ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.103 by root, Mon Nov 12 00:31:08 2007 UTC vs.
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
63 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
64#endif 132#endif
65 133
66#include <math.h> 134#include <math.h>
67#include <stdlib.h> 135#include <stdlib.h>
68#include <fcntl.h> 136#include <fcntl.h>
75#include <sys/types.h> 143#include <sys/types.h>
76#include <time.h> 144#include <time.h>
77 145
78#include <signal.h> 146#include <signal.h>
79 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
80#ifndef _WIN32 154#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 155# include <sys/time.h>
83# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
84#else 158#else
85# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 160# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
89# endif 163# endif
90#endif 164#endif
91 165
92/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
93 167
94#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
96#endif 178#endif
97 179
98#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
100#endif 182#endif
101 183
102#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
103# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
104#endif 190#endif
105 191
106#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
107# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
108#endif 198#endif
109 199
110#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
111# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
112#endif 202#endif
113 203
114#ifndef EV_USE_REALTIME 204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
115# define EV_USE_REALTIME 1 210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
116#endif 213# endif
214#endif
117 215
118/**/ 216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
119 249
120#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
121# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
122# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
123#endif 253#endif
125#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
126# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
127# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
128#endif 258#endif
129 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
130#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
131# include <winsock.h> 276# include <winsock.h>
132#endif 277#endif
133 278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
134/**/ 291/**/
135 292
293/*
294 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302
136#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
137#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
138#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
139/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
140 306
141#ifdef EV_H
142# include EV_H
143#else
144# include "ev.h"
145#endif
146
147#if __GNUC__ >= 3 307#if __GNUC__ >= 4
148# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
149# define inline inline 309# define noinline __attribute__ ((noinline))
150#else 310#else
151# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
152# define inline static 312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif
153#endif 316#endif
154 317
155#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
156#define expect_true(expr) expect ((expr) != 0, 1) 319#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline
321
322#if EV_MINIMAL
323# define inline_speed static noinline
324#else
325# define inline_speed static inline
326#endif
157 327
158#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
159#define ABSPRI(w) ((w)->priority - EV_MINPRI) 329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
160 330
161#define EMPTY /* required for microsofts broken pseudo-c compiler */ 331#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */
162 333
163typedef struct ev_watcher *W; 334typedef ev_watcher *W;
164typedef struct ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
165typedef struct ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
166 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
167static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
168 346
169#ifdef _WIN32 347#ifdef _WIN32
170# include "ev_win32.c" 348# include "ev_win32.c"
171#endif 349#endif
172 350
173/*****************************************************************************/ 351/*****************************************************************************/
174 352
175static void (*syserr_cb)(const char *msg); 353static void (*syserr_cb)(const char *msg);
176 354
355void
177void ev_set_syserr_cb (void (*cb)(const char *msg)) 356ev_set_syserr_cb (void (*cb)(const char *msg))
178{ 357{
179 syserr_cb = cb; 358 syserr_cb = cb;
180} 359}
181 360
182static void 361static void noinline
183syserr (const char *msg) 362syserr (const char *msg)
184{ 363{
185 if (!msg) 364 if (!msg)
186 msg = "(libev) system error"; 365 msg = "(libev) system error";
187 366
192 perror (msg); 371 perror (msg);
193 abort (); 372 abort ();
194 } 373 }
195} 374}
196 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
197static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
198 392
393void
199void ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
200{ 395{
201 alloc = cb; 396 alloc = cb;
202} 397}
203 398
204static void * 399inline_speed void *
205ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
206{ 401{
207 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
208 403
209 if (!ptr && size) 404 if (!ptr && size)
210 { 405 {
211 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
212 abort (); 407 abort ();
233typedef struct 428typedef struct
234{ 429{
235 W w; 430 W w;
236 int events; 431 int events;
237} ANPENDING; 432} ANPENDING;
433
434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
436typedef struct
437{
438 WL head;
439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
458#endif
238 459
239#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
240 461
241 struct ev_loop 462 struct ev_loop
242 { 463 {
246 #include "ev_vars.h" 467 #include "ev_vars.h"
247 #undef VAR 468 #undef VAR
248 }; 469 };
249 #include "ev_wrap.h" 470 #include "ev_wrap.h"
250 471
251 struct ev_loop default_loop_struct; 472 static struct ev_loop default_loop_struct;
252 static struct ev_loop *default_loop; 473 struct ev_loop *ev_default_loop_ptr;
253 474
254#else 475#else
255 476
256 ev_tstamp ev_rt_now; 477 ev_tstamp ev_rt_now;
257 #define VAR(name,decl) static decl; 478 #define VAR(name,decl) static decl;
258 #include "ev_vars.h" 479 #include "ev_vars.h"
259 #undef VAR 480 #undef VAR
260 481
261 static int default_loop; 482 static int ev_default_loop_ptr;
262 483
263#endif 484#endif
264 485
265/*****************************************************************************/ 486/*****************************************************************************/
266 487
276 gettimeofday (&tv, 0); 497 gettimeofday (&tv, 0);
277 return tv.tv_sec + tv.tv_usec * 1e-6; 498 return tv.tv_sec + tv.tv_usec * 1e-6;
278#endif 499#endif
279} 500}
280 501
281inline ev_tstamp 502ev_tstamp inline_size
282get_clock (void) 503get_clock (void)
283{ 504{
284#if EV_USE_MONOTONIC 505#if EV_USE_MONOTONIC
285 if (expect_true (have_monotonic)) 506 if (expect_true (have_monotonic))
286 { 507 {
299{ 520{
300 return ev_rt_now; 521 return ev_rt_now;
301} 522}
302#endif 523#endif
303 524
304#define array_roundsize(type,n) ((n) | 4 & ~3) 525void
526ev_sleep (ev_tstamp delay)
527{
528 if (delay > 0.)
529 {
530#if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539#else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546#endif
547 }
548}
549
550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
554int inline_size
555array_nextsize (int elem, int cur, int cnt)
556{
557 int ncur = cur + 1;
558
559 do
560 ncur <<= 1;
561 while (cnt > ncur);
562
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 {
566 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4;
569 ncur /= elem;
570 }
571
572 return ncur;
573}
574
575static noinline void *
576array_realloc (int elem, void *base, int *cur, int cnt)
577{
578 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur);
580}
305 581
306#define array_needsize(type,base,cur,cnt,init) \ 582#define array_needsize(type,base,cur,cnt,init) \
307 if (expect_false ((cnt) > cur)) \ 583 if (expect_false ((cnt) > (cur))) \
308 { \ 584 { \
309 int newcnt = cur; \ 585 int ocur_ = (cur); \
310 do \ 586 (base) = (type *)array_realloc \
311 { \ 587 (sizeof (type), (base), &(cur), (cnt)); \
312 newcnt = array_roundsize (type, newcnt << 1); \ 588 init ((base) + (ocur_), (cur) - ocur_); \
313 } \
314 while ((cnt) > newcnt); \
315 \
316 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
317 init (base + cur, newcnt - cur); \
318 cur = newcnt; \
319 } 589 }
320 590
591#if 0
321#define array_slim(type,stem) \ 592#define array_slim(type,stem) \
322 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 593 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
323 { \ 594 { \
324 stem ## max = array_roundsize (stem ## cnt >> 1); \ 595 stem ## max = array_roundsize (stem ## cnt >> 1); \
325 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 596 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
326 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
327 } 598 }
599#endif
328 600
329#define array_free(stem, idx) \ 601#define array_free(stem, idx) \
330 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
331 603
332/*****************************************************************************/ 604/*****************************************************************************/
333 605
334static void 606void noinline
607ev_feed_event (EV_P_ void *w, int revents)
608{
609 W w_ = (W)w;
610 int pri = ABSPRI (w_);
611
612 if (expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents;
614 else
615 {
616 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents;
620 }
621}
622
623void inline_speed
624queue_events (EV_P_ W *events, int eventcnt, int type)
625{
626 int i;
627
628 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type);
630}
631
632/*****************************************************************************/
633
634void inline_size
335anfds_init (ANFD *base, int count) 635anfds_init (ANFD *base, int count)
336{ 636{
337 while (count--) 637 while (count--)
338 { 638 {
339 base->head = 0; 639 base->head = 0;
342 642
343 ++base; 643 ++base;
344 } 644 }
345} 645}
346 646
347void 647void inline_speed
348ev_feed_event (EV_P_ void *w, int revents)
349{
350 W w_ = (W)w;
351
352 if (w_->pending)
353 {
354 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
355 return;
356 }
357
358 w_->pending = ++pendingcnt [ABSPRI (w_)];
359 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
360 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
361 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
362}
363
364static void
365queue_events (EV_P_ W *events, int eventcnt, int type)
366{
367 int i;
368
369 for (i = 0; i < eventcnt; ++i)
370 ev_feed_event (EV_A_ events [i], type);
371}
372
373inline void
374fd_event (EV_P_ int fd, int revents) 648fd_event (EV_P_ int fd, int revents)
375{ 649{
376 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
377 struct ev_io *w; 651 ev_io *w;
378 652
379 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
380 { 654 {
381 int ev = w->events & revents; 655 int ev = w->events & revents;
382 656
383 if (ev) 657 if (ev)
384 ev_feed_event (EV_A_ (W)w, ev); 658 ev_feed_event (EV_A_ (W)w, ev);
386} 660}
387 661
388void 662void
389ev_feed_fd_event (EV_P_ int fd, int revents) 663ev_feed_fd_event (EV_P_ int fd, int revents)
390{ 664{
665 if (fd >= 0 && fd < anfdmax)
391 fd_event (EV_A_ fd, revents); 666 fd_event (EV_A_ fd, revents);
392} 667}
393 668
394/*****************************************************************************/ 669void inline_size
395
396static void
397fd_reify (EV_P) 670fd_reify (EV_P)
398{ 671{
399 int i; 672 int i;
400 673
401 for (i = 0; i < fdchangecnt; ++i) 674 for (i = 0; i < fdchangecnt; ++i)
402 { 675 {
403 int fd = fdchanges [i]; 676 int fd = fdchanges [i];
404 ANFD *anfd = anfds + fd; 677 ANFD *anfd = anfds + fd;
405 struct ev_io *w; 678 ev_io *w;
406 679
407 int events = 0; 680 unsigned char events = 0;
408 681
409 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
410 events |= w->events; 683 events |= (unsigned char)w->events;
411 684
412#if EV_SELECT_IS_WINSOCKET 685#if EV_SELECT_IS_WINSOCKET
413 if (events) 686 if (events)
414 { 687 {
415 unsigned long argp; 688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
416 anfd->handle = _get_osfhandle (fd); 692 anfd->handle = _get_osfhandle (fd);
693 #endif
417 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
418 } 695 }
419#endif 696#endif
420 697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
421 anfd->reify = 0; 702 anfd->reify = 0;
422
423 method_modify (EV_A_ fd, anfd->events, events);
424 anfd->events = events; 703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
425 } 708 }
426 709
427 fdchangecnt = 0; 710 fdchangecnt = 0;
428} 711}
429 712
430static void 713void inline_size
431fd_change (EV_P_ int fd) 714fd_change (EV_P_ int fd, int flags)
432{ 715{
433 if (anfds [fd].reify) 716 unsigned char reify = anfds [fd].reify;
434 return;
435
436 anfds [fd].reify = 1; 717 anfds [fd].reify |= flags;
437 718
719 if (expect_true (!reify))
720 {
438 ++fdchangecnt; 721 ++fdchangecnt;
439 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
440 fdchanges [fdchangecnt - 1] = fd; 723 fdchanges [fdchangecnt - 1] = fd;
724 }
441} 725}
442 726
443static void 727void inline_speed
444fd_kill (EV_P_ int fd) 728fd_kill (EV_P_ int fd)
445{ 729{
446 struct ev_io *w; 730 ev_io *w;
447 731
448 while ((w = (struct ev_io *)anfds [fd].head)) 732 while ((w = (ev_io *)anfds [fd].head))
449 { 733 {
450 ev_io_stop (EV_A_ w); 734 ev_io_stop (EV_A_ w);
451 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
452 } 736 }
453} 737}
454 738
455static int 739int inline_size
456fd_valid (int fd) 740fd_valid (int fd)
457{ 741{
458#ifdef _WIN32 742#ifdef _WIN32
459 return _get_osfhandle (fd) != -1; 743 return _get_osfhandle (fd) != -1;
460#else 744#else
461 return fcntl (fd, F_GETFD) != -1; 745 return fcntl (fd, F_GETFD) != -1;
462#endif 746#endif
463} 747}
464 748
465/* called on EBADF to verify fds */ 749/* called on EBADF to verify fds */
466static void 750static void noinline
467fd_ebadf (EV_P) 751fd_ebadf (EV_P)
468{ 752{
469 int fd; 753 int fd;
470 754
471 for (fd = 0; fd < anfdmax; ++fd) 755 for (fd = 0; fd < anfdmax; ++fd)
473 if (!fd_valid (fd) == -1 && errno == EBADF) 757 if (!fd_valid (fd) == -1 && errno == EBADF)
474 fd_kill (EV_A_ fd); 758 fd_kill (EV_A_ fd);
475} 759}
476 760
477/* called on ENOMEM in select/poll to kill some fds and retry */ 761/* called on ENOMEM in select/poll to kill some fds and retry */
478static void 762static void noinline
479fd_enomem (EV_P) 763fd_enomem (EV_P)
480{ 764{
481 int fd; 765 int fd;
482 766
483 for (fd = anfdmax; fd--; ) 767 for (fd = anfdmax; fd--; )
486 fd_kill (EV_A_ fd); 770 fd_kill (EV_A_ fd);
487 return; 771 return;
488 } 772 }
489} 773}
490 774
491/* usually called after fork if method needs to re-arm all fds from scratch */ 775/* usually called after fork if backend needs to re-arm all fds from scratch */
492static void 776static void noinline
493fd_rearm_all (EV_P) 777fd_rearm_all (EV_P)
494{ 778{
495 int fd; 779 int fd;
496 780
497 /* this should be highly optimised to not do anything but set a flag */
498 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
499 if (anfds [fd].events) 782 if (anfds [fd].events)
500 { 783 {
501 anfds [fd].events = 0; 784 anfds [fd].events = 0;
502 fd_change (EV_A_ fd); 785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
503 } 786 }
504} 787}
505 788
506/*****************************************************************************/ 789/*****************************************************************************/
507 790
508static void 791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
808/* towards the root */
809void inline_speed
509upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
510{ 811{
511 WT w = heap [k]; 812 ANHE he = heap [k];
512 813
513 while (k && heap [k >> 1]->at > w->at) 814 for (;;)
514 {
515 heap [k] = heap [k >> 1];
516 ((W)heap [k])->active = k + 1;
517 k >>= 1;
518 } 815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
519 817
520 heap [k] = w; 818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
521 ((W)heap [k])->active = k + 1;
522
523}
524
525static void
526downheap (WT *heap, int N, int k)
527{
528 WT w = heap [k];
529
530 while (k < (N >> 1))
531 {
532 int j = k << 1;
533
534 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
535 ++j;
536
537 if (w->at <= heap [j]->at)
538 break; 819 break;
539 820
540 heap [k] = heap [j]; 821 heap [k] = heap [p];
541 ((W)heap [k])->active = k + 1; 822 ev_active (ANHE_w (heap [k])) = k;
542 k = j; 823 k = p;
543 } 824 }
544 825
826 ev_active (ANHE_w (he)) = k;
545 heap [k] = w; 827 heap [k] = he;
546 ((W)heap [k])->active = k + 1;
547} 828}
548 829
549inline void 830/* away from the root */
831void inline_speed
832downheap (ANHE *heap, int N, int k)
833{
834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
836
837 for (;;)
838 {
839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
842
843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
845 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
859 break;
860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872}
873
874#else // 4HEAP
875
876#define HEAP0 1
877
878/* towards the root */
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0;
916
917 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break;
919
920 heap [k] = heap [c];
921 ev_active (ANHE_w (heap [k])) = k;
922
923 k = c;
924 }
925
926 heap [k] = he;
927 ev_active (ANHE_w (he)) = k;
928}
929#endif
930
931void inline_size
550adjustheap (WT *heap, int N, int k) 932adjustheap (ANHE *heap, int N, int k)
551{ 933{
552 upheap (heap, k); 934 upheap (heap, k);
553 downheap (heap, N, k); 935 downheap (heap, N, k);
554} 936}
555 937
556/*****************************************************************************/ 938/*****************************************************************************/
557 939
558typedef struct 940typedef struct
559{ 941{
560 WL head; 942 WL head;
561 sig_atomic_t volatile gotsig; 943 EV_ATOMIC_T gotsig;
562} ANSIG; 944} ANSIG;
563 945
564static ANSIG *signals; 946static ANSIG *signals;
565static int signalmax; 947static int signalmax;
566 948
567static int sigpipe [2]; 949static EV_ATOMIC_T gotsig;
568static sig_atomic_t volatile gotsig;
569static struct ev_io sigev;
570 950
571static void 951void inline_size
572signals_init (ANSIG *base, int count) 952signals_init (ANSIG *base, int count)
573{ 953{
574 while (count--) 954 while (count--)
575 { 955 {
576 base->head = 0; 956 base->head = 0;
578 958
579 ++base; 959 ++base;
580 } 960 }
581} 961}
582 962
583static void 963/*****************************************************************************/
584sighandler (int signum)
585{
586#if _WIN32
587 signal (signum, sighandler);
588#endif
589 964
590 signals [signum - 1].gotsig = 1; 965void inline_speed
591
592 if (!gotsig)
593 {
594 int old_errno = errno;
595 gotsig = 1;
596 write (sigpipe [1], &signum, 1);
597 errno = old_errno;
598 }
599}
600
601void
602ev_feed_signal_event (EV_P_ int signum)
603{
604 WL w;
605
606#if EV_MULTIPLICITY
607 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
608#endif
609
610 --signum;
611
612 if (signum < 0 || signum >= signalmax)
613 return;
614
615 signals [signum].gotsig = 0;
616
617 for (w = signals [signum].head; w; w = w->next)
618 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
619}
620
621static void
622sigcb (EV_P_ struct ev_io *iow, int revents)
623{
624 int signum;
625
626 read (sigpipe [0], &revents, 1);
627 gotsig = 0;
628
629 for (signum = signalmax; signum--; )
630 if (signals [signum].gotsig)
631 ev_feed_signal_event (EV_A_ signum + 1);
632}
633
634inline void
635fd_intern (int fd) 966fd_intern (int fd)
636{ 967{
637#ifdef _WIN32 968#ifdef _WIN32
638 int arg = 1; 969 int arg = 1;
639 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
641 fcntl (fd, F_SETFD, FD_CLOEXEC); 972 fcntl (fd, F_SETFD, FD_CLOEXEC);
642 fcntl (fd, F_SETFL, O_NONBLOCK); 973 fcntl (fd, F_SETFL, O_NONBLOCK);
643#endif 974#endif
644} 975}
645 976
977static void noinline
978evpipe_init (EV_P)
979{
980 if (!ev_is_active (&pipeev))
981 {
982#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0)
984 {
985 evpipe [0] = -1;
986 fd_intern (evfd);
987 ev_io_set (&pipeev, evfd, EV_READ);
988 }
989 else
990#endif
991 {
992 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe");
994
995 fd_intern (evpipe [0]);
996 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ);
998 }
999
1000 ev_io_start (EV_A_ &pipeev);
1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 {
1010 int old_errno = errno; /* save errno because write might clobber it */
1011
1012 *flag = 1;
1013
1014#if EV_USE_EVENTFD
1015 if (evfd >= 0)
1016 {
1017 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t));
1019 }
1020 else
1021#endif
1022 write (evpipe [1], &old_errno, 1);
1023
1024 errno = old_errno;
1025 }
1026}
1027
646static void 1028static void
647siginit (EV_P) 1029pipecb (EV_P_ ev_io *iow, int revents)
648{ 1030{
649 fd_intern (sigpipe [0]); 1031#if EV_USE_EVENTFD
650 fd_intern (sigpipe [1]); 1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy;
1041 read (evpipe [0], &dummy, 1);
1042 }
651 1043
652 ev_io_set (&sigev, sigpipe [0], EV_READ); 1044 if (gotsig && ev_is_default_loop (EV_A))
653 ev_io_start (EV_A_ &sigev); 1045 {
654 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1046 int signum;
1047 gotsig = 0;
1048
1049 for (signum = signalmax; signum--; )
1050 if (signals [signum].gotsig)
1051 ev_feed_signal_event (EV_A_ signum + 1);
1052 }
1053
1054#if EV_ASYNC_ENABLE
1055 if (gotasync)
1056 {
1057 int i;
1058 gotasync = 0;
1059
1060 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent)
1062 {
1063 asyncs [i]->sent = 0;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 }
1066 }
1067#endif
655} 1068}
656 1069
657/*****************************************************************************/ 1070/*****************************************************************************/
658 1071
659static struct ev_child *childs [PID_HASHSIZE]; 1072static void
1073ev_sighandler (int signum)
1074{
1075#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct;
1077#endif
1078
1079#if _WIN32
1080 signal (signum, ev_sighandler);
1081#endif
1082
1083 signals [signum - 1].gotsig = 1;
1084 evpipe_write (EV_A_ &gotsig);
1085}
1086
1087void noinline
1088ev_feed_signal_event (EV_P_ int signum)
1089{
1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
1096 --signum;
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return;
1100
1101 signals [signum].gotsig = 0;
1102
1103 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105}
1106
1107/*****************************************************************************/
1108
1109static WL childs [EV_PID_HASHSIZE];
660 1110
661#ifndef _WIN32 1111#ifndef _WIN32
662 1112
663static struct ev_signal childev; 1113static ev_signal childev;
1114
1115#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0
1117#endif
1118
1119void inline_speed
1120child_reap (EV_P_ int chain, int pid, int status)
1121{
1122 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124
1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 {
1127 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1)))
1129 {
1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1131 w->rpid = pid;
1132 w->rstatus = status;
1133 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1134 }
1135 }
1136}
664 1137
665#ifndef WCONTINUED 1138#ifndef WCONTINUED
666# define WCONTINUED 0 1139# define WCONTINUED 0
667#endif 1140#endif
668 1141
669static void 1142static void
670child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
671{
672 struct ev_child *w;
673
674 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
675 if (w->pid == pid || !w->pid)
676 {
677 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
678 w->rpid = pid;
679 w->rstatus = status;
680 ev_feed_event (EV_A_ (W)w, EV_CHILD);
681 }
682}
683
684static void
685childcb (EV_P_ struct ev_signal *sw, int revents) 1143childcb (EV_P_ ev_signal *sw, int revents)
686{ 1144{
687 int pid, status; 1145 int pid, status;
688 1146
1147 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
689 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1148 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
690 { 1149 if (!WCONTINUED
1150 || errno != EINVAL
1151 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1152 return;
1153
691 /* make sure we are called again until all childs have been reaped */ 1154 /* make sure we are called again until all children have been reaped */
1155 /* we need to do it this way so that the callback gets called before we continue */
692 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
693 1157
694 child_reap (EV_A_ sw, pid, pid, status); 1158 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1)
695 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
696 }
697} 1161}
698 1162
699#endif 1163#endif
700 1164
701/*****************************************************************************/ 1165/*****************************************************************************/
702 1166
1167#if EV_USE_PORT
1168# include "ev_port.c"
1169#endif
703#if EV_USE_KQUEUE 1170#if EV_USE_KQUEUE
704# include "ev_kqueue.c" 1171# include "ev_kqueue.c"
705#endif 1172#endif
706#if EV_USE_EPOLL 1173#if EV_USE_EPOLL
707# include "ev_epoll.c" 1174# include "ev_epoll.c"
724{ 1191{
725 return EV_VERSION_MINOR; 1192 return EV_VERSION_MINOR;
726} 1193}
727 1194
728/* return true if we are running with elevated privileges and should ignore env variables */ 1195/* return true if we are running with elevated privileges and should ignore env variables */
729static int 1196int inline_size
730enable_secure (void) 1197enable_secure (void)
731{ 1198{
732#ifdef _WIN32 1199#ifdef _WIN32
733 return 0; 1200 return 0;
734#else 1201#else
735 return getuid () != geteuid () 1202 return getuid () != geteuid ()
736 || getgid () != getegid (); 1203 || getgid () != getegid ();
737#endif 1204#endif
738} 1205}
739 1206
740int 1207unsigned int
741ev_method (EV_P) 1208ev_supported_backends (void)
742{ 1209{
743 return method; 1210 unsigned int flags = 0;
744}
745 1211
746static void 1212 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
747loop_init (EV_P_ int methods) 1213 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1214 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1215 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1216 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1217
1218 return flags;
1219}
1220
1221unsigned int
1222ev_recommended_backends (void)
748{ 1223{
749 if (!method) 1224 unsigned int flags = ev_supported_backends ();
1225
1226#ifndef __NetBSD__
1227 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE;
1230#endif
1231#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation
1233 flags &= ~EVBACKEND_POLL;
1234#endif
1235
1236 return flags;
1237}
1238
1239unsigned int
1240ev_embeddable_backends (void)
1241{
1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1243
1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */
1246 flags &= ~EVBACKEND_EPOLL;
1247
1248 return flags;
1249}
1250
1251unsigned int
1252ev_backend (EV_P)
1253{
1254 return backend;
1255}
1256
1257unsigned int
1258ev_loop_count (EV_P)
1259{
1260 return loop_count;
1261}
1262
1263void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 io_blocktime = interval;
1267}
1268
1269void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{
1272 timeout_blocktime = interval;
1273}
1274
1275static void noinline
1276loop_init (EV_P_ unsigned int flags)
1277{
1278 if (!backend)
750 { 1279 {
751#if EV_USE_MONOTONIC 1280#if EV_USE_MONOTONIC
752 { 1281 {
753 struct timespec ts; 1282 struct timespec ts;
754 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
755 have_monotonic = 1; 1284 have_monotonic = 1;
756 } 1285 }
757#endif 1286#endif
758 1287
759 ev_rt_now = ev_time (); 1288 ev_rt_now = ev_time ();
760 mn_now = get_clock (); 1289 mn_now = get_clock ();
761 now_floor = mn_now; 1290 now_floor = mn_now;
762 rtmn_diff = ev_rt_now - mn_now; 1291 rtmn_diff = ev_rt_now - mn_now;
763 1292
764 if (methods == EVMETHOD_AUTO) 1293 io_blocktime = 0.;
765 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif
1301
1302 /* pid check not overridable via env */
1303#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK)
1305 curpid = getpid ();
1306#endif
1307
1308 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS"))
766 methods = atoi (getenv ("LIBEV_METHODS")); 1311 flags = atoi (getenv ("LIBEV_FLAGS"));
767 else
768 methods = EVMETHOD_ANY;
769 1312
770 method = 0; 1313 if (!(flags & 0x0000ffffU))
1314 flags |= ev_recommended_backends ();
1315
1316#if EV_USE_PORT
1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1318#endif
771#if EV_USE_KQUEUE 1319#if EV_USE_KQUEUE
772 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
773#endif 1321#endif
774#if EV_USE_EPOLL 1322#if EV_USE_EPOLL
775 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1323 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
776#endif 1324#endif
777#if EV_USE_POLL 1325#if EV_USE_POLL
778 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1326 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
779#endif 1327#endif
780#if EV_USE_SELECT 1328#if EV_USE_SELECT
781 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
782#endif 1330#endif
783 1331
784 ev_init (&sigev, sigcb); 1332 ev_init (&pipeev, pipecb);
785 ev_set_priority (&sigev, EV_MAXPRI); 1333 ev_set_priority (&pipeev, EV_MAXPRI);
786 } 1334 }
787} 1335}
788 1336
789void 1337static void noinline
790loop_destroy (EV_P) 1338loop_destroy (EV_P)
791{ 1339{
792 int i; 1340 int i;
793 1341
1342 if (ev_is_active (&pipeev))
1343 {
1344 ev_ref (EV_A); /* signal watcher */
1345 ev_io_stop (EV_A_ &pipeev);
1346
1347#if EV_USE_EVENTFD
1348 if (evfd >= 0)
1349 close (evfd);
1350#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
1358
1359#if EV_USE_INOTIFY
1360 if (fs_fd >= 0)
1361 close (fs_fd);
1362#endif
1363
1364 if (backend_fd >= 0)
1365 close (backend_fd);
1366
1367#if EV_USE_PORT
1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1369#endif
794#if EV_USE_KQUEUE 1370#if EV_USE_KQUEUE
795 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1371 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
796#endif 1372#endif
797#if EV_USE_EPOLL 1373#if EV_USE_EPOLL
798 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1374 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
799#endif 1375#endif
800#if EV_USE_POLL 1376#if EV_USE_POLL
801 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1377 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
802#endif 1378#endif
803#if EV_USE_SELECT 1379#if EV_USE_SELECT
804 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1380 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
805#endif 1381#endif
806 1382
807 for (i = NUMPRI; i--; ) 1383 for (i = NUMPRI; i--; )
1384 {
808 array_free (pending, [i]); 1385 array_free (pending, [i]);
1386#if EV_IDLE_ENABLE
1387 array_free (idle, [i]);
1388#endif
1389 }
1390
1391 ev_free (anfds); anfdmax = 0;
809 1392
810 /* have to use the microsoft-never-gets-it-right macro */ 1393 /* have to use the microsoft-never-gets-it-right macro */
811 array_free (fdchange, EMPTY); 1394 array_free (fdchange, EMPTY);
812 array_free (timer, EMPTY); 1395 array_free (timer, EMPTY);
813#if EV_PERIODICS 1396#if EV_PERIODIC_ENABLE
814 array_free (periodic, EMPTY); 1397 array_free (periodic, EMPTY);
815#endif 1398#endif
1399#if EV_FORK_ENABLE
816 array_free (idle, EMPTY); 1400 array_free (fork, EMPTY);
1401#endif
817 array_free (prepare, EMPTY); 1402 array_free (prepare, EMPTY);
818 array_free (check, EMPTY); 1403 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY);
1406#endif
819 1407
820 method = 0; 1408 backend = 0;
821} 1409}
822 1410
823static void 1411#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P);
1413#endif
1414
1415void inline_size
824loop_fork (EV_P) 1416loop_fork (EV_P)
825{ 1417{
1418#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif
1421#if EV_USE_KQUEUE
1422 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1423#endif
826#if EV_USE_EPOLL 1424#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1425 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
828#endif 1426#endif
829#if EV_USE_KQUEUE 1427#if EV_USE_INOTIFY
830 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1428 infy_fork (EV_A);
831#endif 1429#endif
832 1430
833 if (ev_is_active (&sigev)) 1431 if (ev_is_active (&pipeev))
834 { 1432 {
835 /* default loop */ 1433 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */
1435 gotsig = 1;
1436#if EV_ASYNC_ENABLE
1437 gotasync = 1;
1438#endif
836 1439
837 ev_ref (EV_A); 1440 ev_ref (EV_A);
838 ev_io_stop (EV_A_ &sigev); 1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
839 close (sigpipe [0]); 1450 close (evpipe [0]);
840 close (sigpipe [1]); 1451 close (evpipe [1]);
1452 }
841 1453
842 while (pipe (sigpipe))
843 syserr ("(libev) error creating pipe");
844
845 siginit (EV_A); 1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
846 } 1457 }
847 1458
848 postfork = 0; 1459 postfork = 0;
849} 1460}
850 1461
851#if EV_MULTIPLICITY 1462#if EV_MULTIPLICITY
852struct ev_loop * 1463struct ev_loop *
853ev_loop_new (int methods) 1464ev_loop_new (unsigned int flags)
854{ 1465{
855 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
856 1467
857 memset (loop, 0, sizeof (struct ev_loop)); 1468 memset (loop, 0, sizeof (struct ev_loop));
858 1469
859 loop_init (EV_A_ methods); 1470 loop_init (EV_A_ flags);
860 1471
861 if (ev_method (EV_A)) 1472 if (ev_backend (EV_A))
862 return loop; 1473 return loop;
863 1474
864 return 0; 1475 return 0;
865} 1476}
866 1477
872} 1483}
873 1484
874void 1485void
875ev_loop_fork (EV_P) 1486ev_loop_fork (EV_P)
876{ 1487{
877 postfork = 1; 1488 postfork = 1; /* must be in line with ev_default_fork */
878} 1489}
879
880#endif 1490#endif
881 1491
882#if EV_MULTIPLICITY 1492#if EV_MULTIPLICITY
883struct ev_loop * 1493struct ev_loop *
1494ev_default_loop_init (unsigned int flags)
884#else 1495#else
885int 1496int
1497ev_default_loop (unsigned int flags)
886#endif 1498#endif
887ev_default_loop (int methods)
888{ 1499{
889 if (sigpipe [0] == sigpipe [1])
890 if (pipe (sigpipe))
891 return 0;
892
893 if (!default_loop) 1500 if (!ev_default_loop_ptr)
894 { 1501 {
895#if EV_MULTIPLICITY 1502#if EV_MULTIPLICITY
896 struct ev_loop *loop = default_loop = &default_loop_struct; 1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
897#else 1504#else
898 default_loop = 1; 1505 ev_default_loop_ptr = 1;
899#endif 1506#endif
900 1507
901 loop_init (EV_A_ methods); 1508 loop_init (EV_A_ flags);
902 1509
903 if (ev_method (EV_A)) 1510 if (ev_backend (EV_A))
904 { 1511 {
905 siginit (EV_A);
906
907#ifndef _WIN32 1512#ifndef _WIN32
908 ev_signal_init (&childev, childcb, SIGCHLD); 1513 ev_signal_init (&childev, childcb, SIGCHLD);
909 ev_set_priority (&childev, EV_MAXPRI); 1514 ev_set_priority (&childev, EV_MAXPRI);
910 ev_signal_start (EV_A_ &childev); 1515 ev_signal_start (EV_A_ &childev);
911 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1516 ev_unref (EV_A); /* child watcher should not keep loop alive */
912#endif 1517#endif
913 } 1518 }
914 else 1519 else
915 default_loop = 0; 1520 ev_default_loop_ptr = 0;
916 } 1521 }
917 1522
918 return default_loop; 1523 return ev_default_loop_ptr;
919} 1524}
920 1525
921void 1526void
922ev_default_destroy (void) 1527ev_default_destroy (void)
923{ 1528{
924#if EV_MULTIPLICITY 1529#if EV_MULTIPLICITY
925 struct ev_loop *loop = default_loop; 1530 struct ev_loop *loop = ev_default_loop_ptr;
926#endif 1531#endif
927 1532
928#ifndef _WIN32 1533#ifndef _WIN32
929 ev_ref (EV_A); /* child watcher */ 1534 ev_ref (EV_A); /* child watcher */
930 ev_signal_stop (EV_A_ &childev); 1535 ev_signal_stop (EV_A_ &childev);
931#endif 1536#endif
932 1537
933 ev_ref (EV_A); /* signal watcher */
934 ev_io_stop (EV_A_ &sigev);
935
936 close (sigpipe [0]); sigpipe [0] = 0;
937 close (sigpipe [1]); sigpipe [1] = 0;
938
939 loop_destroy (EV_A); 1538 loop_destroy (EV_A);
940} 1539}
941 1540
942void 1541void
943ev_default_fork (void) 1542ev_default_fork (void)
944{ 1543{
945#if EV_MULTIPLICITY 1544#if EV_MULTIPLICITY
946 struct ev_loop *loop = default_loop; 1545 struct ev_loop *loop = ev_default_loop_ptr;
947#endif 1546#endif
948 1547
949 if (method) 1548 if (backend)
950 postfork = 1; 1549 postfork = 1; /* must be in line with ev_loop_fork */
951} 1550}
952 1551
953/*****************************************************************************/ 1552/*****************************************************************************/
954 1553
955static int 1554void
956any_pending (EV_P) 1555ev_invoke (EV_P_ void *w, int revents)
957{ 1556{
958 int pri; 1557 EV_CB_INVOKE ((W)w, revents);
959
960 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri])
962 return 1;
963
964 return 0;
965} 1558}
966 1559
967static void 1560void inline_speed
968call_pending (EV_P) 1561call_pending (EV_P)
969{ 1562{
970 int pri; 1563 int pri;
971 1564
972 for (pri = NUMPRI; pri--; ) 1565 for (pri = NUMPRI; pri--; )
973 while (pendingcnt [pri]) 1566 while (pendingcnt [pri])
974 { 1567 {
975 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
976 1569
977 if (p->w) 1570 if (expect_true (p->w))
978 { 1571 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1573
979 p->w->pending = 0; 1574 p->w->pending = 0;
980 EV_CB_INVOKE (p->w, p->events); 1575 EV_CB_INVOKE (p->w, p->events);
981 } 1576 }
982 } 1577 }
983} 1578}
984 1579
985static void 1580#if EV_IDLE_ENABLE
1581void inline_size
1582idle_reify (EV_P)
1583{
1584 if (expect_false (idleall))
1585 {
1586 int pri;
1587
1588 for (pri = NUMPRI; pri--; )
1589 {
1590 if (pendingcnt [pri])
1591 break;
1592
1593 if (idlecnt [pri])
1594 {
1595 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1596 break;
1597 }
1598 }
1599 }
1600}
1601#endif
1602
1603void inline_size
986timers_reify (EV_P) 1604timers_reify (EV_P)
987{ 1605{
988 while (timercnt && ((WT)timers [0])->at <= mn_now) 1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
989 { 1607 {
990 struct ev_timer *w = timers [0]; 1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
991 1609
992 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
993 1611
994 /* first reschedule or stop timer */ 1612 /* first reschedule or stop timer */
995 if (w->repeat) 1613 if (w->repeat)
996 { 1614 {
1615 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998 1620
999 ((WT)w)->at += w->repeat; 1621 ANHE_at_set (timers [HEAP0]);
1000 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now;
1002
1003 downheap ((WT *)timers, timercnt, 0); 1622 downheap (timers, timercnt, HEAP0);
1004 } 1623 }
1005 else 1624 else
1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1007 1626
1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1009 } 1628 }
1010} 1629}
1011 1630
1012#if EV_PERIODICS 1631#if EV_PERIODIC_ENABLE
1013static void 1632void inline_size
1014periodics_reify (EV_P) 1633periodics_reify (EV_P)
1015{ 1634{
1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1017 { 1636 {
1018 struct ev_periodic *w = periodics [0]; 1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1019 1638
1020 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1021 1640
1022 /* first reschedule or stop timer */ 1641 /* first reschedule or stop timer */
1023 if (w->reschedule_cb) 1642 if (w->reschedule_cb)
1024 { 1643 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1026 1645
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1028 downheap ((WT *)periodics, periodiccnt, 0); 1649 downheap (periodics, periodiccnt, HEAP0);
1029 } 1650 }
1030 else if (w->interval) 1651 else if (w->interval)
1031 { 1652 {
1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1657 {
1658 ev_at (w) += w->interval;
1659
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1034 downheap ((WT *)periodics, periodiccnt, 0); 1668 downheap (periodics, periodiccnt, HEAP0);
1035 } 1669 }
1036 else 1670 else
1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1038 1672
1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1040 } 1674 }
1041} 1675}
1042 1676
1043static void 1677static void noinline
1044periodics_reschedule (EV_P) 1678periodics_reschedule (EV_P)
1045{ 1679{
1046 int i; 1680 int i;
1047 1681
1048 /* adjust periodics after time jump */ 1682 /* adjust periodics after time jump */
1683 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1684 {
1685 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1686
1687 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1691
1692 ANHE_at_set (periodics [i]);
1693 }
1694
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1049 for (i = 0; i < periodiccnt; ++i) 1697 for (i = 0; i < periodiccnt; ++i)
1050 { 1698 upheap (periodics, i + HEAP0);
1051 struct ev_periodic *w = periodics [i]; 1699}
1700#endif
1052 1701
1053 if (w->reschedule_cb) 1702void inline_speed
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1703time_update (EV_P_ ev_tstamp max_block)
1055 else if (w->interval) 1704{
1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1705 int i;
1706
1707#if EV_USE_MONOTONIC
1708 if (expect_true (have_monotonic))
1057 } 1709 {
1710 ev_tstamp odiff = rtmn_diff;
1058 1711
1059 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i);
1062}
1063#endif
1064
1065inline int
1066time_update_monotonic (EV_P)
1067{
1068 mn_now = get_clock (); 1712 mn_now = get_clock ();
1069 1713
1714 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1715 /* interpolate in the meantime */
1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1716 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1071 { 1717 {
1072 ev_rt_now = rtmn_diff + mn_now; 1718 ev_rt_now = rtmn_diff + mn_now;
1073 return 0; 1719 return;
1074 } 1720 }
1075 else 1721
1076 {
1077 now_floor = mn_now; 1722 now_floor = mn_now;
1078 ev_rt_now = ev_time (); 1723 ev_rt_now = ev_time ();
1079 return 1;
1080 }
1081}
1082 1724
1083static void 1725 /* loop a few times, before making important decisions.
1084time_update (EV_P) 1726 * on the choice of "4": one iteration isn't enough,
1085{ 1727 * in case we get preempted during the calls to
1086 int i; 1728 * ev_time and get_clock. a second call is almost guaranteed
1087 1729 * to succeed in that case, though. and looping a few more times
1088#if EV_USE_MONOTONIC 1730 * doesn't hurt either as we only do this on time-jumps or
1089 if (expect_true (have_monotonic)) 1731 * in the unlikely event of having been preempted here.
1090 { 1732 */
1091 if (time_update_monotonic (EV_A)) 1733 for (i = 4; --i; )
1092 { 1734 {
1093 ev_tstamp odiff = rtmn_diff; 1735 rtmn_diff = ev_rt_now - mn_now;
1094 1736
1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1737 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1738 return; /* all is well */
1739
1740 ev_rt_now = ev_time ();
1741 mn_now = get_clock ();
1742 now_floor = mn_now;
1743 }
1744
1745# if EV_PERIODIC_ENABLE
1746 periodics_reschedule (EV_A);
1747# endif
1748 /* no timer adjustment, as the monotonic clock doesn't jump */
1749 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1750 }
1751 else
1752#endif
1753 {
1754 ev_rt_now = ev_time ();
1755
1756 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1757 {
1758#if EV_PERIODIC_ENABLE
1759 periodics_reschedule (EV_A);
1760#endif
1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1762 for (i = 0; i < timercnt; ++i)
1096 { 1763 {
1097 rtmn_diff = ev_rt_now - mn_now; 1764 ANHE *he = timers + i + HEAP0;
1098 1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1766 ANHE_at_set (*he);
1100 return; /* all is well */
1101
1102 ev_rt_now = ev_time ();
1103 mn_now = get_clock ();
1104 now_floor = mn_now;
1105 } 1767 }
1106
1107# if EV_PERIODICS
1108 periodics_reschedule (EV_A);
1109# endif
1110 /* no timer adjustment, as the monotonic clock doesn't jump */
1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1112 } 1768 }
1113 }
1114 else
1115#endif
1116 {
1117 ev_rt_now = ev_time ();
1118
1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1120 {
1121#if EV_PERIODICS
1122 periodics_reschedule (EV_A);
1123#endif
1124
1125 /* adjust timers. this is easy, as the offset is the same for all */
1126 for (i = 0; i < timercnt; ++i)
1127 ((WT)timers [i])->at += ev_rt_now - mn_now;
1128 }
1129 1769
1130 mn_now = ev_rt_now; 1770 mn_now = ev_rt_now;
1131 } 1771 }
1132} 1772}
1133 1773
1146static int loop_done; 1786static int loop_done;
1147 1787
1148void 1788void
1149ev_loop (EV_P_ int flags) 1789ev_loop (EV_P_ int flags)
1150{ 1790{
1151 double block; 1791 loop_done = EVUNLOOP_CANCEL;
1152 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1792
1793 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1153 1794
1154 do 1795 do
1155 { 1796 {
1797#ifndef _WIN32
1798 if (expect_false (curpid)) /* penalise the forking check even more */
1799 if (expect_false (getpid () != curpid))
1800 {
1801 curpid = getpid ();
1802 postfork = 1;
1803 }
1804#endif
1805
1806#if EV_FORK_ENABLE
1807 /* we might have forked, so queue fork handlers */
1808 if (expect_false (postfork))
1809 if (forkcnt)
1810 {
1811 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1812 call_pending (EV_A);
1813 }
1814#endif
1815
1156 /* queue check watchers (and execute them) */ 1816 /* queue prepare watchers (and execute them) */
1157 if (expect_false (preparecnt)) 1817 if (expect_false (preparecnt))
1158 { 1818 {
1159 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1819 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1160 call_pending (EV_A); 1820 call_pending (EV_A);
1161 } 1821 }
1162 1822
1823 if (expect_false (!activecnt))
1824 break;
1825
1163 /* we might have forked, so reify kernel state if necessary */ 1826 /* we might have forked, so reify kernel state if necessary */
1164 if (expect_false (postfork)) 1827 if (expect_false (postfork))
1165 loop_fork (EV_A); 1828 loop_fork (EV_A);
1166 1829
1167 /* update fd-related kernel structures */ 1830 /* update fd-related kernel structures */
1168 fd_reify (EV_A); 1831 fd_reify (EV_A);
1169 1832
1170 /* calculate blocking time */ 1833 /* calculate blocking time */
1834 {
1835 ev_tstamp waittime = 0.;
1836 ev_tstamp sleeptime = 0.;
1171 1837
1172 /* we only need this for !monotonic clock or timers, but as we basically 1838 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1173 always have timers, we just calculate it always */
1174#if EV_USE_MONOTONIC
1175 if (expect_true (have_monotonic))
1176 time_update_monotonic (EV_A);
1177 else
1178#endif
1179 { 1839 {
1180 ev_rt_now = ev_time (); 1840 /* update time to cancel out callback processing overhead */
1181 mn_now = ev_rt_now; 1841 time_update (EV_A_ 1e100);
1182 }
1183 1842
1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
1185 block = 0.;
1186 else
1187 {
1188 block = MAX_BLOCKTIME; 1843 waittime = MAX_BLOCKTIME;
1189 1844
1190 if (timercnt) 1845 if (timercnt)
1191 { 1846 {
1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1193 if (block > to) block = to; 1848 if (waittime > to) waittime = to;
1194 } 1849 }
1195 1850
1196#if EV_PERIODICS 1851#if EV_PERIODIC_ENABLE
1197 if (periodiccnt) 1852 if (periodiccnt)
1198 { 1853 {
1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1200 if (block > to) block = to; 1855 if (waittime > to) waittime = to;
1201 } 1856 }
1202#endif 1857#endif
1203 1858
1204 if (block < 0.) block = 0.; 1859 if (expect_false (waittime < timeout_blocktime))
1860 waittime = timeout_blocktime;
1861
1862 sleeptime = waittime - backend_fudge;
1863
1864 if (expect_true (sleeptime > io_blocktime))
1865 sleeptime = io_blocktime;
1866
1867 if (sleeptime)
1868 {
1869 ev_sleep (sleeptime);
1870 waittime -= sleeptime;
1871 }
1205 } 1872 }
1206 1873
1207 method_poll (EV_A_ block); 1874 ++loop_count;
1875 backend_poll (EV_A_ waittime);
1208 1876
1209 /* update ev_rt_now, do magic */ 1877 /* update ev_rt_now, do magic */
1210 time_update (EV_A); 1878 time_update (EV_A_ waittime + sleeptime);
1879 }
1211 1880
1212 /* queue pending timers and reschedule them */ 1881 /* queue pending timers and reschedule them */
1213 timers_reify (EV_A); /* relative timers called last */ 1882 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS 1883#if EV_PERIODIC_ENABLE
1215 periodics_reify (EV_A); /* absolute timers called first */ 1884 periodics_reify (EV_A); /* absolute timers called first */
1216#endif 1885#endif
1217 1886
1887#if EV_IDLE_ENABLE
1218 /* queue idle watchers unless io or timers are pending */ 1888 /* queue idle watchers unless other events are pending */
1219 if (idlecnt && !any_pending (EV_A)) 1889 idle_reify (EV_A);
1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1890#endif
1221 1891
1222 /* queue check watchers, to be executed first */ 1892 /* queue check watchers, to be executed first */
1223 if (checkcnt) 1893 if (expect_false (checkcnt))
1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1894 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1225 1895
1226 call_pending (EV_A); 1896 call_pending (EV_A);
1227 } 1897 }
1228 while (activecnt && !loop_done); 1898 while (expect_true (
1899 activecnt
1900 && !loop_done
1901 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1902 ));
1229 1903
1230 if (loop_done != 2) 1904 if (loop_done == EVUNLOOP_ONE)
1231 loop_done = 0; 1905 loop_done = EVUNLOOP_CANCEL;
1232} 1906}
1233 1907
1234void 1908void
1235ev_unloop (EV_P_ int how) 1909ev_unloop (EV_P_ int how)
1236{ 1910{
1237 loop_done = how; 1911 loop_done = how;
1238} 1912}
1239 1913
1240/*****************************************************************************/ 1914/*****************************************************************************/
1241 1915
1242inline void 1916void inline_size
1243wlist_add (WL *head, WL elem) 1917wlist_add (WL *head, WL elem)
1244{ 1918{
1245 elem->next = *head; 1919 elem->next = *head;
1246 *head = elem; 1920 *head = elem;
1247} 1921}
1248 1922
1249inline void 1923void inline_size
1250wlist_del (WL *head, WL elem) 1924wlist_del (WL *head, WL elem)
1251{ 1925{
1252 while (*head) 1926 while (*head)
1253 { 1927 {
1254 if (*head == elem) 1928 if (*head == elem)
1259 1933
1260 head = &(*head)->next; 1934 head = &(*head)->next;
1261 } 1935 }
1262} 1936}
1263 1937
1264inline void 1938void inline_speed
1265ev_clear_pending (EV_P_ W w) 1939clear_pending (EV_P_ W w)
1266{ 1940{
1267 if (w->pending) 1941 if (w->pending)
1268 { 1942 {
1269 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1943 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1270 w->pending = 0; 1944 w->pending = 0;
1271 } 1945 }
1272} 1946}
1273 1947
1274inline void 1948int
1949ev_clear_pending (EV_P_ void *w)
1950{
1951 W w_ = (W)w;
1952 int pending = w_->pending;
1953
1954 if (expect_true (pending))
1955 {
1956 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1957 w_->pending = 0;
1958 p->w = 0;
1959 return p->events;
1960 }
1961 else
1962 return 0;
1963}
1964
1965void inline_size
1966pri_adjust (EV_P_ W w)
1967{
1968 int pri = w->priority;
1969 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1970 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1971 w->priority = pri;
1972}
1973
1974void inline_speed
1275ev_start (EV_P_ W w, int active) 1975ev_start (EV_P_ W w, int active)
1276{ 1976{
1277 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1977 pri_adjust (EV_A_ w);
1278 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1279
1280 w->active = active; 1978 w->active = active;
1281 ev_ref (EV_A); 1979 ev_ref (EV_A);
1282} 1980}
1283 1981
1284inline void 1982void inline_size
1285ev_stop (EV_P_ W w) 1983ev_stop (EV_P_ W w)
1286{ 1984{
1287 ev_unref (EV_A); 1985 ev_unref (EV_A);
1288 w->active = 0; 1986 w->active = 0;
1289} 1987}
1290 1988
1291/*****************************************************************************/ 1989/*****************************************************************************/
1292 1990
1293void 1991void noinline
1294ev_io_start (EV_P_ struct ev_io *w) 1992ev_io_start (EV_P_ ev_io *w)
1295{ 1993{
1296 int fd = w->fd; 1994 int fd = w->fd;
1297 1995
1298 if (ev_is_active (w)) 1996 if (expect_false (ev_is_active (w)))
1299 return; 1997 return;
1300 1998
1301 assert (("ev_io_start called with negative fd", fd >= 0)); 1999 assert (("ev_io_start called with negative fd", fd >= 0));
1302 2000
1303 ev_start (EV_A_ (W)w, 1); 2001 ev_start (EV_A_ (W)w, 1);
1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2002 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1305 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2003 wlist_add (&anfds[fd].head, (WL)w);
1306 2004
1307 fd_change (EV_A_ fd); 2005 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2006 w->events &= ~EV_IOFDSET;
1308} 2007}
1309 2008
1310void 2009void noinline
1311ev_io_stop (EV_P_ struct ev_io *w) 2010ev_io_stop (EV_P_ ev_io *w)
1312{ 2011{
1313 ev_clear_pending (EV_A_ (W)w); 2012 clear_pending (EV_A_ (W)w);
1314 if (!ev_is_active (w)) 2013 if (expect_false (!ev_is_active (w)))
1315 return; 2014 return;
1316 2015
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318 2017
1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2018 wlist_del (&anfds[w->fd].head, (WL)w);
1320 ev_stop (EV_A_ (W)w); 2019 ev_stop (EV_A_ (W)w);
1321 2020
1322 fd_change (EV_A_ w->fd); 2021 fd_change (EV_A_ w->fd, 1);
1323} 2022}
1324 2023
1325void 2024void noinline
1326ev_timer_start (EV_P_ struct ev_timer *w) 2025ev_timer_start (EV_P_ ev_timer *w)
1327{ 2026{
1328 if (ev_is_active (w)) 2027 if (expect_false (ev_is_active (w)))
1329 return; 2028 return;
1330 2029
1331 ((WT)w)->at += mn_now; 2030 ev_at (w) += mn_now;
1332 2031
1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1334 2033
1335 ev_start (EV_A_ (W)w, ++timercnt); 2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1337 timers [timercnt - 1] = w; 2036 ANHE_w (timers [ev_active (w)]) = (WT)w;
1338 upheap ((WT *)timers, timercnt - 1); 2037 ANHE_at_set (timers [ev_active (w)]);
2038 upheap (timers, ev_active (w));
1339 2039
1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1341} 2041}
1342 2042
1343void 2043void noinline
1344ev_timer_stop (EV_P_ struct ev_timer *w) 2044ev_timer_stop (EV_P_ ev_timer *w)
1345{ 2045{
1346 ev_clear_pending (EV_A_ (W)w); 2046 clear_pending (EV_A_ (W)w);
1347 if (!ev_is_active (w)) 2047 if (expect_false (!ev_is_active (w)))
1348 return; 2048 return;
1349 2049
2050 {
2051 int active = ev_active (w);
2052
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1351 2054
1352 if (((W)w)->active < timercnt--) 2055 if (expect_true (active < timercnt + HEAP0 - 1))
1353 { 2056 {
1354 timers [((W)w)->active - 1] = timers [timercnt]; 2057 timers [active] = timers [timercnt + HEAP0 - 1];
1355 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2058 adjustheap (timers, timercnt, active);
1356 } 2059 }
1357 2060
1358 ((WT)w)->at -= mn_now; 2061 --timercnt;
2062 }
2063
2064 ev_at (w) -= mn_now;
1359 2065
1360 ev_stop (EV_A_ (W)w); 2066 ev_stop (EV_A_ (W)w);
1361} 2067}
1362 2068
1363void 2069void noinline
1364ev_timer_again (EV_P_ struct ev_timer *w) 2070ev_timer_again (EV_P_ ev_timer *w)
1365{ 2071{
1366 if (ev_is_active (w)) 2072 if (ev_is_active (w))
1367 { 2073 {
1368 if (w->repeat) 2074 if (w->repeat)
1369 { 2075 {
1370 ((WT)w)->at = mn_now + w->repeat; 2076 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]);
1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2078 adjustheap (timers, timercnt, ev_active (w));
1372 } 2079 }
1373 else 2080 else
1374 ev_timer_stop (EV_A_ w); 2081 ev_timer_stop (EV_A_ w);
1375 } 2082 }
1376 else if (w->repeat) 2083 else if (w->repeat)
2084 {
2085 ev_at (w) = w->repeat;
1377 ev_timer_start (EV_A_ w); 2086 ev_timer_start (EV_A_ w);
2087 }
1378} 2088}
1379 2089
1380#if EV_PERIODICS 2090#if EV_PERIODIC_ENABLE
1381void 2091void noinline
1382ev_periodic_start (EV_P_ struct ev_periodic *w) 2092ev_periodic_start (EV_P_ ev_periodic *w)
1383{ 2093{
1384 if (ev_is_active (w)) 2094 if (expect_false (ev_is_active (w)))
1385 return; 2095 return;
1386 2096
1387 if (w->reschedule_cb) 2097 if (w->reschedule_cb)
1388 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2098 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1389 else if (w->interval) 2099 else if (w->interval)
1390 { 2100 {
1391 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2101 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1392 /* this formula differs from the one in periodic_reify because we do not always round up */ 2102 /* this formula differs from the one in periodic_reify because we do not always round up */
1393 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1394 } 2104 }
2105 else
2106 ev_at (w) = w->offset;
1395 2107
1396 ev_start (EV_A_ (W)w, ++periodiccnt); 2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1397 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1398 periodics [periodiccnt - 1] = w; 2110 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1399 upheap ((WT *)periodics, periodiccnt - 1); 2111 ANHE_at_set (periodics [ev_active (w)]);
2112 upheap (periodics, ev_active (w));
1400 2113
1401 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1402} 2115}
1403 2116
1404void 2117void noinline
1405ev_periodic_stop (EV_P_ struct ev_periodic *w) 2118ev_periodic_stop (EV_P_ ev_periodic *w)
1406{ 2119{
1407 ev_clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1408 if (!ev_is_active (w)) 2121 if (expect_false (!ev_is_active (w)))
1409 return; 2122 return;
1410 2123
2124 {
2125 int active = ev_active (w);
2126
1411 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1412 2128
1413 if (((W)w)->active < periodiccnt--) 2129 if (expect_true (active < periodiccnt + HEAP0 - 1))
1414 { 2130 {
1415 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1416 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2132 adjustheap (periodics, periodiccnt, active);
1417 } 2133 }
2134
2135 --periodiccnt;
2136 }
1418 2137
1419 ev_stop (EV_A_ (W)w); 2138 ev_stop (EV_A_ (W)w);
1420} 2139}
1421 2140
1422void 2141void noinline
1423ev_periodic_again (EV_P_ struct ev_periodic *w) 2142ev_periodic_again (EV_P_ ev_periodic *w)
1424{ 2143{
1425 /* TODO: use adjustheap and recalculation */ 2144 /* TODO: use adjustheap and recalculation */
1426 ev_periodic_stop (EV_A_ w); 2145 ev_periodic_stop (EV_A_ w);
1427 ev_periodic_start (EV_A_ w); 2146 ev_periodic_start (EV_A_ w);
1428} 2147}
1429#endif 2148#endif
1430 2149
1431void
1432ev_idle_start (EV_P_ struct ev_idle *w)
1433{
1434 if (ev_is_active (w))
1435 return;
1436
1437 ev_start (EV_A_ (W)w, ++idlecnt);
1438 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1439 idles [idlecnt - 1] = w;
1440}
1441
1442void
1443ev_idle_stop (EV_P_ struct ev_idle *w)
1444{
1445 ev_clear_pending (EV_A_ (W)w);
1446 if (!ev_is_active (w))
1447 return;
1448
1449 idles [((W)w)->active - 1] = idles [--idlecnt];
1450 ev_stop (EV_A_ (W)w);
1451}
1452
1453void
1454ev_prepare_start (EV_P_ struct ev_prepare *w)
1455{
1456 if (ev_is_active (w))
1457 return;
1458
1459 ev_start (EV_A_ (W)w, ++preparecnt);
1460 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1461 prepares [preparecnt - 1] = w;
1462}
1463
1464void
1465ev_prepare_stop (EV_P_ struct ev_prepare *w)
1466{
1467 ev_clear_pending (EV_A_ (W)w);
1468 if (!ev_is_active (w))
1469 return;
1470
1471 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1472 ev_stop (EV_A_ (W)w);
1473}
1474
1475void
1476ev_check_start (EV_P_ struct ev_check *w)
1477{
1478 if (ev_is_active (w))
1479 return;
1480
1481 ev_start (EV_A_ (W)w, ++checkcnt);
1482 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1483 checks [checkcnt - 1] = w;
1484}
1485
1486void
1487ev_check_stop (EV_P_ struct ev_check *w)
1488{
1489 ev_clear_pending (EV_A_ (W)w);
1490 if (!ev_is_active (w))
1491 return;
1492
1493 checks [((W)w)->active - 1] = checks [--checkcnt];
1494 ev_stop (EV_A_ (W)w);
1495}
1496
1497#ifndef SA_RESTART 2150#ifndef SA_RESTART
1498# define SA_RESTART 0 2151# define SA_RESTART 0
1499#endif 2152#endif
1500 2153
1501void 2154void noinline
1502ev_signal_start (EV_P_ struct ev_signal *w) 2155ev_signal_start (EV_P_ ev_signal *w)
1503{ 2156{
1504#if EV_MULTIPLICITY 2157#if EV_MULTIPLICITY
1505 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2158 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1506#endif 2159#endif
1507 if (ev_is_active (w)) 2160 if (expect_false (ev_is_active (w)))
1508 return; 2161 return;
1509 2162
1510 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2163 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1511 2164
2165 evpipe_init (EV_A);
2166
2167 {
2168#ifndef _WIN32
2169 sigset_t full, prev;
2170 sigfillset (&full);
2171 sigprocmask (SIG_SETMASK, &full, &prev);
2172#endif
2173
2174 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2175
2176#ifndef _WIN32
2177 sigprocmask (SIG_SETMASK, &prev, 0);
2178#endif
2179 }
2180
1512 ev_start (EV_A_ (W)w, 1); 2181 ev_start (EV_A_ (W)w, 1);
1513 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1514 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2182 wlist_add (&signals [w->signum - 1].head, (WL)w);
1515 2183
1516 if (!((WL)w)->next) 2184 if (!((WL)w)->next)
1517 { 2185 {
1518#if _WIN32 2186#if _WIN32
1519 signal (w->signum, sighandler); 2187 signal (w->signum, ev_sighandler);
1520#else 2188#else
1521 struct sigaction sa; 2189 struct sigaction sa;
1522 sa.sa_handler = sighandler; 2190 sa.sa_handler = ev_sighandler;
1523 sigfillset (&sa.sa_mask); 2191 sigfillset (&sa.sa_mask);
1524 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2192 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1525 sigaction (w->signum, &sa, 0); 2193 sigaction (w->signum, &sa, 0);
1526#endif 2194#endif
1527 } 2195 }
1528} 2196}
1529 2197
1530void 2198void noinline
1531ev_signal_stop (EV_P_ struct ev_signal *w) 2199ev_signal_stop (EV_P_ ev_signal *w)
1532{ 2200{
1533 ev_clear_pending (EV_A_ (W)w); 2201 clear_pending (EV_A_ (W)w);
1534 if (!ev_is_active (w)) 2202 if (expect_false (!ev_is_active (w)))
1535 return; 2203 return;
1536 2204
1537 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2205 wlist_del (&signals [w->signum - 1].head, (WL)w);
1538 ev_stop (EV_A_ (W)w); 2206 ev_stop (EV_A_ (W)w);
1539 2207
1540 if (!signals [w->signum - 1].head) 2208 if (!signals [w->signum - 1].head)
1541 signal (w->signum, SIG_DFL); 2209 signal (w->signum, SIG_DFL);
1542} 2210}
1543 2211
1544void 2212void
1545ev_child_start (EV_P_ struct ev_child *w) 2213ev_child_start (EV_P_ ev_child *w)
1546{ 2214{
1547#if EV_MULTIPLICITY 2215#if EV_MULTIPLICITY
1548 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2216 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1549#endif 2217#endif
1550 if (ev_is_active (w)) 2218 if (expect_false (ev_is_active (w)))
1551 return; 2219 return;
1552 2220
1553 ev_start (EV_A_ (W)w, 1); 2221 ev_start (EV_A_ (W)w, 1);
1554 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2222 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1555} 2223}
1556 2224
1557void 2225void
1558ev_child_stop (EV_P_ struct ev_child *w) 2226ev_child_stop (EV_P_ ev_child *w)
1559{ 2227{
1560 ev_clear_pending (EV_A_ (W)w); 2228 clear_pending (EV_A_ (W)w);
1561 if (!ev_is_active (w)) 2229 if (expect_false (!ev_is_active (w)))
1562 return; 2230 return;
1563 2231
1564 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2232 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1565 ev_stop (EV_A_ (W)w); 2233 ev_stop (EV_A_ (W)w);
1566} 2234}
1567 2235
2236#if EV_STAT_ENABLE
2237
2238# ifdef _WIN32
2239# undef lstat
2240# define lstat(a,b) _stati64 (a,b)
2241# endif
2242
2243#define DEF_STAT_INTERVAL 5.0074891
2244#define MIN_STAT_INTERVAL 0.1074891
2245
2246static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2247
2248#if EV_USE_INOTIFY
2249# define EV_INOTIFY_BUFSIZE 8192
2250
2251static void noinline
2252infy_add (EV_P_ ev_stat *w)
2253{
2254 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2255
2256 if (w->wd < 0)
2257 {
2258 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2259
2260 /* monitor some parent directory for speedup hints */
2261 /* note that exceeding the hardcoded limit is not a correctness issue, */
2262 /* but an efficiency issue only */
2263 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2264 {
2265 char path [4096];
2266 strcpy (path, w->path);
2267
2268 do
2269 {
2270 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2271 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2272
2273 char *pend = strrchr (path, '/');
2274
2275 if (!pend)
2276 break; /* whoops, no '/', complain to your admin */
2277
2278 *pend = 0;
2279 w->wd = inotify_add_watch (fs_fd, path, mask);
2280 }
2281 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2282 }
2283 }
2284 else
2285 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2286
2287 if (w->wd >= 0)
2288 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2289}
2290
2291static void noinline
2292infy_del (EV_P_ ev_stat *w)
2293{
2294 int slot;
2295 int wd = w->wd;
2296
2297 if (wd < 0)
2298 return;
2299
2300 w->wd = -2;
2301 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2302 wlist_del (&fs_hash [slot].head, (WL)w);
2303
2304 /* remove this watcher, if others are watching it, they will rearm */
2305 inotify_rm_watch (fs_fd, wd);
2306}
2307
2308static void noinline
2309infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2310{
2311 if (slot < 0)
2312 /* overflow, need to check for all hahs slots */
2313 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2314 infy_wd (EV_A_ slot, wd, ev);
2315 else
2316 {
2317 WL w_;
2318
2319 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2320 {
2321 ev_stat *w = (ev_stat *)w_;
2322 w_ = w_->next; /* lets us remove this watcher and all before it */
2323
2324 if (w->wd == wd || wd == -1)
2325 {
2326 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2327 {
2328 w->wd = -1;
2329 infy_add (EV_A_ w); /* re-add, no matter what */
2330 }
2331
2332 stat_timer_cb (EV_A_ &w->timer, 0);
2333 }
2334 }
2335 }
2336}
2337
2338static void
2339infy_cb (EV_P_ ev_io *w, int revents)
2340{
2341 char buf [EV_INOTIFY_BUFSIZE];
2342 struct inotify_event *ev = (struct inotify_event *)buf;
2343 int ofs;
2344 int len = read (fs_fd, buf, sizeof (buf));
2345
2346 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2347 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2348}
2349
2350void inline_size
2351infy_init (EV_P)
2352{
2353 if (fs_fd != -2)
2354 return;
2355
2356 fs_fd = inotify_init ();
2357
2358 if (fs_fd >= 0)
2359 {
2360 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2361 ev_set_priority (&fs_w, EV_MAXPRI);
2362 ev_io_start (EV_A_ &fs_w);
2363 }
2364}
2365
2366void inline_size
2367infy_fork (EV_P)
2368{
2369 int slot;
2370
2371 if (fs_fd < 0)
2372 return;
2373
2374 close (fs_fd);
2375 fs_fd = inotify_init ();
2376
2377 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2378 {
2379 WL w_ = fs_hash [slot].head;
2380 fs_hash [slot].head = 0;
2381
2382 while (w_)
2383 {
2384 ev_stat *w = (ev_stat *)w_;
2385 w_ = w_->next; /* lets us add this watcher */
2386
2387 w->wd = -1;
2388
2389 if (fs_fd >= 0)
2390 infy_add (EV_A_ w); /* re-add, no matter what */
2391 else
2392 ev_timer_start (EV_A_ &w->timer);
2393 }
2394
2395 }
2396}
2397
2398#endif
2399
2400void
2401ev_stat_stat (EV_P_ ev_stat *w)
2402{
2403 if (lstat (w->path, &w->attr) < 0)
2404 w->attr.st_nlink = 0;
2405 else if (!w->attr.st_nlink)
2406 w->attr.st_nlink = 1;
2407}
2408
2409static void noinline
2410stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2411{
2412 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2413
2414 /* we copy this here each the time so that */
2415 /* prev has the old value when the callback gets invoked */
2416 w->prev = w->attr;
2417 ev_stat_stat (EV_A_ w);
2418
2419 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2420 if (
2421 w->prev.st_dev != w->attr.st_dev
2422 || w->prev.st_ino != w->attr.st_ino
2423 || w->prev.st_mode != w->attr.st_mode
2424 || w->prev.st_nlink != w->attr.st_nlink
2425 || w->prev.st_uid != w->attr.st_uid
2426 || w->prev.st_gid != w->attr.st_gid
2427 || w->prev.st_rdev != w->attr.st_rdev
2428 || w->prev.st_size != w->attr.st_size
2429 || w->prev.st_atime != w->attr.st_atime
2430 || w->prev.st_mtime != w->attr.st_mtime
2431 || w->prev.st_ctime != w->attr.st_ctime
2432 ) {
2433 #if EV_USE_INOTIFY
2434 infy_del (EV_A_ w);
2435 infy_add (EV_A_ w);
2436 ev_stat_stat (EV_A_ w); /* avoid race... */
2437 #endif
2438
2439 ev_feed_event (EV_A_ w, EV_STAT);
2440 }
2441}
2442
2443void
2444ev_stat_start (EV_P_ ev_stat *w)
2445{
2446 if (expect_false (ev_is_active (w)))
2447 return;
2448
2449 /* since we use memcmp, we need to clear any padding data etc. */
2450 memset (&w->prev, 0, sizeof (ev_statdata));
2451 memset (&w->attr, 0, sizeof (ev_statdata));
2452
2453 ev_stat_stat (EV_A_ w);
2454
2455 if (w->interval < MIN_STAT_INTERVAL)
2456 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2457
2458 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2459 ev_set_priority (&w->timer, ev_priority (w));
2460
2461#if EV_USE_INOTIFY
2462 infy_init (EV_A);
2463
2464 if (fs_fd >= 0)
2465 infy_add (EV_A_ w);
2466 else
2467#endif
2468 ev_timer_start (EV_A_ &w->timer);
2469
2470 ev_start (EV_A_ (W)w, 1);
2471}
2472
2473void
2474ev_stat_stop (EV_P_ ev_stat *w)
2475{
2476 clear_pending (EV_A_ (W)w);
2477 if (expect_false (!ev_is_active (w)))
2478 return;
2479
2480#if EV_USE_INOTIFY
2481 infy_del (EV_A_ w);
2482#endif
2483 ev_timer_stop (EV_A_ &w->timer);
2484
2485 ev_stop (EV_A_ (W)w);
2486}
2487#endif
2488
2489#if EV_IDLE_ENABLE
2490void
2491ev_idle_start (EV_P_ ev_idle *w)
2492{
2493 if (expect_false (ev_is_active (w)))
2494 return;
2495
2496 pri_adjust (EV_A_ (W)w);
2497
2498 {
2499 int active = ++idlecnt [ABSPRI (w)];
2500
2501 ++idleall;
2502 ev_start (EV_A_ (W)w, active);
2503
2504 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2505 idles [ABSPRI (w)][active - 1] = w;
2506 }
2507}
2508
2509void
2510ev_idle_stop (EV_P_ ev_idle *w)
2511{
2512 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w)))
2514 return;
2515
2516 {
2517 int active = ev_active (w);
2518
2519 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2520 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2521
2522 ev_stop (EV_A_ (W)w);
2523 --idleall;
2524 }
2525}
2526#endif
2527
2528void
2529ev_prepare_start (EV_P_ ev_prepare *w)
2530{
2531 if (expect_false (ev_is_active (w)))
2532 return;
2533
2534 ev_start (EV_A_ (W)w, ++preparecnt);
2535 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2536 prepares [preparecnt - 1] = w;
2537}
2538
2539void
2540ev_prepare_stop (EV_P_ ev_prepare *w)
2541{
2542 clear_pending (EV_A_ (W)w);
2543 if (expect_false (!ev_is_active (w)))
2544 return;
2545
2546 {
2547 int active = ev_active (w);
2548
2549 prepares [active - 1] = prepares [--preparecnt];
2550 ev_active (prepares [active - 1]) = active;
2551 }
2552
2553 ev_stop (EV_A_ (W)w);
2554}
2555
2556void
2557ev_check_start (EV_P_ ev_check *w)
2558{
2559 if (expect_false (ev_is_active (w)))
2560 return;
2561
2562 ev_start (EV_A_ (W)w, ++checkcnt);
2563 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2564 checks [checkcnt - 1] = w;
2565}
2566
2567void
2568ev_check_stop (EV_P_ ev_check *w)
2569{
2570 clear_pending (EV_A_ (W)w);
2571 if (expect_false (!ev_is_active (w)))
2572 return;
2573
2574 {
2575 int active = ev_active (w);
2576
2577 checks [active - 1] = checks [--checkcnt];
2578 ev_active (checks [active - 1]) = active;
2579 }
2580
2581 ev_stop (EV_A_ (W)w);
2582}
2583
2584#if EV_EMBED_ENABLE
2585void noinline
2586ev_embed_sweep (EV_P_ ev_embed *w)
2587{
2588 ev_loop (w->other, EVLOOP_NONBLOCK);
2589}
2590
2591static void
2592embed_io_cb (EV_P_ ev_io *io, int revents)
2593{
2594 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2595
2596 if (ev_cb (w))
2597 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2598 else
2599 ev_loop (w->other, EVLOOP_NONBLOCK);
2600}
2601
2602static void
2603embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2604{
2605 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2606
2607 {
2608 struct ev_loop *loop = w->other;
2609
2610 while (fdchangecnt)
2611 {
2612 fd_reify (EV_A);
2613 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2614 }
2615 }
2616}
2617
2618#if 0
2619static void
2620embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2621{
2622 ev_idle_stop (EV_A_ idle);
2623}
2624#endif
2625
2626void
2627ev_embed_start (EV_P_ ev_embed *w)
2628{
2629 if (expect_false (ev_is_active (w)))
2630 return;
2631
2632 {
2633 struct ev_loop *loop = w->other;
2634 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2635 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2636 }
2637
2638 ev_set_priority (&w->io, ev_priority (w));
2639 ev_io_start (EV_A_ &w->io);
2640
2641 ev_prepare_init (&w->prepare, embed_prepare_cb);
2642 ev_set_priority (&w->prepare, EV_MINPRI);
2643 ev_prepare_start (EV_A_ &w->prepare);
2644
2645 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2646
2647 ev_start (EV_A_ (W)w, 1);
2648}
2649
2650void
2651ev_embed_stop (EV_P_ ev_embed *w)
2652{
2653 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w)))
2655 return;
2656
2657 ev_io_stop (EV_A_ &w->io);
2658 ev_prepare_stop (EV_A_ &w->prepare);
2659
2660 ev_stop (EV_A_ (W)w);
2661}
2662#endif
2663
2664#if EV_FORK_ENABLE
2665void
2666ev_fork_start (EV_P_ ev_fork *w)
2667{
2668 if (expect_false (ev_is_active (w)))
2669 return;
2670
2671 ev_start (EV_A_ (W)w, ++forkcnt);
2672 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2673 forks [forkcnt - 1] = w;
2674}
2675
2676void
2677ev_fork_stop (EV_P_ ev_fork *w)
2678{
2679 clear_pending (EV_A_ (W)w);
2680 if (expect_false (!ev_is_active (w)))
2681 return;
2682
2683 {
2684 int active = ev_active (w);
2685
2686 forks [active - 1] = forks [--forkcnt];
2687 ev_active (forks [active - 1]) = active;
2688 }
2689
2690 ev_stop (EV_A_ (W)w);
2691}
2692#endif
2693
2694#if EV_ASYNC_ENABLE
2695void
2696ev_async_start (EV_P_ ev_async *w)
2697{
2698 if (expect_false (ev_is_active (w)))
2699 return;
2700
2701 evpipe_init (EV_A);
2702
2703 ev_start (EV_A_ (W)w, ++asynccnt);
2704 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2705 asyncs [asynccnt - 1] = w;
2706}
2707
2708void
2709ev_async_stop (EV_P_ ev_async *w)
2710{
2711 clear_pending (EV_A_ (W)w);
2712 if (expect_false (!ev_is_active (w)))
2713 return;
2714
2715 {
2716 int active = ev_active (w);
2717
2718 asyncs [active - 1] = asyncs [--asynccnt];
2719 ev_active (asyncs [active - 1]) = active;
2720 }
2721
2722 ev_stop (EV_A_ (W)w);
2723}
2724
2725void
2726ev_async_send (EV_P_ ev_async *w)
2727{
2728 w->sent = 1;
2729 evpipe_write (EV_A_ &gotasync);
2730}
2731#endif
2732
1568/*****************************************************************************/ 2733/*****************************************************************************/
1569 2734
1570struct ev_once 2735struct ev_once
1571{ 2736{
1572 struct ev_io io; 2737 ev_io io;
1573 struct ev_timer to; 2738 ev_timer to;
1574 void (*cb)(int revents, void *arg); 2739 void (*cb)(int revents, void *arg);
1575 void *arg; 2740 void *arg;
1576}; 2741};
1577 2742
1578static void 2743static void
1587 2752
1588 cb (revents, arg); 2753 cb (revents, arg);
1589} 2754}
1590 2755
1591static void 2756static void
1592once_cb_io (EV_P_ struct ev_io *w, int revents) 2757once_cb_io (EV_P_ ev_io *w, int revents)
1593{ 2758{
1594 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2759 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1595} 2760}
1596 2761
1597static void 2762static void
1598once_cb_to (EV_P_ struct ev_timer *w, int revents) 2763once_cb_to (EV_P_ ev_timer *w, int revents)
1599{ 2764{
1600 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2765 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1601} 2766}
1602 2767
1603void 2768void
1604ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2769ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1605{ 2770{
1606 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2771 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1607 2772
1608 if (!once) 2773 if (expect_false (!once))
2774 {
1609 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2775 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1610 else 2776 return;
1611 { 2777 }
2778
1612 once->cb = cb; 2779 once->cb = cb;
1613 once->arg = arg; 2780 once->arg = arg;
1614 2781
1615 ev_init (&once->io, once_cb_io); 2782 ev_init (&once->io, once_cb_io);
1616 if (fd >= 0) 2783 if (fd >= 0)
1617 { 2784 {
1618 ev_io_set (&once->io, fd, events); 2785 ev_io_set (&once->io, fd, events);
1619 ev_io_start (EV_A_ &once->io); 2786 ev_io_start (EV_A_ &once->io);
1620 } 2787 }
1621 2788
1622 ev_init (&once->to, once_cb_to); 2789 ev_init (&once->to, once_cb_to);
1623 if (timeout >= 0.) 2790 if (timeout >= 0.)
1624 { 2791 {
1625 ev_timer_set (&once->to, timeout, 0.); 2792 ev_timer_set (&once->to, timeout, 0.);
1626 ev_timer_start (EV_A_ &once->to); 2793 ev_timer_start (EV_A_ &once->to);
1627 }
1628 } 2794 }
1629} 2795}
2796
2797#if EV_MULTIPLICITY
2798 #include "ev_wrap.h"
2799#endif
1630 2800
1631#ifdef __cplusplus 2801#ifdef __cplusplus
1632} 2802}
1633#endif 2803#endif
1634 2804

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines