ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.60 by root, Sun Nov 4 18:29:44 2007 UTC vs.
Revision 1.103 by root, Mon Nov 12 00:31:08 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
84#else
85# define WIN32_LEAN_AND_MEAN
86# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1
71#endif 89# endif
72#include <sys/time.h> 90#endif
73#include <time.h>
74 91
75/**/ 92/**/
76 93
77#ifndef EV_USE_MONOTONIC 94#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 95# define EV_USE_MONOTONIC 1
106#endif 123#endif
107 124
108#ifndef CLOCK_REALTIME 125#ifndef CLOCK_REALTIME
109# undef EV_USE_REALTIME 126# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0 127# define EV_USE_REALTIME 0
128#endif
129
130#if EV_SELECT_IS_WINSOCKET
131# include <winsock.h>
111#endif 132#endif
112 133
113/**/ 134/**/
114 135
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 136#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 137#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 138#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 139/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
119 140
141#ifdef EV_H
142# include EV_H
143#else
120#include "ev.h" 144# include "ev.h"
145#endif
121 146
122#if __GNUC__ >= 3 147#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value)) 148# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline 149# define inline inline
125#else 150#else
131#define expect_true(expr) expect ((expr) != 0, 1) 156#define expect_true(expr) expect ((expr) != 0, 1)
132 157
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 158#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI) 159#define ABSPRI(w) ((w)->priority - EV_MINPRI)
135 160
161#define EMPTY /* required for microsofts broken pseudo-c compiler */
162
136typedef struct ev_watcher *W; 163typedef struct ev_watcher *W;
137typedef struct ev_watcher_list *WL; 164typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 165typedef struct ev_watcher_time *WT;
139 166
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 167static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 168
169#ifdef _WIN32
170# include "ev_win32.c"
171#endif
172
142/*****************************************************************************/ 173/*****************************************************************************/
143 174
175static void (*syserr_cb)(const char *msg);
176
177void ev_set_syserr_cb (void (*cb)(const char *msg))
178{
179 syserr_cb = cb;
180}
181
182static void
183syserr (const char *msg)
184{
185 if (!msg)
186 msg = "(libev) system error";
187
188 if (syserr_cb)
189 syserr_cb (msg);
190 else
191 {
192 perror (msg);
193 abort ();
194 }
195}
196
197static void *(*alloc)(void *ptr, long size);
198
199void ev_set_allocator (void *(*cb)(void *ptr, long size))
200{
201 alloc = cb;
202}
203
204static void *
205ev_realloc (void *ptr, long size)
206{
207 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
208
209 if (!ptr && size)
210 {
211 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
212 abort ();
213 }
214
215 return ptr;
216}
217
218#define ev_malloc(size) ev_realloc (0, (size))
219#define ev_free(ptr) ev_realloc ((ptr), 0)
220
221/*****************************************************************************/
222
144typedef struct 223typedef struct
145{ 224{
146 struct ev_watcher_list *head; 225 WL head;
147 unsigned char events; 226 unsigned char events;
148 unsigned char reify; 227 unsigned char reify;
228#if EV_SELECT_IS_WINSOCKET
229 SOCKET handle;
230#endif
149} ANFD; 231} ANFD;
150 232
151typedef struct 233typedef struct
152{ 234{
153 W w; 235 W w;
154 int events; 236 int events;
155} ANPENDING; 237} ANPENDING;
156 238
157#if EV_MULTIPLICITY 239#if EV_MULTIPLICITY
158 240
159struct ev_loop 241 struct ev_loop
160{ 242 {
243 ev_tstamp ev_rt_now;
244 #define ev_rt_now ((loop)->ev_rt_now)
161# define VAR(name,decl) decl; 245 #define VAR(name,decl) decl;
162# include "ev_vars.h" 246 #include "ev_vars.h"
163};
164# undef VAR 247 #undef VAR
248 };
165# include "ev_wrap.h" 249 #include "ev_wrap.h"
250
251 struct ev_loop default_loop_struct;
252 static struct ev_loop *default_loop;
166 253
167#else 254#else
168 255
256 ev_tstamp ev_rt_now;
169# define VAR(name,decl) static decl; 257 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 258 #include "ev_vars.h"
171# undef VAR 259 #undef VAR
260
261 static int default_loop;
172 262
173#endif 263#endif
174 264
175/*****************************************************************************/ 265/*****************************************************************************/
176 266
177inline ev_tstamp 267ev_tstamp
178ev_time (void) 268ev_time (void)
179{ 269{
180#if EV_USE_REALTIME 270#if EV_USE_REALTIME
181 struct timespec ts; 271 struct timespec ts;
182 clock_gettime (CLOCK_REALTIME, &ts); 272 clock_gettime (CLOCK_REALTIME, &ts);
201#endif 291#endif
202 292
203 return ev_time (); 293 return ev_time ();
204} 294}
205 295
296#if EV_MULTIPLICITY
206ev_tstamp 297ev_tstamp
207ev_now (EV_P) 298ev_now (EV_P)
208{ 299{
209 return rt_now; 300 return ev_rt_now;
210} 301}
302#endif
211 303
212#define array_roundsize(base,n) ((n) | 4 & ~3) 304#define array_roundsize(type,n) ((n) | 4 & ~3)
213 305
214#define array_needsize(base,cur,cnt,init) \ 306#define array_needsize(type,base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 307 if (expect_false ((cnt) > cur)) \
216 { \ 308 { \
217 int newcnt = cur; \ 309 int newcnt = cur; \
218 do \ 310 do \
219 { \ 311 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 312 newcnt = array_roundsize (type, newcnt << 1); \
221 } \ 313 } \
222 while ((cnt) > newcnt); \ 314 while ((cnt) > newcnt); \
223 \ 315 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 316 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
225 init (base + cur, newcnt - cur); \ 317 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 318 cur = newcnt; \
227 } 319 }
320
321#define array_slim(type,stem) \
322 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
323 { \
324 stem ## max = array_roundsize (stem ## cnt >> 1); \
325 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
326 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
327 }
328
329#define array_free(stem, idx) \
330 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 331
229/*****************************************************************************/ 332/*****************************************************************************/
230 333
231static void 334static void
232anfds_init (ANFD *base, int count) 335anfds_init (ANFD *base, int count)
239 342
240 ++base; 343 ++base;
241 } 344 }
242} 345}
243 346
244static void 347void
245event (EV_P_ W w, int events) 348ev_feed_event (EV_P_ void *w, int revents)
246{ 349{
350 W w_ = (W)w;
351
247 if (w->pending) 352 if (w_->pending)
248 { 353 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 354 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
250 return; 355 return;
251 } 356 }
252 357
253 w->pending = ++pendingcnt [ABSPRI (w)]; 358 w_->pending = ++pendingcnt [ABSPRI (w_)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 359 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
255 pendings [ABSPRI (w)][w->pending - 1].w = w; 360 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
256 pendings [ABSPRI (w)][w->pending - 1].events = events; 361 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
257} 362}
258 363
259static void 364static void
260queue_events (EV_P_ W *events, int eventcnt, int type) 365queue_events (EV_P_ W *events, int eventcnt, int type)
261{ 366{
262 int i; 367 int i;
263 368
264 for (i = 0; i < eventcnt; ++i) 369 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type); 370 ev_feed_event (EV_A_ events [i], type);
266} 371}
267 372
268static void 373inline void
269fd_event (EV_P_ int fd, int events) 374fd_event (EV_P_ int fd, int revents)
270{ 375{
271 ANFD *anfd = anfds + fd; 376 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 377 struct ev_io *w;
273 378
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 379 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
275 { 380 {
276 int ev = w->events & events; 381 int ev = w->events & revents;
277 382
278 if (ev) 383 if (ev)
279 event (EV_A_ (W)w, ev); 384 ev_feed_event (EV_A_ (W)w, ev);
280 } 385 }
386}
387
388void
389ev_feed_fd_event (EV_P_ int fd, int revents)
390{
391 fd_event (EV_A_ fd, revents);
281} 392}
282 393
283/*****************************************************************************/ 394/*****************************************************************************/
284 395
285static void 396static void
296 int events = 0; 407 int events = 0;
297 408
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 409 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events; 410 events |= w->events;
300 411
412#if EV_SELECT_IS_WINSOCKET
413 if (events)
414 {
415 unsigned long argp;
416 anfd->handle = _get_osfhandle (fd);
417 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
418 }
419#endif
420
301 anfd->reify = 0; 421 anfd->reify = 0;
302 422
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 423 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 424 anfd->events = events;
307 }
308 } 425 }
309 426
310 fdchangecnt = 0; 427 fdchangecnt = 0;
311} 428}
312 429
313static void 430static void
314fd_change (EV_P_ int fd) 431fd_change (EV_P_ int fd)
315{ 432{
316 if (anfds [fd].reify || fdchangecnt < 0) 433 if (anfds [fd].reify)
317 return; 434 return;
318 435
319 anfds [fd].reify = 1; 436 anfds [fd].reify = 1;
320 437
321 ++fdchangecnt; 438 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 439 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
323 fdchanges [fdchangecnt - 1] = fd; 440 fdchanges [fdchangecnt - 1] = fd;
324} 441}
325 442
326static void 443static void
327fd_kill (EV_P_ int fd) 444fd_kill (EV_P_ int fd)
329 struct ev_io *w; 446 struct ev_io *w;
330 447
331 while ((w = (struct ev_io *)anfds [fd].head)) 448 while ((w = (struct ev_io *)anfds [fd].head))
332 { 449 {
333 ev_io_stop (EV_A_ w); 450 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 451 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 452 }
453}
454
455static int
456fd_valid (int fd)
457{
458#ifdef _WIN32
459 return _get_osfhandle (fd) != -1;
460#else
461 return fcntl (fd, F_GETFD) != -1;
462#endif
336} 463}
337 464
338/* called on EBADF to verify fds */ 465/* called on EBADF to verify fds */
339static void 466static void
340fd_ebadf (EV_P) 467fd_ebadf (EV_P)
341{ 468{
342 int fd; 469 int fd;
343 470
344 for (fd = 0; fd < anfdmax; ++fd) 471 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 472 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 473 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 474 fd_kill (EV_A_ fd);
348} 475}
349 476
350/* called on ENOMEM in select/poll to kill some fds and retry */ 477/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 478static void
352fd_enomem (EV_P) 479fd_enomem (EV_P)
353{ 480{
354 int fd = anfdmax; 481 int fd;
355 482
356 while (fd--) 483 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 484 if (anfds [fd].events)
358 { 485 {
359 close (fd);
360 fd_kill (EV_A_ fd); 486 fd_kill (EV_A_ fd);
361 return; 487 return;
362 } 488 }
363} 489}
364 490
365/* susually called after fork if method needs to re-arm all fds from scratch */ 491/* usually called after fork if method needs to re-arm all fds from scratch */
366static void 492static void
367fd_rearm_all (EV_P) 493fd_rearm_all (EV_P)
368{ 494{
369 int fd; 495 int fd;
370 496
385 WT w = heap [k]; 511 WT w = heap [k];
386 512
387 while (k && heap [k >> 1]->at > w->at) 513 while (k && heap [k >> 1]->at > w->at)
388 { 514 {
389 heap [k] = heap [k >> 1]; 515 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 516 ((W)heap [k])->active = k + 1;
391 k >>= 1; 517 k >>= 1;
392 } 518 }
393 519
394 heap [k] = w; 520 heap [k] = w;
395 heap [k]->active = k + 1; 521 ((W)heap [k])->active = k + 1;
396 522
397} 523}
398 524
399static void 525static void
400downheap (WT *heap, int N, int k) 526downheap (WT *heap, int N, int k)
410 536
411 if (w->at <= heap [j]->at) 537 if (w->at <= heap [j]->at)
412 break; 538 break;
413 539
414 heap [k] = heap [j]; 540 heap [k] = heap [j];
415 heap [k]->active = k + 1; 541 ((W)heap [k])->active = k + 1;
416 k = j; 542 k = j;
417 } 543 }
418 544
419 heap [k] = w; 545 heap [k] = w;
420 heap [k]->active = k + 1; 546 ((W)heap [k])->active = k + 1;
547}
548
549inline void
550adjustheap (WT *heap, int N, int k)
551{
552 upheap (heap, k);
553 downheap (heap, N, k);
421} 554}
422 555
423/*****************************************************************************/ 556/*****************************************************************************/
424 557
425typedef struct 558typedef struct
426{ 559{
427 struct ev_watcher_list *head; 560 WL head;
428 sig_atomic_t volatile gotsig; 561 sig_atomic_t volatile gotsig;
429} ANSIG; 562} ANSIG;
430 563
431static ANSIG *signals; 564static ANSIG *signals;
432static int signalmax; 565static int signalmax;
448} 581}
449 582
450static void 583static void
451sighandler (int signum) 584sighandler (int signum)
452{ 585{
586#if _WIN32
587 signal (signum, sighandler);
588#endif
589
453 signals [signum - 1].gotsig = 1; 590 signals [signum - 1].gotsig = 1;
454 591
455 if (!gotsig) 592 if (!gotsig)
456 { 593 {
457 int old_errno = errno; 594 int old_errno = errno;
459 write (sigpipe [1], &signum, 1); 596 write (sigpipe [1], &signum, 1);
460 errno = old_errno; 597 errno = old_errno;
461 } 598 }
462} 599}
463 600
601void
602ev_feed_signal_event (EV_P_ int signum)
603{
604 WL w;
605
606#if EV_MULTIPLICITY
607 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
608#endif
609
610 --signum;
611
612 if (signum < 0 || signum >= signalmax)
613 return;
614
615 signals [signum].gotsig = 0;
616
617 for (w = signals [signum].head; w; w = w->next)
618 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
619}
620
464static void 621static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 622sigcb (EV_P_ struct ev_io *iow, int revents)
466{ 623{
467 struct ev_watcher_list *w;
468 int signum; 624 int signum;
469 625
470 read (sigpipe [0], &revents, 1); 626 read (sigpipe [0], &revents, 1);
471 gotsig = 0; 627 gotsig = 0;
472 628
473 for (signum = signalmax; signum--; ) 629 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig) 630 if (signals [signum].gotsig)
475 { 631 ev_feed_signal_event (EV_A_ signum + 1);
476 signals [signum].gotsig = 0; 632}
477 633
478 for (w = signals [signum].head; w; w = w->next) 634inline void
479 event (EV_A_ (W)w, EV_SIGNAL); 635fd_intern (int fd)
480 } 636{
637#ifdef _WIN32
638 int arg = 1;
639 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
640#else
641 fcntl (fd, F_SETFD, FD_CLOEXEC);
642 fcntl (fd, F_SETFL, O_NONBLOCK);
643#endif
481} 644}
482 645
483static void 646static void
484siginit (EV_P) 647siginit (EV_P)
485{ 648{
486#ifndef WIN32 649 fd_intern (sigpipe [0]);
487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 650 fd_intern (sigpipe [1]);
488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
489
490 /* rather than sort out wether we really need nb, set it */
491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
494 651
495 ev_io_set (&sigev, sigpipe [0], EV_READ); 652 ev_io_set (&sigev, sigpipe [0], EV_READ);
496 ev_io_start (EV_A_ &sigev); 653 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */ 654 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 655}
499 656
500/*****************************************************************************/ 657/*****************************************************************************/
501 658
502#ifndef WIN32
503
504static struct ev_child *childs [PID_HASHSIZE]; 659static struct ev_child *childs [PID_HASHSIZE];
660
661#ifndef _WIN32
662
505static struct ev_signal childev; 663static struct ev_signal childev;
506 664
507#ifndef WCONTINUED 665#ifndef WCONTINUED
508# define WCONTINUED 0 666# define WCONTINUED 0
509#endif 667#endif
514 struct ev_child *w; 672 struct ev_child *w;
515 673
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 674 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid) 675 if (w->pid == pid || !w->pid)
518 { 676 {
519 w->priority = sw->priority; /* need to do it *now* */ 677 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
520 w->rpid = pid; 678 w->rpid = pid;
521 w->rstatus = status; 679 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD); 680 ev_feed_event (EV_A_ (W)w, EV_CHILD);
523 } 681 }
524} 682}
525 683
526static void 684static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 685childcb (EV_P_ struct ev_signal *sw, int revents)
529 int pid, status; 687 int pid, status;
530 688
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 689 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 690 {
533 /* make sure we are called again until all childs have been reaped */ 691 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL); 692 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 693
536 child_reap (EV_A_ sw, pid, pid, status); 694 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 695 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 } 696 }
539} 697}
569 727
570/* return true if we are running with elevated privileges and should ignore env variables */ 728/* return true if we are running with elevated privileges and should ignore env variables */
571static int 729static int
572enable_secure (void) 730enable_secure (void)
573{ 731{
574#ifdef WIN32 732#ifdef _WIN32
575 return 0; 733 return 0;
576#else 734#else
577 return getuid () != geteuid () 735 return getuid () != geteuid ()
578 || getgid () != getegid (); 736 || getgid () != getegid ();
579#endif 737#endif
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 754 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1; 755 have_monotonic = 1;
598 } 756 }
599#endif 757#endif
600 758
601 rt_now = ev_time (); 759 ev_rt_now = ev_time ();
602 mn_now = get_clock (); 760 mn_now = get_clock ();
603 now_floor = mn_now; 761 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now; 762 rtmn_diff = ev_rt_now - mn_now;
605 763
606 if (methods == EVMETHOD_AUTO) 764 if (methods == EVMETHOD_AUTO)
607 if (!enable_secure () && getenv ("LIBEV_METHODS")) 765 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS")); 766 methods = atoi (getenv ("LIBEV_METHODS"));
609 else 767 else
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 778 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif 779#endif
622#if EV_USE_SELECT 780#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 781 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif 782#endif
783
784 ev_init (&sigev, sigcb);
785 ev_set_priority (&sigev, EV_MAXPRI);
625 } 786 }
626} 787}
627 788
628void 789void
629loop_destroy (EV_P) 790loop_destroy (EV_P)
630{ 791{
792 int i;
793
631#if EV_USE_KQUEUE 794#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 795 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif 796#endif
634#if EV_USE_EPOLL 797#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 798 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
639#endif 802#endif
640#if EV_USE_SELECT 803#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 804 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif 805#endif
643 806
807 for (i = NUMPRI; i--; )
808 array_free (pending, [i]);
809
810 /* have to use the microsoft-never-gets-it-right macro */
811 array_free (fdchange, EMPTY);
812 array_free (timer, EMPTY);
813#if EV_PERIODICS
814 array_free (periodic, EMPTY);
815#endif
816 array_free (idle, EMPTY);
817 array_free (prepare, EMPTY);
818 array_free (check, EMPTY);
819
644 method = 0; 820 method = 0;
645 /*TODO*/
646} 821}
647 822
648void 823static void
649loop_fork (EV_P) 824loop_fork (EV_P)
650{ 825{
651 /*TODO*/
652#if EV_USE_EPOLL 826#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 827 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif 828#endif
655#if EV_USE_KQUEUE 829#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 830 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif 831#endif
832
833 if (ev_is_active (&sigev))
834 {
835 /* default loop */
836
837 ev_ref (EV_A);
838 ev_io_stop (EV_A_ &sigev);
839 close (sigpipe [0]);
840 close (sigpipe [1]);
841
842 while (pipe (sigpipe))
843 syserr ("(libev) error creating pipe");
844
845 siginit (EV_A);
846 }
847
848 postfork = 0;
658} 849}
659 850
660#if EV_MULTIPLICITY 851#if EV_MULTIPLICITY
661struct ev_loop * 852struct ev_loop *
662ev_loop_new (int methods) 853ev_loop_new (int methods)
663{ 854{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 855 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
856
857 memset (loop, 0, sizeof (struct ev_loop));
665 858
666 loop_init (EV_A_ methods); 859 loop_init (EV_A_ methods);
667 860
668 if (ev_method (EV_A)) 861 if (ev_method (EV_A))
669 return loop; 862 return loop;
673 866
674void 867void
675ev_loop_destroy (EV_P) 868ev_loop_destroy (EV_P)
676{ 869{
677 loop_destroy (EV_A); 870 loop_destroy (EV_A);
678 free (loop); 871 ev_free (loop);
679} 872}
680 873
681void 874void
682ev_loop_fork (EV_P) 875ev_loop_fork (EV_P)
683{ 876{
684 loop_fork (EV_A); 877 postfork = 1;
685} 878}
686 879
687#endif 880#endif
688 881
689#if EV_MULTIPLICITY 882#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop * 883struct ev_loop *
694#else 884#else
695static int default_loop;
696
697int 885int
698#endif 886#endif
699ev_default_loop (int methods) 887ev_default_loop (int methods)
700{ 888{
701 if (sigpipe [0] == sigpipe [1]) 889 if (sigpipe [0] == sigpipe [1])
712 900
713 loop_init (EV_A_ methods); 901 loop_init (EV_A_ methods);
714 902
715 if (ev_method (EV_A)) 903 if (ev_method (EV_A))
716 { 904 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 905 siginit (EV_A);
720 906
721#ifndef WIN32 907#ifndef _WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 908 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 909 ev_set_priority (&childev, EV_MAXPRI);
724 ev_signal_start (EV_A_ &childev); 910 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */ 911 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif 912#endif
737{ 923{
738#if EV_MULTIPLICITY 924#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 925 struct ev_loop *loop = default_loop;
740#endif 926#endif
741 927
928#ifndef _WIN32
742 ev_ref (EV_A); /* child watcher */ 929 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 930 ev_signal_stop (EV_A_ &childev);
931#endif
744 932
745 ev_ref (EV_A); /* signal watcher */ 933 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev); 934 ev_io_stop (EV_A_ &sigev);
747 935
748 close (sigpipe [0]); sigpipe [0] = 0; 936 close (sigpipe [0]); sigpipe [0] = 0;
756{ 944{
757#if EV_MULTIPLICITY 945#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 946 struct ev_loop *loop = default_loop;
759#endif 947#endif
760 948
761 loop_fork (EV_A); 949 if (method)
762 950 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 951}
771 952
772/*****************************************************************************/ 953/*****************************************************************************/
954
955static int
956any_pending (EV_P)
957{
958 int pri;
959
960 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri])
962 return 1;
963
964 return 0;
965}
773 966
774static void 967static void
775call_pending (EV_P) 968call_pending (EV_P)
776{ 969{
777 int pri; 970 int pri;
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 975 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 976
784 if (p->w) 977 if (p->w)
785 { 978 {
786 p->w->pending = 0; 979 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events); 980 EV_CB_INVOKE (p->w, p->events);
788 } 981 }
789 } 982 }
790} 983}
791 984
792static void 985static void
793timers_reify (EV_P) 986timers_reify (EV_P)
794{ 987{
795 while (timercnt && timers [0]->at <= mn_now) 988 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 989 {
797 struct ev_timer *w = timers [0]; 990 struct ev_timer *w = timers [0];
991
992 assert (("inactive timer on timer heap detected", ev_is_active (w)));
798 993
799 /* first reschedule or stop timer */ 994 /* first reschedule or stop timer */
800 if (w->repeat) 995 if (w->repeat)
801 { 996 {
802 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998
803 w->at = mn_now + w->repeat; 999 ((WT)w)->at += w->repeat;
1000 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now;
1002
804 downheap ((WT *)timers, timercnt, 0); 1003 downheap ((WT *)timers, timercnt, 0);
805 } 1004 }
806 else 1005 else
807 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
808 1007
809 event (EV_A_ (W)w, EV_TIMEOUT); 1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
810 } 1009 }
811} 1010}
812 1011
1012#if EV_PERIODICS
813static void 1013static void
814periodics_reify (EV_P) 1014periodics_reify (EV_P)
815{ 1015{
816 while (periodiccnt && periodics [0]->at <= rt_now) 1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
817 { 1017 {
818 struct ev_periodic *w = periodics [0]; 1018 struct ev_periodic *w = periodics [0];
819 1019
1020 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1021
820 /* first reschedule or stop timer */ 1022 /* first reschedule or stop timer */
821 if (w->interval) 1023 if (w->reschedule_cb)
822 { 1024 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1026
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0);
1029 }
1030 else if (w->interval)
1031 {
823 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
824 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
825 downheap ((WT *)periodics, periodiccnt, 0); 1034 downheap ((WT *)periodics, periodiccnt, 0);
826 } 1035 }
827 else 1036 else
828 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
829 1038
830 event (EV_A_ (W)w, EV_PERIODIC); 1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
831 } 1040 }
832} 1041}
833 1042
834static void 1043static void
835periodics_reschedule (EV_P) 1044periodics_reschedule (EV_P)
839 /* adjust periodics after time jump */ 1048 /* adjust periodics after time jump */
840 for (i = 0; i < periodiccnt; ++i) 1049 for (i = 0; i < periodiccnt; ++i)
841 { 1050 {
842 struct ev_periodic *w = periodics [i]; 1051 struct ev_periodic *w = periodics [i];
843 1052
1053 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
844 if (w->interval) 1055 else if (w->interval)
845 {
846 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
847
848 if (fabs (diff) >= 1e-4)
849 {
850 ev_periodic_stop (EV_A_ w);
851 ev_periodic_start (EV_A_ w);
852
853 i = 0; /* restart loop, inefficient, but time jumps should be rare */
854 }
855 }
856 } 1057 }
1058
1059 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i);
857} 1062}
1063#endif
858 1064
859inline int 1065inline int
860time_update_monotonic (EV_P) 1066time_update_monotonic (EV_P)
861{ 1067{
862 mn_now = get_clock (); 1068 mn_now = get_clock ();
863 1069
864 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
865 { 1071 {
866 rt_now = rtmn_diff + mn_now; 1072 ev_rt_now = rtmn_diff + mn_now;
867 return 0; 1073 return 0;
868 } 1074 }
869 else 1075 else
870 { 1076 {
871 now_floor = mn_now; 1077 now_floor = mn_now;
872 rt_now = ev_time (); 1078 ev_rt_now = ev_time ();
873 return 1; 1079 return 1;
874 } 1080 }
875} 1081}
876 1082
877static void 1083static void
886 { 1092 {
887 ev_tstamp odiff = rtmn_diff; 1093 ev_tstamp odiff = rtmn_diff;
888 1094
889 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */
890 { 1096 {
891 rtmn_diff = rt_now - mn_now; 1097 rtmn_diff = ev_rt_now - mn_now;
892 1098
893 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
894 return; /* all is well */ 1100 return; /* all is well */
895 1101
896 rt_now = ev_time (); 1102 ev_rt_now = ev_time ();
897 mn_now = get_clock (); 1103 mn_now = get_clock ();
898 now_floor = mn_now; 1104 now_floor = mn_now;
899 } 1105 }
900 1106
1107# if EV_PERIODICS
901 periodics_reschedule (EV_A); 1108 periodics_reschedule (EV_A);
1109# endif
902 /* no timer adjustment, as the monotonic clock doesn't jump */ 1110 /* no timer adjustment, as the monotonic clock doesn't jump */
903 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
904 } 1112 }
905 } 1113 }
906 else 1114 else
907#endif 1115#endif
908 { 1116 {
909 rt_now = ev_time (); 1117 ev_rt_now = ev_time ();
910 1118
911 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
912 { 1120 {
1121#if EV_PERIODICS
913 periodics_reschedule (EV_A); 1122 periodics_reschedule (EV_A);
1123#endif
914 1124
915 /* adjust timers. this is easy, as the offset is the same for all */ 1125 /* adjust timers. this is easy, as the offset is the same for all */
916 for (i = 0; i < timercnt; ++i) 1126 for (i = 0; i < timercnt; ++i)
917 timers [i]->at += rt_now - mn_now; 1127 ((WT)timers [i])->at += ev_rt_now - mn_now;
918 } 1128 }
919 1129
920 mn_now = rt_now; 1130 mn_now = ev_rt_now;
921 } 1131 }
922} 1132}
923 1133
924void 1134void
925ev_ref (EV_P) 1135ev_ref (EV_P)
948 { 1158 {
949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1159 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
950 call_pending (EV_A); 1160 call_pending (EV_A);
951 } 1161 }
952 1162
1163 /* we might have forked, so reify kernel state if necessary */
1164 if (expect_false (postfork))
1165 loop_fork (EV_A);
1166
953 /* update fd-related kernel structures */ 1167 /* update fd-related kernel structures */
954 fd_reify (EV_A); 1168 fd_reify (EV_A);
955 1169
956 /* calculate blocking time */ 1170 /* calculate blocking time */
957 1171
958 /* we only need this for !monotonic clockor timers, but as we basically 1172 /* we only need this for !monotonic clock or timers, but as we basically
959 always have timers, we just calculate it always */ 1173 always have timers, we just calculate it always */
960#if EV_USE_MONOTONIC 1174#if EV_USE_MONOTONIC
961 if (expect_true (have_monotonic)) 1175 if (expect_true (have_monotonic))
962 time_update_monotonic (EV_A); 1176 time_update_monotonic (EV_A);
963 else 1177 else
964#endif 1178#endif
965 { 1179 {
966 rt_now = ev_time (); 1180 ev_rt_now = ev_time ();
967 mn_now = rt_now; 1181 mn_now = ev_rt_now;
968 } 1182 }
969 1183
970 if (flags & EVLOOP_NONBLOCK || idlecnt) 1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
971 block = 0.; 1185 block = 0.;
972 else 1186 else
973 { 1187 {
974 block = MAX_BLOCKTIME; 1188 block = MAX_BLOCKTIME;
975 1189
976 if (timercnt) 1190 if (timercnt)
977 { 1191 {
978 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
979 if (block > to) block = to; 1193 if (block > to) block = to;
980 } 1194 }
981 1195
1196#if EV_PERIODICS
982 if (periodiccnt) 1197 if (periodiccnt)
983 { 1198 {
984 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
985 if (block > to) block = to; 1200 if (block > to) block = to;
986 } 1201 }
1202#endif
987 1203
988 if (block < 0.) block = 0.; 1204 if (block < 0.) block = 0.;
989 } 1205 }
990 1206
991 method_poll (EV_A_ block); 1207 method_poll (EV_A_ block);
992 1208
993 /* update rt_now, do magic */ 1209 /* update ev_rt_now, do magic */
994 time_update (EV_A); 1210 time_update (EV_A);
995 1211
996 /* queue pending timers and reschedule them */ 1212 /* queue pending timers and reschedule them */
997 timers_reify (EV_A); /* relative timers called last */ 1213 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS
998 periodics_reify (EV_A); /* absolute timers called first */ 1215 periodics_reify (EV_A); /* absolute timers called first */
1216#endif
999 1217
1000 /* queue idle watchers unless io or timers are pending */ 1218 /* queue idle watchers unless io or timers are pending */
1001 if (!pendingcnt) 1219 if (idlecnt && !any_pending (EV_A))
1002 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1003 1221
1004 /* queue check watchers, to be executed first */ 1222 /* queue check watchers, to be executed first */
1005 if (checkcnt) 1223 if (checkcnt)
1006 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1081 return; 1299 return;
1082 1300
1083 assert (("ev_io_start called with negative fd", fd >= 0)); 1301 assert (("ev_io_start called with negative fd", fd >= 0));
1084 1302
1085 ev_start (EV_A_ (W)w, 1); 1303 ev_start (EV_A_ (W)w, 1);
1086 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1087 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1305 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1088 1306
1089 fd_change (EV_A_ fd); 1307 fd_change (EV_A_ fd);
1090} 1308}
1091 1309
1094{ 1312{
1095 ev_clear_pending (EV_A_ (W)w); 1313 ev_clear_pending (EV_A_ (W)w);
1096 if (!ev_is_active (w)) 1314 if (!ev_is_active (w))
1097 return; 1315 return;
1098 1316
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318
1099 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1100 ev_stop (EV_A_ (W)w); 1320 ev_stop (EV_A_ (W)w);
1101 1321
1102 fd_change (EV_A_ w->fd); 1322 fd_change (EV_A_ w->fd);
1103} 1323}
1106ev_timer_start (EV_P_ struct ev_timer *w) 1326ev_timer_start (EV_P_ struct ev_timer *w)
1107{ 1327{
1108 if (ev_is_active (w)) 1328 if (ev_is_active (w))
1109 return; 1329 return;
1110 1330
1111 w->at += mn_now; 1331 ((WT)w)->at += mn_now;
1112 1332
1113 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1114 1334
1115 ev_start (EV_A_ (W)w, ++timercnt); 1335 ev_start (EV_A_ (W)w, ++timercnt);
1116 array_needsize (timers, timermax, timercnt, ); 1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1117 timers [timercnt - 1] = w; 1337 timers [timercnt - 1] = w;
1118 upheap ((WT *)timers, timercnt - 1); 1338 upheap ((WT *)timers, timercnt - 1);
1339
1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1119} 1341}
1120 1342
1121void 1343void
1122ev_timer_stop (EV_P_ struct ev_timer *w) 1344ev_timer_stop (EV_P_ struct ev_timer *w)
1123{ 1345{
1124 ev_clear_pending (EV_A_ (W)w); 1346 ev_clear_pending (EV_A_ (W)w);
1125 if (!ev_is_active (w)) 1347 if (!ev_is_active (w))
1126 return; 1348 return;
1127 1349
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1351
1128 if (w->active < timercnt--) 1352 if (((W)w)->active < timercnt--)
1129 { 1353 {
1130 timers [w->active - 1] = timers [timercnt]; 1354 timers [((W)w)->active - 1] = timers [timercnt];
1131 downheap ((WT *)timers, timercnt, w->active - 1); 1355 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1132 } 1356 }
1133 1357
1134 w->at = w->repeat; 1358 ((WT)w)->at -= mn_now;
1135 1359
1136 ev_stop (EV_A_ (W)w); 1360 ev_stop (EV_A_ (W)w);
1137} 1361}
1138 1362
1139void 1363void
1141{ 1365{
1142 if (ev_is_active (w)) 1366 if (ev_is_active (w))
1143 { 1367 {
1144 if (w->repeat) 1368 if (w->repeat)
1145 { 1369 {
1146 w->at = mn_now + w->repeat; 1370 ((WT)w)->at = mn_now + w->repeat;
1147 downheap ((WT *)timers, timercnt, w->active - 1); 1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1148 } 1372 }
1149 else 1373 else
1150 ev_timer_stop (EV_A_ w); 1374 ev_timer_stop (EV_A_ w);
1151 } 1375 }
1152 else if (w->repeat) 1376 else if (w->repeat)
1153 ev_timer_start (EV_A_ w); 1377 ev_timer_start (EV_A_ w);
1154} 1378}
1155 1379
1380#if EV_PERIODICS
1156void 1381void
1157ev_periodic_start (EV_P_ struct ev_periodic *w) 1382ev_periodic_start (EV_P_ struct ev_periodic *w)
1158{ 1383{
1159 if (ev_is_active (w)) 1384 if (ev_is_active (w))
1160 return; 1385 return;
1161 1386
1387 if (w->reschedule_cb)
1388 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1389 else if (w->interval)
1390 {
1162 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1391 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1163
1164 /* this formula differs from the one in periodic_reify because we do not always round up */ 1392 /* this formula differs from the one in periodic_reify because we do not always round up */
1165 if (w->interval)
1166 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1393 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1394 }
1167 1395
1168 ev_start (EV_A_ (W)w, ++periodiccnt); 1396 ev_start (EV_A_ (W)w, ++periodiccnt);
1169 array_needsize (periodics, periodicmax, periodiccnt, ); 1397 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1170 periodics [periodiccnt - 1] = w; 1398 periodics [periodiccnt - 1] = w;
1171 upheap ((WT *)periodics, periodiccnt - 1); 1399 upheap ((WT *)periodics, periodiccnt - 1);
1400
1401 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1172} 1402}
1173 1403
1174void 1404void
1175ev_periodic_stop (EV_P_ struct ev_periodic *w) 1405ev_periodic_stop (EV_P_ struct ev_periodic *w)
1176{ 1406{
1177 ev_clear_pending (EV_A_ (W)w); 1407 ev_clear_pending (EV_A_ (W)w);
1178 if (!ev_is_active (w)) 1408 if (!ev_is_active (w))
1179 return; 1409 return;
1180 1410
1411 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1412
1181 if (w->active < periodiccnt--) 1413 if (((W)w)->active < periodiccnt--)
1182 { 1414 {
1183 periodics [w->active - 1] = periodics [periodiccnt]; 1415 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1184 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1416 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1185 } 1417 }
1186 1418
1187 ev_stop (EV_A_ (W)w); 1419 ev_stop (EV_A_ (W)w);
1188} 1420}
1189 1421
1190void 1422void
1423ev_periodic_again (EV_P_ struct ev_periodic *w)
1424{
1425 /* TODO: use adjustheap and recalculation */
1426 ev_periodic_stop (EV_A_ w);
1427 ev_periodic_start (EV_A_ w);
1428}
1429#endif
1430
1431void
1191ev_idle_start (EV_P_ struct ev_idle *w) 1432ev_idle_start (EV_P_ struct ev_idle *w)
1192{ 1433{
1193 if (ev_is_active (w)) 1434 if (ev_is_active (w))
1194 return; 1435 return;
1195 1436
1196 ev_start (EV_A_ (W)w, ++idlecnt); 1437 ev_start (EV_A_ (W)w, ++idlecnt);
1197 array_needsize (idles, idlemax, idlecnt, ); 1438 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1198 idles [idlecnt - 1] = w; 1439 idles [idlecnt - 1] = w;
1199} 1440}
1200 1441
1201void 1442void
1202ev_idle_stop (EV_P_ struct ev_idle *w) 1443ev_idle_stop (EV_P_ struct ev_idle *w)
1203{ 1444{
1204 ev_clear_pending (EV_A_ (W)w); 1445 ev_clear_pending (EV_A_ (W)w);
1446 if (!ev_is_active (w))
1447 return;
1448
1449 idles [((W)w)->active - 1] = idles [--idlecnt];
1450 ev_stop (EV_A_ (W)w);
1451}
1452
1453void
1454ev_prepare_start (EV_P_ struct ev_prepare *w)
1455{
1205 if (ev_is_active (w)) 1456 if (ev_is_active (w))
1206 return; 1457 return;
1207 1458
1208 idles [w->active - 1] = idles [--idlecnt]; 1459 ev_start (EV_A_ (W)w, ++preparecnt);
1460 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1461 prepares [preparecnt - 1] = w;
1462}
1463
1464void
1465ev_prepare_stop (EV_P_ struct ev_prepare *w)
1466{
1467 ev_clear_pending (EV_A_ (W)w);
1468 if (!ev_is_active (w))
1469 return;
1470
1471 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1209 ev_stop (EV_A_ (W)w); 1472 ev_stop (EV_A_ (W)w);
1210} 1473}
1211 1474
1212void 1475void
1213ev_prepare_start (EV_P_ struct ev_prepare *w) 1476ev_check_start (EV_P_ struct ev_check *w)
1214{ 1477{
1215 if (ev_is_active (w)) 1478 if (ev_is_active (w))
1216 return; 1479 return;
1217 1480
1218 ev_start (EV_A_ (W)w, ++preparecnt); 1481 ev_start (EV_A_ (W)w, ++checkcnt);
1219 array_needsize (prepares, preparemax, preparecnt, ); 1482 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1220 prepares [preparecnt - 1] = w; 1483 checks [checkcnt - 1] = w;
1221} 1484}
1222 1485
1223void 1486void
1224ev_prepare_stop (EV_P_ struct ev_prepare *w) 1487ev_check_stop (EV_P_ struct ev_check *w)
1225{ 1488{
1226 ev_clear_pending (EV_A_ (W)w); 1489 ev_clear_pending (EV_A_ (W)w);
1227 if (ev_is_active (w)) 1490 if (!ev_is_active (w))
1228 return; 1491 return;
1229 1492
1230 prepares [w->active - 1] = prepares [--preparecnt];
1231 ev_stop (EV_A_ (W)w);
1232}
1233
1234void
1235ev_check_start (EV_P_ struct ev_check *w)
1236{
1237 if (ev_is_active (w))
1238 return;
1239
1240 ev_start (EV_A_ (W)w, ++checkcnt);
1241 array_needsize (checks, checkmax, checkcnt, );
1242 checks [checkcnt - 1] = w;
1243}
1244
1245void
1246ev_check_stop (EV_P_ struct ev_check *w)
1247{
1248 ev_clear_pending (EV_A_ (W)w);
1249 if (ev_is_active (w))
1250 return;
1251
1252 checks [w->active - 1] = checks [--checkcnt]; 1493 checks [((W)w)->active - 1] = checks [--checkcnt];
1253 ev_stop (EV_A_ (W)w); 1494 ev_stop (EV_A_ (W)w);
1254} 1495}
1255 1496
1256#ifndef SA_RESTART 1497#ifndef SA_RESTART
1257# define SA_RESTART 0 1498# define SA_RESTART 0
1267 return; 1508 return;
1268 1509
1269 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1510 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1270 1511
1271 ev_start (EV_A_ (W)w, 1); 1512 ev_start (EV_A_ (W)w, 1);
1272 array_needsize (signals, signalmax, w->signum, signals_init); 1513 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1273 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1514 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1274 1515
1275 if (!w->next) 1516 if (!((WL)w)->next)
1276 { 1517 {
1518#if _WIN32
1519 signal (w->signum, sighandler);
1520#else
1277 struct sigaction sa; 1521 struct sigaction sa;
1278 sa.sa_handler = sighandler; 1522 sa.sa_handler = sighandler;
1279 sigfillset (&sa.sa_mask); 1523 sigfillset (&sa.sa_mask);
1280 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1524 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1281 sigaction (w->signum, &sa, 0); 1525 sigaction (w->signum, &sa, 0);
1526#endif
1282 } 1527 }
1283} 1528}
1284 1529
1285void 1530void
1286ev_signal_stop (EV_P_ struct ev_signal *w) 1531ev_signal_stop (EV_P_ struct ev_signal *w)
1311 1556
1312void 1557void
1313ev_child_stop (EV_P_ struct ev_child *w) 1558ev_child_stop (EV_P_ struct ev_child *w)
1314{ 1559{
1315 ev_clear_pending (EV_A_ (W)w); 1560 ev_clear_pending (EV_A_ (W)w);
1316 if (ev_is_active (w)) 1561 if (!ev_is_active (w))
1317 return; 1562 return;
1318 1563
1319 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1564 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1320 ev_stop (EV_A_ (W)w); 1565 ev_stop (EV_A_ (W)w);
1321} 1566}
1336 void (*cb)(int revents, void *arg) = once->cb; 1581 void (*cb)(int revents, void *arg) = once->cb;
1337 void *arg = once->arg; 1582 void *arg = once->arg;
1338 1583
1339 ev_io_stop (EV_A_ &once->io); 1584 ev_io_stop (EV_A_ &once->io);
1340 ev_timer_stop (EV_A_ &once->to); 1585 ev_timer_stop (EV_A_ &once->to);
1341 free (once); 1586 ev_free (once);
1342 1587
1343 cb (revents, arg); 1588 cb (revents, arg);
1344} 1589}
1345 1590
1346static void 1591static void
1356} 1601}
1357 1602
1358void 1603void
1359ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1604ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1360{ 1605{
1361 struct ev_once *once = malloc (sizeof (struct ev_once)); 1606 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1362 1607
1363 if (!once) 1608 if (!once)
1364 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1609 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1365 else 1610 else
1366 { 1611 {
1367 once->cb = cb; 1612 once->cb = cb;
1368 once->arg = arg; 1613 once->arg = arg;
1369 1614
1370 ev_watcher_init (&once->io, once_cb_io); 1615 ev_init (&once->io, once_cb_io);
1371 if (fd >= 0) 1616 if (fd >= 0)
1372 { 1617 {
1373 ev_io_set (&once->io, fd, events); 1618 ev_io_set (&once->io, fd, events);
1374 ev_io_start (EV_A_ &once->io); 1619 ev_io_start (EV_A_ &once->io);
1375 } 1620 }
1376 1621
1377 ev_watcher_init (&once->to, once_cb_to); 1622 ev_init (&once->to, once_cb_to);
1378 if (timeout >= 0.) 1623 if (timeout >= 0.)
1379 { 1624 {
1380 ev_timer_set (&once->to, timeout, 0.); 1625 ev_timer_set (&once->to, timeout, 0.);
1381 ev_timer_start (EV_A_ &once->to); 1626 ev_timer_start (EV_A_ &once->to);
1382 } 1627 }
1383 } 1628 }
1384} 1629}
1385 1630
1631#ifdef __cplusplus
1632}
1633#endif
1634

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines