ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC vs.
Revision 1.103 by root, Mon Nov 12 00:31:08 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
84#else
85# define WIN32_LEAN_AND_MEAN
86# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1
71#endif 89# endif
72#include <sys/time.h> 90#endif
73#include <time.h>
74 91
75/**/ 92/**/
76 93
77#ifndef EV_USE_MONOTONIC 94#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 95# define EV_USE_MONOTONIC 1
90# define EV_USE_EPOLL 0 107# define EV_USE_EPOLL 0
91#endif 108#endif
92 109
93#ifndef EV_USE_KQUEUE 110#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 111# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif 112#endif
104 113
105#ifndef EV_USE_REALTIME 114#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1 115# define EV_USE_REALTIME 1
107#endif 116#endif
114#endif 123#endif
115 124
116#ifndef CLOCK_REALTIME 125#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 126# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 127# define EV_USE_REALTIME 0
128#endif
129
130#if EV_SELECT_IS_WINSOCKET
131# include <winsock.h>
119#endif 132#endif
120 133
121/**/ 134/**/
122 135
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 136#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 137#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 138#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 139/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 140
141#ifdef EV_H
142# include EV_H
143#else
128#include "ev.h" 144# include "ev.h"
145#endif
129 146
130#if __GNUC__ >= 3 147#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 148# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 149# define inline inline
133#else 150#else
139#define expect_true(expr) expect ((expr) != 0, 1) 156#define expect_true(expr) expect ((expr) != 0, 1)
140 157
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 158#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 159#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 160
161#define EMPTY /* required for microsofts broken pseudo-c compiler */
162
144typedef struct ev_watcher *W; 163typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 164typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 165typedef struct ev_watcher_time *WT;
147 166
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 167static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 168
150#if WIN32 169#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 170# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 171#endif
155 172
156/*****************************************************************************/ 173/*****************************************************************************/
157 174
158static void (*syserr_cb)(void); 175static void (*syserr_cb)(const char *msg);
159 176
160void ev_set_syserr_cb (void (*cb)(void)) 177void ev_set_syserr_cb (void (*cb)(const char *msg))
161{ 178{
162 syserr_cb = cb; 179 syserr_cb = cb;
163} 180}
164 181
165static void 182static void
166syserr (void) 183syserr (const char *msg)
167{ 184{
185 if (!msg)
186 msg = "(libev) system error";
187
168 if (syserr_cb) 188 if (syserr_cb)
169 syserr_cb (); 189 syserr_cb (msg);
170 else 190 else
171 { 191 {
172 perror ("libev"); 192 perror (msg);
173 abort (); 193 abort ();
174 } 194 }
175} 195}
176 196
177static void *(*alloc)(void *ptr, long size); 197static void *(*alloc)(void *ptr, long size);
203typedef struct 223typedef struct
204{ 224{
205 WL head; 225 WL head;
206 unsigned char events; 226 unsigned char events;
207 unsigned char reify; 227 unsigned char reify;
228#if EV_SELECT_IS_WINSOCKET
229 SOCKET handle;
230#endif
208} ANFD; 231} ANFD;
209 232
210typedef struct 233typedef struct
211{ 234{
212 W w; 235 W w;
213 int events; 236 int events;
214} ANPENDING; 237} ANPENDING;
215 238
216#if EV_MULTIPLICITY 239#if EV_MULTIPLICITY
217 240
218struct ev_loop 241 struct ev_loop
219{ 242 {
243 ev_tstamp ev_rt_now;
244 #define ev_rt_now ((loop)->ev_rt_now)
220# define VAR(name,decl) decl; 245 #define VAR(name,decl) decl;
221# include "ev_vars.h" 246 #include "ev_vars.h"
222};
223# undef VAR 247 #undef VAR
248 };
224# include "ev_wrap.h" 249 #include "ev_wrap.h"
250
251 struct ev_loop default_loop_struct;
252 static struct ev_loop *default_loop;
225 253
226#else 254#else
227 255
256 ev_tstamp ev_rt_now;
228# define VAR(name,decl) static decl; 257 #define VAR(name,decl) static decl;
229# include "ev_vars.h" 258 #include "ev_vars.h"
230# undef VAR 259 #undef VAR
260
261 static int default_loop;
231 262
232#endif 263#endif
233 264
234/*****************************************************************************/ 265/*****************************************************************************/
235 266
236inline ev_tstamp 267ev_tstamp
237ev_time (void) 268ev_time (void)
238{ 269{
239#if EV_USE_REALTIME 270#if EV_USE_REALTIME
240 struct timespec ts; 271 struct timespec ts;
241 clock_gettime (CLOCK_REALTIME, &ts); 272 clock_gettime (CLOCK_REALTIME, &ts);
260#endif 291#endif
261 292
262 return ev_time (); 293 return ev_time ();
263} 294}
264 295
296#if EV_MULTIPLICITY
265ev_tstamp 297ev_tstamp
266ev_now (EV_P) 298ev_now (EV_P)
267{ 299{
268 return rt_now; 300 return ev_rt_now;
269} 301}
302#endif
270 303
271#define array_roundsize(base,n) ((n) | 4 & ~3) 304#define array_roundsize(type,n) ((n) | 4 & ~3)
272 305
273#define array_needsize(base,cur,cnt,init) \ 306#define array_needsize(type,base,cur,cnt,init) \
274 if (expect_false ((cnt) > cur)) \ 307 if (expect_false ((cnt) > cur)) \
275 { \ 308 { \
276 int newcnt = cur; \ 309 int newcnt = cur; \
277 do \ 310 do \
278 { \ 311 { \
279 newcnt = array_roundsize (base, newcnt << 1); \ 312 newcnt = array_roundsize (type, newcnt << 1); \
280 } \ 313 } \
281 while ((cnt) > newcnt); \ 314 while ((cnt) > newcnt); \
282 \ 315 \
283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 316 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
284 init (base + cur, newcnt - cur); \ 317 init (base + cur, newcnt - cur); \
285 cur = newcnt; \ 318 cur = newcnt; \
286 } 319 }
287 320
288#define array_slim(stem) \ 321#define array_slim(type,stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 322 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \ 323 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \ 324 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 325 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 326 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 } 327 }
295 328
296#define array_free(stem, idx) \ 329#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 330 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
309 342
310 ++base; 343 ++base;
311 } 344 }
312} 345}
313 346
314static void 347void
315event (EV_P_ W w, int events) 348ev_feed_event (EV_P_ void *w, int revents)
316{ 349{
350 W w_ = (W)w;
351
317 if (w->pending) 352 if (w_->pending)
318 { 353 {
319 pendings [ABSPRI (w)][w->pending - 1].events |= events; 354 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
320 return; 355 return;
321 } 356 }
322 357
323 w->pending = ++pendingcnt [ABSPRI (w)]; 358 w_->pending = ++pendingcnt [ABSPRI (w_)];
324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 359 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
325 pendings [ABSPRI (w)][w->pending - 1].w = w; 360 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
326 pendings [ABSPRI (w)][w->pending - 1].events = events; 361 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
327} 362}
328 363
329static void 364static void
330queue_events (EV_P_ W *events, int eventcnt, int type) 365queue_events (EV_P_ W *events, int eventcnt, int type)
331{ 366{
332 int i; 367 int i;
333 368
334 for (i = 0; i < eventcnt; ++i) 369 for (i = 0; i < eventcnt; ++i)
335 event (EV_A_ events [i], type); 370 ev_feed_event (EV_A_ events [i], type);
336} 371}
337 372
338static void 373inline void
339fd_event (EV_P_ int fd, int events) 374fd_event (EV_P_ int fd, int revents)
340{ 375{
341 ANFD *anfd = anfds + fd; 376 ANFD *anfd = anfds + fd;
342 struct ev_io *w; 377 struct ev_io *w;
343 378
344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 379 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
345 { 380 {
346 int ev = w->events & events; 381 int ev = w->events & revents;
347 382
348 if (ev) 383 if (ev)
349 event (EV_A_ (W)w, ev); 384 ev_feed_event (EV_A_ (W)w, ev);
350 } 385 }
386}
387
388void
389ev_feed_fd_event (EV_P_ int fd, int revents)
390{
391 fd_event (EV_A_ fd, revents);
351} 392}
352 393
353/*****************************************************************************/ 394/*****************************************************************************/
354 395
355static void 396static void
366 int events = 0; 407 int events = 0;
367 408
368 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 409 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
369 events |= w->events; 410 events |= w->events;
370 411
412#if EV_SELECT_IS_WINSOCKET
413 if (events)
414 {
415 unsigned long argp;
416 anfd->handle = _get_osfhandle (fd);
417 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
418 }
419#endif
420
371 anfd->reify = 0; 421 anfd->reify = 0;
372 422
373 method_modify (EV_A_ fd, anfd->events, events); 423 method_modify (EV_A_ fd, anfd->events, events);
374 anfd->events = events; 424 anfd->events = events;
375 } 425 }
378} 428}
379 429
380static void 430static void
381fd_change (EV_P_ int fd) 431fd_change (EV_P_ int fd)
382{ 432{
383 if (anfds [fd].reify || fdchangecnt < 0) 433 if (anfds [fd].reify)
384 return; 434 return;
385 435
386 anfds [fd].reify = 1; 436 anfds [fd].reify = 1;
387 437
388 ++fdchangecnt; 438 ++fdchangecnt;
389 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 439 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
390 fdchanges [fdchangecnt - 1] = fd; 440 fdchanges [fdchangecnt - 1] = fd;
391} 441}
392 442
393static void 443static void
394fd_kill (EV_P_ int fd) 444fd_kill (EV_P_ int fd)
396 struct ev_io *w; 446 struct ev_io *w;
397 447
398 while ((w = (struct ev_io *)anfds [fd].head)) 448 while ((w = (struct ev_io *)anfds [fd].head))
399 { 449 {
400 ev_io_stop (EV_A_ w); 450 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 451 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 } 452 }
453}
454
455static int
456fd_valid (int fd)
457{
458#ifdef _WIN32
459 return _get_osfhandle (fd) != -1;
460#else
461 return fcntl (fd, F_GETFD) != -1;
462#endif
403} 463}
404 464
405/* called on EBADF to verify fds */ 465/* called on EBADF to verify fds */
406static void 466static void
407fd_ebadf (EV_P) 467fd_ebadf (EV_P)
408{ 468{
409 int fd; 469 int fd;
410 470
411 for (fd = 0; fd < anfdmax; ++fd) 471 for (fd = 0; fd < anfdmax; ++fd)
412 if (anfds [fd].events) 472 if (anfds [fd].events)
413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 473 if (!fd_valid (fd) == -1 && errno == EBADF)
414 fd_kill (EV_A_ fd); 474 fd_kill (EV_A_ fd);
415} 475}
416 476
417/* called on ENOMEM in select/poll to kill some fds and retry */ 477/* called on ENOMEM in select/poll to kill some fds and retry */
418static void 478static void
426 fd_kill (EV_A_ fd); 486 fd_kill (EV_A_ fd);
427 return; 487 return;
428 } 488 }
429} 489}
430 490
431/* susually called after fork if method needs to re-arm all fds from scratch */ 491/* usually called after fork if method needs to re-arm all fds from scratch */
432static void 492static void
433fd_rearm_all (EV_P) 493fd_rearm_all (EV_P)
434{ 494{
435 int fd; 495 int fd;
436 496
484 544
485 heap [k] = w; 545 heap [k] = w;
486 ((W)heap [k])->active = k + 1; 546 ((W)heap [k])->active = k + 1;
487} 547}
488 548
549inline void
550adjustheap (WT *heap, int N, int k)
551{
552 upheap (heap, k);
553 downheap (heap, N, k);
554}
555
489/*****************************************************************************/ 556/*****************************************************************************/
490 557
491typedef struct 558typedef struct
492{ 559{
493 WL head; 560 WL head;
514} 581}
515 582
516static void 583static void
517sighandler (int signum) 584sighandler (int signum)
518{ 585{
519#if WIN32 586#if _WIN32
520 signal (signum, sighandler); 587 signal (signum, sighandler);
521#endif 588#endif
522 589
523 signals [signum - 1].gotsig = 1; 590 signals [signum - 1].gotsig = 1;
524 591
529 write (sigpipe [1], &signum, 1); 596 write (sigpipe [1], &signum, 1);
530 errno = old_errno; 597 errno = old_errno;
531 } 598 }
532} 599}
533 600
601void
602ev_feed_signal_event (EV_P_ int signum)
603{
604 WL w;
605
606#if EV_MULTIPLICITY
607 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
608#endif
609
610 --signum;
611
612 if (signum < 0 || signum >= signalmax)
613 return;
614
615 signals [signum].gotsig = 0;
616
617 for (w = signals [signum].head; w; w = w->next)
618 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
619}
620
534static void 621static void
535sigcb (EV_P_ struct ev_io *iow, int revents) 622sigcb (EV_P_ struct ev_io *iow, int revents)
536{ 623{
537 WL w;
538 int signum; 624 int signum;
539 625
540 read (sigpipe [0], &revents, 1); 626 read (sigpipe [0], &revents, 1);
541 gotsig = 0; 627 gotsig = 0;
542 628
543 for (signum = signalmax; signum--; ) 629 for (signum = signalmax; signum--; )
544 if (signals [signum].gotsig) 630 if (signals [signum].gotsig)
545 { 631 ev_feed_signal_event (EV_A_ signum + 1);
546 signals [signum].gotsig = 0; 632}
547 633
548 for (w = signals [signum].head; w; w = w->next) 634inline void
549 event (EV_A_ (W)w, EV_SIGNAL); 635fd_intern (int fd)
550 } 636{
637#ifdef _WIN32
638 int arg = 1;
639 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
640#else
641 fcntl (fd, F_SETFD, FD_CLOEXEC);
642 fcntl (fd, F_SETFL, O_NONBLOCK);
643#endif
551} 644}
552 645
553static void 646static void
554siginit (EV_P) 647siginit (EV_P)
555{ 648{
556#ifndef WIN32 649 fd_intern (sigpipe [0]);
557 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 650 fd_intern (sigpipe [1]);
558 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
559
560 /* rather than sort out wether we really need nb, set it */
561 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
562 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
563#endif
564 651
565 ev_io_set (&sigev, sigpipe [0], EV_READ); 652 ev_io_set (&sigev, sigpipe [0], EV_READ);
566 ev_io_start (EV_A_ &sigev); 653 ev_io_start (EV_A_ &sigev);
567 ev_unref (EV_A); /* child watcher should not keep loop alive */ 654 ev_unref (EV_A); /* child watcher should not keep loop alive */
568} 655}
569 656
570/*****************************************************************************/ 657/*****************************************************************************/
571 658
572#ifndef WIN32
573
574static struct ev_child *childs [PID_HASHSIZE]; 659static struct ev_child *childs [PID_HASHSIZE];
660
661#ifndef _WIN32
662
575static struct ev_signal childev; 663static struct ev_signal childev;
576 664
577#ifndef WCONTINUED 665#ifndef WCONTINUED
578# define WCONTINUED 0 666# define WCONTINUED 0
579#endif 667#endif
587 if (w->pid == pid || !w->pid) 675 if (w->pid == pid || !w->pid)
588 { 676 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 677 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid; 678 w->rpid = pid;
591 w->rstatus = status; 679 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD); 680 ev_feed_event (EV_A_ (W)w, EV_CHILD);
593 } 681 }
594} 682}
595 683
596static void 684static void
597childcb (EV_P_ struct ev_signal *sw, int revents) 685childcb (EV_P_ struct ev_signal *sw, int revents)
599 int pid, status; 687 int pid, status;
600 688
601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 689 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
602 { 690 {
603 /* make sure we are called again until all childs have been reaped */ 691 /* make sure we are called again until all childs have been reaped */
604 event (EV_A_ (W)sw, EV_SIGNAL); 692 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
605 693
606 child_reap (EV_A_ sw, pid, pid, status); 694 child_reap (EV_A_ sw, pid, pid, status);
607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 695 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
608 } 696 }
609} 697}
639 727
640/* return true if we are running with elevated privileges and should ignore env variables */ 728/* return true if we are running with elevated privileges and should ignore env variables */
641static int 729static int
642enable_secure (void) 730enable_secure (void)
643{ 731{
644#ifdef WIN32 732#ifdef _WIN32
645 return 0; 733 return 0;
646#else 734#else
647 return getuid () != geteuid () 735 return getuid () != geteuid ()
648 || getgid () != getegid (); 736 || getgid () != getegid ();
649#endif 737#endif
666 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 754 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
667 have_monotonic = 1; 755 have_monotonic = 1;
668 } 756 }
669#endif 757#endif
670 758
671 rt_now = ev_time (); 759 ev_rt_now = ev_time ();
672 mn_now = get_clock (); 760 mn_now = get_clock ();
673 now_floor = mn_now; 761 now_floor = mn_now;
674 rtmn_diff = rt_now - mn_now; 762 rtmn_diff = ev_rt_now - mn_now;
675 763
676 if (methods == EVMETHOD_AUTO) 764 if (methods == EVMETHOD_AUTO)
677 if (!enable_secure () && getenv ("LIBEV_METHODS")) 765 if (!enable_secure () && getenv ("LIBEV_METHODS"))
678 methods = atoi (getenv ("LIBEV_METHODS")); 766 methods = atoi (getenv ("LIBEV_METHODS"));
679 else 767 else
680 methods = EVMETHOD_ANY; 768 methods = EVMETHOD_ANY;
681 769
682 method = 0; 770 method = 0;
683#if EV_USE_WIN32
684 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
685#endif
686#if EV_USE_KQUEUE 771#if EV_USE_KQUEUE
687 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 772 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
688#endif 773#endif
689#if EV_USE_EPOLL 774#if EV_USE_EPOLL
690 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 775 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 778 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
694#endif 779#endif
695#if EV_USE_SELECT 780#if EV_USE_SELECT
696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 781 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
697#endif 782#endif
783
784 ev_init (&sigev, sigcb);
785 ev_set_priority (&sigev, EV_MAXPRI);
698 } 786 }
699} 787}
700 788
701void 789void
702loop_destroy (EV_P) 790loop_destroy (EV_P)
703{ 791{
704 int i; 792 int i;
705 793
706#if EV_USE_WIN32
707 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
708#endif
709#if EV_USE_KQUEUE 794#if EV_USE_KQUEUE
710 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 795 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
711#endif 796#endif
712#if EV_USE_EPOLL 797#if EV_USE_EPOLL
713 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 798 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
720#endif 805#endif
721 806
722 for (i = NUMPRI; i--; ) 807 for (i = NUMPRI; i--; )
723 array_free (pending, [i]); 808 array_free (pending, [i]);
724 809
810 /* have to use the microsoft-never-gets-it-right macro */
725 array_free (fdchange, ); 811 array_free (fdchange, EMPTY);
726 array_free (timer, ); 812 array_free (timer, EMPTY);
813#if EV_PERIODICS
727 array_free (periodic, ); 814 array_free (periodic, EMPTY);
815#endif
728 array_free (idle, ); 816 array_free (idle, EMPTY);
729 array_free (prepare, ); 817 array_free (prepare, EMPTY);
730 array_free (check, ); 818 array_free (check, EMPTY);
731 819
732 method = 0; 820 method = 0;
733 /*TODO*/
734} 821}
735 822
736void 823static void
737loop_fork (EV_P) 824loop_fork (EV_P)
738{ 825{
739 /*TODO*/
740#if EV_USE_EPOLL 826#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 827 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742#endif 828#endif
743#if EV_USE_KQUEUE 829#if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 830 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745#endif 831#endif
832
833 if (ev_is_active (&sigev))
834 {
835 /* default loop */
836
837 ev_ref (EV_A);
838 ev_io_stop (EV_A_ &sigev);
839 close (sigpipe [0]);
840 close (sigpipe [1]);
841
842 while (pipe (sigpipe))
843 syserr ("(libev) error creating pipe");
844
845 siginit (EV_A);
846 }
847
848 postfork = 0;
746} 849}
747 850
748#if EV_MULTIPLICITY 851#if EV_MULTIPLICITY
749struct ev_loop * 852struct ev_loop *
750ev_loop_new (int methods) 853ev_loop_new (int methods)
769} 872}
770 873
771void 874void
772ev_loop_fork (EV_P) 875ev_loop_fork (EV_P)
773{ 876{
774 loop_fork (EV_A); 877 postfork = 1;
775} 878}
776 879
777#endif 880#endif
778 881
779#if EV_MULTIPLICITY 882#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop * 883struct ev_loop *
784#else 884#else
785static int default_loop;
786
787int 885int
788#endif 886#endif
789ev_default_loop (int methods) 887ev_default_loop (int methods)
790{ 888{
791 if (sigpipe [0] == sigpipe [1]) 889 if (sigpipe [0] == sigpipe [1])
802 900
803 loop_init (EV_A_ methods); 901 loop_init (EV_A_ methods);
804 902
805 if (ev_method (EV_A)) 903 if (ev_method (EV_A))
806 { 904 {
807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
809 siginit (EV_A); 905 siginit (EV_A);
810 906
811#ifndef WIN32 907#ifndef _WIN32
812 ev_signal_init (&childev, childcb, SIGCHLD); 908 ev_signal_init (&childev, childcb, SIGCHLD);
813 ev_set_priority (&childev, EV_MAXPRI); 909 ev_set_priority (&childev, EV_MAXPRI);
814 ev_signal_start (EV_A_ &childev); 910 ev_signal_start (EV_A_ &childev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 911 ev_unref (EV_A); /* child watcher should not keep loop alive */
816#endif 912#endif
827{ 923{
828#if EV_MULTIPLICITY 924#if EV_MULTIPLICITY
829 struct ev_loop *loop = default_loop; 925 struct ev_loop *loop = default_loop;
830#endif 926#endif
831 927
928#ifndef _WIN32
832 ev_ref (EV_A); /* child watcher */ 929 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev); 930 ev_signal_stop (EV_A_ &childev);
931#endif
834 932
835 ev_ref (EV_A); /* signal watcher */ 933 ev_ref (EV_A); /* signal watcher */
836 ev_io_stop (EV_A_ &sigev); 934 ev_io_stop (EV_A_ &sigev);
837 935
838 close (sigpipe [0]); sigpipe [0] = 0; 936 close (sigpipe [0]); sigpipe [0] = 0;
846{ 944{
847#if EV_MULTIPLICITY 945#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop; 946 struct ev_loop *loop = default_loop;
849#endif 947#endif
850 948
851 loop_fork (EV_A); 949 if (method)
852 950 postfork = 1;
853 ev_io_stop (EV_A_ &sigev);
854 close (sigpipe [0]);
855 close (sigpipe [1]);
856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
859 siginit (EV_A);
860} 951}
861 952
862/*****************************************************************************/ 953/*****************************************************************************/
954
955static int
956any_pending (EV_P)
957{
958 int pri;
959
960 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri])
962 return 1;
963
964 return 0;
965}
863 966
864static void 967static void
865call_pending (EV_P) 968call_pending (EV_P)
866{ 969{
867 int pri; 970 int pri;
872 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 975 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
873 976
874 if (p->w) 977 if (p->w)
875 { 978 {
876 p->w->pending = 0; 979 p->w->pending = 0;
877 p->w->cb (EV_A_ p->w, p->events); 980 EV_CB_INVOKE (p->w, p->events);
878 } 981 }
879 } 982 }
880} 983}
881 984
882static void 985static void
890 993
891 /* first reschedule or stop timer */ 994 /* first reschedule or stop timer */
892 if (w->repeat) 995 if (w->repeat)
893 { 996 {
894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998
895 ((WT)w)->at = mn_now + w->repeat; 999 ((WT)w)->at += w->repeat;
1000 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now;
1002
896 downheap ((WT *)timers, timercnt, 0); 1003 downheap ((WT *)timers, timercnt, 0);
897 } 1004 }
898 else 1005 else
899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
900 1007
901 event (EV_A_ (W)w, EV_TIMEOUT); 1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
902 } 1009 }
903} 1010}
904 1011
1012#if EV_PERIODICS
905static void 1013static void
906periodics_reify (EV_P) 1014periodics_reify (EV_P)
907{ 1015{
908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
909 { 1017 {
910 struct ev_periodic *w = periodics [0]; 1018 struct ev_periodic *w = periodics [0];
911 1019
912 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1020 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
913 1021
914 /* first reschedule or stop timer */ 1022 /* first reschedule or stop timer */
915 if (w->interval) 1023 if (w->reschedule_cb)
916 { 1024 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1026
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0);
1029 }
1030 else if (w->interval)
1031 {
917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
919 downheap ((WT *)periodics, periodiccnt, 0); 1034 downheap ((WT *)periodics, periodiccnt, 0);
920 } 1035 }
921 else 1036 else
922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
923 1038
924 event (EV_A_ (W)w, EV_PERIODIC); 1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
925 } 1040 }
926} 1041}
927 1042
928static void 1043static void
929periodics_reschedule (EV_P) 1044periodics_reschedule (EV_P)
933 /* adjust periodics after time jump */ 1048 /* adjust periodics after time jump */
934 for (i = 0; i < periodiccnt; ++i) 1049 for (i = 0; i < periodiccnt; ++i)
935 { 1050 {
936 struct ev_periodic *w = periodics [i]; 1051 struct ev_periodic *w = periodics [i];
937 1052
1053 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
938 if (w->interval) 1055 else if (w->interval)
939 {
940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
941
942 if (fabs (diff) >= 1e-4)
943 {
944 ev_periodic_stop (EV_A_ w);
945 ev_periodic_start (EV_A_ w);
946
947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
948 }
949 }
950 } 1057 }
1058
1059 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i);
951} 1062}
1063#endif
952 1064
953inline int 1065inline int
954time_update_monotonic (EV_P) 1066time_update_monotonic (EV_P)
955{ 1067{
956 mn_now = get_clock (); 1068 mn_now = get_clock ();
957 1069
958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
959 { 1071 {
960 rt_now = rtmn_diff + mn_now; 1072 ev_rt_now = rtmn_diff + mn_now;
961 return 0; 1073 return 0;
962 } 1074 }
963 else 1075 else
964 { 1076 {
965 now_floor = mn_now; 1077 now_floor = mn_now;
966 rt_now = ev_time (); 1078 ev_rt_now = ev_time ();
967 return 1; 1079 return 1;
968 } 1080 }
969} 1081}
970 1082
971static void 1083static void
980 { 1092 {
981 ev_tstamp odiff = rtmn_diff; 1093 ev_tstamp odiff = rtmn_diff;
982 1094
983 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */
984 { 1096 {
985 rtmn_diff = rt_now - mn_now; 1097 rtmn_diff = ev_rt_now - mn_now;
986 1098
987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
988 return; /* all is well */ 1100 return; /* all is well */
989 1101
990 rt_now = ev_time (); 1102 ev_rt_now = ev_time ();
991 mn_now = get_clock (); 1103 mn_now = get_clock ();
992 now_floor = mn_now; 1104 now_floor = mn_now;
993 } 1105 }
994 1106
1107# if EV_PERIODICS
995 periodics_reschedule (EV_A); 1108 periodics_reschedule (EV_A);
1109# endif
996 /* no timer adjustment, as the monotonic clock doesn't jump */ 1110 /* no timer adjustment, as the monotonic clock doesn't jump */
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
998 } 1112 }
999 } 1113 }
1000 else 1114 else
1001#endif 1115#endif
1002 { 1116 {
1003 rt_now = ev_time (); 1117 ev_rt_now = ev_time ();
1004 1118
1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1006 { 1120 {
1121#if EV_PERIODICS
1007 periodics_reschedule (EV_A); 1122 periodics_reschedule (EV_A);
1123#endif
1008 1124
1009 /* adjust timers. this is easy, as the offset is the same for all */ 1125 /* adjust timers. this is easy, as the offset is the same for all */
1010 for (i = 0; i < timercnt; ++i) 1126 for (i = 0; i < timercnt; ++i)
1011 ((WT)timers [i])->at += rt_now - mn_now; 1127 ((WT)timers [i])->at += ev_rt_now - mn_now;
1012 } 1128 }
1013 1129
1014 mn_now = rt_now; 1130 mn_now = ev_rt_now;
1015 } 1131 }
1016} 1132}
1017 1133
1018void 1134void
1019ev_ref (EV_P) 1135ev_ref (EV_P)
1042 { 1158 {
1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1159 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1044 call_pending (EV_A); 1160 call_pending (EV_A);
1045 } 1161 }
1046 1162
1163 /* we might have forked, so reify kernel state if necessary */
1164 if (expect_false (postfork))
1165 loop_fork (EV_A);
1166
1047 /* update fd-related kernel structures */ 1167 /* update fd-related kernel structures */
1048 fd_reify (EV_A); 1168 fd_reify (EV_A);
1049 1169
1050 /* calculate blocking time */ 1170 /* calculate blocking time */
1051 1171
1052 /* we only need this for !monotonic clockor timers, but as we basically 1172 /* we only need this for !monotonic clock or timers, but as we basically
1053 always have timers, we just calculate it always */ 1173 always have timers, we just calculate it always */
1054#if EV_USE_MONOTONIC 1174#if EV_USE_MONOTONIC
1055 if (expect_true (have_monotonic)) 1175 if (expect_true (have_monotonic))
1056 time_update_monotonic (EV_A); 1176 time_update_monotonic (EV_A);
1057 else 1177 else
1058#endif 1178#endif
1059 { 1179 {
1060 rt_now = ev_time (); 1180 ev_rt_now = ev_time ();
1061 mn_now = rt_now; 1181 mn_now = ev_rt_now;
1062 } 1182 }
1063 1183
1064 if (flags & EVLOOP_NONBLOCK || idlecnt) 1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
1065 block = 0.; 1185 block = 0.;
1066 else 1186 else
1071 { 1191 {
1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1073 if (block > to) block = to; 1193 if (block > to) block = to;
1074 } 1194 }
1075 1195
1196#if EV_PERIODICS
1076 if (periodiccnt) 1197 if (periodiccnt)
1077 { 1198 {
1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1079 if (block > to) block = to; 1200 if (block > to) block = to;
1080 } 1201 }
1202#endif
1081 1203
1082 if (block < 0.) block = 0.; 1204 if (block < 0.) block = 0.;
1083 } 1205 }
1084 1206
1085 method_poll (EV_A_ block); 1207 method_poll (EV_A_ block);
1086 1208
1087 /* update rt_now, do magic */ 1209 /* update ev_rt_now, do magic */
1088 time_update (EV_A); 1210 time_update (EV_A);
1089 1211
1090 /* queue pending timers and reschedule them */ 1212 /* queue pending timers and reschedule them */
1091 timers_reify (EV_A); /* relative timers called last */ 1213 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS
1092 periodics_reify (EV_A); /* absolute timers called first */ 1215 periodics_reify (EV_A); /* absolute timers called first */
1216#endif
1093 1217
1094 /* queue idle watchers unless io or timers are pending */ 1218 /* queue idle watchers unless io or timers are pending */
1095 if (!pendingcnt) 1219 if (idlecnt && !any_pending (EV_A))
1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1097 1221
1098 /* queue check watchers, to be executed first */ 1222 /* queue check watchers, to be executed first */
1099 if (checkcnt) 1223 if (checkcnt)
1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1175 return; 1299 return;
1176 1300
1177 assert (("ev_io_start called with negative fd", fd >= 0)); 1301 assert (("ev_io_start called with negative fd", fd >= 0));
1178 1302
1179 ev_start (EV_A_ (W)w, 1); 1303 ev_start (EV_A_ (W)w, 1);
1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1181 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1305 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1182 1306
1183 fd_change (EV_A_ fd); 1307 fd_change (EV_A_ fd);
1184} 1308}
1185 1309
1188{ 1312{
1189 ev_clear_pending (EV_A_ (W)w); 1313 ev_clear_pending (EV_A_ (W)w);
1190 if (!ev_is_active (w)) 1314 if (!ev_is_active (w))
1191 return; 1315 return;
1192 1316
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318
1193 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1194 ev_stop (EV_A_ (W)w); 1320 ev_stop (EV_A_ (W)w);
1195 1321
1196 fd_change (EV_A_ w->fd); 1322 fd_change (EV_A_ w->fd);
1197} 1323}
1205 ((WT)w)->at += mn_now; 1331 ((WT)w)->at += mn_now;
1206 1332
1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1208 1334
1209 ev_start (EV_A_ (W)w, ++timercnt); 1335 ev_start (EV_A_ (W)w, ++timercnt);
1210 array_needsize (timers, timermax, timercnt, ); 1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1211 timers [timercnt - 1] = w; 1337 timers [timercnt - 1] = w;
1212 upheap ((WT *)timers, timercnt - 1); 1338 upheap ((WT *)timers, timercnt - 1);
1213 1339
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215} 1341}
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1225 1351
1226 if (((W)w)->active < timercnt--) 1352 if (((W)w)->active < timercnt--)
1227 { 1353 {
1228 timers [((W)w)->active - 1] = timers [timercnt]; 1354 timers [((W)w)->active - 1] = timers [timercnt];
1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1355 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1230 } 1356 }
1231 1357
1232 ((WT)w)->at = w->repeat; 1358 ((WT)w)->at -= mn_now;
1233 1359
1234 ev_stop (EV_A_ (W)w); 1360 ev_stop (EV_A_ (W)w);
1235} 1361}
1236 1362
1237void 1363void
1240 if (ev_is_active (w)) 1366 if (ev_is_active (w))
1241 { 1367 {
1242 if (w->repeat) 1368 if (w->repeat)
1243 { 1369 {
1244 ((WT)w)->at = mn_now + w->repeat; 1370 ((WT)w)->at = mn_now + w->repeat;
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1246 } 1372 }
1247 else 1373 else
1248 ev_timer_stop (EV_A_ w); 1374 ev_timer_stop (EV_A_ w);
1249 } 1375 }
1250 else if (w->repeat) 1376 else if (w->repeat)
1251 ev_timer_start (EV_A_ w); 1377 ev_timer_start (EV_A_ w);
1252} 1378}
1253 1379
1380#if EV_PERIODICS
1254void 1381void
1255ev_periodic_start (EV_P_ struct ev_periodic *w) 1382ev_periodic_start (EV_P_ struct ev_periodic *w)
1256{ 1383{
1257 if (ev_is_active (w)) 1384 if (ev_is_active (w))
1258 return; 1385 return;
1259 1386
1387 if (w->reschedule_cb)
1388 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1389 else if (w->interval)
1390 {
1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1391 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1261
1262 /* this formula differs from the one in periodic_reify because we do not always round up */ 1392 /* this formula differs from the one in periodic_reify because we do not always round up */
1263 if (w->interval)
1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1393 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1394 }
1265 1395
1266 ev_start (EV_A_ (W)w, ++periodiccnt); 1396 ev_start (EV_A_ (W)w, ++periodiccnt);
1267 array_needsize (periodics, periodicmax, periodiccnt, ); 1397 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1268 periodics [periodiccnt - 1] = w; 1398 periodics [periodiccnt - 1] = w;
1269 upheap ((WT *)periodics, periodiccnt - 1); 1399 upheap ((WT *)periodics, periodiccnt - 1);
1270 1400
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1401 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272} 1402}
1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1411 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1282 1412
1283 if (((W)w)->active < periodiccnt--) 1413 if (((W)w)->active < periodiccnt--)
1284 { 1414 {
1285 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1415 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1416 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1287 } 1417 }
1288 1418
1289 ev_stop (EV_A_ (W)w); 1419 ev_stop (EV_A_ (W)w);
1290} 1420}
1291 1421
1292void 1422void
1423ev_periodic_again (EV_P_ struct ev_periodic *w)
1424{
1425 /* TODO: use adjustheap and recalculation */
1426 ev_periodic_stop (EV_A_ w);
1427 ev_periodic_start (EV_A_ w);
1428}
1429#endif
1430
1431void
1293ev_idle_start (EV_P_ struct ev_idle *w) 1432ev_idle_start (EV_P_ struct ev_idle *w)
1294{ 1433{
1295 if (ev_is_active (w)) 1434 if (ev_is_active (w))
1296 return; 1435 return;
1297 1436
1298 ev_start (EV_A_ (W)w, ++idlecnt); 1437 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, ); 1438 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1300 idles [idlecnt - 1] = w; 1439 idles [idlecnt - 1] = w;
1301} 1440}
1302 1441
1303void 1442void
1304ev_idle_stop (EV_P_ struct ev_idle *w) 1443ev_idle_stop (EV_P_ struct ev_idle *w)
1305{ 1444{
1306 ev_clear_pending (EV_A_ (W)w); 1445 ev_clear_pending (EV_A_ (W)w);
1307 if (ev_is_active (w)) 1446 if (!ev_is_active (w))
1308 return; 1447 return;
1309 1448
1310 idles [((W)w)->active - 1] = idles [--idlecnt]; 1449 idles [((W)w)->active - 1] = idles [--idlecnt];
1311 ev_stop (EV_A_ (W)w); 1450 ev_stop (EV_A_ (W)w);
1312} 1451}
1316{ 1455{
1317 if (ev_is_active (w)) 1456 if (ev_is_active (w))
1318 return; 1457 return;
1319 1458
1320 ev_start (EV_A_ (W)w, ++preparecnt); 1459 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, ); 1460 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1322 prepares [preparecnt - 1] = w; 1461 prepares [preparecnt - 1] = w;
1323} 1462}
1324 1463
1325void 1464void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w) 1465ev_prepare_stop (EV_P_ struct ev_prepare *w)
1327{ 1466{
1328 ev_clear_pending (EV_A_ (W)w); 1467 ev_clear_pending (EV_A_ (W)w);
1329 if (ev_is_active (w)) 1468 if (!ev_is_active (w))
1330 return; 1469 return;
1331 1470
1332 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1471 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1333 ev_stop (EV_A_ (W)w); 1472 ev_stop (EV_A_ (W)w);
1334} 1473}
1338{ 1477{
1339 if (ev_is_active (w)) 1478 if (ev_is_active (w))
1340 return; 1479 return;
1341 1480
1342 ev_start (EV_A_ (W)w, ++checkcnt); 1481 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, ); 1482 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1344 checks [checkcnt - 1] = w; 1483 checks [checkcnt - 1] = w;
1345} 1484}
1346 1485
1347void 1486void
1348ev_check_stop (EV_P_ struct ev_check *w) 1487ev_check_stop (EV_P_ struct ev_check *w)
1349{ 1488{
1350 ev_clear_pending (EV_A_ (W)w); 1489 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w)) 1490 if (!ev_is_active (w))
1352 return; 1491 return;
1353 1492
1354 checks [((W)w)->active - 1] = checks [--checkcnt]; 1493 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 ev_stop (EV_A_ (W)w); 1494 ev_stop (EV_A_ (W)w);
1356} 1495}
1369 return; 1508 return;
1370 1509
1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1510 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1372 1511
1373 ev_start (EV_A_ (W)w, 1); 1512 ev_start (EV_A_ (W)w, 1);
1374 array_needsize (signals, signalmax, w->signum, signals_init); 1513 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1514 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1376 1515
1377 if (!((WL)w)->next) 1516 if (!((WL)w)->next)
1378 { 1517 {
1379#if WIN32 1518#if _WIN32
1380 signal (w->signum, sighandler); 1519 signal (w->signum, sighandler);
1381#else 1520#else
1382 struct sigaction sa; 1521 struct sigaction sa;
1383 sa.sa_handler = sighandler; 1522 sa.sa_handler = sighandler;
1384 sigfillset (&sa.sa_mask); 1523 sigfillset (&sa.sa_mask);
1417 1556
1418void 1557void
1419ev_child_stop (EV_P_ struct ev_child *w) 1558ev_child_stop (EV_P_ struct ev_child *w)
1420{ 1559{
1421 ev_clear_pending (EV_A_ (W)w); 1560 ev_clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w)) 1561 if (!ev_is_active (w))
1423 return; 1562 return;
1424 1563
1425 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1564 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1426 ev_stop (EV_A_ (W)w); 1565 ev_stop (EV_A_ (W)w);
1427} 1566}
1462} 1601}
1463 1602
1464void 1603void
1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1604ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1466{ 1605{
1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1606 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1468 1607
1469 if (!once) 1608 if (!once)
1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1609 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1471 else 1610 else
1472 { 1611 {
1473 once->cb = cb; 1612 once->cb = cb;
1474 once->arg = arg; 1613 once->arg = arg;
1475 1614
1476 ev_watcher_init (&once->io, once_cb_io); 1615 ev_init (&once->io, once_cb_io);
1477 if (fd >= 0) 1616 if (fd >= 0)
1478 { 1617 {
1479 ev_io_set (&once->io, fd, events); 1618 ev_io_set (&once->io, fd, events);
1480 ev_io_start (EV_A_ &once->io); 1619 ev_io_start (EV_A_ &once->io);
1481 } 1620 }
1482 1621
1483 ev_watcher_init (&once->to, once_cb_to); 1622 ev_init (&once->to, once_cb_to);
1484 if (timeout >= 0.) 1623 if (timeout >= 0.)
1485 { 1624 {
1486 ev_timer_set (&once->to, timeout, 0.); 1625 ev_timer_set (&once->to, timeout, 0.);
1487 ev_timer_start (EV_A_ &once->to); 1626 ev_timer_start (EV_A_ &once->to);
1488 } 1627 }
1489 } 1628 }
1490} 1629}
1491 1630
1631#ifdef __cplusplus
1632}
1633#endif
1634

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines