ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC vs.
Revision 1.103 by root, Mon Nov 12 00:31:08 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
84#else
85# define WIN32_LEAN_AND_MEAN
86# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1
71#endif 89# endif
72#include <sys/time.h> 90#endif
73#include <time.h>
74 91
75/**/ 92/**/
76 93
77#ifndef EV_USE_MONOTONIC 94#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 95# define EV_USE_MONOTONIC 1
90# define EV_USE_EPOLL 0 107# define EV_USE_EPOLL 0
91#endif 108#endif
92 109
93#ifndef EV_USE_KQUEUE 110#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 111# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif 112#endif
104 113
105#ifndef EV_USE_REALTIME 114#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1 115# define EV_USE_REALTIME 1
107#endif 116#endif
114#endif 123#endif
115 124
116#ifndef CLOCK_REALTIME 125#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 126# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 127# define EV_USE_REALTIME 0
128#endif
129
130#if EV_SELECT_IS_WINSOCKET
131# include <winsock.h>
119#endif 132#endif
120 133
121/**/ 134/**/
122 135
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 136#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 137#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 138#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 139/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 140
141#ifdef EV_H
142# include EV_H
143#else
128#include "ev.h" 144# include "ev.h"
145#endif
129 146
130#if __GNUC__ >= 3 147#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 148# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 149# define inline inline
133#else 150#else
139#define expect_true(expr) expect ((expr) != 0, 1) 156#define expect_true(expr) expect ((expr) != 0, 1)
140 157
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 158#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 159#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 160
161#define EMPTY /* required for microsofts broken pseudo-c compiler */
162
144typedef struct ev_watcher *W; 163typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 164typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 165typedef struct ev_watcher_time *WT;
147 166
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 167static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 168
150#if WIN32 169#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 170# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 171#endif
172
173/*****************************************************************************/
174
175static void (*syserr_cb)(const char *msg);
176
177void ev_set_syserr_cb (void (*cb)(const char *msg))
178{
179 syserr_cb = cb;
180}
181
182static void
183syserr (const char *msg)
184{
185 if (!msg)
186 msg = "(libev) system error";
187
188 if (syserr_cb)
189 syserr_cb (msg);
190 else
191 {
192 perror (msg);
193 abort ();
194 }
195}
196
197static void *(*alloc)(void *ptr, long size);
198
199void ev_set_allocator (void *(*cb)(void *ptr, long size))
200{
201 alloc = cb;
202}
203
204static void *
205ev_realloc (void *ptr, long size)
206{
207 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
208
209 if (!ptr && size)
210 {
211 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
212 abort ();
213 }
214
215 return ptr;
216}
217
218#define ev_malloc(size) ev_realloc (0, (size))
219#define ev_free(ptr) ev_realloc ((ptr), 0)
155 220
156/*****************************************************************************/ 221/*****************************************************************************/
157 222
158typedef struct 223typedef struct
159{ 224{
160 WL head; 225 WL head;
161 unsigned char events; 226 unsigned char events;
162 unsigned char reify; 227 unsigned char reify;
228#if EV_SELECT_IS_WINSOCKET
229 SOCKET handle;
230#endif
163} ANFD; 231} ANFD;
164 232
165typedef struct 233typedef struct
166{ 234{
167 W w; 235 W w;
168 int events; 236 int events;
169} ANPENDING; 237} ANPENDING;
170 238
171#if EV_MULTIPLICITY 239#if EV_MULTIPLICITY
172 240
173struct ev_loop 241 struct ev_loop
174{ 242 {
243 ev_tstamp ev_rt_now;
244 #define ev_rt_now ((loop)->ev_rt_now)
175# define VAR(name,decl) decl; 245 #define VAR(name,decl) decl;
176# include "ev_vars.h" 246 #include "ev_vars.h"
177};
178# undef VAR 247 #undef VAR
248 };
179# include "ev_wrap.h" 249 #include "ev_wrap.h"
250
251 struct ev_loop default_loop_struct;
252 static struct ev_loop *default_loop;
180 253
181#else 254#else
182 255
256 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 257 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 258 #include "ev_vars.h"
185# undef VAR 259 #undef VAR
260
261 static int default_loop;
186 262
187#endif 263#endif
188 264
189/*****************************************************************************/ 265/*****************************************************************************/
190 266
191inline ev_tstamp 267ev_tstamp
192ev_time (void) 268ev_time (void)
193{ 269{
194#if EV_USE_REALTIME 270#if EV_USE_REALTIME
195 struct timespec ts; 271 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts); 272 clock_gettime (CLOCK_REALTIME, &ts);
215#endif 291#endif
216 292
217 return ev_time (); 293 return ev_time ();
218} 294}
219 295
296#if EV_MULTIPLICITY
220ev_tstamp 297ev_tstamp
221ev_now (EV_P) 298ev_now (EV_P)
222{ 299{
223 return rt_now; 300 return ev_rt_now;
224} 301}
302#endif
225 303
226#define array_roundsize(base,n) ((n) | 4 & ~3) 304#define array_roundsize(type,n) ((n) | 4 & ~3)
227 305
228#define array_needsize(base,cur,cnt,init) \ 306#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 307 if (expect_false ((cnt) > cur)) \
230 { \ 308 { \
231 int newcnt = cur; \ 309 int newcnt = cur; \
232 do \ 310 do \
233 { \ 311 { \
234 newcnt = array_roundsize (base, newcnt << 1); \ 312 newcnt = array_roundsize (type, newcnt << 1); \
235 } \ 313 } \
236 while ((cnt) > newcnt); \ 314 while ((cnt) > newcnt); \
237 \ 315 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \ 316 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
239 init (base + cur, newcnt - cur); \ 317 init (base + cur, newcnt - cur); \
240 cur = newcnt; \ 318 cur = newcnt; \
241 } 319 }
242 320
243#define array_slim(stem) \ 321#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 322 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 323 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 324 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 325 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 326 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 327 }
250 328
251#define array_free(stem, idx) \ 329#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 330 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253 331
254/*****************************************************************************/ 332/*****************************************************************************/
255 333
256static void 334static void
257anfds_init (ANFD *base, int count) 335anfds_init (ANFD *base, int count)
264 342
265 ++base; 343 ++base;
266 } 344 }
267} 345}
268 346
269static void 347void
270event (EV_P_ W w, int events) 348ev_feed_event (EV_P_ void *w, int revents)
271{ 349{
350 W w_ = (W)w;
351
272 if (w->pending) 352 if (w_->pending)
273 { 353 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events; 354 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
275 return; 355 return;
276 } 356 }
277 357
278 w->pending = ++pendingcnt [ABSPRI (w)]; 358 w_->pending = ++pendingcnt [ABSPRI (w_)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 359 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
280 pendings [ABSPRI (w)][w->pending - 1].w = w; 360 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
281 pendings [ABSPRI (w)][w->pending - 1].events = events; 361 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
282} 362}
283 363
284static void 364static void
285queue_events (EV_P_ W *events, int eventcnt, int type) 365queue_events (EV_P_ W *events, int eventcnt, int type)
286{ 366{
287 int i; 367 int i;
288 368
289 for (i = 0; i < eventcnt; ++i) 369 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type); 370 ev_feed_event (EV_A_ events [i], type);
291} 371}
292 372
293static void 373inline void
294fd_event (EV_P_ int fd, int events) 374fd_event (EV_P_ int fd, int revents)
295{ 375{
296 ANFD *anfd = anfds + fd; 376 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 377 struct ev_io *w;
298 378
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 379 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
300 { 380 {
301 int ev = w->events & events; 381 int ev = w->events & revents;
302 382
303 if (ev) 383 if (ev)
304 event (EV_A_ (W)w, ev); 384 ev_feed_event (EV_A_ (W)w, ev);
305 } 385 }
386}
387
388void
389ev_feed_fd_event (EV_P_ int fd, int revents)
390{
391 fd_event (EV_A_ fd, revents);
306} 392}
307 393
308/*****************************************************************************/ 394/*****************************************************************************/
309 395
310static void 396static void
321 int events = 0; 407 int events = 0;
322 408
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 409 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
324 events |= w->events; 410 events |= w->events;
325 411
412#if EV_SELECT_IS_WINSOCKET
413 if (events)
414 {
415 unsigned long argp;
416 anfd->handle = _get_osfhandle (fd);
417 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
418 }
419#endif
420
326 anfd->reify = 0; 421 anfd->reify = 0;
327 422
328 method_modify (EV_A_ fd, anfd->events, events); 423 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events; 424 anfd->events = events;
330 } 425 }
333} 428}
334 429
335static void 430static void
336fd_change (EV_P_ int fd) 431fd_change (EV_P_ int fd)
337{ 432{
338 if (anfds [fd].reify || fdchangecnt < 0) 433 if (anfds [fd].reify)
339 return; 434 return;
340 435
341 anfds [fd].reify = 1; 436 anfds [fd].reify = 1;
342 437
343 ++fdchangecnt; 438 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 439 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
345 fdchanges [fdchangecnt - 1] = fd; 440 fdchanges [fdchangecnt - 1] = fd;
346} 441}
347 442
348static void 443static void
349fd_kill (EV_P_ int fd) 444fd_kill (EV_P_ int fd)
351 struct ev_io *w; 446 struct ev_io *w;
352 447
353 while ((w = (struct ev_io *)anfds [fd].head)) 448 while ((w = (struct ev_io *)anfds [fd].head))
354 { 449 {
355 ev_io_stop (EV_A_ w); 450 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 451 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 452 }
453}
454
455static int
456fd_valid (int fd)
457{
458#ifdef _WIN32
459 return _get_osfhandle (fd) != -1;
460#else
461 return fcntl (fd, F_GETFD) != -1;
462#endif
358} 463}
359 464
360/* called on EBADF to verify fds */ 465/* called on EBADF to verify fds */
361static void 466static void
362fd_ebadf (EV_P) 467fd_ebadf (EV_P)
363{ 468{
364 int fd; 469 int fd;
365 470
366 for (fd = 0; fd < anfdmax; ++fd) 471 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 472 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 473 if (!fd_valid (fd) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd); 474 fd_kill (EV_A_ fd);
370} 475}
371 476
372/* called on ENOMEM in select/poll to kill some fds and retry */ 477/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 478static void
381 fd_kill (EV_A_ fd); 486 fd_kill (EV_A_ fd);
382 return; 487 return;
383 } 488 }
384} 489}
385 490
386/* susually called after fork if method needs to re-arm all fds from scratch */ 491/* usually called after fork if method needs to re-arm all fds from scratch */
387static void 492static void
388fd_rearm_all (EV_P) 493fd_rearm_all (EV_P)
389{ 494{
390 int fd; 495 int fd;
391 496
439 544
440 heap [k] = w; 545 heap [k] = w;
441 ((W)heap [k])->active = k + 1; 546 ((W)heap [k])->active = k + 1;
442} 547}
443 548
549inline void
550adjustheap (WT *heap, int N, int k)
551{
552 upheap (heap, k);
553 downheap (heap, N, k);
554}
555
444/*****************************************************************************/ 556/*****************************************************************************/
445 557
446typedef struct 558typedef struct
447{ 559{
448 WL head; 560 WL head;
469} 581}
470 582
471static void 583static void
472sighandler (int signum) 584sighandler (int signum)
473{ 585{
474#if WIN32 586#if _WIN32
475 signal (signum, sighandler); 587 signal (signum, sighandler);
476#endif 588#endif
477 589
478 signals [signum - 1].gotsig = 1; 590 signals [signum - 1].gotsig = 1;
479 591
484 write (sigpipe [1], &signum, 1); 596 write (sigpipe [1], &signum, 1);
485 errno = old_errno; 597 errno = old_errno;
486 } 598 }
487} 599}
488 600
601void
602ev_feed_signal_event (EV_P_ int signum)
603{
604 WL w;
605
606#if EV_MULTIPLICITY
607 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
608#endif
609
610 --signum;
611
612 if (signum < 0 || signum >= signalmax)
613 return;
614
615 signals [signum].gotsig = 0;
616
617 for (w = signals [signum].head; w; w = w->next)
618 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
619}
620
489static void 621static void
490sigcb (EV_P_ struct ev_io *iow, int revents) 622sigcb (EV_P_ struct ev_io *iow, int revents)
491{ 623{
492 WL w;
493 int signum; 624 int signum;
494 625
495 read (sigpipe [0], &revents, 1); 626 read (sigpipe [0], &revents, 1);
496 gotsig = 0; 627 gotsig = 0;
497 628
498 for (signum = signalmax; signum--; ) 629 for (signum = signalmax; signum--; )
499 if (signals [signum].gotsig) 630 if (signals [signum].gotsig)
500 { 631 ev_feed_signal_event (EV_A_ signum + 1);
501 signals [signum].gotsig = 0; 632}
502 633
503 for (w = signals [signum].head; w; w = w->next) 634inline void
504 event (EV_A_ (W)w, EV_SIGNAL); 635fd_intern (int fd)
505 } 636{
637#ifdef _WIN32
638 int arg = 1;
639 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
640#else
641 fcntl (fd, F_SETFD, FD_CLOEXEC);
642 fcntl (fd, F_SETFL, O_NONBLOCK);
643#endif
506} 644}
507 645
508static void 646static void
509siginit (EV_P) 647siginit (EV_P)
510{ 648{
511#ifndef WIN32 649 fd_intern (sigpipe [0]);
512 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 650 fd_intern (sigpipe [1]);
513 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
514
515 /* rather than sort out wether we really need nb, set it */
516 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
517 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
518#endif
519 651
520 ev_io_set (&sigev, sigpipe [0], EV_READ); 652 ev_io_set (&sigev, sigpipe [0], EV_READ);
521 ev_io_start (EV_A_ &sigev); 653 ev_io_start (EV_A_ &sigev);
522 ev_unref (EV_A); /* child watcher should not keep loop alive */ 654 ev_unref (EV_A); /* child watcher should not keep loop alive */
523} 655}
524 656
525/*****************************************************************************/ 657/*****************************************************************************/
526 658
527#ifndef WIN32
528
529static struct ev_child *childs [PID_HASHSIZE]; 659static struct ev_child *childs [PID_HASHSIZE];
660
661#ifndef _WIN32
662
530static struct ev_signal childev; 663static struct ev_signal childev;
531 664
532#ifndef WCONTINUED 665#ifndef WCONTINUED
533# define WCONTINUED 0 666# define WCONTINUED 0
534#endif 667#endif
542 if (w->pid == pid || !w->pid) 675 if (w->pid == pid || !w->pid)
543 { 676 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 677 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid; 678 w->rpid = pid;
546 w->rstatus = status; 679 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD); 680 ev_feed_event (EV_A_ (W)w, EV_CHILD);
548 } 681 }
549} 682}
550 683
551static void 684static void
552childcb (EV_P_ struct ev_signal *sw, int revents) 685childcb (EV_P_ struct ev_signal *sw, int revents)
554 int pid, status; 687 int pid, status;
555 688
556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 689 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
557 { 690 {
558 /* make sure we are called again until all childs have been reaped */ 691 /* make sure we are called again until all childs have been reaped */
559 event (EV_A_ (W)sw, EV_SIGNAL); 692 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
560 693
561 child_reap (EV_A_ sw, pid, pid, status); 694 child_reap (EV_A_ sw, pid, pid, status);
562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 695 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
563 } 696 }
564} 697}
594 727
595/* return true if we are running with elevated privileges and should ignore env variables */ 728/* return true if we are running with elevated privileges and should ignore env variables */
596static int 729static int
597enable_secure (void) 730enable_secure (void)
598{ 731{
599#ifdef WIN32 732#ifdef _WIN32
600 return 0; 733 return 0;
601#else 734#else
602 return getuid () != geteuid () 735 return getuid () != geteuid ()
603 || getgid () != getegid (); 736 || getgid () != getegid ();
604#endif 737#endif
621 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 754 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
622 have_monotonic = 1; 755 have_monotonic = 1;
623 } 756 }
624#endif 757#endif
625 758
626 rt_now = ev_time (); 759 ev_rt_now = ev_time ();
627 mn_now = get_clock (); 760 mn_now = get_clock ();
628 now_floor = mn_now; 761 now_floor = mn_now;
629 rtmn_diff = rt_now - mn_now; 762 rtmn_diff = ev_rt_now - mn_now;
630 763
631 if (methods == EVMETHOD_AUTO) 764 if (methods == EVMETHOD_AUTO)
632 if (!enable_secure () && getenv ("LIBEV_METHODS")) 765 if (!enable_secure () && getenv ("LIBEV_METHODS"))
633 methods = atoi (getenv ("LIBEV_METHODS")); 766 methods = atoi (getenv ("LIBEV_METHODS"));
634 else 767 else
635 methods = EVMETHOD_ANY; 768 methods = EVMETHOD_ANY;
636 769
637 method = 0; 770 method = 0;
638#if EV_USE_WIN32
639 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
640#endif
641#if EV_USE_KQUEUE 771#if EV_USE_KQUEUE
642 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 772 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
643#endif 773#endif
644#if EV_USE_EPOLL 774#if EV_USE_EPOLL
645 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 775 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 778 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
649#endif 779#endif
650#if EV_USE_SELECT 780#if EV_USE_SELECT
651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 781 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
652#endif 782#endif
783
784 ev_init (&sigev, sigcb);
785 ev_set_priority (&sigev, EV_MAXPRI);
653 } 786 }
654} 787}
655 788
656void 789void
657loop_destroy (EV_P) 790loop_destroy (EV_P)
658{ 791{
659 int i; 792 int i;
660 793
661#if EV_USE_WIN32
662 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
663#endif
664#if EV_USE_KQUEUE 794#if EV_USE_KQUEUE
665 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 795 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
666#endif 796#endif
667#if EV_USE_EPOLL 797#if EV_USE_EPOLL
668 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 798 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
675#endif 805#endif
676 806
677 for (i = NUMPRI; i--; ) 807 for (i = NUMPRI; i--; )
678 array_free (pending, [i]); 808 array_free (pending, [i]);
679 809
810 /* have to use the microsoft-never-gets-it-right macro */
680 array_free (fdchange, ); 811 array_free (fdchange, EMPTY);
681 array_free (timer, ); 812 array_free (timer, EMPTY);
813#if EV_PERIODICS
682 array_free (periodic, ); 814 array_free (periodic, EMPTY);
815#endif
683 array_free (idle, ); 816 array_free (idle, EMPTY);
684 array_free (prepare, ); 817 array_free (prepare, EMPTY);
685 array_free (check, ); 818 array_free (check, EMPTY);
686 819
687 method = 0; 820 method = 0;
688 /*TODO*/
689} 821}
690 822
691void 823static void
692loop_fork (EV_P) 824loop_fork (EV_P)
693{ 825{
694 /*TODO*/
695#if EV_USE_EPOLL 826#if EV_USE_EPOLL
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 827 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
697#endif 828#endif
698#if EV_USE_KQUEUE 829#if EV_USE_KQUEUE
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 830 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
700#endif 831#endif
832
833 if (ev_is_active (&sigev))
834 {
835 /* default loop */
836
837 ev_ref (EV_A);
838 ev_io_stop (EV_A_ &sigev);
839 close (sigpipe [0]);
840 close (sigpipe [1]);
841
842 while (pipe (sigpipe))
843 syserr ("(libev) error creating pipe");
844
845 siginit (EV_A);
846 }
847
848 postfork = 0;
701} 849}
702 850
703#if EV_MULTIPLICITY 851#if EV_MULTIPLICITY
704struct ev_loop * 852struct ev_loop *
705ev_loop_new (int methods) 853ev_loop_new (int methods)
706{ 854{
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 855 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
856
857 memset (loop, 0, sizeof (struct ev_loop));
708 858
709 loop_init (EV_A_ methods); 859 loop_init (EV_A_ methods);
710 860
711 if (ev_method (EV_A)) 861 if (ev_method (EV_A))
712 return loop; 862 return loop;
716 866
717void 867void
718ev_loop_destroy (EV_P) 868ev_loop_destroy (EV_P)
719{ 869{
720 loop_destroy (EV_A); 870 loop_destroy (EV_A);
721 free (loop); 871 ev_free (loop);
722} 872}
723 873
724void 874void
725ev_loop_fork (EV_P) 875ev_loop_fork (EV_P)
726{ 876{
727 loop_fork (EV_A); 877 postfork = 1;
728} 878}
729 879
730#endif 880#endif
731 881
732#if EV_MULTIPLICITY 882#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop * 883struct ev_loop *
737#else 884#else
738static int default_loop;
739
740int 885int
741#endif 886#endif
742ev_default_loop (int methods) 887ev_default_loop (int methods)
743{ 888{
744 if (sigpipe [0] == sigpipe [1]) 889 if (sigpipe [0] == sigpipe [1])
755 900
756 loop_init (EV_A_ methods); 901 loop_init (EV_A_ methods);
757 902
758 if (ev_method (EV_A)) 903 if (ev_method (EV_A))
759 { 904 {
760 ev_watcher_init (&sigev, sigcb);
761 ev_set_priority (&sigev, EV_MAXPRI);
762 siginit (EV_A); 905 siginit (EV_A);
763 906
764#ifndef WIN32 907#ifndef _WIN32
765 ev_signal_init (&childev, childcb, SIGCHLD); 908 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI); 909 ev_set_priority (&childev, EV_MAXPRI);
767 ev_signal_start (EV_A_ &childev); 910 ev_signal_start (EV_A_ &childev);
768 ev_unref (EV_A); /* child watcher should not keep loop alive */ 911 ev_unref (EV_A); /* child watcher should not keep loop alive */
769#endif 912#endif
780{ 923{
781#if EV_MULTIPLICITY 924#if EV_MULTIPLICITY
782 struct ev_loop *loop = default_loop; 925 struct ev_loop *loop = default_loop;
783#endif 926#endif
784 927
928#ifndef _WIN32
785 ev_ref (EV_A); /* child watcher */ 929 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev); 930 ev_signal_stop (EV_A_ &childev);
931#endif
787 932
788 ev_ref (EV_A); /* signal watcher */ 933 ev_ref (EV_A); /* signal watcher */
789 ev_io_stop (EV_A_ &sigev); 934 ev_io_stop (EV_A_ &sigev);
790 935
791 close (sigpipe [0]); sigpipe [0] = 0; 936 close (sigpipe [0]); sigpipe [0] = 0;
799{ 944{
800#if EV_MULTIPLICITY 945#if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop; 946 struct ev_loop *loop = default_loop;
802#endif 947#endif
803 948
804 loop_fork (EV_A); 949 if (method)
805 950 postfork = 1;
806 ev_io_stop (EV_A_ &sigev);
807 close (sigpipe [0]);
808 close (sigpipe [1]);
809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
812 siginit (EV_A);
813} 951}
814 952
815/*****************************************************************************/ 953/*****************************************************************************/
954
955static int
956any_pending (EV_P)
957{
958 int pri;
959
960 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri])
962 return 1;
963
964 return 0;
965}
816 966
817static void 967static void
818call_pending (EV_P) 968call_pending (EV_P)
819{ 969{
820 int pri; 970 int pri;
825 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 975 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
826 976
827 if (p->w) 977 if (p->w)
828 { 978 {
829 p->w->pending = 0; 979 p->w->pending = 0;
830 p->w->cb (EV_A_ p->w, p->events); 980 EV_CB_INVOKE (p->w, p->events);
831 } 981 }
832 } 982 }
833} 983}
834 984
835static void 985static void
843 993
844 /* first reschedule or stop timer */ 994 /* first reschedule or stop timer */
845 if (w->repeat) 995 if (w->repeat)
846 { 996 {
847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998
848 ((WT)w)->at = mn_now + w->repeat; 999 ((WT)w)->at += w->repeat;
1000 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now;
1002
849 downheap ((WT *)timers, timercnt, 0); 1003 downheap ((WT *)timers, timercnt, 0);
850 } 1004 }
851 else 1005 else
852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
853 1007
854 event (EV_A_ (W)w, EV_TIMEOUT); 1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
855 } 1009 }
856} 1010}
857 1011
1012#if EV_PERIODICS
858static void 1013static void
859periodics_reify (EV_P) 1014periodics_reify (EV_P)
860{ 1015{
861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
862 { 1017 {
863 struct ev_periodic *w = periodics [0]; 1018 struct ev_periodic *w = periodics [0];
864 1019
865 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1020 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
866 1021
867 /* first reschedule or stop timer */ 1022 /* first reschedule or stop timer */
868 if (w->interval) 1023 if (w->reschedule_cb)
869 { 1024 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1026
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0);
1029 }
1030 else if (w->interval)
1031 {
870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
872 downheap ((WT *)periodics, periodiccnt, 0); 1034 downheap ((WT *)periodics, periodiccnt, 0);
873 } 1035 }
874 else 1036 else
875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
876 1038
877 event (EV_A_ (W)w, EV_PERIODIC); 1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
878 } 1040 }
879} 1041}
880 1042
881static void 1043static void
882periodics_reschedule (EV_P) 1044periodics_reschedule (EV_P)
886 /* adjust periodics after time jump */ 1048 /* adjust periodics after time jump */
887 for (i = 0; i < periodiccnt; ++i) 1049 for (i = 0; i < periodiccnt; ++i)
888 { 1050 {
889 struct ev_periodic *w = periodics [i]; 1051 struct ev_periodic *w = periodics [i];
890 1052
1053 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
891 if (w->interval) 1055 else if (w->interval)
892 {
893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
894
895 if (fabs (diff) >= 1e-4)
896 {
897 ev_periodic_stop (EV_A_ w);
898 ev_periodic_start (EV_A_ w);
899
900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
901 }
902 }
903 } 1057 }
1058
1059 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i);
904} 1062}
1063#endif
905 1064
906inline int 1065inline int
907time_update_monotonic (EV_P) 1066time_update_monotonic (EV_P)
908{ 1067{
909 mn_now = get_clock (); 1068 mn_now = get_clock ();
910 1069
911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
912 { 1071 {
913 rt_now = rtmn_diff + mn_now; 1072 ev_rt_now = rtmn_diff + mn_now;
914 return 0; 1073 return 0;
915 } 1074 }
916 else 1075 else
917 { 1076 {
918 now_floor = mn_now; 1077 now_floor = mn_now;
919 rt_now = ev_time (); 1078 ev_rt_now = ev_time ();
920 return 1; 1079 return 1;
921 } 1080 }
922} 1081}
923 1082
924static void 1083static void
933 { 1092 {
934 ev_tstamp odiff = rtmn_diff; 1093 ev_tstamp odiff = rtmn_diff;
935 1094
936 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */
937 { 1096 {
938 rtmn_diff = rt_now - mn_now; 1097 rtmn_diff = ev_rt_now - mn_now;
939 1098
940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
941 return; /* all is well */ 1100 return; /* all is well */
942 1101
943 rt_now = ev_time (); 1102 ev_rt_now = ev_time ();
944 mn_now = get_clock (); 1103 mn_now = get_clock ();
945 now_floor = mn_now; 1104 now_floor = mn_now;
946 } 1105 }
947 1106
1107# if EV_PERIODICS
948 periodics_reschedule (EV_A); 1108 periodics_reschedule (EV_A);
1109# endif
949 /* no timer adjustment, as the monotonic clock doesn't jump */ 1110 /* no timer adjustment, as the monotonic clock doesn't jump */
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
951 } 1112 }
952 } 1113 }
953 else 1114 else
954#endif 1115#endif
955 { 1116 {
956 rt_now = ev_time (); 1117 ev_rt_now = ev_time ();
957 1118
958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
959 { 1120 {
1121#if EV_PERIODICS
960 periodics_reschedule (EV_A); 1122 periodics_reschedule (EV_A);
1123#endif
961 1124
962 /* adjust timers. this is easy, as the offset is the same for all */ 1125 /* adjust timers. this is easy, as the offset is the same for all */
963 for (i = 0; i < timercnt; ++i) 1126 for (i = 0; i < timercnt; ++i)
964 ((WT)timers [i])->at += rt_now - mn_now; 1127 ((WT)timers [i])->at += ev_rt_now - mn_now;
965 } 1128 }
966 1129
967 mn_now = rt_now; 1130 mn_now = ev_rt_now;
968 } 1131 }
969} 1132}
970 1133
971void 1134void
972ev_ref (EV_P) 1135ev_ref (EV_P)
995 { 1158 {
996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1159 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
997 call_pending (EV_A); 1160 call_pending (EV_A);
998 } 1161 }
999 1162
1163 /* we might have forked, so reify kernel state if necessary */
1164 if (expect_false (postfork))
1165 loop_fork (EV_A);
1166
1000 /* update fd-related kernel structures */ 1167 /* update fd-related kernel structures */
1001 fd_reify (EV_A); 1168 fd_reify (EV_A);
1002 1169
1003 /* calculate blocking time */ 1170 /* calculate blocking time */
1004 1171
1005 /* we only need this for !monotonic clockor timers, but as we basically 1172 /* we only need this for !monotonic clock or timers, but as we basically
1006 always have timers, we just calculate it always */ 1173 always have timers, we just calculate it always */
1007#if EV_USE_MONOTONIC 1174#if EV_USE_MONOTONIC
1008 if (expect_true (have_monotonic)) 1175 if (expect_true (have_monotonic))
1009 time_update_monotonic (EV_A); 1176 time_update_monotonic (EV_A);
1010 else 1177 else
1011#endif 1178#endif
1012 { 1179 {
1013 rt_now = ev_time (); 1180 ev_rt_now = ev_time ();
1014 mn_now = rt_now; 1181 mn_now = ev_rt_now;
1015 } 1182 }
1016 1183
1017 if (flags & EVLOOP_NONBLOCK || idlecnt) 1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
1018 block = 0.; 1185 block = 0.;
1019 else 1186 else
1024 { 1191 {
1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1026 if (block > to) block = to; 1193 if (block > to) block = to;
1027 } 1194 }
1028 1195
1196#if EV_PERIODICS
1029 if (periodiccnt) 1197 if (periodiccnt)
1030 { 1198 {
1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1032 if (block > to) block = to; 1200 if (block > to) block = to;
1033 } 1201 }
1202#endif
1034 1203
1035 if (block < 0.) block = 0.; 1204 if (block < 0.) block = 0.;
1036 } 1205 }
1037 1206
1038 method_poll (EV_A_ block); 1207 method_poll (EV_A_ block);
1039 1208
1040 /* update rt_now, do magic */ 1209 /* update ev_rt_now, do magic */
1041 time_update (EV_A); 1210 time_update (EV_A);
1042 1211
1043 /* queue pending timers and reschedule them */ 1212 /* queue pending timers and reschedule them */
1044 timers_reify (EV_A); /* relative timers called last */ 1213 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS
1045 periodics_reify (EV_A); /* absolute timers called first */ 1215 periodics_reify (EV_A); /* absolute timers called first */
1216#endif
1046 1217
1047 /* queue idle watchers unless io or timers are pending */ 1218 /* queue idle watchers unless io or timers are pending */
1048 if (!pendingcnt) 1219 if (idlecnt && !any_pending (EV_A))
1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1050 1221
1051 /* queue check watchers, to be executed first */ 1222 /* queue check watchers, to be executed first */
1052 if (checkcnt) 1223 if (checkcnt)
1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1128 return; 1299 return;
1129 1300
1130 assert (("ev_io_start called with negative fd", fd >= 0)); 1301 assert (("ev_io_start called with negative fd", fd >= 0));
1131 1302
1132 ev_start (EV_A_ (W)w, 1); 1303 ev_start (EV_A_ (W)w, 1);
1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1134 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1305 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1135 1306
1136 fd_change (EV_A_ fd); 1307 fd_change (EV_A_ fd);
1137} 1308}
1138 1309
1141{ 1312{
1142 ev_clear_pending (EV_A_ (W)w); 1313 ev_clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w)) 1314 if (!ev_is_active (w))
1144 return; 1315 return;
1145 1316
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318
1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1147 ev_stop (EV_A_ (W)w); 1320 ev_stop (EV_A_ (W)w);
1148 1321
1149 fd_change (EV_A_ w->fd); 1322 fd_change (EV_A_ w->fd);
1150} 1323}
1158 ((WT)w)->at += mn_now; 1331 ((WT)w)->at += mn_now;
1159 1332
1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1161 1334
1162 ev_start (EV_A_ (W)w, ++timercnt); 1335 ev_start (EV_A_ (W)w, ++timercnt);
1163 array_needsize (timers, timermax, timercnt, ); 1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1164 timers [timercnt - 1] = w; 1337 timers [timercnt - 1] = w;
1165 upheap ((WT *)timers, timercnt - 1); 1338 upheap ((WT *)timers, timercnt - 1);
1166 1339
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1168} 1341}
1177 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1178 1351
1179 if (((W)w)->active < timercnt--) 1352 if (((W)w)->active < timercnt--)
1180 { 1353 {
1181 timers [((W)w)->active - 1] = timers [timercnt]; 1354 timers [((W)w)->active - 1] = timers [timercnt];
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1355 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1183 } 1356 }
1184 1357
1185 ((WT)w)->at = w->repeat; 1358 ((WT)w)->at -= mn_now;
1186 1359
1187 ev_stop (EV_A_ (W)w); 1360 ev_stop (EV_A_ (W)w);
1188} 1361}
1189 1362
1190void 1363void
1193 if (ev_is_active (w)) 1366 if (ev_is_active (w))
1194 { 1367 {
1195 if (w->repeat) 1368 if (w->repeat)
1196 { 1369 {
1197 ((WT)w)->at = mn_now + w->repeat; 1370 ((WT)w)->at = mn_now + w->repeat;
1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1199 } 1372 }
1200 else 1373 else
1201 ev_timer_stop (EV_A_ w); 1374 ev_timer_stop (EV_A_ w);
1202 } 1375 }
1203 else if (w->repeat) 1376 else if (w->repeat)
1204 ev_timer_start (EV_A_ w); 1377 ev_timer_start (EV_A_ w);
1205} 1378}
1206 1379
1380#if EV_PERIODICS
1207void 1381void
1208ev_periodic_start (EV_P_ struct ev_periodic *w) 1382ev_periodic_start (EV_P_ struct ev_periodic *w)
1209{ 1383{
1210 if (ev_is_active (w)) 1384 if (ev_is_active (w))
1211 return; 1385 return;
1212 1386
1387 if (w->reschedule_cb)
1388 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1389 else if (w->interval)
1390 {
1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1391 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1214
1215 /* this formula differs from the one in periodic_reify because we do not always round up */ 1392 /* this formula differs from the one in periodic_reify because we do not always round up */
1216 if (w->interval)
1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1393 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1394 }
1218 1395
1219 ev_start (EV_A_ (W)w, ++periodiccnt); 1396 ev_start (EV_A_ (W)w, ++periodiccnt);
1220 array_needsize (periodics, periodicmax, periodiccnt, ); 1397 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1221 periodics [periodiccnt - 1] = w; 1398 periodics [periodiccnt - 1] = w;
1222 upheap ((WT *)periodics, periodiccnt - 1); 1399 upheap ((WT *)periodics, periodiccnt - 1);
1223 1400
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1401 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1225} 1402}
1234 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1411 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1235 1412
1236 if (((W)w)->active < periodiccnt--) 1413 if (((W)w)->active < periodiccnt--)
1237 { 1414 {
1238 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1415 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1239 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1416 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1240 } 1417 }
1241 1418
1242 ev_stop (EV_A_ (W)w); 1419 ev_stop (EV_A_ (W)w);
1243} 1420}
1244 1421
1245void 1422void
1423ev_periodic_again (EV_P_ struct ev_periodic *w)
1424{
1425 /* TODO: use adjustheap and recalculation */
1426 ev_periodic_stop (EV_A_ w);
1427 ev_periodic_start (EV_A_ w);
1428}
1429#endif
1430
1431void
1246ev_idle_start (EV_P_ struct ev_idle *w) 1432ev_idle_start (EV_P_ struct ev_idle *w)
1247{ 1433{
1248 if (ev_is_active (w)) 1434 if (ev_is_active (w))
1249 return; 1435 return;
1250 1436
1251 ev_start (EV_A_ (W)w, ++idlecnt); 1437 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, ); 1438 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1253 idles [idlecnt - 1] = w; 1439 idles [idlecnt - 1] = w;
1254} 1440}
1255 1441
1256void 1442void
1257ev_idle_stop (EV_P_ struct ev_idle *w) 1443ev_idle_stop (EV_P_ struct ev_idle *w)
1258{ 1444{
1259 ev_clear_pending (EV_A_ (W)w); 1445 ev_clear_pending (EV_A_ (W)w);
1260 if (ev_is_active (w)) 1446 if (!ev_is_active (w))
1261 return; 1447 return;
1262 1448
1263 idles [((W)w)->active - 1] = idles [--idlecnt]; 1449 idles [((W)w)->active - 1] = idles [--idlecnt];
1264 ev_stop (EV_A_ (W)w); 1450 ev_stop (EV_A_ (W)w);
1265} 1451}
1269{ 1455{
1270 if (ev_is_active (w)) 1456 if (ev_is_active (w))
1271 return; 1457 return;
1272 1458
1273 ev_start (EV_A_ (W)w, ++preparecnt); 1459 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, ); 1460 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1275 prepares [preparecnt - 1] = w; 1461 prepares [preparecnt - 1] = w;
1276} 1462}
1277 1463
1278void 1464void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w) 1465ev_prepare_stop (EV_P_ struct ev_prepare *w)
1280{ 1466{
1281 ev_clear_pending (EV_A_ (W)w); 1467 ev_clear_pending (EV_A_ (W)w);
1282 if (ev_is_active (w)) 1468 if (!ev_is_active (w))
1283 return; 1469 return;
1284 1470
1285 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1471 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1286 ev_stop (EV_A_ (W)w); 1472 ev_stop (EV_A_ (W)w);
1287} 1473}
1291{ 1477{
1292 if (ev_is_active (w)) 1478 if (ev_is_active (w))
1293 return; 1479 return;
1294 1480
1295 ev_start (EV_A_ (W)w, ++checkcnt); 1481 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, ); 1482 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1297 checks [checkcnt - 1] = w; 1483 checks [checkcnt - 1] = w;
1298} 1484}
1299 1485
1300void 1486void
1301ev_check_stop (EV_P_ struct ev_check *w) 1487ev_check_stop (EV_P_ struct ev_check *w)
1302{ 1488{
1303 ev_clear_pending (EV_A_ (W)w); 1489 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w)) 1490 if (!ev_is_active (w))
1305 return; 1491 return;
1306 1492
1307 checks [((W)w)->active - 1] = checks [--checkcnt]; 1493 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w); 1494 ev_stop (EV_A_ (W)w);
1309} 1495}
1322 return; 1508 return;
1323 1509
1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1510 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1325 1511
1326 ev_start (EV_A_ (W)w, 1); 1512 ev_start (EV_A_ (W)w, 1);
1327 array_needsize (signals, signalmax, w->signum, signals_init); 1513 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1514 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1329 1515
1330 if (!((WL)w)->next) 1516 if (!((WL)w)->next)
1331 { 1517 {
1332#if WIN32 1518#if _WIN32
1333 signal (w->signum, sighandler); 1519 signal (w->signum, sighandler);
1334#else 1520#else
1335 struct sigaction sa; 1521 struct sigaction sa;
1336 sa.sa_handler = sighandler; 1522 sa.sa_handler = sighandler;
1337 sigfillset (&sa.sa_mask); 1523 sigfillset (&sa.sa_mask);
1370 1556
1371void 1557void
1372ev_child_stop (EV_P_ struct ev_child *w) 1558ev_child_stop (EV_P_ struct ev_child *w)
1373{ 1559{
1374 ev_clear_pending (EV_A_ (W)w); 1560 ev_clear_pending (EV_A_ (W)w);
1375 if (ev_is_active (w)) 1561 if (!ev_is_active (w))
1376 return; 1562 return;
1377 1563
1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1564 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1379 ev_stop (EV_A_ (W)w); 1565 ev_stop (EV_A_ (W)w);
1380} 1566}
1395 void (*cb)(int revents, void *arg) = once->cb; 1581 void (*cb)(int revents, void *arg) = once->cb;
1396 void *arg = once->arg; 1582 void *arg = once->arg;
1397 1583
1398 ev_io_stop (EV_A_ &once->io); 1584 ev_io_stop (EV_A_ &once->io);
1399 ev_timer_stop (EV_A_ &once->to); 1585 ev_timer_stop (EV_A_ &once->to);
1400 free (once); 1586 ev_free (once);
1401 1587
1402 cb (revents, arg); 1588 cb (revents, arg);
1403} 1589}
1404 1590
1405static void 1591static void
1415} 1601}
1416 1602
1417void 1603void
1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1604ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1419{ 1605{
1420 struct ev_once *once = malloc (sizeof (struct ev_once)); 1606 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1421 1607
1422 if (!once) 1608 if (!once)
1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1609 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1424 else 1610 else
1425 { 1611 {
1426 once->cb = cb; 1612 once->cb = cb;
1427 once->arg = arg; 1613 once->arg = arg;
1428 1614
1429 ev_watcher_init (&once->io, once_cb_io); 1615 ev_init (&once->io, once_cb_io);
1430 if (fd >= 0) 1616 if (fd >= 0)
1431 { 1617 {
1432 ev_io_set (&once->io, fd, events); 1618 ev_io_set (&once->io, fd, events);
1433 ev_io_start (EV_A_ &once->io); 1619 ev_io_start (EV_A_ &once->io);
1434 } 1620 }
1435 1621
1436 ev_watcher_init (&once->to, once_cb_to); 1622 ev_init (&once->to, once_cb_to);
1437 if (timeout >= 0.) 1623 if (timeout >= 0.)
1438 { 1624 {
1439 ev_timer_set (&once->to, timeout, 0.); 1625 ev_timer_set (&once->to, timeout, 0.);
1440 ev_timer_start (EV_A_ &once->to); 1626 ev_timer_start (EV_A_ &once->to);
1441 } 1627 }
1442 } 1628 }
1443} 1629}
1444 1630
1631#ifdef __cplusplus
1632}
1633#endif
1634

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines