, int revents)
957{ 1411{
958 int pri; 1412 EV_CB_INVOKE ((W)w, revents);
959
960 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri])
962 return 1;
963
964 return 0;
965} 1413}
966 1414
967static void 1415void inline_speed
968call_pending (EV_P) 1416call_pending (EV_P)
969{ 1417{
970 int pri; 1418 int pri;
971 1419
972 for (pri = NUMPRI; pri--; ) 1420 for (pri = NUMPRI; pri--; )
973 while (pendingcnt [pri]) 1421 while (pendingcnt [pri])
974 { 1422 {
975 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1423 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
976 1424
977 if (p->w) 1425 if (expect_true (p->w))
978 { 1426 {
1427 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1428
979 p->w->pending = 0; 1429 p->w->pending = 0;
980 EV_CB_INVOKE (p->w, p->events); 1430 EV_CB_INVOKE (p->w, p->events);
981 } 1431 }
982 } 1432 }
983} 1433}
984 1434
985static void 1435void inline_size
986timers_reify (EV_P) 1436timers_reify (EV_P)
987{ 1437{
988 while (timercnt && ((WT)timers [0])->at <= mn_now) 1438 while (timercnt && ((WT)timers [0])->at <= mn_now)
989 { 1439 {
990 struct ev_timer *w = timers [0]; 1440 ev_timer *w = (ev_timer *)timers [0];
991 1441
992 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1442 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
993 1443
994 /* first reschedule or stop timer */ 1444 /* first reschedule or stop timer */
995 if (w->repeat) 1445 if (w->repeat)
996 { 1446 {
997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1447 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998 1448
999 ((WT)w)->at += w->repeat; 1449 ((WT)w)->at += w->repeat;
1000 if (((WT)w)->at < mn_now) 1450 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now; 1451 ((WT)w)->at = mn_now;
1002 1452
1003 downheap ((WT *)timers, timercnt, 0); 1453 downheap (timers, timercnt, 0);
1004 } 1454 }
1005 else 1455 else
1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1456 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1007 1457
1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1458 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1009 } 1459 }
1010} 1460}
1011 1461
1012#if EV_PERIODICS 1462#if EV_PERIODIC_ENABLE
1013static void 1463void inline_size
1014periodics_reify (EV_P) 1464periodics_reify (EV_P)
1015{ 1465{
1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1466 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1017 { 1467 {
1018 struct ev_periodic *w = periodics [0]; 1468 ev_periodic *w = (ev_periodic *)periodics [0];
1019 1469
1020 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1470 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1021 1471
1022 /* first reschedule or stop timer */ 1472 /* first reschedule or stop timer */
1023 if (w->reschedule_cb) 1473 if (w->reschedule_cb)
1024 { 1474 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1475 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1026
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1476 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0); 1477 downheap (periodics, periodiccnt, 0);
1029 } 1478 }
1030 else if (w->interval) 1479 else if (w->interval)
1031 { 1480 {
1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1481 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1482 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1483 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1034 downheap ((WT *)periodics, periodiccnt, 0); 1484 downheap (periodics, periodiccnt, 0);
1035 } 1485 }
1036 else 1486 else
1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1487 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1038 1488
1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1489 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1040 } 1490 }
1041} 1491}
1042 1492
1043static void 1493static void noinline
1044periodics_reschedule (EV_P) 1494periodics_reschedule (EV_P)
1045{ 1495{
1046 int i; 1496 int i;
1047 1497
1048 /* adjust periodics after time jump */ 1498 /* adjust periodics after time jump */
1049 for (i = 0; i < periodiccnt; ++i) 1499 for (i = 0; i < periodiccnt; ++i)
1050 { 1500 {
1051 struct ev_periodic *w = periodics [i]; 1501 ev_periodic *w = (ev_periodic *)periodics [i];
1052 1502
1053 if (w->reschedule_cb) 1503 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1504 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1055 else if (w->interval) 1505 else if (w->interval)
1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1057 } 1507 }
1058 1508
1059 /* now rebuild the heap */ 1509 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; ) 1510 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i); 1511 downheap (periodics, periodiccnt, i);
1062} 1512}
1063#endif 1513#endif
1064 1514
1065inline int 1515#if EV_IDLE_ENABLE
1066time_update_monotonic (EV_P) 1516void inline_size
1517idle_reify (EV_P)
1067{ 1518{
1519 if (expect_false (idleall))
1520 {
1521 int pri;
1522
1523 for (pri = NUMPRI; pri--; )
1524 {
1525 if (pendingcnt [pri])
1526 break;
1527
1528 if (idlecnt [pri])
1529 {
1530 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1531 break;
1532 }
1533 }
1534 }
1535}
1536#endif
1537
1538void inline_speed
1539time_update (EV_P_ ev_tstamp max_block)
1540{
1541 int i;
1542
1543#if EV_USE_MONOTONIC
1544 if (expect_true (have_monotonic))
1545 {
1546 ev_tstamp odiff = rtmn_diff;
1547
1068 mn_now = get_clock (); 1548 mn_now = get_clock ();
1069 1549
1550 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1551 /* interpolate in the meantime */
1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1552 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1071 { 1553 {
1072 ev_rt_now = rtmn_diff + mn_now; 1554 ev_rt_now = rtmn_diff + mn_now;
1073 return 0; 1555 return;
1074 } 1556 }
1075 else 1557
1076 {
1077 now_floor = mn_now; 1558 now_floor = mn_now;
1078 ev_rt_now = ev_time (); 1559 ev_rt_now = ev_time ();
1079 return 1;
1080 }
1081}
1082 1560
1083static void 1561 /* loop a few times, before making important decisions.
1084time_update (EV_P) 1562 * on the choice of "4": one iteration isn't enough,
1085{ 1563 * in case we get preempted during the calls to
1086 int i; 1564 * ev_time and get_clock. a second call is almost guaranteed
1087 1565 * to succeed in that case, though. and looping a few more times
1088#if EV_USE_MONOTONIC 1566 * doesn't hurt either as we only do this on time-jumps or
1089 if (expect_true (have_monotonic)) 1567 * in the unlikely event of having been preempted here.
1090 { 1568 */
1091 if (time_update_monotonic (EV_A)) 1569 for (i = 4; --i; )
1092 { 1570 {
1093 ev_tstamp odiff = rtmn_diff;
1094
1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1096 {
1097 rtmn_diff = ev_rt_now - mn_now; 1571 rtmn_diff = ev_rt_now - mn_now;
1098 1572
1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1573 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1100 return; /* all is well */ 1574 return; /* all is well */
1101 1575
1102 ev_rt_now = ev_time (); 1576 ev_rt_now = ev_time ();
1103 mn_now = get_clock (); 1577 mn_now = get_clock ();
1104 now_floor = mn_now; 1578 now_floor = mn_now;
1105 } 1579 }
1106 1580
1107# if EV_PERIODICS 1581# if EV_PERIODIC_ENABLE
1582 periodics_reschedule (EV_A);
1583# endif
1584 /* no timer adjustment, as the monotonic clock doesn't jump */
1585 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1586 }
1587 else
1588#endif
1589 {
1590 ev_rt_now = ev_time ();
1591
1592 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1593 {
1594#if EV_PERIODIC_ENABLE
1108 periodics_reschedule (EV_A); 1595 periodics_reschedule (EV_A);
1109# endif 1596#endif
1110 /* no timer adjustment, as the monotonic clock doesn't jump */
1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1112 }
1113 }
1114 else
1115#endif
1116 {
1117 ev_rt_now = ev_time ();
1118
1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1120 {
1121#if EV_PERIODICS
1122 periodics_reschedule (EV_A);
1123#endif
1124
1125 /* adjust timers. this is easy, as the offset is the same for all */ 1597 /* adjust timers. this is easy, as the offset is the same for all of them */
1126 for (i = 0; i < timercnt; ++i) 1598 for (i = 0; i < timercnt; ++i)
1127 ((WT)timers [i])->at += ev_rt_now - mn_now; 1599 ((WT)timers [i])->at += ev_rt_now - mn_now;
1128 } 1600 }
1129 1601
1130 mn_now = ev_rt_now; 1602 mn_now = ev_rt_now;
1146static int loop_done; 1618static int loop_done;
1147 1619
1148void 1620void
1149ev_loop (EV_P_ int flags) 1621ev_loop (EV_P_ int flags)
1150{ 1622{
1151 double block; 1623 loop_done = EVUNLOOP_CANCEL;
1152 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1624
1625 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1153 1626
1154 do 1627 do
1155 { 1628 {
1629#ifndef _WIN32
1630 if (expect_false (curpid)) /* penalise the forking check even more */
1631 if (expect_false (getpid () != curpid))
1632 {
1633 curpid = getpid ();
1634 postfork = 1;
1635 }
1636#endif
1637
1638#if EV_FORK_ENABLE
1639 /* we might have forked, so queue fork handlers */
1640 if (expect_false (postfork))
1641 if (forkcnt)
1642 {
1643 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1644 call_pending (EV_A);
1645 }
1646#endif
1647
1156 /* queue check watchers (and execute them) */ 1648 /* queue prepare watchers (and execute them) */
1157 if (expect_false (preparecnt)) 1649 if (expect_false (preparecnt))
1158 { 1650 {
1159 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1651 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1160 call_pending (EV_A); 1652 call_pending (EV_A);
1161 } 1653 }
1162 1654
1655 if (expect_false (!activecnt))
1656 break;
1657
1163 /* we might have forked, so reify kernel state if necessary */ 1658 /* we might have forked, so reify kernel state if necessary */
1164 if (expect_false (postfork)) 1659 if (expect_false (postfork))
1165 loop_fork (EV_A); 1660 loop_fork (EV_A);
1166 1661
1167 /* update fd-related kernel structures */ 1662 /* update fd-related kernel structures */
1168 fd_reify (EV_A); 1663 fd_reify (EV_A);
1169 1664
1170 /* calculate blocking time */ 1665 /* calculate blocking time */
1666 {
1667 ev_tstamp waittime = 0.;
1668 ev_tstamp sleeptime = 0.;
1171 1669
1172 /* we only need this for !monotonic clock or timers, but as we basically 1670 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1173 always have timers, we just calculate it always */
1174#if EV_USE_MONOTONIC
1175 if (expect_true (have_monotonic))
1176 time_update_monotonic (EV_A);
1177 else
1178#endif
1179 { 1671 {
1180 ev_rt_now = ev_time (); 1672 /* update time to cancel out callback processing overhead */
1181 mn_now = ev_rt_now; 1673 time_update (EV_A_ 1e100);
1182 }
1183 1674
1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
1185 block = 0.;
1186 else
1187 {
1188 block = MAX_BLOCKTIME; 1675 waittime = MAX_BLOCKTIME;
1189 1676
1190 if (timercnt) 1677 if (timercnt)
1191 { 1678 {
1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1679 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1193 if (block > to) block = to; 1680 if (waittime > to) waittime = to;
1194 } 1681 }
1195 1682
1196#if EV_PERIODICS 1683#if EV_PERIODIC_ENABLE
1197 if (periodiccnt) 1684 if (periodiccnt)
1198 { 1685 {
1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1686 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1200 if (block > to) block = to; 1687 if (waittime > to) waittime = to;
1201 } 1688 }
1202#endif 1689#endif
1203 1690
1204 if (block < 0.) block = 0.; 1691 if (expect_false (waittime < timeout_blocktime))
1692 waittime = timeout_blocktime;
1693
1694 sleeptime = waittime - backend_fudge;
1695
1696 if (expect_true (sleeptime > io_blocktime))
1697 sleeptime = io_blocktime;
1698
1699 if (sleeptime)
1700 {
1701 ev_sleep (sleeptime);
1702 waittime -= sleeptime;
1703 }
1205 } 1704 }
1206 1705
1207 method_poll (EV_A_ block); 1706 ++loop_count;
1707 backend_poll (EV_A_ waittime);
1208 1708
1209 /* update ev_rt_now, do magic */ 1709 /* update ev_rt_now, do magic */
1210 time_update (EV_A); 1710 time_update (EV_A_ waittime + sleeptime);
1711 }
1211 1712
1212 /* queue pending timers and reschedule them */ 1713 /* queue pending timers and reschedule them */
1213 timers_reify (EV_A); /* relative timers called last */ 1714 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS 1715#if EV_PERIODIC_ENABLE
1215 periodics_reify (EV_A); /* absolute timers called first */ 1716 periodics_reify (EV_A); /* absolute timers called first */
1216#endif 1717#endif
1217 1718
1719#if EV_IDLE_ENABLE
1218 /* queue idle watchers unless io or timers are pending */ 1720 /* queue idle watchers unless other events are pending */
1219 if (idlecnt && !any_pending (EV_A)) 1721 idle_reify (EV_A);
1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1722#endif
1221 1723
1222 /* queue check watchers, to be executed first */ 1724 /* queue check watchers, to be executed first */
1223 if (checkcnt) 1725 if (expect_false (checkcnt))
1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1726 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1225 1727
1226 call_pending (EV_A); 1728 call_pending (EV_A);
1227 } 1729 }
1228 while (activecnt && !loop_done); 1730 while (expect_true (
1731 activecnt
1732 && !loop_done
1733 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1734 ));
1229 1735
1230 if (loop_done != 2) 1736 if (loop_done == EVUNLOOP_ONE)
1231 loop_done = 0; 1737 loop_done = EVUNLOOP_CANCEL;
1232} 1738}
1233 1739
1234void 1740void
1235ev_unloop (EV_P_ int how) 1741ev_unloop (EV_P_ int how)
1236{ 1742{
1237 loop_done = how; 1743 loop_done = how;
1238} 1744}
1239 1745
1240/*****************************************************************************/ 1746/*****************************************************************************/
1241 1747
1242inline void 1748void inline_size
1243wlist_add (WL *head, WL elem) 1749wlist_add (WL *head, WL elem)
1244{ 1750{
1245 elem->next = *head; 1751 elem->next = *head;
1246 *head = elem; 1752 *head = elem;
1247} 1753}
1248 1754
1249inline void 1755void inline_size
1250wlist_del (WL *head, WL elem) 1756wlist_del (WL *head, WL elem)
1251{ 1757{
1252 while (*head) 1758 while (*head)
1253 { 1759 {
1254 if (*head == elem) 1760 if (*head == elem)
1259 1765
1260 head = &(*head)->next; 1766 head = &(*head)->next;
1261 } 1767 }
1262} 1768}
1263 1769
1264inline void 1770void inline_speed
1265ev_clear_pending (EV_P_ W w) 1771clear_pending (EV_P_ W w)
1266{ 1772{
1267 if (w->pending) 1773 if (w->pending)
1268 { 1774 {
1269 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1775 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1270 w->pending = 0; 1776 w->pending = 0;
1271 } 1777 }
1272} 1778}
1273 1779
1274inline void 1780int
1781ev_clear_pending (EV_P_ void *w)
1782{
1783 W w_ = (W)w;
1784 int pending = w_->pending;
1785
1786 if (expect_true (pending))
1787 {
1788 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1789 w_->pending = 0;
1790 p->w = 0;
1791 return p->events;
1792 }
1793 else
1794 return 0;
1795}
1796
1797void inline_size
1798pri_adjust (EV_P_ W w)
1799{
1800 int pri = w->priority;
1801 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1802 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1803 w->priority = pri;
1804}
1805
1806void inline_speed
1275ev_start (EV_P_ W w, int active) 1807ev_start (EV_P_ W w, int active)
1276{ 1808{
1277 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1809 pri_adjust (EV_A_ w);
1278 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1279
1280 w->active = active; 1810 w->active = active;
1281 ev_ref (EV_A); 1811 ev_ref (EV_A);
1282} 1812}
1283 1813
1284inline void 1814void inline_size
1285ev_stop (EV_P_ W w) 1815ev_stop (EV_P_ W w)
1286{ 1816{
1287 ev_unref (EV_A); 1817 ev_unref (EV_A);
1288 w->active = 0; 1818 w->active = 0;
1289} 1819}
1290 1820
1291/*****************************************************************************/ 1821/*****************************************************************************/
1292 1822
1293void 1823void noinline
1294ev_io_start (EV_P_ struct ev_io *w) 1824ev_io_start (EV_P_ ev_io *w)
1295{ 1825{
1296 int fd = w->fd; 1826 int fd = w->fd;
1297 1827
1298 if (ev_is_active (w)) 1828 if (expect_false (ev_is_active (w)))
1299 return; 1829 return;
1300 1830
1301 assert (("ev_io_start called with negative fd", fd >= 0)); 1831 assert (("ev_io_start called with negative fd", fd >= 0));
1302 1832
1303 ev_start (EV_A_ (W)w, 1); 1833 ev_start (EV_A_ (W)w, 1);
1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1834 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1305 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1835 wlist_add (&anfds[fd].head, (WL)w);
1306 1836
1307 fd_change (EV_A_ fd); 1837 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1838 w->events &= ~EV_IOFDSET;
1308} 1839}
1309 1840
1310void 1841void noinline
1311ev_io_stop (EV_P_ struct ev_io *w) 1842ev_io_stop (EV_P_ ev_io *w)
1312{ 1843{
1313 ev_clear_pending (EV_A_ (W)w); 1844 clear_pending (EV_A_ (W)w);
1314 if (!ev_is_active (w)) 1845 if (expect_false (!ev_is_active (w)))
1315 return; 1846 return;
1316 1847
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1848 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318 1849
1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1850 wlist_del (&anfds[w->fd].head, (WL)w);
1320 ev_stop (EV_A_ (W)w); 1851 ev_stop (EV_A_ (W)w);
1321 1852
1322 fd_change (EV_A_ w->fd); 1853 fd_change (EV_A_ w->fd, 1);
1323} 1854}
1324 1855
1325void 1856void noinline
1326ev_timer_start (EV_P_ struct ev_timer *w) 1857ev_timer_start (EV_P_ ev_timer *w)
1327{ 1858{
1328 if (ev_is_active (w)) 1859 if (expect_false (ev_is_active (w)))
1329 return; 1860 return;
1330 1861
1331 ((WT)w)->at += mn_now; 1862 ((WT)w)->at += mn_now;
1332 1863
1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1864 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1334 1865
1335 ev_start (EV_A_ (W)w, ++timercnt); 1866 ev_start (EV_A_ (W)w, ++timercnt);
1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1867 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1337 timers [timercnt - 1] = w; 1868 timers [timercnt - 1] = (WT)w;
1338 upheap ((WT *)timers, timercnt - 1); 1869 upheap (timers, timercnt - 1);
1339 1870
1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1871 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1341} 1872}
1342 1873
1343void 1874void noinline
1344ev_timer_stop (EV_P_ struct ev_timer *w) 1875ev_timer_stop (EV_P_ ev_timer *w)
1345{ 1876{
1346 ev_clear_pending (EV_A_ (W)w); 1877 clear_pending (EV_A_ (W)w);
1347 if (!ev_is_active (w)) 1878 if (expect_false (!ev_is_active (w)))
1348 return; 1879 return;
1349 1880
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1881 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1351 1882
1352 if (((W)w)->active < timercnt--) 1883 {
1884 int active = ((W)w)->active;
1885
1886 if (expect_true (--active < --timercnt))
1353 { 1887 {
1354 timers [((W)w)->active - 1] = timers [timercnt]; 1888 timers [active] = timers [timercnt];
1355 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1889 adjustheap (timers, timercnt, active);
1356 } 1890 }
1891 }
1357 1892
1358 ((WT)w)->at -= mn_now; 1893 ((WT)w)->at -= mn_now;
1359 1894
1360 ev_stop (EV_A_ (W)w); 1895 ev_stop (EV_A_ (W)w);
1361} 1896}
1362 1897
1363void 1898void noinline
1364ev_timer_again (EV_P_ struct ev_timer *w) 1899ev_timer_again (EV_P_ ev_timer *w)
1365{ 1900{
1366 if (ev_is_active (w)) 1901 if (ev_is_active (w))
1367 { 1902 {
1368 if (w->repeat) 1903 if (w->repeat)
1369 { 1904 {
1370 ((WT)w)->at = mn_now + w->repeat; 1905 ((WT)w)->at = mn_now + w->repeat;
1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1906 adjustheap (timers, timercnt, ((W)w)->active - 1);
1372 } 1907 }
1373 else 1908 else
1374 ev_timer_stop (EV_A_ w); 1909 ev_timer_stop (EV_A_ w);
1375 } 1910 }
1376 else if (w->repeat) 1911 else if (w->repeat)
1912 {
1913 w->at = w->repeat;
1377 ev_timer_start (EV_A_ w); 1914 ev_timer_start (EV_A_ w);
1915 }
1378} 1916}
1379 1917
1380#if EV_PERIODICS 1918#if EV_PERIODIC_ENABLE
1381void 1919void noinline
1382ev_periodic_start (EV_P_ struct ev_periodic *w) 1920ev_periodic_start (EV_P_ ev_periodic *w)
1383{ 1921{
1384 if (ev_is_active (w)) 1922 if (expect_false (ev_is_active (w)))
1385 return; 1923 return;
1386 1924
1387 if (w->reschedule_cb) 1925 if (w->reschedule_cb)
1388 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1926 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1389 else if (w->interval) 1927 else if (w->interval)
1390 { 1928 {
1391 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1929 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1392 /* this formula differs from the one in periodic_reify because we do not always round up */ 1930 /* this formula differs from the one in periodic_reify because we do not always round up */
1393 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1931 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1394 } 1932 }
1933 else
1934 ((WT)w)->at = w->offset;
1395 1935
1396 ev_start (EV_A_ (W)w, ++periodiccnt); 1936 ev_start (EV_A_ (W)w, ++periodiccnt);
1397 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1937 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1398 periodics [periodiccnt - 1] = w; 1938 periodics [periodiccnt - 1] = (WT)w;
1399 upheap ((WT *)periodics, periodiccnt - 1); 1939 upheap (periodics, periodiccnt - 1);
1400 1940
1401 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1941 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1402} 1942}
1403 1943
1404void 1944void noinline
1405ev_periodic_stop (EV_P_ struct ev_periodic *w) 1945ev_periodic_stop (EV_P_ ev_periodic *w)
1406{ 1946{
1407 ev_clear_pending (EV_A_ (W)w); 1947 clear_pending (EV_A_ (W)w);
1408 if (!ev_is_active (w)) 1948 if (expect_false (!ev_is_active (w)))
1409 return; 1949 return;
1410 1950
1411 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1951 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1412 1952
1413 if (((W)w)->active < periodiccnt--) 1953 {
1954 int active = ((W)w)->active;
1955
1956 if (expect_true (--active < --periodiccnt))
1414 { 1957 {
1415 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1958 periodics [active] = periodics [periodiccnt];
1416 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1959 adjustheap (periodics, periodiccnt, active);
1417 } 1960 }
1961 }
1418 1962
1419 ev_stop (EV_A_ (W)w); 1963 ev_stop (EV_A_ (W)w);
1420} 1964}
1421 1965
1422void 1966void noinline
1423ev_periodic_again (EV_P_ struct ev_periodic *w) 1967ev_periodic_again (EV_P_ ev_periodic *w)
1424{ 1968{
1425 /* TODO: use adjustheap and recalculation */ 1969 /* TODO: use adjustheap and recalculation */
1426 ev_periodic_stop (EV_A_ w); 1970 ev_periodic_stop (EV_A_ w);
1427 ev_periodic_start (EV_A_ w); 1971 ev_periodic_start (EV_A_ w);
1428} 1972}
1429#endif 1973#endif
1430 1974
1431void
1432ev_idle_start (EV_P_ struct ev_idle *w)
1433{
1434 if (ev_is_active (w))
1435 return;
1436
1437 ev_start (EV_A_ (W)w, ++idlecnt);
1438 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1439 idles [idlecnt - 1] = w;
1440}
1441
1442void
1443ev_idle_stop (EV_P_ struct ev_idle *w)
1444{
1445 ev_clear_pending (EV_A_ (W)w);
1446 if (!ev_is_active (w))
1447 return;
1448
1449 idles [((W)w)->active - 1] = idles [--idlecnt];
1450 ev_stop (EV_A_ (W)w);
1451}
1452
1453void
1454ev_prepare_start (EV_P_ struct ev_prepare *w)
1455{
1456 if (ev_is_active (w))
1457 return;
1458
1459 ev_start (EV_A_ (W)w, ++preparecnt);
1460 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1461 prepares [preparecnt - 1] = w;
1462}
1463
1464void
1465ev_prepare_stop (EV_P_ struct ev_prepare *w)
1466{
1467 ev_clear_pending (EV_A_ (W)w);
1468 if (!ev_is_active (w))
1469 return;
1470
1471 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1472 ev_stop (EV_A_ (W)w);
1473}
1474
1475void
1476ev_check_start (EV_P_ struct ev_check *w)
1477{
1478 if (ev_is_active (w))
1479 return;
1480
1481 ev_start (EV_A_ (W)w, ++checkcnt);
1482 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1483 checks [checkcnt - 1] = w;
1484}
1485
1486void
1487ev_check_stop (EV_P_ struct ev_check *w)
1488{
1489 ev_clear_pending (EV_A_ (W)w);
1490 if (!ev_is_active (w))
1491 return;
1492
1493 checks [((W)w)->active - 1] = checks [--checkcnt];
1494 ev_stop (EV_A_ (W)w);
1495}
1496
1497#ifndef SA_RESTART 1975#ifndef SA_RESTART
1498# define SA_RESTART 0 1976# define SA_RESTART 0
1499#endif 1977#endif
1500 1978
1501void 1979void noinline
1502ev_signal_start (EV_P_ struct ev_signal *w) 1980ev_signal_start (EV_P_ ev_signal *w)
1503{ 1981{
1504#if EV_MULTIPLICITY 1982#if EV_MULTIPLICITY
1505 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1983 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1506#endif 1984#endif
1507 if (ev_is_active (w)) 1985 if (expect_false (ev_is_active (w)))
1508 return; 1986 return;
1509 1987
1510 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1988 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1511 1989
1990 evpipe_init (EV_A);
1991
1992 {
1993#ifndef _WIN32
1994 sigset_t full, prev;
1995 sigfillset (&full);
1996 sigprocmask (SIG_SETMASK, &full, &prev);
1997#endif
1998
1999 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2000
2001#ifndef _WIN32
2002 sigprocmask (SIG_SETMASK, &prev, 0);
2003#endif
2004 }
2005
1512 ev_start (EV_A_ (W)w, 1); 2006 ev_start (EV_A_ (W)w, 1);
1513 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1514 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2007 wlist_add (&signals [w->signum - 1].head, (WL)w);
1515 2008
1516 if (!((WL)w)->next) 2009 if (!((WL)w)->next)
1517 { 2010 {
1518#if _WIN32 2011#if _WIN32
1519 signal (w->signum, sighandler); 2012 signal (w->signum, ev_sighandler);
1520#else 2013#else
1521 struct sigaction sa; 2014 struct sigaction sa;
1522 sa.sa_handler = sighandler; 2015 sa.sa_handler = ev_sighandler;
1523 sigfillset (&sa.sa_mask); 2016 sigfillset (&sa.sa_mask);
1524 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2017 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1525 sigaction (w->signum, &sa, 0); 2018 sigaction (w->signum, &sa, 0);
1526#endif 2019#endif
1527 } 2020 }
1528} 2021}
1529 2022
1530void 2023void noinline
1531ev_signal_stop (EV_P_ struct ev_signal *w) 2024ev_signal_stop (EV_P_ ev_signal *w)
1532{ 2025{
1533 ev_clear_pending (EV_A_ (W)w); 2026 clear_pending (EV_A_ (W)w);
1534 if (!ev_is_active (w)) 2027 if (expect_false (!ev_is_active (w)))
1535 return; 2028 return;
1536 2029
1537 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2030 wlist_del (&signals [w->signum - 1].head, (WL)w);
1538 ev_stop (EV_A_ (W)w); 2031 ev_stop (EV_A_ (W)w);
1539 2032
1540 if (!signals [w->signum - 1].head) 2033 if (!signals [w->signum - 1].head)
1541 signal (w->signum, SIG_DFL); 2034 signal (w->signum, SIG_DFL);
1542} 2035}
1543 2036
1544void 2037void
1545ev_child_start (EV_P_ struct ev_child *w) 2038ev_child_start (EV_P_ ev_child *w)
1546{ 2039{
1547#if EV_MULTIPLICITY 2040#if EV_MULTIPLICITY
1548 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2041 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1549#endif 2042#endif
1550 if (ev_is_active (w)) 2043 if (expect_false (ev_is_active (w)))
1551 return; 2044 return;
1552 2045
1553 ev_start (EV_A_ (W)w, 1); 2046 ev_start (EV_A_ (W)w, 1);
1554 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2047 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1555} 2048}
1556 2049
1557void 2050void
1558ev_child_stop (EV_P_ struct ev_child *w) 2051ev_child_stop (EV_P_ ev_child *w)
1559{ 2052{
1560 ev_clear_pending (EV_A_ (W)w); 2053 clear_pending (EV_A_ (W)w);
1561 if (!ev_is_active (w)) 2054 if (expect_false (!ev_is_active (w)))
1562 return; 2055 return;
1563 2056
1564 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2057 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1565 ev_stop (EV_A_ (W)w); 2058 ev_stop (EV_A_ (W)w);
1566} 2059}
1567 2060
2061#if EV_STAT_ENABLE
2062
2063# ifdef _WIN32
2064# undef lstat
2065# define lstat(a,b) _stati64 (a,b)
2066# endif
2067
2068#define DEF_STAT_INTERVAL 5.0074891
2069#define MIN_STAT_INTERVAL 0.1074891
2070
2071static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2072
2073#if EV_USE_INOTIFY
2074# define EV_INOTIFY_BUFSIZE 8192
2075
2076static void noinline
2077infy_add (EV_P_ ev_stat *w)
2078{
2079 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2080
2081 if (w->wd < 0)
2082 {
2083 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2084
2085 /* monitor some parent directory for speedup hints */
2086 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2087 {
2088 char path [4096];
2089 strcpy (path, w->path);
2090
2091 do
2092 {
2093 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2094 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2095
2096 char *pend = strrchr (path, '/');
2097
2098 if (!pend)
2099 break; /* whoops, no '/', complain to your admin */
2100
2101 *pend = 0;
2102 w->wd = inotify_add_watch (fs_fd, path, mask);
2103 }
2104 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2105 }
2106 }
2107 else
2108 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2109
2110 if (w->wd >= 0)
2111 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2112}
2113
2114static void noinline
2115infy_del (EV_P_ ev_stat *w)
2116{
2117 int slot;
2118 int wd = w->wd;
2119
2120 if (wd < 0)
2121 return;
2122
2123 w->wd = -2;
2124 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2125 wlist_del (&fs_hash [slot].head, (WL)w);
2126
2127 /* remove this watcher, if others are watching it, they will rearm */
2128 inotify_rm_watch (fs_fd, wd);
2129}
2130
2131static void noinline
2132infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2133{
2134 if (slot < 0)
2135 /* overflow, need to check for all hahs slots */
2136 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2137 infy_wd (EV_A_ slot, wd, ev);
2138 else
2139 {
2140 WL w_;
2141
2142 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2143 {
2144 ev_stat *w = (ev_stat *)w_;
2145 w_ = w_->next; /* lets us remove this watcher and all before it */
2146
2147 if (w->wd == wd || wd == -1)
2148 {
2149 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2150 {
2151 w->wd = -1;
2152 infy_add (EV_A_ w); /* re-add, no matter what */
2153 }
2154
2155 stat_timer_cb (EV_A_ &w->timer, 0);
2156 }
2157 }
2158 }
2159}
2160
2161static void
2162infy_cb (EV_P_ ev_io *w, int revents)
2163{
2164 char buf [EV_INOTIFY_BUFSIZE];
2165 struct inotify_event *ev = (struct inotify_event *)buf;
2166 int ofs;
2167 int len = read (fs_fd, buf, sizeof (buf));
2168
2169 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2170 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2171}
2172
2173void inline_size
2174infy_init (EV_P)
2175{
2176 if (fs_fd != -2)
2177 return;
2178
2179 fs_fd = inotify_init ();
2180
2181 if (fs_fd >= 0)
2182 {
2183 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2184 ev_set_priority (&fs_w, EV_MAXPRI);
2185 ev_io_start (EV_A_ &fs_w);
2186 }
2187}
2188
2189void inline_size
2190infy_fork (EV_P)
2191{
2192 int slot;
2193
2194 if (fs_fd < 0)
2195 return;
2196
2197 close (fs_fd);
2198 fs_fd = inotify_init ();
2199
2200 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2201 {
2202 WL w_ = fs_hash [slot].head;
2203 fs_hash [slot].head = 0;
2204
2205 while (w_)
2206 {
2207 ev_stat *w = (ev_stat *)w_;
2208 w_ = w_->next; /* lets us add this watcher */
2209
2210 w->wd = -1;
2211
2212 if (fs_fd >= 0)
2213 infy_add (EV_A_ w); /* re-add, no matter what */
2214 else
2215 ev_timer_start (EV_A_ &w->timer);
2216 }
2217
2218 }
2219}
2220
2221#endif
2222
2223void
2224ev_stat_stat (EV_P_ ev_stat *w)
2225{
2226 if (lstat (w->path, &w->attr) < 0)
2227 w->attr.st_nlink = 0;
2228 else if (!w->attr.st_nlink)
2229 w->attr.st_nlink = 1;
2230}
2231
2232static void noinline
2233stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2234{
2235 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2236
2237 /* we copy this here each the time so that */
2238 /* prev has the old value when the callback gets invoked */
2239 w->prev = w->attr;
2240 ev_stat_stat (EV_A_ w);
2241
2242 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2243 if (
2244 w->prev.st_dev != w->attr.st_dev
2245 || w->prev.st_ino != w->attr.st_ino
2246 || w->prev.st_mode != w->attr.st_mode
2247 || w->prev.st_nlink != w->attr.st_nlink
2248 || w->prev.st_uid != w->attr.st_uid
2249 || w->prev.st_gid != w->attr.st_gid
2250 || w->prev.st_rdev != w->attr.st_rdev
2251 || w->prev.st_size != w->attr.st_size
2252 || w->prev.st_atime != w->attr.st_atime
2253 || w->prev.st_mtime != w->attr.st_mtime
2254 || w->prev.st_ctime != w->attr.st_ctime
2255 ) {
2256 #if EV_USE_INOTIFY
2257 infy_del (EV_A_ w);
2258 infy_add (EV_A_ w);
2259 ev_stat_stat (EV_A_ w); /* avoid race... */
2260 #endif
2261
2262 ev_feed_event (EV_A_ w, EV_STAT);
2263 }
2264}
2265
2266void
2267ev_stat_start (EV_P_ ev_stat *w)
2268{
2269 if (expect_false (ev_is_active (w)))
2270 return;
2271
2272 /* since we use memcmp, we need to clear any padding data etc. */
2273 memset (&w->prev, 0, sizeof (ev_statdata));
2274 memset (&w->attr, 0, sizeof (ev_statdata));
2275
2276 ev_stat_stat (EV_A_ w);
2277
2278 if (w->interval < MIN_STAT_INTERVAL)
2279 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2280
2281 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2282 ev_set_priority (&w->timer, ev_priority (w));
2283
2284#if EV_USE_INOTIFY
2285 infy_init (EV_A);
2286
2287 if (fs_fd >= 0)
2288 infy_add (EV_A_ w);
2289 else
2290#endif
2291 ev_timer_start (EV_A_ &w->timer);
2292
2293 ev_start (EV_A_ (W)w, 1);
2294}
2295
2296void
2297ev_stat_stop (EV_P_ ev_stat *w)
2298{
2299 clear_pending (EV_A_ (W)w);
2300 if (expect_false (!ev_is_active (w)))
2301 return;
2302
2303#if EV_USE_INOTIFY
2304 infy_del (EV_A_ w);
2305#endif
2306 ev_timer_stop (EV_A_ &w->timer);
2307
2308 ev_stop (EV_A_ (W)w);
2309}
2310#endif
2311
2312#if EV_IDLE_ENABLE
2313void
2314ev_idle_start (EV_P_ ev_idle *w)
2315{
2316 if (expect_false (ev_is_active (w)))
2317 return;
2318
2319 pri_adjust (EV_A_ (W)w);
2320
2321 {
2322 int active = ++idlecnt [ABSPRI (w)];
2323
2324 ++idleall;
2325 ev_start (EV_A_ (W)w, active);
2326
2327 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2328 idles [ABSPRI (w)][active - 1] = w;
2329 }
2330}
2331
2332void
2333ev_idle_stop (EV_P_ ev_idle *w)
2334{
2335 clear_pending (EV_A_ (W)w);
2336 if (expect_false (!ev_is_active (w)))
2337 return;
2338
2339 {
2340 int active = ((W)w)->active;
2341
2342 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2343 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2344
2345 ev_stop (EV_A_ (W)w);
2346 --idleall;
2347 }
2348}
2349#endif
2350
2351void
2352ev_prepare_start (EV_P_ ev_prepare *w)
2353{
2354 if (expect_false (ev_is_active (w)))
2355 return;
2356
2357 ev_start (EV_A_ (W)w, ++preparecnt);
2358 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2359 prepares [preparecnt - 1] = w;
2360}
2361
2362void
2363ev_prepare_stop (EV_P_ ev_prepare *w)
2364{
2365 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w)))
2367 return;
2368
2369 {
2370 int active = ((W)w)->active;
2371 prepares [active - 1] = prepares [--preparecnt];
2372 ((W)prepares [active - 1])->active = active;
2373 }
2374
2375 ev_stop (EV_A_ (W)w);
2376}
2377
2378void
2379ev_check_start (EV_P_ ev_check *w)
2380{
2381 if (expect_false (ev_is_active (w)))
2382 return;
2383
2384 ev_start (EV_A_ (W)w, ++checkcnt);
2385 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2386 checks [checkcnt - 1] = w;
2387}
2388
2389void
2390ev_check_stop (EV_P_ ev_check *w)
2391{
2392 clear_pending (EV_A_ (W)w);
2393 if (expect_false (!ev_is_active (w)))
2394 return;
2395
2396 {
2397 int active = ((W)w)->active;
2398 checks [active - 1] = checks [--checkcnt];
2399 ((W)checks [active - 1])->active = active;
2400 }
2401
2402 ev_stop (EV_A_ (W)w);
2403}
2404
2405#if EV_EMBED_ENABLE
2406void noinline
2407ev_embed_sweep (EV_P_ ev_embed *w)
2408{
2409 ev_loop (w->other, EVLOOP_NONBLOCK);
2410}
2411
2412static void
2413embed_io_cb (EV_P_ ev_io *io, int revents)
2414{
2415 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2416
2417 if (ev_cb (w))
2418 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2419 else
2420 ev_loop (w->other, EVLOOP_NONBLOCK);
2421}
2422
2423static void
2424embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2425{
2426 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2427
2428 {
2429 struct ev_loop *loop = w->other;
2430
2431 while (fdchangecnt)
2432 {
2433 fd_reify (EV_A);
2434 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2435 }
2436 }
2437}
2438
2439#if 0
2440static void
2441embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2442{
2443 ev_idle_stop (EV_A_ idle);
2444}
2445#endif
2446
2447void
2448ev_embed_start (EV_P_ ev_embed *w)
2449{
2450 if (expect_false (ev_is_active (w)))
2451 return;
2452
2453 {
2454 struct ev_loop *loop = w->other;
2455 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2456 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2457 }
2458
2459 ev_set_priority (&w->io, ev_priority (w));
2460 ev_io_start (EV_A_ &w->io);
2461
2462 ev_prepare_init (&w->prepare, embed_prepare_cb);
2463 ev_set_priority (&w->prepare, EV_MINPRI);
2464 ev_prepare_start (EV_A_ &w->prepare);
2465
2466 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2467
2468 ev_start (EV_A_ (W)w, 1);
2469}
2470
2471void
2472ev_embed_stop (EV_P_ ev_embed *w)
2473{
2474 clear_pending (EV_A_ (W)w);
2475 if (expect_false (!ev_is_active (w)))
2476 return;
2477
2478 ev_io_stop (EV_A_ &w->io);
2479 ev_prepare_stop (EV_A_ &w->prepare);
2480
2481 ev_stop (EV_A_ (W)w);
2482}
2483#endif
2484
2485#if EV_FORK_ENABLE
2486void
2487ev_fork_start (EV_P_ ev_fork *w)
2488{
2489 if (expect_false (ev_is_active (w)))
2490 return;
2491
2492 ev_start (EV_A_ (W)w, ++forkcnt);
2493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2494 forks [forkcnt - 1] = w;
2495}
2496
2497void
2498ev_fork_stop (EV_P_ ev_fork *w)
2499{
2500 clear_pending (EV_A_ (W)w);
2501 if (expect_false (!ev_is_active (w)))
2502 return;
2503
2504 {
2505 int active = ((W)w)->active;
2506 forks [active - 1] = forks [--forkcnt];
2507 ((W)forks [active - 1])->active = active;
2508 }
2509
2510 ev_stop (EV_A_ (W)w);
2511}
2512#endif
2513
2514#if EV_ASYNC_ENABLE
2515void
2516ev_async_start (EV_P_ ev_async *w)
2517{
2518 if (expect_false (ev_is_active (w)))
2519 return;
2520
2521 evpipe_init (EV_A);
2522
2523 ev_start (EV_A_ (W)w, ++asynccnt);
2524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2525 asyncs [asynccnt - 1] = w;
2526}
2527
2528void
2529ev_async_stop (EV_P_ ev_async *w)
2530{
2531 clear_pending (EV_A_ (W)w);
2532 if (expect_false (!ev_is_active (w)))
2533 return;
2534
2535 {
2536 int active = ((W)w)->active;
2537 asyncs [active - 1] = asyncs [--asynccnt];
2538 ((W)asyncs [active - 1])->active = active;
2539 }
2540
2541 ev_stop (EV_A_ (W)w);
2542}
2543
2544void
2545ev_async_send (EV_P_ ev_async *w)
2546{
2547 w->sent = 1;
2548 evpipe_write (EV_A_ &gotasync);
2549}
2550#endif
2551
1568/*****************************************************************************/ 2552/*****************************************************************************/
1569 2553
1570struct ev_once 2554struct ev_once
1571{ 2555{
1572 struct ev_io io; 2556 ev_io io;
1573 struct ev_timer to; 2557 ev_timer to;
1574 void (*cb)(int revents, void *arg); 2558 void (*cb)(int revents, void *arg);
1575 void *arg; 2559 void *arg;
1576}; 2560};
1577 2561
1578static void 2562static void
1587 2571
1588 cb (revents, arg); 2572 cb (revents, arg);
1589} 2573}
1590 2574
1591static void 2575static void
1592once_cb_io (EV_P_ struct ev_io *w, int revents) 2576once_cb_io (EV_P_ ev_io *w, int revents)
1593{ 2577{
1594 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2578 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1595} 2579}
1596 2580
1597static void 2581static void
1598once_cb_to (EV_P_ struct ev_timer *w, int revents) 2582once_cb_to (EV_P_ ev_timer *w, int revents)
1599{ 2583{
1600 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2584 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1601} 2585}
1602 2586
1603void 2587void
1604ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2588ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1605{ 2589{
1606 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2590 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1607 2591
1608 if (!once) 2592 if (expect_false (!once))
2593 {
1609 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2594 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1610 else 2595 return;
1611 { 2596 }
2597
1612 once->cb = cb; 2598 once->cb = cb;
1613 once->arg = arg; 2599 once->arg = arg;
1614 2600
1615 ev_init (&once->io, once_cb_io); 2601 ev_init (&once->io, once_cb_io);
1616 if (fd >= 0) 2602 if (fd >= 0)
1617 { 2603 {
1618 ev_io_set (&once->io, fd, events); 2604 ev_io_set (&once->io, fd, events);
1619 ev_io_start (EV_A_ &once->io); 2605 ev_io_start (EV_A_ &once->io);
1620 } 2606 }
1621 2607
1622 ev_init (&once->to, once_cb_to); 2608 ev_init (&once->to, once_cb_to);
1623 if (timeout >= 0.) 2609 if (timeout >= 0.)
1624 { 2610 {
1625 ev_timer_set (&once->to, timeout, 0.); 2611 ev_timer_set (&once->to, timeout, 0.);
1626 ev_timer_start (EV_A_ &once->to); 2612 ev_timer_start (EV_A_ &once->to);
1627 }
1628 } 2613 }
1629} 2614}
2615
2616#if EV_MULTIPLICITY
2617 #include "ev_wrap.h"
2618#endif
1630 2619
1631#ifdef __cplusplus 2620#ifdef __cplusplus
1632} 2621}
1633#endif 2622#endif
1634 2623

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines