ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.103 by root, Mon Nov 12 00:31:08 2007 UTC vs.
Revision 1.277 by root, Sun Dec 14 21:58:08 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
38 63
39# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
42# endif 67# endif
43# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 1
45# endif 70# endif
71# else
72# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0
74# endif
75# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0
77# endif
46# endif 78# endif
47 79
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
85# endif
50# endif 86# endif
51 87
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 88# ifndef EV_USE_SELECT
89# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif
54# endif 94# endif
55 95
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 98# define EV_USE_POLL 1
99# else
100# define EV_USE_POLL 0
101# endif
58# endif 102# endif
59 103
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 106# define EV_USE_EPOLL 1
107# else
108# define EV_USE_EPOLL 0
109# endif
62# endif 110# endif
111
112# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif
118# endif
119
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1
123# else
124# define EV_USE_PORT 0
125# endif
126# endif
63 127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
64#endif 144#endif
65 145
66#include <math.h> 146#include <math.h>
67#include <stdlib.h> 147#include <stdlib.h>
68#include <fcntl.h> 148#include <fcntl.h>
75#include <sys/types.h> 155#include <sys/types.h>
76#include <time.h> 156#include <time.h>
77 157
78#include <signal.h> 158#include <signal.h>
79 159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
80#ifndef _WIN32 166#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 167# include <sys/time.h>
83# include <sys/wait.h> 168# include <sys/wait.h>
169# include <unistd.h>
84#else 170#else
171# include <io.h>
85# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 173# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
89# endif 176# endif
90#endif 177#endif
91 178
92/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
93 188
94#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
95# define EV_USE_MONOTONIC 1 191# define EV_USE_MONOTONIC 1
192# else
193# define EV_USE_MONOTONIC 0
194# endif
195#endif
196
197#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
96#endif 207#endif
97 208
98#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
100#endif 211#endif
101 212
102#ifndef EV_USE_POLL 213#ifndef EV_USE_POLL
103# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 214# ifdef _WIN32
215# define EV_USE_POLL 0
216# else
217# define EV_USE_POLL 1
218# endif
104#endif 219#endif
105 220
106#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
107# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
108#endif 227#endif
109 228
110#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
111# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
112#endif 231#endif
113 232
114#ifndef EV_USE_REALTIME 233#ifndef EV_USE_PORT
234# define EV_USE_PORT 0
235#endif
236
237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
115# define EV_USE_REALTIME 1 239# define EV_USE_INOTIFY 1
240# else
241# define EV_USE_INOTIFY 0
116#endif 242# endif
243#endif
117 244
118/**/ 245#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif
252
253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
119 288
120#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
121# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
122# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
123#endif 292#endif
125#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
126# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
127# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
128#endif 297#endif
129 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
130#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
131# include <winsock.h> 322# include <winsock.h>
132#endif 323#endif
133 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
134/**/ 346/**/
135 347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363
136#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
137#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
138#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
139/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
140 367
141#ifdef EV_H
142# include EV_H
143#else
144# include "ev.h"
145#endif
146
147#if __GNUC__ >= 3 368#if __GNUC__ >= 4
148# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
149# define inline inline 370# define noinline __attribute__ ((noinline))
150#else 371#else
151# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
152# define inline static 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
153#endif 377#endif
154 378
155#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
156#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
157 388
158#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
159#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
160 391
161#define EMPTY /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */
162 394
163typedef struct ev_watcher *W; 395typedef ev_watcher *W;
164typedef struct ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
165typedef struct ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
166 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_MONOTONIC
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
167static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif
168 407
169#ifdef _WIN32 408#ifdef _WIN32
170# include "ev_win32.c" 409# include "ev_win32.c"
171#endif 410#endif
172 411
173/*****************************************************************************/ 412/*****************************************************************************/
174 413
175static void (*syserr_cb)(const char *msg); 414static void (*syserr_cb)(const char *msg);
176 415
416void
177void ev_set_syserr_cb (void (*cb)(const char *msg)) 417ev_set_syserr_cb (void (*cb)(const char *msg))
178{ 418{
179 syserr_cb = cb; 419 syserr_cb = cb;
180} 420}
181 421
182static void 422static void noinline
183syserr (const char *msg) 423ev_syserr (const char *msg)
184{ 424{
185 if (!msg) 425 if (!msg)
186 msg = "(libev) system error"; 426 msg = "(libev) system error";
187 427
188 if (syserr_cb) 428 if (syserr_cb)
192 perror (msg); 432 perror (msg);
193 abort (); 433 abort ();
194 } 434 }
195} 435}
196 436
437static void *
438ev_realloc_emul (void *ptr, long size)
439{
440 /* some systems, notably openbsd and darwin, fail to properly
441 * implement realloc (x, 0) (as required by both ansi c-98 and
442 * the single unix specification, so work around them here.
443 */
444
445 if (size)
446 return realloc (ptr, size);
447
448 free (ptr);
449 return 0;
450}
451
197static void *(*alloc)(void *ptr, long size); 452static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
198 453
454void
199void ev_set_allocator (void *(*cb)(void *ptr, long size)) 455ev_set_allocator (void *(*cb)(void *ptr, long size))
200{ 456{
201 alloc = cb; 457 alloc = cb;
202} 458}
203 459
204static void * 460inline_speed void *
205ev_realloc (void *ptr, long size) 461ev_realloc (void *ptr, long size)
206{ 462{
207 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 463 ptr = alloc (ptr, size);
208 464
209 if (!ptr && size) 465 if (!ptr && size)
210 { 466 {
211 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 467 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
212 abort (); 468 abort ();
223typedef struct 479typedef struct
224{ 480{
225 WL head; 481 WL head;
226 unsigned char events; 482 unsigned char events;
227 unsigned char reify; 483 unsigned char reify;
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused;
486#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif
228#if EV_SELECT_IS_WINSOCKET 489#if EV_SELECT_IS_WINSOCKET
229 SOCKET handle; 490 SOCKET handle;
230#endif 491#endif
231} ANFD; 492} ANFD;
232 493
233typedef struct 494typedef struct
234{ 495{
235 W w; 496 W w;
236 int events; 497 int events;
237} ANPENDING; 498} ANPENDING;
499
500#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */
502typedef struct
503{
504 WL head;
505} ANFS;
506#endif
507
508/* Heap Entry */
509#if EV_HEAP_CACHE_AT
510 typedef struct {
511 ev_tstamp at;
512 WT w;
513 } ANHE;
514
515 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else
519 typedef WT ANHE;
520
521 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he)
524#endif
238 525
239#if EV_MULTIPLICITY 526#if EV_MULTIPLICITY
240 527
241 struct ev_loop 528 struct ev_loop
242 { 529 {
246 #include "ev_vars.h" 533 #include "ev_vars.h"
247 #undef VAR 534 #undef VAR
248 }; 535 };
249 #include "ev_wrap.h" 536 #include "ev_wrap.h"
250 537
251 struct ev_loop default_loop_struct; 538 static struct ev_loop default_loop_struct;
252 static struct ev_loop *default_loop; 539 struct ev_loop *ev_default_loop_ptr;
253 540
254#else 541#else
255 542
256 ev_tstamp ev_rt_now; 543 ev_tstamp ev_rt_now;
257 #define VAR(name,decl) static decl; 544 #define VAR(name,decl) static decl;
258 #include "ev_vars.h" 545 #include "ev_vars.h"
259 #undef VAR 546 #undef VAR
260 547
261 static int default_loop; 548 static int ev_default_loop_ptr;
262 549
263#endif 550#endif
264 551
265/*****************************************************************************/ 552/*****************************************************************************/
266 553
276 gettimeofday (&tv, 0); 563 gettimeofday (&tv, 0);
277 return tv.tv_sec + tv.tv_usec * 1e-6; 564 return tv.tv_sec + tv.tv_usec * 1e-6;
278#endif 565#endif
279} 566}
280 567
281inline ev_tstamp 568ev_tstamp inline_size
282get_clock (void) 569get_clock (void)
283{ 570{
284#if EV_USE_MONOTONIC 571#if EV_USE_MONOTONIC
285 if (expect_true (have_monotonic)) 572 if (expect_true (have_monotonic))
286 { 573 {
299{ 586{
300 return ev_rt_now; 587 return ev_rt_now;
301} 588}
302#endif 589#endif
303 590
304#define array_roundsize(type,n) ((n) | 4 & ~3) 591void
592ev_sleep (ev_tstamp delay)
593{
594 if (delay > 0.)
595 {
596#if EV_USE_NANOSLEEP
597 struct timespec ts;
598
599 ts.tv_sec = (time_t)delay;
600 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
601
602 nanosleep (&ts, 0);
603#elif defined(_WIN32)
604 Sleep ((unsigned long)(delay * 1e3));
605#else
606 struct timeval tv;
607
608 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */
614 select (0, 0, 0, 0, &tv);
615#endif
616 }
617}
618
619/*****************************************************************************/
620
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622
623int inline_size
624array_nextsize (int elem, int cur, int cnt)
625{
626 int ncur = cur + 1;
627
628 do
629 ncur <<= 1;
630 while (cnt > ncur);
631
632 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
633 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
634 {
635 ncur *= elem;
636 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
637 ncur = ncur - sizeof (void *) * 4;
638 ncur /= elem;
639 }
640
641 return ncur;
642}
643
644static noinline void *
645array_realloc (int elem, void *base, int *cur, int cnt)
646{
647 *cur = array_nextsize (elem, *cur, cnt);
648 return ev_realloc (base, elem * *cur);
649}
650
651#define array_init_zero(base,count) \
652 memset ((void *)(base), 0, sizeof (*(base)) * (count))
305 653
306#define array_needsize(type,base,cur,cnt,init) \ 654#define array_needsize(type,base,cur,cnt,init) \
307 if (expect_false ((cnt) > cur)) \ 655 if (expect_false ((cnt) > (cur))) \
308 { \ 656 { \
309 int newcnt = cur; \ 657 int ocur_ = (cur); \
310 do \ 658 (base) = (type *)array_realloc \
311 { \ 659 (sizeof (type), (base), &(cur), (cnt)); \
312 newcnt = array_roundsize (type, newcnt << 1); \ 660 init ((base) + (ocur_), (cur) - ocur_); \
313 } \
314 while ((cnt) > newcnt); \
315 \
316 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
317 init (base + cur, newcnt - cur); \
318 cur = newcnt; \
319 } 661 }
320 662
663#if 0
321#define array_slim(type,stem) \ 664#define array_slim(type,stem) \
322 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 665 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
323 { \ 666 { \
324 stem ## max = array_roundsize (stem ## cnt >> 1); \ 667 stem ## max = array_roundsize (stem ## cnt >> 1); \
325 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 668 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
326 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
327 } 670 }
671#endif
328 672
329#define array_free(stem, idx) \ 673#define array_free(stem, idx) \
330 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
331 675
332/*****************************************************************************/ 676/*****************************************************************************/
333 677
334static void 678void noinline
335anfds_init (ANFD *base, int count)
336{
337 while (count--)
338 {
339 base->head = 0;
340 base->events = EV_NONE;
341 base->reify = 0;
342
343 ++base;
344 }
345}
346
347void
348ev_feed_event (EV_P_ void *w, int revents) 679ev_feed_event (EV_P_ void *w, int revents)
349{ 680{
350 W w_ = (W)w; 681 W w_ = (W)w;
682 int pri = ABSPRI (w_);
351 683
352 if (w_->pending) 684 if (expect_false (w_->pending))
685 pendings [pri][w_->pending - 1].events |= revents;
686 else
353 { 687 {
688 w_->pending = ++pendingcnt [pri];
689 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
690 pendings [pri][w_->pending - 1].w = w_;
354 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 691 pendings [pri][w_->pending - 1].events = revents;
355 return;
356 } 692 }
357
358 w_->pending = ++pendingcnt [ABSPRI (w_)];
359 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
360 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
361 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
362} 693}
363 694
364static void 695void inline_speed
365queue_events (EV_P_ W *events, int eventcnt, int type) 696queue_events (EV_P_ W *events, int eventcnt, int type)
366{ 697{
367 int i; 698 int i;
368 699
369 for (i = 0; i < eventcnt; ++i) 700 for (i = 0; i < eventcnt; ++i)
370 ev_feed_event (EV_A_ events [i], type); 701 ev_feed_event (EV_A_ events [i], type);
371} 702}
372 703
373inline void 704/*****************************************************************************/
705
706void inline_speed
374fd_event (EV_P_ int fd, int revents) 707fd_event (EV_P_ int fd, int revents)
375{ 708{
376 ANFD *anfd = anfds + fd; 709 ANFD *anfd = anfds + fd;
377 struct ev_io *w; 710 ev_io *w;
378 711
379 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
380 { 713 {
381 int ev = w->events & revents; 714 int ev = w->events & revents;
382 715
383 if (ev) 716 if (ev)
384 ev_feed_event (EV_A_ (W)w, ev); 717 ev_feed_event (EV_A_ (W)w, ev);
386} 719}
387 720
388void 721void
389ev_feed_fd_event (EV_P_ int fd, int revents) 722ev_feed_fd_event (EV_P_ int fd, int revents)
390{ 723{
724 if (fd >= 0 && fd < anfdmax)
391 fd_event (EV_A_ fd, revents); 725 fd_event (EV_A_ fd, revents);
392} 726}
393 727
394/*****************************************************************************/ 728void inline_size
395
396static void
397fd_reify (EV_P) 729fd_reify (EV_P)
398{ 730{
399 int i; 731 int i;
400 732
401 for (i = 0; i < fdchangecnt; ++i) 733 for (i = 0; i < fdchangecnt; ++i)
402 { 734 {
403 int fd = fdchanges [i]; 735 int fd = fdchanges [i];
404 ANFD *anfd = anfds + fd; 736 ANFD *anfd = anfds + fd;
405 struct ev_io *w; 737 ev_io *w;
406 738
407 int events = 0; 739 unsigned char events = 0;
408 740
409 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 741 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
410 events |= w->events; 742 events |= (unsigned char)w->events;
411 743
412#if EV_SELECT_IS_WINSOCKET 744#if EV_SELECT_IS_WINSOCKET
413 if (events) 745 if (events)
414 { 746 {
415 unsigned long argp; 747 unsigned long arg;
748 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else
416 anfd->handle = _get_osfhandle (fd); 751 anfd->handle = _get_osfhandle (fd);
752 #endif
417 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
418 } 754 }
419#endif 755#endif
420 756
757 {
758 unsigned char o_events = anfd->events;
759 unsigned char o_reify = anfd->reify;
760
421 anfd->reify = 0; 761 anfd->reify = 0;
422
423 method_modify (EV_A_ fd, anfd->events, events);
424 anfd->events = events; 762 anfd->events = events;
763
764 if (o_events != events || o_reify & EV_IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events);
766 }
425 } 767 }
426 768
427 fdchangecnt = 0; 769 fdchangecnt = 0;
428} 770}
429 771
430static void 772void inline_size
431fd_change (EV_P_ int fd) 773fd_change (EV_P_ int fd, int flags)
432{ 774{
433 if (anfds [fd].reify) 775 unsigned char reify = anfds [fd].reify;
434 return;
435
436 anfds [fd].reify = 1; 776 anfds [fd].reify |= flags;
437 777
778 if (expect_true (!reify))
779 {
438 ++fdchangecnt; 780 ++fdchangecnt;
439 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
440 fdchanges [fdchangecnt - 1] = fd; 782 fdchanges [fdchangecnt - 1] = fd;
783 }
441} 784}
442 785
443static void 786void inline_speed
444fd_kill (EV_P_ int fd) 787fd_kill (EV_P_ int fd)
445{ 788{
446 struct ev_io *w; 789 ev_io *w;
447 790
448 while ((w = (struct ev_io *)anfds [fd].head)) 791 while ((w = (ev_io *)anfds [fd].head))
449 { 792 {
450 ev_io_stop (EV_A_ w); 793 ev_io_stop (EV_A_ w);
451 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
452 } 795 }
453} 796}
454 797
455static int 798int inline_size
456fd_valid (int fd) 799fd_valid (int fd)
457{ 800{
458#ifdef _WIN32 801#ifdef _WIN32
459 return _get_osfhandle (fd) != -1; 802 return _get_osfhandle (fd) != -1;
460#else 803#else
461 return fcntl (fd, F_GETFD) != -1; 804 return fcntl (fd, F_GETFD) != -1;
462#endif 805#endif
463} 806}
464 807
465/* called on EBADF to verify fds */ 808/* called on EBADF to verify fds */
466static void 809static void noinline
467fd_ebadf (EV_P) 810fd_ebadf (EV_P)
468{ 811{
469 int fd; 812 int fd;
470 813
471 for (fd = 0; fd < anfdmax; ++fd) 814 for (fd = 0; fd < anfdmax; ++fd)
472 if (anfds [fd].events) 815 if (anfds [fd].events)
473 if (!fd_valid (fd) == -1 && errno == EBADF) 816 if (!fd_valid (fd) && errno == EBADF)
474 fd_kill (EV_A_ fd); 817 fd_kill (EV_A_ fd);
475} 818}
476 819
477/* called on ENOMEM in select/poll to kill some fds and retry */ 820/* called on ENOMEM in select/poll to kill some fds and retry */
478static void 821static void noinline
479fd_enomem (EV_P) 822fd_enomem (EV_P)
480{ 823{
481 int fd; 824 int fd;
482 825
483 for (fd = anfdmax; fd--; ) 826 for (fd = anfdmax; fd--; )
486 fd_kill (EV_A_ fd); 829 fd_kill (EV_A_ fd);
487 return; 830 return;
488 } 831 }
489} 832}
490 833
491/* usually called after fork if method needs to re-arm all fds from scratch */ 834/* usually called after fork if backend needs to re-arm all fds from scratch */
492static void 835static void noinline
493fd_rearm_all (EV_P) 836fd_rearm_all (EV_P)
494{ 837{
495 int fd; 838 int fd;
496 839
497 /* this should be highly optimised to not do anything but set a flag */
498 for (fd = 0; fd < anfdmax; ++fd) 840 for (fd = 0; fd < anfdmax; ++fd)
499 if (anfds [fd].events) 841 if (anfds [fd].events)
500 { 842 {
501 anfds [fd].events = 0; 843 anfds [fd].events = 0;
844 anfds [fd].emask = 0;
502 fd_change (EV_A_ fd); 845 fd_change (EV_A_ fd, EV_IOFDSET | 1);
503 } 846 }
504} 847}
505 848
506/*****************************************************************************/ 849/*****************************************************************************/
507 850
508static void 851/*
509upheap (WT *heap, int k) 852 * the heap functions want a real array index. array index 0 uis guaranteed to not
510{ 853 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
511 WT w = heap [k]; 854 * the branching factor of the d-tree.
855 */
512 856
513 while (k && heap [k >> 1]->at > w->at) 857/*
514 { 858 * at the moment we allow libev the luxury of two heaps,
515 heap [k] = heap [k >> 1]; 859 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
516 ((W)heap [k])->active = k + 1; 860 * which is more cache-efficient.
517 k >>= 1; 861 * the difference is about 5% with 50000+ watchers.
518 } 862 */
863#if EV_USE_4HEAP
519 864
520 heap [k] = w; 865#define DHEAP 4
521 ((W)heap [k])->active = k + 1; 866#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k))
522 869
523} 870/* away from the root */
524 871void inline_speed
525static void
526downheap (WT *heap, int N, int k) 872downheap (ANHE *heap, int N, int k)
527{ 873{
528 WT w = heap [k]; 874 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0;
529 876
530 while (k < (N >> 1)) 877 for (;;)
531 { 878 {
532 int j = k << 1; 879 ev_tstamp minat;
880 ANHE *minpos;
881 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
533 882
534 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 883 /* find minimum child */
884 if (expect_true (pos + DHEAP - 1 < E))
535 ++j; 885 {
536 886 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
537 if (w->at <= heap [j]->at) 887 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
888 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
889 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
890 }
891 else if (pos < E)
892 {
893 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else
538 break; 899 break;
539 900
901 if (ANHE_at (he) <= minat)
902 break;
903
904 heap [k] = *minpos;
905 ev_active (ANHE_w (*minpos)) = k;
906
907 k = minpos - heap;
908 }
909
910 heap [k] = he;
911 ev_active (ANHE_w (he)) = k;
912}
913
914#else /* 4HEAP */
915
916#define HEAP0 1
917#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p))
919
920/* away from the root */
921void inline_speed
922downheap (ANHE *heap, int N, int k)
923{
924 ANHE he = heap [k];
925
926 for (;;)
927 {
928 int c = k << 1;
929
930 if (c > N + HEAP0 - 1)
931 break;
932
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0;
935
936 if (ANHE_at (he) <= ANHE_at (heap [c]))
937 break;
938
540 heap [k] = heap [j]; 939 heap [k] = heap [c];
541 ((W)heap [k])->active = k + 1; 940 ev_active (ANHE_w (heap [k])) = k;
941
542 k = j; 942 k = c;
543 } 943 }
544 944
545 heap [k] = w; 945 heap [k] = he;
546 ((W)heap [k])->active = k + 1; 946 ev_active (ANHE_w (he)) = k;
547} 947}
948#endif
548 949
549inline void 950/* towards the root */
951void inline_speed
952upheap (ANHE *heap, int k)
953{
954 ANHE he = heap [k];
955
956 for (;;)
957 {
958 int p = HPARENT (k);
959
960 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
961 break;
962
963 heap [k] = heap [p];
964 ev_active (ANHE_w (heap [k])) = k;
965 k = p;
966 }
967
968 heap [k] = he;
969 ev_active (ANHE_w (he)) = k;
970}
971
972void inline_size
550adjustheap (WT *heap, int N, int k) 973adjustheap (ANHE *heap, int N, int k)
551{ 974{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
552 upheap (heap, k); 976 upheap (heap, k);
977 else
553 downheap (heap, N, k); 978 downheap (heap, N, k);
979}
980
981/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size
983reheap (ANHE *heap, int N)
984{
985 int i;
986
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
988 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
989 for (i = 0; i < N; ++i)
990 upheap (heap, i + HEAP0);
554} 991}
555 992
556/*****************************************************************************/ 993/*****************************************************************************/
557 994
558typedef struct 995typedef struct
559{ 996{
560 WL head; 997 WL head;
561 sig_atomic_t volatile gotsig; 998 EV_ATOMIC_T gotsig;
562} ANSIG; 999} ANSIG;
563 1000
564static ANSIG *signals; 1001static ANSIG *signals;
565static int signalmax; 1002static int signalmax;
566 1003
567static int sigpipe [2]; 1004static EV_ATOMIC_T gotsig;
568static sig_atomic_t volatile gotsig;
569static struct ev_io sigev;
570 1005
571static void 1006/*****************************************************************************/
572signals_init (ANSIG *base, int count)
573{
574 while (count--)
575 {
576 base->head = 0;
577 base->gotsig = 0;
578 1007
579 ++base; 1008void inline_speed
580 }
581}
582
583static void
584sighandler (int signum)
585{
586#if _WIN32
587 signal (signum, sighandler);
588#endif
589
590 signals [signum - 1].gotsig = 1;
591
592 if (!gotsig)
593 {
594 int old_errno = errno;
595 gotsig = 1;
596 write (sigpipe [1], &signum, 1);
597 errno = old_errno;
598 }
599}
600
601void
602ev_feed_signal_event (EV_P_ int signum)
603{
604 WL w;
605
606#if EV_MULTIPLICITY
607 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
608#endif
609
610 --signum;
611
612 if (signum < 0 || signum >= signalmax)
613 return;
614
615 signals [signum].gotsig = 0;
616
617 for (w = signals [signum].head; w; w = w->next)
618 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
619}
620
621static void
622sigcb (EV_P_ struct ev_io *iow, int revents)
623{
624 int signum;
625
626 read (sigpipe [0], &revents, 1);
627 gotsig = 0;
628
629 for (signum = signalmax; signum--; )
630 if (signals [signum].gotsig)
631 ev_feed_signal_event (EV_A_ signum + 1);
632}
633
634inline void
635fd_intern (int fd) 1009fd_intern (int fd)
636{ 1010{
637#ifdef _WIN32 1011#ifdef _WIN32
638 int arg = 1; 1012 unsigned long arg = 1;
639 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
640#else 1014#else
641 fcntl (fd, F_SETFD, FD_CLOEXEC); 1015 fcntl (fd, F_SETFD, FD_CLOEXEC);
642 fcntl (fd, F_SETFL, O_NONBLOCK); 1016 fcntl (fd, F_SETFL, O_NONBLOCK);
643#endif 1017#endif
644} 1018}
645 1019
1020static void noinline
1021evpipe_init (EV_P)
1022{
1023 if (!ev_is_active (&pipeev))
1024 {
1025#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0)
1027 {
1028 evpipe [0] = -1;
1029 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ);
1031 }
1032 else
1033#endif
1034 {
1035 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe");
1037
1038 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ);
1041 }
1042
1043 ev_io_start (EV_A_ &pipeev);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 }
1046}
1047
1048void inline_size
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{
1051 if (!*flag)
1052 {
1053 int old_errno = errno; /* save errno because write might clobber it */
1054
1055 *flag = 1;
1056
1057#if EV_USE_EVENTFD
1058 if (evfd >= 0)
1059 {
1060 uint64_t counter = 1;
1061 write (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064#endif
1065 write (evpipe [1], &old_errno, 1);
1066
1067 errno = old_errno;
1068 }
1069}
1070
646static void 1071static void
647siginit (EV_P) 1072pipecb (EV_P_ ev_io *iow, int revents)
648{ 1073{
649 fd_intern (sigpipe [0]); 1074#if EV_USE_EVENTFD
650 fd_intern (sigpipe [1]); 1075 if (evfd >= 0)
1076 {
1077 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t));
1079 }
1080 else
1081#endif
1082 {
1083 char dummy;
1084 read (evpipe [0], &dummy, 1);
1085 }
651 1086
652 ev_io_set (&sigev, sigpipe [0], EV_READ); 1087 if (gotsig && ev_is_default_loop (EV_A))
653 ev_io_start (EV_A_ &sigev); 1088 {
654 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1089 int signum;
1090 gotsig = 0;
1091
1092 for (signum = signalmax; signum--; )
1093 if (signals [signum].gotsig)
1094 ev_feed_signal_event (EV_A_ signum + 1);
1095 }
1096
1097#if EV_ASYNC_ENABLE
1098 if (gotasync)
1099 {
1100 int i;
1101 gotasync = 0;
1102
1103 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent)
1105 {
1106 asyncs [i]->sent = 0;
1107 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1108 }
1109 }
1110#endif
655} 1111}
656 1112
657/*****************************************************************************/ 1113/*****************************************************************************/
658 1114
659static struct ev_child *childs [PID_HASHSIZE]; 1115static void
1116ev_sighandler (int signum)
1117{
1118#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct;
1120#endif
1121
1122#if _WIN32
1123 signal (signum, ev_sighandler);
1124#endif
1125
1126 signals [signum - 1].gotsig = 1;
1127 evpipe_write (EV_A_ &gotsig);
1128}
1129
1130void noinline
1131ev_feed_signal_event (EV_P_ int signum)
1132{
1133 WL w;
1134
1135#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137#endif
1138
1139 --signum;
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return;
1143
1144 signals [signum].gotsig = 0;
1145
1146 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148}
1149
1150/*****************************************************************************/
1151
1152static WL childs [EV_PID_HASHSIZE];
660 1153
661#ifndef _WIN32 1154#ifndef _WIN32
662 1155
663static struct ev_signal childev; 1156static ev_signal childev;
1157
1158#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0
1160#endif
1161
1162void inline_speed
1163child_reap (EV_P_ int chain, int pid, int status)
1164{
1165 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167
1168 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1169 {
1170 if ((w->pid == pid || !w->pid)
1171 && (!traced || (w->flags & 1)))
1172 {
1173 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1174 w->rpid = pid;
1175 w->rstatus = status;
1176 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1177 }
1178 }
1179}
664 1180
665#ifndef WCONTINUED 1181#ifndef WCONTINUED
666# define WCONTINUED 0 1182# define WCONTINUED 0
667#endif 1183#endif
668 1184
669static void 1185static void
670child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
671{
672 struct ev_child *w;
673
674 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
675 if (w->pid == pid || !w->pid)
676 {
677 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
678 w->rpid = pid;
679 w->rstatus = status;
680 ev_feed_event (EV_A_ (W)w, EV_CHILD);
681 }
682}
683
684static void
685childcb (EV_P_ struct ev_signal *sw, int revents) 1186childcb (EV_P_ ev_signal *sw, int revents)
686{ 1187{
687 int pid, status; 1188 int pid, status;
688 1189
1190 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
689 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1191 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
690 { 1192 if (!WCONTINUED
1193 || errno != EINVAL
1194 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1195 return;
1196
691 /* make sure we are called again until all childs have been reaped */ 1197 /* make sure we are called again until all children have been reaped */
1198 /* we need to do it this way so that the callback gets called before we continue */
692 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1199 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
693 1200
694 child_reap (EV_A_ sw, pid, pid, status); 1201 child_reap (EV_A_ pid, pid, status);
1202 if (EV_PID_HASHSIZE > 1)
695 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1203 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
696 }
697} 1204}
698 1205
699#endif 1206#endif
700 1207
701/*****************************************************************************/ 1208/*****************************************************************************/
702 1209
1210#if EV_USE_PORT
1211# include "ev_port.c"
1212#endif
703#if EV_USE_KQUEUE 1213#if EV_USE_KQUEUE
704# include "ev_kqueue.c" 1214# include "ev_kqueue.c"
705#endif 1215#endif
706#if EV_USE_EPOLL 1216#if EV_USE_EPOLL
707# include "ev_epoll.c" 1217# include "ev_epoll.c"
724{ 1234{
725 return EV_VERSION_MINOR; 1235 return EV_VERSION_MINOR;
726} 1236}
727 1237
728/* return true if we are running with elevated privileges and should ignore env variables */ 1238/* return true if we are running with elevated privileges and should ignore env variables */
729static int 1239int inline_size
730enable_secure (void) 1240enable_secure (void)
731{ 1241{
732#ifdef _WIN32 1242#ifdef _WIN32
733 return 0; 1243 return 0;
734#else 1244#else
735 return getuid () != geteuid () 1245 return getuid () != geteuid ()
736 || getgid () != getegid (); 1246 || getgid () != getegid ();
737#endif 1247#endif
738} 1248}
739 1249
740int 1250unsigned int
741ev_method (EV_P) 1251ev_supported_backends (void)
742{ 1252{
743 return method; 1253 unsigned int flags = 0;
744}
745 1254
746static void 1255 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
747loop_init (EV_P_ int methods) 1256 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1257 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1258 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1259 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1260
1261 return flags;
1262}
1263
1264unsigned int
1265ev_recommended_backends (void)
748{ 1266{
749 if (!method) 1267 unsigned int flags = ev_supported_backends ();
1268
1269#ifndef __NetBSD__
1270 /* kqueue is borked on everything but netbsd apparently */
1271 /* it usually doesn't work correctly on anything but sockets and pipes */
1272 flags &= ~EVBACKEND_KQUEUE;
1273#endif
1274#ifdef __APPLE__
1275 // flags &= ~EVBACKEND_KQUEUE & ~EVBACKEND_POLL; for documentation
1276 flags &= ~EVBACKEND_SELECT;
1277#endif
1278
1279 return flags;
1280}
1281
1282unsigned int
1283ev_embeddable_backends (void)
1284{
1285 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1286
1287 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1288 /* please fix it and tell me how to detect the fix */
1289 flags &= ~EVBACKEND_EPOLL;
1290
1291 return flags;
1292}
1293
1294unsigned int
1295ev_backend (EV_P)
1296{
1297 return backend;
1298}
1299
1300unsigned int
1301ev_loop_count (EV_P)
1302{
1303 return loop_count;
1304}
1305
1306void
1307ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1308{
1309 io_blocktime = interval;
1310}
1311
1312void
1313ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1314{
1315 timeout_blocktime = interval;
1316}
1317
1318static void noinline
1319loop_init (EV_P_ unsigned int flags)
1320{
1321 if (!backend)
750 { 1322 {
751#if EV_USE_MONOTONIC 1323#if EV_USE_MONOTONIC
752 { 1324 {
753 struct timespec ts; 1325 struct timespec ts;
754 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
755 have_monotonic = 1; 1327 have_monotonic = 1;
756 } 1328 }
757#endif 1329#endif
758 1330
759 ev_rt_now = ev_time (); 1331 ev_rt_now = ev_time ();
760 mn_now = get_clock (); 1332 mn_now = get_clock ();
761 now_floor = mn_now; 1333 now_floor = mn_now;
762 rtmn_diff = ev_rt_now - mn_now; 1334 rtmn_diff = ev_rt_now - mn_now;
763 1335
764 if (methods == EVMETHOD_AUTO) 1336 io_blocktime = 0.;
765 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1337 timeout_blocktime = 0.;
1338 backend = 0;
1339 backend_fd = -1;
1340 gotasync = 0;
1341#if EV_USE_INOTIFY
1342 fs_fd = -2;
1343#endif
1344
1345 /* pid check not overridable via env */
1346#ifndef _WIN32
1347 if (flags & EVFLAG_FORKCHECK)
1348 curpid = getpid ();
1349#endif
1350
1351 if (!(flags & EVFLAG_NOENV)
1352 && !enable_secure ()
1353 && getenv ("LIBEV_FLAGS"))
766 methods = atoi (getenv ("LIBEV_METHODS")); 1354 flags = atoi (getenv ("LIBEV_FLAGS"));
767 else
768 methods = EVMETHOD_ANY;
769 1355
770 method = 0; 1356 if (!(flags & 0x0000ffffU))
1357 flags |= ev_recommended_backends ();
1358
1359#if EV_USE_PORT
1360 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1361#endif
771#if EV_USE_KQUEUE 1362#if EV_USE_KQUEUE
772 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1363 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
773#endif 1364#endif
774#if EV_USE_EPOLL 1365#if EV_USE_EPOLL
775 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1366 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
776#endif 1367#endif
777#if EV_USE_POLL 1368#if EV_USE_POLL
778 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1369 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
779#endif 1370#endif
780#if EV_USE_SELECT 1371#if EV_USE_SELECT
781 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
782#endif 1373#endif
783 1374
784 ev_init (&sigev, sigcb); 1375 ev_init (&pipeev, pipecb);
785 ev_set_priority (&sigev, EV_MAXPRI); 1376 ev_set_priority (&pipeev, EV_MAXPRI);
786 } 1377 }
787} 1378}
788 1379
789void 1380static void noinline
790loop_destroy (EV_P) 1381loop_destroy (EV_P)
791{ 1382{
792 int i; 1383 int i;
793 1384
1385 if (ev_is_active (&pipeev))
1386 {
1387 ev_ref (EV_A); /* signal watcher */
1388 ev_io_stop (EV_A_ &pipeev);
1389
1390#if EV_USE_EVENTFD
1391 if (evfd >= 0)
1392 close (evfd);
1393#endif
1394
1395 if (evpipe [0] >= 0)
1396 {
1397 close (evpipe [0]);
1398 close (evpipe [1]);
1399 }
1400 }
1401
1402#if EV_USE_INOTIFY
1403 if (fs_fd >= 0)
1404 close (fs_fd);
1405#endif
1406
1407 if (backend_fd >= 0)
1408 close (backend_fd);
1409
1410#if EV_USE_PORT
1411 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1412#endif
794#if EV_USE_KQUEUE 1413#if EV_USE_KQUEUE
795 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1414 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
796#endif 1415#endif
797#if EV_USE_EPOLL 1416#if EV_USE_EPOLL
798 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1417 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
799#endif 1418#endif
800#if EV_USE_POLL 1419#if EV_USE_POLL
801 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1420 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
802#endif 1421#endif
803#if EV_USE_SELECT 1422#if EV_USE_SELECT
804 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1423 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
805#endif 1424#endif
806 1425
807 for (i = NUMPRI; i--; ) 1426 for (i = NUMPRI; i--; )
1427 {
808 array_free (pending, [i]); 1428 array_free (pending, [i]);
1429#if EV_IDLE_ENABLE
1430 array_free (idle, [i]);
1431#endif
1432 }
1433
1434 ev_free (anfds); anfdmax = 0;
809 1435
810 /* have to use the microsoft-never-gets-it-right macro */ 1436 /* have to use the microsoft-never-gets-it-right macro */
811 array_free (fdchange, EMPTY); 1437 array_free (fdchange, EMPTY);
812 array_free (timer, EMPTY); 1438 array_free (timer, EMPTY);
813#if EV_PERIODICS 1439#if EV_PERIODIC_ENABLE
814 array_free (periodic, EMPTY); 1440 array_free (periodic, EMPTY);
815#endif 1441#endif
1442#if EV_FORK_ENABLE
816 array_free (idle, EMPTY); 1443 array_free (fork, EMPTY);
1444#endif
817 array_free (prepare, EMPTY); 1445 array_free (prepare, EMPTY);
818 array_free (check, EMPTY); 1446 array_free (check, EMPTY);
1447#if EV_ASYNC_ENABLE
1448 array_free (async, EMPTY);
1449#endif
819 1450
820 method = 0; 1451 backend = 0;
821} 1452}
822 1453
823static void 1454#if EV_USE_INOTIFY
1455void inline_size infy_fork (EV_P);
1456#endif
1457
1458void inline_size
824loop_fork (EV_P) 1459loop_fork (EV_P)
825{ 1460{
1461#if EV_USE_PORT
1462 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1463#endif
1464#if EV_USE_KQUEUE
1465 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1466#endif
826#if EV_USE_EPOLL 1467#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1468 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
828#endif 1469#endif
829#if EV_USE_KQUEUE 1470#if EV_USE_INOTIFY
830 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1471 infy_fork (EV_A);
831#endif 1472#endif
832 1473
833 if (ev_is_active (&sigev)) 1474 if (ev_is_active (&pipeev))
834 { 1475 {
835 /* default loop */ 1476 /* this "locks" the handlers against writing to the pipe */
1477 /* while we modify the fd vars */
1478 gotsig = 1;
1479#if EV_ASYNC_ENABLE
1480 gotasync = 1;
1481#endif
836 1482
837 ev_ref (EV_A); 1483 ev_ref (EV_A);
838 ev_io_stop (EV_A_ &sigev); 1484 ev_io_stop (EV_A_ &pipeev);
1485
1486#if EV_USE_EVENTFD
1487 if (evfd >= 0)
1488 close (evfd);
1489#endif
1490
1491 if (evpipe [0] >= 0)
1492 {
839 close (sigpipe [0]); 1493 close (evpipe [0]);
840 close (sigpipe [1]); 1494 close (evpipe [1]);
1495 }
841 1496
842 while (pipe (sigpipe))
843 syserr ("(libev) error creating pipe");
844
845 siginit (EV_A); 1497 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */
1499 pipecb (EV_A_ &pipeev, EV_READ);
846 } 1500 }
847 1501
848 postfork = 0; 1502 postfork = 0;
849} 1503}
1504
1505#if EV_MULTIPLICITY
1506
1507struct ev_loop *
1508ev_loop_new (unsigned int flags)
1509{
1510 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1511
1512 memset (loop, 0, sizeof (struct ev_loop));
1513
1514 loop_init (EV_A_ flags);
1515
1516 if (ev_backend (EV_A))
1517 return loop;
1518
1519 return 0;
1520}
1521
1522void
1523ev_loop_destroy (EV_P)
1524{
1525 loop_destroy (EV_A);
1526 ev_free (loop);
1527}
1528
1529void
1530ev_loop_fork (EV_P)
1531{
1532 postfork = 1; /* must be in line with ev_default_fork */
1533}
1534
1535#if EV_VERIFY
1536static void noinline
1537verify_watcher (EV_P_ W w)
1538{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540
1541 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543}
1544
1545static void noinline
1546verify_heap (EV_P_ ANHE *heap, int N)
1547{
1548 int i;
1549
1550 for (i = HEAP0; i < N + HEAP0; ++i)
1551 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 }
1558}
1559
1560static void noinline
1561array_verify (EV_P_ W *ws, int cnt)
1562{
1563 while (cnt--)
1564 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]);
1567 }
1568}
1569#endif
1570
1571void
1572ev_loop_verify (EV_P)
1573{
1574#if EV_VERIFY
1575 int i;
1576 WL w;
1577
1578 assert (activecnt >= -1);
1579
1580 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1583
1584 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i)
1586 for (w = anfds [i].head; w; w = w->next)
1587 {
1588 verify_watcher (EV_A_ (W)w);
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 }
1592
1593 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt);
1595
1596#if EV_PERIODIC_ENABLE
1597 assert (periodicmax >= periodiccnt);
1598 verify_heap (EV_A_ periodics, periodiccnt);
1599#endif
1600
1601 for (i = NUMPRI; i--; )
1602 {
1603 assert (pendingmax [i] >= pendingcnt [i]);
1604#if EV_IDLE_ENABLE
1605 assert (idleall >= 0);
1606 assert (idlemax [i] >= idlecnt [i]);
1607 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1608#endif
1609 }
1610
1611#if EV_FORK_ENABLE
1612 assert (forkmax >= forkcnt);
1613 array_verify (EV_A_ (W *)forks, forkcnt);
1614#endif
1615
1616#if EV_ASYNC_ENABLE
1617 assert (asyncmax >= asynccnt);
1618 array_verify (EV_A_ (W *)asyncs, asynccnt);
1619#endif
1620
1621 assert (preparemax >= preparecnt);
1622 array_verify (EV_A_ (W *)prepares, preparecnt);
1623
1624 assert (checkmax >= checkcnt);
1625 array_verify (EV_A_ (W *)checks, checkcnt);
1626
1627# if 0
1628 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1629 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1630# endif
1631#endif
1632}
1633
1634#endif /* multiplicity */
850 1635
851#if EV_MULTIPLICITY 1636#if EV_MULTIPLICITY
852struct ev_loop * 1637struct ev_loop *
853ev_loop_new (int methods) 1638ev_default_loop_init (unsigned int flags)
854{
855 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
856
857 memset (loop, 0, sizeof (struct ev_loop));
858
859 loop_init (EV_A_ methods);
860
861 if (ev_method (EV_A))
862 return loop;
863
864 return 0;
865}
866
867void
868ev_loop_destroy (EV_P)
869{
870 loop_destroy (EV_A);
871 ev_free (loop);
872}
873
874void
875ev_loop_fork (EV_P)
876{
877 postfork = 1;
878}
879
880#endif
881
882#if EV_MULTIPLICITY
883struct ev_loop *
884#else 1639#else
885int 1640int
1641ev_default_loop (unsigned int flags)
886#endif 1642#endif
887ev_default_loop (int methods)
888{ 1643{
889 if (sigpipe [0] == sigpipe [1])
890 if (pipe (sigpipe))
891 return 0;
892
893 if (!default_loop) 1644 if (!ev_default_loop_ptr)
894 { 1645 {
895#if EV_MULTIPLICITY 1646#if EV_MULTIPLICITY
896 struct ev_loop *loop = default_loop = &default_loop_struct; 1647 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
897#else 1648#else
898 default_loop = 1; 1649 ev_default_loop_ptr = 1;
899#endif 1650#endif
900 1651
901 loop_init (EV_A_ methods); 1652 loop_init (EV_A_ flags);
902 1653
903 if (ev_method (EV_A)) 1654 if (ev_backend (EV_A))
904 { 1655 {
905 siginit (EV_A);
906
907#ifndef _WIN32 1656#ifndef _WIN32
908 ev_signal_init (&childev, childcb, SIGCHLD); 1657 ev_signal_init (&childev, childcb, SIGCHLD);
909 ev_set_priority (&childev, EV_MAXPRI); 1658 ev_set_priority (&childev, EV_MAXPRI);
910 ev_signal_start (EV_A_ &childev); 1659 ev_signal_start (EV_A_ &childev);
911 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1660 ev_unref (EV_A); /* child watcher should not keep loop alive */
912#endif 1661#endif
913 } 1662 }
914 else 1663 else
915 default_loop = 0; 1664 ev_default_loop_ptr = 0;
916 } 1665 }
917 1666
918 return default_loop; 1667 return ev_default_loop_ptr;
919} 1668}
920 1669
921void 1670void
922ev_default_destroy (void) 1671ev_default_destroy (void)
923{ 1672{
924#if EV_MULTIPLICITY 1673#if EV_MULTIPLICITY
925 struct ev_loop *loop = default_loop; 1674 struct ev_loop *loop = ev_default_loop_ptr;
926#endif 1675#endif
1676
1677 ev_default_loop_ptr = 0;
927 1678
928#ifndef _WIN32 1679#ifndef _WIN32
929 ev_ref (EV_A); /* child watcher */ 1680 ev_ref (EV_A); /* child watcher */
930 ev_signal_stop (EV_A_ &childev); 1681 ev_signal_stop (EV_A_ &childev);
931#endif 1682#endif
932 1683
933 ev_ref (EV_A); /* signal watcher */
934 ev_io_stop (EV_A_ &sigev);
935
936 close (sigpipe [0]); sigpipe [0] = 0;
937 close (sigpipe [1]); sigpipe [1] = 0;
938
939 loop_destroy (EV_A); 1684 loop_destroy (EV_A);
940} 1685}
941 1686
942void 1687void
943ev_default_fork (void) 1688ev_default_fork (void)
944{ 1689{
945#if EV_MULTIPLICITY 1690#if EV_MULTIPLICITY
946 struct ev_loop *loop = default_loop; 1691 struct ev_loop *loop = ev_default_loop_ptr;
947#endif 1692#endif
948 1693
949 if (method) 1694 postfork = 1; /* must be in line with ev_loop_fork */
950 postfork = 1;
951} 1695}
952 1696
953/*****************************************************************************/ 1697/*****************************************************************************/
954 1698
955static int 1699void
956any_pending (EV_P) 1700ev_invoke (EV_P_ void *w, int revents)
957{ 1701{
958 int pri; 1702 EV_CB_INVOKE ((W)w, revents);
959
960 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri])
962 return 1;
963
964 return 0;
965} 1703}
966 1704
967static void 1705void inline_speed
968call_pending (EV_P) 1706call_pending (EV_P)
969{ 1707{
970 int pri; 1708 int pri;
971 1709
972 for (pri = NUMPRI; pri--; ) 1710 for (pri = NUMPRI; pri--; )
973 while (pendingcnt [pri]) 1711 while (pendingcnt [pri])
974 { 1712 {
975 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1713 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
976 1714
977 if (p->w) 1715 if (expect_true (p->w))
978 { 1716 {
1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1718
979 p->w->pending = 0; 1719 p->w->pending = 0;
980 EV_CB_INVOKE (p->w, p->events); 1720 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK;
981 } 1722 }
982 } 1723 }
983} 1724}
984 1725
985static void 1726#if EV_IDLE_ENABLE
1727void inline_size
1728idle_reify (EV_P)
1729{
1730 if (expect_false (idleall))
1731 {
1732 int pri;
1733
1734 for (pri = NUMPRI; pri--; )
1735 {
1736 if (pendingcnt [pri])
1737 break;
1738
1739 if (idlecnt [pri])
1740 {
1741 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1742 break;
1743 }
1744 }
1745 }
1746}
1747#endif
1748
1749void inline_size
986timers_reify (EV_P) 1750timers_reify (EV_P)
987{ 1751{
1752 EV_FREQUENT_CHECK;
1753
988 while (timercnt && ((WT)timers [0])->at <= mn_now) 1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
989 { 1755 {
990 struct ev_timer *w = timers [0]; 1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
991 1757
992 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
993 1759
994 /* first reschedule or stop timer */ 1760 /* first reschedule or stop timer */
995 if (w->repeat) 1761 if (w->repeat)
996 { 1762 {
1763 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now;
1766
997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998 1768
999 ((WT)w)->at += w->repeat; 1769 ANHE_at_cache (timers [HEAP0]);
1000 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now;
1002
1003 downheap ((WT *)timers, timercnt, 0); 1770 downheap (timers, timercnt, HEAP0);
1004 } 1771 }
1005 else 1772 else
1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1007 1774
1775 EV_FREQUENT_CHECK;
1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1009 } 1777 }
1010} 1778}
1011 1779
1012#if EV_PERIODICS 1780#if EV_PERIODIC_ENABLE
1013static void 1781void inline_size
1014periodics_reify (EV_P) 1782periodics_reify (EV_P)
1015{ 1783{
1784 EV_FREQUENT_CHECK;
1785
1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1017 { 1787 {
1018 struct ev_periodic *w = periodics [0]; 1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1019 1789
1020 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1021 1791
1022 /* first reschedule or stop timer */ 1792 /* first reschedule or stop timer */
1023 if (w->reschedule_cb) 1793 if (w->reschedule_cb)
1024 { 1794 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1026 1796
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798
1799 ANHE_at_cache (periodics [HEAP0]);
1028 downheap ((WT *)periodics, periodiccnt, 0); 1800 downheap (periodics, periodiccnt, HEAP0);
1029 } 1801 }
1030 else if (w->interval) 1802 else if (w->interval)
1031 { 1803 {
1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1034 downheap ((WT *)periodics, periodiccnt, 0); 1819 downheap (periodics, periodiccnt, HEAP0);
1035 } 1820 }
1036 else 1821 else
1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1038 1823
1824 EV_FREQUENT_CHECK;
1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1040 } 1826 }
1041} 1827}
1042 1828
1043static void 1829static void noinline
1044periodics_reschedule (EV_P) 1830periodics_reschedule (EV_P)
1045{ 1831{
1046 int i; 1832 int i;
1047 1833
1048 /* adjust periodics after time jump */ 1834 /* adjust periodics after time jump */
1049 for (i = 0; i < periodiccnt; ++i) 1835 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1050 { 1836 {
1051 struct ev_periodic *w = periodics [i]; 1837 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1052 1838
1053 if (w->reschedule_cb) 1839 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1840 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1055 else if (w->interval) 1841 else if (w->interval)
1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1842 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1843
1844 ANHE_at_cache (periodics [i]);
1845 }
1846
1847 reheap (periodics, periodiccnt);
1848}
1849#endif
1850
1851void inline_speed
1852time_update (EV_P_ ev_tstamp max_block)
1853{
1854 int i;
1855
1856#if EV_USE_MONOTONIC
1857 if (expect_true (have_monotonic))
1057 } 1858 {
1859 ev_tstamp odiff = rtmn_diff;
1058 1860
1059 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i);
1062}
1063#endif
1064
1065inline int
1066time_update_monotonic (EV_P)
1067{
1068 mn_now = get_clock (); 1861 mn_now = get_clock ();
1069 1862
1863 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1864 /* interpolate in the meantime */
1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1865 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1071 { 1866 {
1072 ev_rt_now = rtmn_diff + mn_now; 1867 ev_rt_now = rtmn_diff + mn_now;
1073 return 0; 1868 return;
1074 } 1869 }
1075 else 1870
1076 {
1077 now_floor = mn_now; 1871 now_floor = mn_now;
1078 ev_rt_now = ev_time (); 1872 ev_rt_now = ev_time ();
1079 return 1;
1080 }
1081}
1082 1873
1083static void 1874 /* loop a few times, before making important decisions.
1084time_update (EV_P) 1875 * on the choice of "4": one iteration isn't enough,
1085{ 1876 * in case we get preempted during the calls to
1086 int i; 1877 * ev_time and get_clock. a second call is almost guaranteed
1087 1878 * to succeed in that case, though. and looping a few more times
1088#if EV_USE_MONOTONIC 1879 * doesn't hurt either as we only do this on time-jumps or
1089 if (expect_true (have_monotonic)) 1880 * in the unlikely event of having been preempted here.
1090 { 1881 */
1091 if (time_update_monotonic (EV_A)) 1882 for (i = 4; --i; )
1092 { 1883 {
1093 ev_tstamp odiff = rtmn_diff; 1884 rtmn_diff = ev_rt_now - mn_now;
1094 1885
1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1886 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1887 return; /* all is well */
1888
1889 ev_rt_now = ev_time ();
1890 mn_now = get_clock ();
1891 now_floor = mn_now;
1892 }
1893
1894# if EV_PERIODIC_ENABLE
1895 periodics_reschedule (EV_A);
1896# endif
1897 /* no timer adjustment, as the monotonic clock doesn't jump */
1898 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1899 }
1900 else
1901#endif
1902 {
1903 ev_rt_now = ev_time ();
1904
1905 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1906 {
1907#if EV_PERIODIC_ENABLE
1908 periodics_reschedule (EV_A);
1909#endif
1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1911 for (i = 0; i < timercnt; ++i)
1096 { 1912 {
1097 rtmn_diff = ev_rt_now - mn_now; 1913 ANHE *he = timers + i + HEAP0;
1098 1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1915 ANHE_at_cache (*he);
1100 return; /* all is well */
1101
1102 ev_rt_now = ev_time ();
1103 mn_now = get_clock ();
1104 now_floor = mn_now;
1105 } 1916 }
1106
1107# if EV_PERIODICS
1108 periodics_reschedule (EV_A);
1109# endif
1110 /* no timer adjustment, as the monotonic clock doesn't jump */
1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1112 } 1917 }
1113 }
1114 else
1115#endif
1116 {
1117 ev_rt_now = ev_time ();
1118
1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1120 {
1121#if EV_PERIODICS
1122 periodics_reschedule (EV_A);
1123#endif
1124
1125 /* adjust timers. this is easy, as the offset is the same for all */
1126 for (i = 0; i < timercnt; ++i)
1127 ((WT)timers [i])->at += ev_rt_now - mn_now;
1128 }
1129 1918
1130 mn_now = ev_rt_now; 1919 mn_now = ev_rt_now;
1131 } 1920 }
1132} 1921}
1133 1922
1141ev_unref (EV_P) 1930ev_unref (EV_P)
1142{ 1931{
1143 --activecnt; 1932 --activecnt;
1144} 1933}
1145 1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939}
1940
1146static int loop_done; 1941static int loop_done;
1147 1942
1148void 1943void
1149ev_loop (EV_P_ int flags) 1944ev_loop (EV_P_ int flags)
1150{ 1945{
1151 double block; 1946 loop_done = EVUNLOOP_CANCEL;
1152 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1947
1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1153 1949
1154 do 1950 do
1155 { 1951 {
1952#if EV_VERIFY >= 2
1953 ev_loop_verify (EV_A);
1954#endif
1955
1956#ifndef _WIN32
1957 if (expect_false (curpid)) /* penalise the forking check even more */
1958 if (expect_false (getpid () != curpid))
1959 {
1960 curpid = getpid ();
1961 postfork = 1;
1962 }
1963#endif
1964
1965#if EV_FORK_ENABLE
1966 /* we might have forked, so queue fork handlers */
1967 if (expect_false (postfork))
1968 if (forkcnt)
1969 {
1970 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1971 call_pending (EV_A);
1972 }
1973#endif
1974
1156 /* queue check watchers (and execute them) */ 1975 /* queue prepare watchers (and execute them) */
1157 if (expect_false (preparecnt)) 1976 if (expect_false (preparecnt))
1158 { 1977 {
1159 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1978 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1160 call_pending (EV_A); 1979 call_pending (EV_A);
1161 } 1980 }
1162 1981
1982 if (expect_false (!activecnt))
1983 break;
1984
1163 /* we might have forked, so reify kernel state if necessary */ 1985 /* we might have forked, so reify kernel state if necessary */
1164 if (expect_false (postfork)) 1986 if (expect_false (postfork))
1165 loop_fork (EV_A); 1987 loop_fork (EV_A);
1166 1988
1167 /* update fd-related kernel structures */ 1989 /* update fd-related kernel structures */
1168 fd_reify (EV_A); 1990 fd_reify (EV_A);
1169 1991
1170 /* calculate blocking time */ 1992 /* calculate blocking time */
1993 {
1994 ev_tstamp waittime = 0.;
1995 ev_tstamp sleeptime = 0.;
1171 1996
1172 /* we only need this for !monotonic clock or timers, but as we basically 1997 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1173 always have timers, we just calculate it always */
1174#if EV_USE_MONOTONIC
1175 if (expect_true (have_monotonic))
1176 time_update_monotonic (EV_A);
1177 else
1178#endif
1179 { 1998 {
1180 ev_rt_now = ev_time (); 1999 /* update time to cancel out callback processing overhead */
1181 mn_now = ev_rt_now; 2000 time_update (EV_A_ 1e100);
1182 }
1183 2001
1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
1185 block = 0.;
1186 else
1187 {
1188 block = MAX_BLOCKTIME; 2002 waittime = MAX_BLOCKTIME;
1189 2003
1190 if (timercnt) 2004 if (timercnt)
1191 { 2005 {
1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2006 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1193 if (block > to) block = to; 2007 if (waittime > to) waittime = to;
1194 } 2008 }
1195 2009
1196#if EV_PERIODICS 2010#if EV_PERIODIC_ENABLE
1197 if (periodiccnt) 2011 if (periodiccnt)
1198 { 2012 {
1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1200 if (block > to) block = to; 2014 if (waittime > to) waittime = to;
1201 } 2015 }
1202#endif 2016#endif
1203 2017
1204 if (block < 0.) block = 0.; 2018 if (expect_false (waittime < timeout_blocktime))
2019 waittime = timeout_blocktime;
2020
2021 sleeptime = waittime - backend_fudge;
2022
2023 if (expect_true (sleeptime > io_blocktime))
2024 sleeptime = io_blocktime;
2025
2026 if (sleeptime)
2027 {
2028 ev_sleep (sleeptime);
2029 waittime -= sleeptime;
2030 }
1205 } 2031 }
1206 2032
1207 method_poll (EV_A_ block); 2033 ++loop_count;
2034 backend_poll (EV_A_ waittime);
1208 2035
1209 /* update ev_rt_now, do magic */ 2036 /* update ev_rt_now, do magic */
1210 time_update (EV_A); 2037 time_update (EV_A_ waittime + sleeptime);
2038 }
1211 2039
1212 /* queue pending timers and reschedule them */ 2040 /* queue pending timers and reschedule them */
1213 timers_reify (EV_A); /* relative timers called last */ 2041 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS 2042#if EV_PERIODIC_ENABLE
1215 periodics_reify (EV_A); /* absolute timers called first */ 2043 periodics_reify (EV_A); /* absolute timers called first */
1216#endif 2044#endif
1217 2045
2046#if EV_IDLE_ENABLE
1218 /* queue idle watchers unless io or timers are pending */ 2047 /* queue idle watchers unless other events are pending */
1219 if (idlecnt && !any_pending (EV_A)) 2048 idle_reify (EV_A);
1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2049#endif
1221 2050
1222 /* queue check watchers, to be executed first */ 2051 /* queue check watchers, to be executed first */
1223 if (checkcnt) 2052 if (expect_false (checkcnt))
1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1225 2054
1226 call_pending (EV_A); 2055 call_pending (EV_A);
1227 } 2056 }
1228 while (activecnt && !loop_done); 2057 while (expect_true (
2058 activecnt
2059 && !loop_done
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2061 ));
1229 2062
1230 if (loop_done != 2) 2063 if (loop_done == EVUNLOOP_ONE)
1231 loop_done = 0; 2064 loop_done = EVUNLOOP_CANCEL;
1232} 2065}
1233 2066
1234void 2067void
1235ev_unloop (EV_P_ int how) 2068ev_unloop (EV_P_ int how)
1236{ 2069{
1237 loop_done = how; 2070 loop_done = how;
1238} 2071}
1239 2072
1240/*****************************************************************************/ 2073/*****************************************************************************/
1241 2074
1242inline void 2075void inline_size
1243wlist_add (WL *head, WL elem) 2076wlist_add (WL *head, WL elem)
1244{ 2077{
1245 elem->next = *head; 2078 elem->next = *head;
1246 *head = elem; 2079 *head = elem;
1247} 2080}
1248 2081
1249inline void 2082void inline_size
1250wlist_del (WL *head, WL elem) 2083wlist_del (WL *head, WL elem)
1251{ 2084{
1252 while (*head) 2085 while (*head)
1253 { 2086 {
1254 if (*head == elem) 2087 if (*head == elem)
1259 2092
1260 head = &(*head)->next; 2093 head = &(*head)->next;
1261 } 2094 }
1262} 2095}
1263 2096
1264inline void 2097void inline_speed
1265ev_clear_pending (EV_P_ W w) 2098clear_pending (EV_P_ W w)
1266{ 2099{
1267 if (w->pending) 2100 if (w->pending)
1268 { 2101 {
1269 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2102 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1270 w->pending = 0; 2103 w->pending = 0;
1271 } 2104 }
1272} 2105}
1273 2106
1274inline void 2107int
2108ev_clear_pending (EV_P_ void *w)
2109{
2110 W w_ = (W)w;
2111 int pending = w_->pending;
2112
2113 if (expect_true (pending))
2114 {
2115 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2116 w_->pending = 0;
2117 p->w = 0;
2118 return p->events;
2119 }
2120 else
2121 return 0;
2122}
2123
2124void inline_size
2125pri_adjust (EV_P_ W w)
2126{
2127 int pri = w->priority;
2128 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2129 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2130 w->priority = pri;
2131}
2132
2133void inline_speed
1275ev_start (EV_P_ W w, int active) 2134ev_start (EV_P_ W w, int active)
1276{ 2135{
1277 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2136 pri_adjust (EV_A_ w);
1278 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1279
1280 w->active = active; 2137 w->active = active;
1281 ev_ref (EV_A); 2138 ev_ref (EV_A);
1282} 2139}
1283 2140
1284inline void 2141void inline_size
1285ev_stop (EV_P_ W w) 2142ev_stop (EV_P_ W w)
1286{ 2143{
1287 ev_unref (EV_A); 2144 ev_unref (EV_A);
1288 w->active = 0; 2145 w->active = 0;
1289} 2146}
1290 2147
1291/*****************************************************************************/ 2148/*****************************************************************************/
1292 2149
1293void 2150void noinline
1294ev_io_start (EV_P_ struct ev_io *w) 2151ev_io_start (EV_P_ ev_io *w)
1295{ 2152{
1296 int fd = w->fd; 2153 int fd = w->fd;
1297 2154
1298 if (ev_is_active (w)) 2155 if (expect_false (ev_is_active (w)))
1299 return; 2156 return;
1300 2157
1301 assert (("ev_io_start called with negative fd", fd >= 0)); 2158 assert (("ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2160
2161 EV_FREQUENT_CHECK;
1302 2162
1303 ev_start (EV_A_ (W)w, 1); 2163 ev_start (EV_A_ (W)w, 1);
1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1305 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2165 wlist_add (&anfds[fd].head, (WL)w);
1306 2166
1307 fd_change (EV_A_ fd); 2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1308} 2168 w->events &= ~EV_IOFDSET;
1309 2169
1310void 2170 EV_FREQUENT_CHECK;
2171}
2172
2173void noinline
1311ev_io_stop (EV_P_ struct ev_io *w) 2174ev_io_stop (EV_P_ ev_io *w)
1312{ 2175{
1313 ev_clear_pending (EV_A_ (W)w); 2176 clear_pending (EV_A_ (W)w);
1314 if (!ev_is_active (w)) 2177 if (expect_false (!ev_is_active (w)))
1315 return; 2178 return;
1316 2179
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318 2181
2182 EV_FREQUENT_CHECK;
2183
1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2184 wlist_del (&anfds[w->fd].head, (WL)w);
1320 ev_stop (EV_A_ (W)w); 2185 ev_stop (EV_A_ (W)w);
1321 2186
1322 fd_change (EV_A_ w->fd); 2187 fd_change (EV_A_ w->fd, 1);
1323}
1324 2188
1325void 2189 EV_FREQUENT_CHECK;
2190}
2191
2192void noinline
1326ev_timer_start (EV_P_ struct ev_timer *w) 2193ev_timer_start (EV_P_ ev_timer *w)
1327{ 2194{
1328 if (ev_is_active (w)) 2195 if (expect_false (ev_is_active (w)))
1329 return; 2196 return;
1330 2197
1331 ((WT)w)->at += mn_now; 2198 ev_at (w) += mn_now;
1332 2199
1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1334 2201
2202 EV_FREQUENT_CHECK;
2203
2204 ++timercnt;
1335 ev_start (EV_A_ (W)w, ++timercnt); 2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2206 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1337 timers [timercnt - 1] = w; 2207 ANHE_w (timers [ev_active (w)]) = (WT)w;
1338 upheap ((WT *)timers, timercnt - 1); 2208 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w));
1339 2210
2211 EV_FREQUENT_CHECK;
2212
1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1341} 2214}
1342 2215
1343void 2216void noinline
1344ev_timer_stop (EV_P_ struct ev_timer *w) 2217ev_timer_stop (EV_P_ ev_timer *w)
1345{ 2218{
1346 ev_clear_pending (EV_A_ (W)w); 2219 clear_pending (EV_A_ (W)w);
1347 if (!ev_is_active (w)) 2220 if (expect_false (!ev_is_active (w)))
1348 return; 2221 return;
1349 2222
2223 EV_FREQUENT_CHECK;
2224
2225 {
2226 int active = ev_active (w);
2227
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1351 2229
1352 if (((W)w)->active < timercnt--) 2230 --timercnt;
2231
2232 if (expect_true (active < timercnt + HEAP0))
1353 { 2233 {
1354 timers [((W)w)->active - 1] = timers [timercnt]; 2234 timers [active] = timers [timercnt + HEAP0];
1355 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2235 adjustheap (timers, timercnt, active);
1356 } 2236 }
2237 }
1357 2238
1358 ((WT)w)->at -= mn_now; 2239 EV_FREQUENT_CHECK;
2240
2241 ev_at (w) -= mn_now;
1359 2242
1360 ev_stop (EV_A_ (W)w); 2243 ev_stop (EV_A_ (W)w);
1361} 2244}
1362 2245
1363void 2246void noinline
1364ev_timer_again (EV_P_ struct ev_timer *w) 2247ev_timer_again (EV_P_ ev_timer *w)
1365{ 2248{
2249 EV_FREQUENT_CHECK;
2250
1366 if (ev_is_active (w)) 2251 if (ev_is_active (w))
1367 { 2252 {
1368 if (w->repeat) 2253 if (w->repeat)
1369 { 2254 {
1370 ((WT)w)->at = mn_now + w->repeat; 2255 ev_at (w) = mn_now + w->repeat;
2256 ANHE_at_cache (timers [ev_active (w)]);
1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2257 adjustheap (timers, timercnt, ev_active (w));
1372 } 2258 }
1373 else 2259 else
1374 ev_timer_stop (EV_A_ w); 2260 ev_timer_stop (EV_A_ w);
1375 } 2261 }
1376 else if (w->repeat) 2262 else if (w->repeat)
2263 {
2264 ev_at (w) = w->repeat;
1377 ev_timer_start (EV_A_ w); 2265 ev_timer_start (EV_A_ w);
1378} 2266 }
1379 2267
2268 EV_FREQUENT_CHECK;
2269}
2270
1380#if EV_PERIODICS 2271#if EV_PERIODIC_ENABLE
1381void 2272void noinline
1382ev_periodic_start (EV_P_ struct ev_periodic *w) 2273ev_periodic_start (EV_P_ ev_periodic *w)
1383{ 2274{
1384 if (ev_is_active (w)) 2275 if (expect_false (ev_is_active (w)))
1385 return; 2276 return;
1386 2277
1387 if (w->reschedule_cb) 2278 if (w->reschedule_cb)
1388 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1389 else if (w->interval) 2280 else if (w->interval)
1390 { 2281 {
1391 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1392 /* this formula differs from the one in periodic_reify because we do not always round up */ 2283 /* this formula differs from the one in periodic_reify because we do not always round up */
1393 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1394 } 2285 }
2286 else
2287 ev_at (w) = w->offset;
1395 2288
2289 EV_FREQUENT_CHECK;
2290
2291 ++periodiccnt;
1396 ev_start (EV_A_ (W)w, ++periodiccnt); 2292 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1397 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2293 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1398 periodics [periodiccnt - 1] = w; 2294 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1399 upheap ((WT *)periodics, periodiccnt - 1); 2295 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w));
1400 2297
2298 EV_FREQUENT_CHECK;
2299
1401 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1402} 2301}
1403 2302
1404void 2303void noinline
1405ev_periodic_stop (EV_P_ struct ev_periodic *w) 2304ev_periodic_stop (EV_P_ ev_periodic *w)
1406{ 2305{
1407 ev_clear_pending (EV_A_ (W)w); 2306 clear_pending (EV_A_ (W)w);
1408 if (!ev_is_active (w)) 2307 if (expect_false (!ev_is_active (w)))
1409 return; 2308 return;
1410 2309
2310 EV_FREQUENT_CHECK;
2311
2312 {
2313 int active = ev_active (w);
2314
1411 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1412 2316
1413 if (((W)w)->active < periodiccnt--) 2317 --periodiccnt;
2318
2319 if (expect_true (active < periodiccnt + HEAP0))
1414 { 2320 {
1415 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2321 periodics [active] = periodics [periodiccnt + HEAP0];
1416 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2322 adjustheap (periodics, periodiccnt, active);
1417 } 2323 }
2324 }
2325
2326 EV_FREQUENT_CHECK;
1418 2327
1419 ev_stop (EV_A_ (W)w); 2328 ev_stop (EV_A_ (W)w);
1420} 2329}
1421 2330
1422void 2331void noinline
1423ev_periodic_again (EV_P_ struct ev_periodic *w) 2332ev_periodic_again (EV_P_ ev_periodic *w)
1424{ 2333{
1425 /* TODO: use adjustheap and recalculation */ 2334 /* TODO: use adjustheap and recalculation */
1426 ev_periodic_stop (EV_A_ w); 2335 ev_periodic_stop (EV_A_ w);
1427 ev_periodic_start (EV_A_ w); 2336 ev_periodic_start (EV_A_ w);
1428} 2337}
1429#endif 2338#endif
1430 2339
1431void
1432ev_idle_start (EV_P_ struct ev_idle *w)
1433{
1434 if (ev_is_active (w))
1435 return;
1436
1437 ev_start (EV_A_ (W)w, ++idlecnt);
1438 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1439 idles [idlecnt - 1] = w;
1440}
1441
1442void
1443ev_idle_stop (EV_P_ struct ev_idle *w)
1444{
1445 ev_clear_pending (EV_A_ (W)w);
1446 if (!ev_is_active (w))
1447 return;
1448
1449 idles [((W)w)->active - 1] = idles [--idlecnt];
1450 ev_stop (EV_A_ (W)w);
1451}
1452
1453void
1454ev_prepare_start (EV_P_ struct ev_prepare *w)
1455{
1456 if (ev_is_active (w))
1457 return;
1458
1459 ev_start (EV_A_ (W)w, ++preparecnt);
1460 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1461 prepares [preparecnt - 1] = w;
1462}
1463
1464void
1465ev_prepare_stop (EV_P_ struct ev_prepare *w)
1466{
1467 ev_clear_pending (EV_A_ (W)w);
1468 if (!ev_is_active (w))
1469 return;
1470
1471 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1472 ev_stop (EV_A_ (W)w);
1473}
1474
1475void
1476ev_check_start (EV_P_ struct ev_check *w)
1477{
1478 if (ev_is_active (w))
1479 return;
1480
1481 ev_start (EV_A_ (W)w, ++checkcnt);
1482 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1483 checks [checkcnt - 1] = w;
1484}
1485
1486void
1487ev_check_stop (EV_P_ struct ev_check *w)
1488{
1489 ev_clear_pending (EV_A_ (W)w);
1490 if (!ev_is_active (w))
1491 return;
1492
1493 checks [((W)w)->active - 1] = checks [--checkcnt];
1494 ev_stop (EV_A_ (W)w);
1495}
1496
1497#ifndef SA_RESTART 2340#ifndef SA_RESTART
1498# define SA_RESTART 0 2341# define SA_RESTART 0
1499#endif 2342#endif
1500 2343
1501void 2344void noinline
1502ev_signal_start (EV_P_ struct ev_signal *w) 2345ev_signal_start (EV_P_ ev_signal *w)
1503{ 2346{
1504#if EV_MULTIPLICITY 2347#if EV_MULTIPLICITY
1505 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2348 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1506#endif 2349#endif
1507 if (ev_is_active (w)) 2350 if (expect_false (ev_is_active (w)))
1508 return; 2351 return;
1509 2352
1510 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1511 2354
2355 evpipe_init (EV_A);
2356
2357 EV_FREQUENT_CHECK;
2358
2359 {
2360#ifndef _WIN32
2361 sigset_t full, prev;
2362 sigfillset (&full);
2363 sigprocmask (SIG_SETMASK, &full, &prev);
2364#endif
2365
2366 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2367
2368#ifndef _WIN32
2369 sigprocmask (SIG_SETMASK, &prev, 0);
2370#endif
2371 }
2372
1512 ev_start (EV_A_ (W)w, 1); 2373 ev_start (EV_A_ (W)w, 1);
1513 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1514 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2374 wlist_add (&signals [w->signum - 1].head, (WL)w);
1515 2375
1516 if (!((WL)w)->next) 2376 if (!((WL)w)->next)
1517 { 2377 {
1518#if _WIN32 2378#if _WIN32
1519 signal (w->signum, sighandler); 2379 signal (w->signum, ev_sighandler);
1520#else 2380#else
1521 struct sigaction sa; 2381 struct sigaction sa;
1522 sa.sa_handler = sighandler; 2382 sa.sa_handler = ev_sighandler;
1523 sigfillset (&sa.sa_mask); 2383 sigfillset (&sa.sa_mask);
1524 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2384 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1525 sigaction (w->signum, &sa, 0); 2385 sigaction (w->signum, &sa, 0);
1526#endif 2386#endif
1527 } 2387 }
1528}
1529 2388
1530void 2389 EV_FREQUENT_CHECK;
2390}
2391
2392void noinline
1531ev_signal_stop (EV_P_ struct ev_signal *w) 2393ev_signal_stop (EV_P_ ev_signal *w)
1532{ 2394{
1533 ev_clear_pending (EV_A_ (W)w); 2395 clear_pending (EV_A_ (W)w);
1534 if (!ev_is_active (w)) 2396 if (expect_false (!ev_is_active (w)))
1535 return; 2397 return;
1536 2398
2399 EV_FREQUENT_CHECK;
2400
1537 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2401 wlist_del (&signals [w->signum - 1].head, (WL)w);
1538 ev_stop (EV_A_ (W)w); 2402 ev_stop (EV_A_ (W)w);
1539 2403
1540 if (!signals [w->signum - 1].head) 2404 if (!signals [w->signum - 1].head)
1541 signal (w->signum, SIG_DFL); 2405 signal (w->signum, SIG_DFL);
1542}
1543 2406
2407 EV_FREQUENT_CHECK;
2408}
2409
1544void 2410void
1545ev_child_start (EV_P_ struct ev_child *w) 2411ev_child_start (EV_P_ ev_child *w)
1546{ 2412{
1547#if EV_MULTIPLICITY 2413#if EV_MULTIPLICITY
1548 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1549#endif 2415#endif
1550 if (ev_is_active (w)) 2416 if (expect_false (ev_is_active (w)))
1551 return; 2417 return;
1552 2418
2419 EV_FREQUENT_CHECK;
2420
1553 ev_start (EV_A_ (W)w, 1); 2421 ev_start (EV_A_ (W)w, 1);
1554 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2422 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1555}
1556 2423
2424 EV_FREQUENT_CHECK;
2425}
2426
1557void 2427void
1558ev_child_stop (EV_P_ struct ev_child *w) 2428ev_child_stop (EV_P_ ev_child *w)
1559{ 2429{
1560 ev_clear_pending (EV_A_ (W)w); 2430 clear_pending (EV_A_ (W)w);
1561 if (!ev_is_active (w)) 2431 if (expect_false (!ev_is_active (w)))
1562 return; 2432 return;
1563 2433
2434 EV_FREQUENT_CHECK;
2435
1564 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2436 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1565 ev_stop (EV_A_ (W)w); 2437 ev_stop (EV_A_ (W)w);
2438
2439 EV_FREQUENT_CHECK;
1566} 2440}
2441
2442#if EV_STAT_ENABLE
2443
2444# ifdef _WIN32
2445# undef lstat
2446# define lstat(a,b) _stati64 (a,b)
2447# endif
2448
2449#define DEF_STAT_INTERVAL 5.0074891
2450#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2451#define MIN_STAT_INTERVAL 0.1074891
2452
2453static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2454
2455#if EV_USE_INOTIFY
2456# define EV_INOTIFY_BUFSIZE 8192
2457
2458static void noinline
2459infy_add (EV_P_ ev_stat *w)
2460{
2461 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2462
2463 if (w->wd < 0)
2464 {
2465 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2466 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2467
2468 /* monitor some parent directory for speedup hints */
2469 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2470 /* but an efficiency issue only */
2471 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2472 {
2473 char path [4096];
2474 strcpy (path, w->path);
2475
2476 do
2477 {
2478 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2479 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2480
2481 char *pend = strrchr (path, '/');
2482
2483 if (!pend || pend == path)
2484 break;
2485
2486 *pend = 0;
2487 w->wd = inotify_add_watch (fs_fd, path, mask);
2488 }
2489 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2490 }
2491 }
2492
2493 if (w->wd >= 0)
2494 {
2495 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2496
2497 /* now local changes will be tracked by inotify, but remote changes won't */
2498 /* unless the filesystem it known to be local, we therefore still poll */
2499 /* also do poll on <2.6.25, but with normal frequency */
2500 struct statfs sfs;
2501
2502 if (fs_2625 && !statfs (w->path, &sfs))
2503 if (sfs.f_type == 0x1373 /* devfs */
2504 || sfs.f_type == 0xEF53 /* ext2/3 */
2505 || sfs.f_type == 0x3153464a /* jfs */
2506 || sfs.f_type == 0x52654973 /* reiser3 */
2507 || sfs.f_type == 0x01021994 /* tempfs */
2508 || sfs.f_type == 0x58465342 /* xfs */)
2509 return;
2510
2511 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2512 ev_timer_again (EV_A_ &w->timer);
2513 }
2514}
2515
2516static void noinline
2517infy_del (EV_P_ ev_stat *w)
2518{
2519 int slot;
2520 int wd = w->wd;
2521
2522 if (wd < 0)
2523 return;
2524
2525 w->wd = -2;
2526 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2527 wlist_del (&fs_hash [slot].head, (WL)w);
2528
2529 /* remove this watcher, if others are watching it, they will rearm */
2530 inotify_rm_watch (fs_fd, wd);
2531}
2532
2533static void noinline
2534infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2535{
2536 if (slot < 0)
2537 /* overflow, need to check for all hash slots */
2538 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2539 infy_wd (EV_A_ slot, wd, ev);
2540 else
2541 {
2542 WL w_;
2543
2544 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2545 {
2546 ev_stat *w = (ev_stat *)w_;
2547 w_ = w_->next; /* lets us remove this watcher and all before it */
2548
2549 if (w->wd == wd || wd == -1)
2550 {
2551 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2552 {
2553 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2554 w->wd = -1;
2555 infy_add (EV_A_ w); /* re-add, no matter what */
2556 }
2557
2558 stat_timer_cb (EV_A_ &w->timer, 0);
2559 }
2560 }
2561 }
2562}
2563
2564static void
2565infy_cb (EV_P_ ev_io *w, int revents)
2566{
2567 char buf [EV_INOTIFY_BUFSIZE];
2568 struct inotify_event *ev = (struct inotify_event *)buf;
2569 int ofs;
2570 int len = read (fs_fd, buf, sizeof (buf));
2571
2572 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2573 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2574}
2575
2576void inline_size
2577check_2625 (EV_P)
2578{
2579 /* kernels < 2.6.25 are borked
2580 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2581 */
2582 struct utsname buf;
2583 int major, minor, micro;
2584
2585 if (uname (&buf))
2586 return;
2587
2588 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2589 return;
2590
2591 if (major < 2
2592 || (major == 2 && minor < 6)
2593 || (major == 2 && minor == 6 && micro < 25))
2594 return;
2595
2596 fs_2625 = 1;
2597}
2598
2599void inline_size
2600infy_init (EV_P)
2601{
2602 if (fs_fd != -2)
2603 return;
2604
2605 fs_fd = -1;
2606
2607 check_2625 (EV_A);
2608
2609 fs_fd = inotify_init ();
2610
2611 if (fs_fd >= 0)
2612 {
2613 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2614 ev_set_priority (&fs_w, EV_MAXPRI);
2615 ev_io_start (EV_A_ &fs_w);
2616 }
2617}
2618
2619void inline_size
2620infy_fork (EV_P)
2621{
2622 int slot;
2623
2624 if (fs_fd < 0)
2625 return;
2626
2627 close (fs_fd);
2628 fs_fd = inotify_init ();
2629
2630 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2631 {
2632 WL w_ = fs_hash [slot].head;
2633 fs_hash [slot].head = 0;
2634
2635 while (w_)
2636 {
2637 ev_stat *w = (ev_stat *)w_;
2638 w_ = w_->next; /* lets us add this watcher */
2639
2640 w->wd = -1;
2641
2642 if (fs_fd >= 0)
2643 infy_add (EV_A_ w); /* re-add, no matter what */
2644 else
2645 ev_timer_again (EV_A_ &w->timer);
2646 }
2647 }
2648}
2649
2650#endif
2651
2652#ifdef _WIN32
2653# define EV_LSTAT(p,b) _stati64 (p, b)
2654#else
2655# define EV_LSTAT(p,b) lstat (p, b)
2656#endif
2657
2658void
2659ev_stat_stat (EV_P_ ev_stat *w)
2660{
2661 if (lstat (w->path, &w->attr) < 0)
2662 w->attr.st_nlink = 0;
2663 else if (!w->attr.st_nlink)
2664 w->attr.st_nlink = 1;
2665}
2666
2667static void noinline
2668stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2669{
2670 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2671
2672 /* we copy this here each the time so that */
2673 /* prev has the old value when the callback gets invoked */
2674 w->prev = w->attr;
2675 ev_stat_stat (EV_A_ w);
2676
2677 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2678 if (
2679 w->prev.st_dev != w->attr.st_dev
2680 || w->prev.st_ino != w->attr.st_ino
2681 || w->prev.st_mode != w->attr.st_mode
2682 || w->prev.st_nlink != w->attr.st_nlink
2683 || w->prev.st_uid != w->attr.st_uid
2684 || w->prev.st_gid != w->attr.st_gid
2685 || w->prev.st_rdev != w->attr.st_rdev
2686 || w->prev.st_size != w->attr.st_size
2687 || w->prev.st_atime != w->attr.st_atime
2688 || w->prev.st_mtime != w->attr.st_mtime
2689 || w->prev.st_ctime != w->attr.st_ctime
2690 ) {
2691 #if EV_USE_INOTIFY
2692 if (fs_fd >= 0)
2693 {
2694 infy_del (EV_A_ w);
2695 infy_add (EV_A_ w);
2696 ev_stat_stat (EV_A_ w); /* avoid race... */
2697 }
2698 #endif
2699
2700 ev_feed_event (EV_A_ w, EV_STAT);
2701 }
2702}
2703
2704void
2705ev_stat_start (EV_P_ ev_stat *w)
2706{
2707 if (expect_false (ev_is_active (w)))
2708 return;
2709
2710 ev_stat_stat (EV_A_ w);
2711
2712 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2713 w->interval = MIN_STAT_INTERVAL;
2714
2715 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2716 ev_set_priority (&w->timer, ev_priority (w));
2717
2718#if EV_USE_INOTIFY
2719 infy_init (EV_A);
2720
2721 if (fs_fd >= 0)
2722 infy_add (EV_A_ w);
2723 else
2724#endif
2725 ev_timer_again (EV_A_ &w->timer);
2726
2727 ev_start (EV_A_ (W)w, 1);
2728
2729 EV_FREQUENT_CHECK;
2730}
2731
2732void
2733ev_stat_stop (EV_P_ ev_stat *w)
2734{
2735 clear_pending (EV_A_ (W)w);
2736 if (expect_false (!ev_is_active (w)))
2737 return;
2738
2739 EV_FREQUENT_CHECK;
2740
2741#if EV_USE_INOTIFY
2742 infy_del (EV_A_ w);
2743#endif
2744 ev_timer_stop (EV_A_ &w->timer);
2745
2746 ev_stop (EV_A_ (W)w);
2747
2748 EV_FREQUENT_CHECK;
2749}
2750#endif
2751
2752#if EV_IDLE_ENABLE
2753void
2754ev_idle_start (EV_P_ ev_idle *w)
2755{
2756 if (expect_false (ev_is_active (w)))
2757 return;
2758
2759 pri_adjust (EV_A_ (W)w);
2760
2761 EV_FREQUENT_CHECK;
2762
2763 {
2764 int active = ++idlecnt [ABSPRI (w)];
2765
2766 ++idleall;
2767 ev_start (EV_A_ (W)w, active);
2768
2769 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2770 idles [ABSPRI (w)][active - 1] = w;
2771 }
2772
2773 EV_FREQUENT_CHECK;
2774}
2775
2776void
2777ev_idle_stop (EV_P_ ev_idle *w)
2778{
2779 clear_pending (EV_A_ (W)w);
2780 if (expect_false (!ev_is_active (w)))
2781 return;
2782
2783 EV_FREQUENT_CHECK;
2784
2785 {
2786 int active = ev_active (w);
2787
2788 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2789 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2790
2791 ev_stop (EV_A_ (W)w);
2792 --idleall;
2793 }
2794
2795 EV_FREQUENT_CHECK;
2796}
2797#endif
2798
2799void
2800ev_prepare_start (EV_P_ ev_prepare *w)
2801{
2802 if (expect_false (ev_is_active (w)))
2803 return;
2804
2805 EV_FREQUENT_CHECK;
2806
2807 ev_start (EV_A_ (W)w, ++preparecnt);
2808 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2809 prepares [preparecnt - 1] = w;
2810
2811 EV_FREQUENT_CHECK;
2812}
2813
2814void
2815ev_prepare_stop (EV_P_ ev_prepare *w)
2816{
2817 clear_pending (EV_A_ (W)w);
2818 if (expect_false (!ev_is_active (w)))
2819 return;
2820
2821 EV_FREQUENT_CHECK;
2822
2823 {
2824 int active = ev_active (w);
2825
2826 prepares [active - 1] = prepares [--preparecnt];
2827 ev_active (prepares [active - 1]) = active;
2828 }
2829
2830 ev_stop (EV_A_ (W)w);
2831
2832 EV_FREQUENT_CHECK;
2833}
2834
2835void
2836ev_check_start (EV_P_ ev_check *w)
2837{
2838 if (expect_false (ev_is_active (w)))
2839 return;
2840
2841 EV_FREQUENT_CHECK;
2842
2843 ev_start (EV_A_ (W)w, ++checkcnt);
2844 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2845 checks [checkcnt - 1] = w;
2846
2847 EV_FREQUENT_CHECK;
2848}
2849
2850void
2851ev_check_stop (EV_P_ ev_check *w)
2852{
2853 clear_pending (EV_A_ (W)w);
2854 if (expect_false (!ev_is_active (w)))
2855 return;
2856
2857 EV_FREQUENT_CHECK;
2858
2859 {
2860 int active = ev_active (w);
2861
2862 checks [active - 1] = checks [--checkcnt];
2863 ev_active (checks [active - 1]) = active;
2864 }
2865
2866 ev_stop (EV_A_ (W)w);
2867
2868 EV_FREQUENT_CHECK;
2869}
2870
2871#if EV_EMBED_ENABLE
2872void noinline
2873ev_embed_sweep (EV_P_ ev_embed *w)
2874{
2875 ev_loop (w->other, EVLOOP_NONBLOCK);
2876}
2877
2878static void
2879embed_io_cb (EV_P_ ev_io *io, int revents)
2880{
2881 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2882
2883 if (ev_cb (w))
2884 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2885 else
2886 ev_loop (w->other, EVLOOP_NONBLOCK);
2887}
2888
2889static void
2890embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2891{
2892 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2893
2894 {
2895 struct ev_loop *loop = w->other;
2896
2897 while (fdchangecnt)
2898 {
2899 fd_reify (EV_A);
2900 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2901 }
2902 }
2903}
2904
2905static void
2906embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2907{
2908 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2909
2910 ev_embed_stop (EV_A_ w);
2911
2912 {
2913 struct ev_loop *loop = w->other;
2914
2915 ev_loop_fork (EV_A);
2916 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2917 }
2918
2919 ev_embed_start (EV_A_ w);
2920}
2921
2922#if 0
2923static void
2924embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2925{
2926 ev_idle_stop (EV_A_ idle);
2927}
2928#endif
2929
2930void
2931ev_embed_start (EV_P_ ev_embed *w)
2932{
2933 if (expect_false (ev_is_active (w)))
2934 return;
2935
2936 {
2937 struct ev_loop *loop = w->other;
2938 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2939 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2940 }
2941
2942 EV_FREQUENT_CHECK;
2943
2944 ev_set_priority (&w->io, ev_priority (w));
2945 ev_io_start (EV_A_ &w->io);
2946
2947 ev_prepare_init (&w->prepare, embed_prepare_cb);
2948 ev_set_priority (&w->prepare, EV_MINPRI);
2949 ev_prepare_start (EV_A_ &w->prepare);
2950
2951 ev_fork_init (&w->fork, embed_fork_cb);
2952 ev_fork_start (EV_A_ &w->fork);
2953
2954 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2955
2956 ev_start (EV_A_ (W)w, 1);
2957
2958 EV_FREQUENT_CHECK;
2959}
2960
2961void
2962ev_embed_stop (EV_P_ ev_embed *w)
2963{
2964 clear_pending (EV_A_ (W)w);
2965 if (expect_false (!ev_is_active (w)))
2966 return;
2967
2968 EV_FREQUENT_CHECK;
2969
2970 ev_io_stop (EV_A_ &w->io);
2971 ev_prepare_stop (EV_A_ &w->prepare);
2972 ev_fork_stop (EV_A_ &w->fork);
2973
2974 EV_FREQUENT_CHECK;
2975}
2976#endif
2977
2978#if EV_FORK_ENABLE
2979void
2980ev_fork_start (EV_P_ ev_fork *w)
2981{
2982 if (expect_false (ev_is_active (w)))
2983 return;
2984
2985 EV_FREQUENT_CHECK;
2986
2987 ev_start (EV_A_ (W)w, ++forkcnt);
2988 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2989 forks [forkcnt - 1] = w;
2990
2991 EV_FREQUENT_CHECK;
2992}
2993
2994void
2995ev_fork_stop (EV_P_ ev_fork *w)
2996{
2997 clear_pending (EV_A_ (W)w);
2998 if (expect_false (!ev_is_active (w)))
2999 return;
3000
3001 EV_FREQUENT_CHECK;
3002
3003 {
3004 int active = ev_active (w);
3005
3006 forks [active - 1] = forks [--forkcnt];
3007 ev_active (forks [active - 1]) = active;
3008 }
3009
3010 ev_stop (EV_A_ (W)w);
3011
3012 EV_FREQUENT_CHECK;
3013}
3014#endif
3015
3016#if EV_ASYNC_ENABLE
3017void
3018ev_async_start (EV_P_ ev_async *w)
3019{
3020 if (expect_false (ev_is_active (w)))
3021 return;
3022
3023 evpipe_init (EV_A);
3024
3025 EV_FREQUENT_CHECK;
3026
3027 ev_start (EV_A_ (W)w, ++asynccnt);
3028 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3029 asyncs [asynccnt - 1] = w;
3030
3031 EV_FREQUENT_CHECK;
3032}
3033
3034void
3035ev_async_stop (EV_P_ ev_async *w)
3036{
3037 clear_pending (EV_A_ (W)w);
3038 if (expect_false (!ev_is_active (w)))
3039 return;
3040
3041 EV_FREQUENT_CHECK;
3042
3043 {
3044 int active = ev_active (w);
3045
3046 asyncs [active - 1] = asyncs [--asynccnt];
3047 ev_active (asyncs [active - 1]) = active;
3048 }
3049
3050 ev_stop (EV_A_ (W)w);
3051
3052 EV_FREQUENT_CHECK;
3053}
3054
3055void
3056ev_async_send (EV_P_ ev_async *w)
3057{
3058 w->sent = 1;
3059 evpipe_write (EV_A_ &gotasync);
3060}
3061#endif
1567 3062
1568/*****************************************************************************/ 3063/*****************************************************************************/
1569 3064
1570struct ev_once 3065struct ev_once
1571{ 3066{
1572 struct ev_io io; 3067 ev_io io;
1573 struct ev_timer to; 3068 ev_timer to;
1574 void (*cb)(int revents, void *arg); 3069 void (*cb)(int revents, void *arg);
1575 void *arg; 3070 void *arg;
1576}; 3071};
1577 3072
1578static void 3073static void
1579once_cb (EV_P_ struct ev_once *once, int revents) 3074once_cb (EV_P_ struct ev_once *once, int revents)
1580{ 3075{
1581 void (*cb)(int revents, void *arg) = once->cb; 3076 void (*cb)(int revents, void *arg) = once->cb;
1582 void *arg = once->arg; 3077 void *arg = once->arg;
1583 3078
1584 ev_io_stop (EV_A_ &once->io); 3079 ev_io_stop (EV_A_ &once->io);
1585 ev_timer_stop (EV_A_ &once->to); 3080 ev_timer_stop (EV_A_ &once->to);
1586 ev_free (once); 3081 ev_free (once);
1587 3082
1588 cb (revents, arg); 3083 cb (revents, arg);
1589} 3084}
1590 3085
1591static void 3086static void
1592once_cb_io (EV_P_ struct ev_io *w, int revents) 3087once_cb_io (EV_P_ ev_io *w, int revents)
1593{ 3088{
1594 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3089 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3090
3091 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1595} 3092}
1596 3093
1597static void 3094static void
1598once_cb_to (EV_P_ struct ev_timer *w, int revents) 3095once_cb_to (EV_P_ ev_timer *w, int revents)
1599{ 3096{
1600 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3097 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3098
3099 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1601} 3100}
1602 3101
1603void 3102void
1604ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3103ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1605{ 3104{
1606 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3105 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1607 3106
1608 if (!once) 3107 if (expect_false (!once))
3108 {
1609 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3109 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1610 else 3110 return;
1611 { 3111 }
3112
1612 once->cb = cb; 3113 once->cb = cb;
1613 once->arg = arg; 3114 once->arg = arg;
1614 3115
1615 ev_init (&once->io, once_cb_io); 3116 ev_init (&once->io, once_cb_io);
1616 if (fd >= 0) 3117 if (fd >= 0)
1617 { 3118 {
1618 ev_io_set (&once->io, fd, events); 3119 ev_io_set (&once->io, fd, events);
1619 ev_io_start (EV_A_ &once->io); 3120 ev_io_start (EV_A_ &once->io);
1620 } 3121 }
1621 3122
1622 ev_init (&once->to, once_cb_to); 3123 ev_init (&once->to, once_cb_to);
1623 if (timeout >= 0.) 3124 if (timeout >= 0.)
1624 { 3125 {
1625 ev_timer_set (&once->to, timeout, 0.); 3126 ev_timer_set (&once->to, timeout, 0.);
1626 ev_timer_start (EV_A_ &once->to); 3127 ev_timer_start (EV_A_ &once->to);
1627 }
1628 } 3128 }
1629} 3129}
3130
3131#if EV_MULTIPLICITY
3132 #include "ev_wrap.h"
3133#endif
1630 3134
1631#ifdef __cplusplus 3135#ifdef __cplusplus
1632} 3136}
1633#endif 3137#endif
1634 3138

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines