ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.104 by root, Mon Nov 12 00:39:45 2007 UTC vs.
Revision 1.139 by root, Sun Nov 25 09:24:37 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
43# ifndef EV_USE_REALTIME 47# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
45# endif 49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
46# endif 57# endif
47 58
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 59# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
50# endif 65# endif
51 66
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 67# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
54# endif 73# endif
55 74
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
58# endif 81# endif
59 82
83# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
62# endif 97# endif
63 98
64#endif 99#endif
65 100
66#include <math.h> 101#include <math.h>
90#endif 125#endif
91 126
92/**/ 127/**/
93 128
94#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
96#endif 135#endif
97 136
98#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 139#endif
102 140
103#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
104# ifdef _WIN32 142# ifdef _WIN32
105# define EV_USE_POLL 0 143# define EV_USE_POLL 0
114 152
115#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
117#endif 155#endif
118 156
119#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
120# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
121#endif 159#endif
122 160
123/**/ 161/**/
124 162
125#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
137#endif 175#endif
138 176
139/**/ 177/**/
140 178
141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
145 183
146#ifdef EV_H 184#ifdef EV_H
147# include EV_H 185# include EV_H
148#else 186#else
149# include "ev.h" 187# include "ev.h"
150#endif 188#endif
151 189
152#if __GNUC__ >= 3 190#if __GNUC__ >= 3
153# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
154# define inline inline 192# define inline static inline
155#else 193#else
156# define expect(expr,value) (expr) 194# define expect(expr,value) (expr)
157# define inline static 195# define inline static
158#endif 196#endif
159 197
161#define expect_true(expr) expect ((expr) != 0, 1) 199#define expect_true(expr) expect ((expr) != 0, 1)
162 200
163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
164#define ABSPRI(w) ((w)->priority - EV_MINPRI) 202#define ABSPRI(w) ((w)->priority - EV_MINPRI)
165 203
166#define EMPTY /* required for microsofts broken pseudo-c compiler */ 204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */
167 206
168typedef struct ev_watcher *W; 207typedef ev_watcher *W;
169typedef struct ev_watcher_list *WL; 208typedef ev_watcher_list *WL;
170typedef struct ev_watcher_time *WT; 209typedef ev_watcher_time *WT;
171 210
172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
173 212
174#ifdef _WIN32 213#ifdef _WIN32
175# include "ev_win32.c" 214# include "ev_win32.c"
251 #include "ev_vars.h" 290 #include "ev_vars.h"
252 #undef VAR 291 #undef VAR
253 }; 292 };
254 #include "ev_wrap.h" 293 #include "ev_wrap.h"
255 294
256 struct ev_loop default_loop_struct; 295 static struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop; 296 struct ev_loop *ev_default_loop_ptr;
258 297
259#else 298#else
260 299
261 ev_tstamp ev_rt_now; 300 ev_tstamp ev_rt_now;
262 #define VAR(name,decl) static decl; 301 #define VAR(name,decl) static decl;
263 #include "ev_vars.h" 302 #include "ev_vars.h"
264 #undef VAR 303 #undef VAR
265 304
266 static int default_loop; 305 static int ev_default_loop_ptr;
267 306
268#endif 307#endif
269 308
270/*****************************************************************************/ 309/*****************************************************************************/
271 310
304{ 343{
305 return ev_rt_now; 344 return ev_rt_now;
306} 345}
307#endif 346#endif
308 347
309#define array_roundsize(type,n) ((n) | 4 & ~3) 348#define array_roundsize(type,n) (((n) | 4) & ~3)
310 349
311#define array_needsize(type,base,cur,cnt,init) \ 350#define array_needsize(type,base,cur,cnt,init) \
312 if (expect_false ((cnt) > cur)) \ 351 if (expect_false ((cnt) > cur)) \
313 { \ 352 { \
314 int newcnt = cur; \ 353 int newcnt = cur; \
352void 391void
353ev_feed_event (EV_P_ void *w, int revents) 392ev_feed_event (EV_P_ void *w, int revents)
354{ 393{
355 W w_ = (W)w; 394 W w_ = (W)w;
356 395
357 if (w_->pending) 396 if (expect_false (w_->pending))
358 { 397 {
359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
360 return; 399 return;
361 } 400 }
362 401
363 w_->pending = ++pendingcnt [ABSPRI (w_)]; 402 w_->pending = ++pendingcnt [ABSPRI (w_)];
364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void)); 403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
367} 406}
368 407
369static void 408static void
377 416
378inline void 417inline void
379fd_event (EV_P_ int fd, int revents) 418fd_event (EV_P_ int fd, int revents)
380{ 419{
381 ANFD *anfd = anfds + fd; 420 ANFD *anfd = anfds + fd;
382 struct ev_io *w; 421 ev_io *w;
383 422
384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 423 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
385 { 424 {
386 int ev = w->events & revents; 425 int ev = w->events & revents;
387 426
388 if (ev) 427 if (ev)
389 ev_feed_event (EV_A_ (W)w, ev); 428 ev_feed_event (EV_A_ (W)w, ev);
396 fd_event (EV_A_ fd, revents); 435 fd_event (EV_A_ fd, revents);
397} 436}
398 437
399/*****************************************************************************/ 438/*****************************************************************************/
400 439
401static void 440inline void
402fd_reify (EV_P) 441fd_reify (EV_P)
403{ 442{
404 int i; 443 int i;
405 444
406 for (i = 0; i < fdchangecnt; ++i) 445 for (i = 0; i < fdchangecnt; ++i)
407 { 446 {
408 int fd = fdchanges [i]; 447 int fd = fdchanges [i];
409 ANFD *anfd = anfds + fd; 448 ANFD *anfd = anfds + fd;
410 struct ev_io *w; 449 ev_io *w;
411 450
412 int events = 0; 451 int events = 0;
413 452
414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 453 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
415 events |= w->events; 454 events |= w->events;
416 455
417#if EV_SELECT_IS_WINSOCKET 456#if EV_SELECT_IS_WINSOCKET
418 if (events) 457 if (events)
419 { 458 {
423 } 462 }
424#endif 463#endif
425 464
426 anfd->reify = 0; 465 anfd->reify = 0;
427 466
428 method_modify (EV_A_ fd, anfd->events, events); 467 backend_modify (EV_A_ fd, anfd->events, events);
429 anfd->events = events; 468 anfd->events = events;
430 } 469 }
431 470
432 fdchangecnt = 0; 471 fdchangecnt = 0;
433} 472}
434 473
435static void 474static void
436fd_change (EV_P_ int fd) 475fd_change (EV_P_ int fd)
437{ 476{
438 if (anfds [fd].reify) 477 if (expect_false (anfds [fd].reify))
439 return; 478 return;
440 479
441 anfds [fd].reify = 1; 480 anfds [fd].reify = 1;
442 481
443 ++fdchangecnt; 482 ++fdchangecnt;
444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
445 fdchanges [fdchangecnt - 1] = fd; 484 fdchanges [fdchangecnt - 1] = fd;
446} 485}
447 486
448static void 487static void
449fd_kill (EV_P_ int fd) 488fd_kill (EV_P_ int fd)
450{ 489{
451 struct ev_io *w; 490 ev_io *w;
452 491
453 while ((w = (struct ev_io *)anfds [fd].head)) 492 while ((w = (ev_io *)anfds [fd].head))
454 { 493 {
455 ev_io_stop (EV_A_ w); 494 ev_io_stop (EV_A_ w);
456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
457 } 496 }
458} 497}
459 498
460static int 499inline int
461fd_valid (int fd) 500fd_valid (int fd)
462{ 501{
463#ifdef _WIN32 502#ifdef _WIN32
464 return _get_osfhandle (fd) != -1; 503 return _get_osfhandle (fd) != -1;
465#else 504#else
491 fd_kill (EV_A_ fd); 530 fd_kill (EV_A_ fd);
492 return; 531 return;
493 } 532 }
494} 533}
495 534
496/* usually called after fork if method needs to re-arm all fds from scratch */ 535/* usually called after fork if backend needs to re-arm all fds from scratch */
497static void 536static void
498fd_rearm_all (EV_P) 537fd_rearm_all (EV_P)
499{ 538{
500 int fd; 539 int fd;
501 540
569static ANSIG *signals; 608static ANSIG *signals;
570static int signalmax; 609static int signalmax;
571 610
572static int sigpipe [2]; 611static int sigpipe [2];
573static sig_atomic_t volatile gotsig; 612static sig_atomic_t volatile gotsig;
574static struct ev_io sigev; 613static ev_io sigev;
575 614
576static void 615static void
577signals_init (ANSIG *base, int count) 616signals_init (ANSIG *base, int count)
578{ 617{
579 while (count--) 618 while (count--)
607ev_feed_signal_event (EV_P_ int signum) 646ev_feed_signal_event (EV_P_ int signum)
608{ 647{
609 WL w; 648 WL w;
610 649
611#if EV_MULTIPLICITY 650#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 651 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
613#endif 652#endif
614 653
615 --signum; 654 --signum;
616 655
617 if (signum < 0 || signum >= signalmax) 656 if (signum < 0 || signum >= signalmax)
622 for (w = signals [signum].head; w; w = w->next) 661 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624} 663}
625 664
626static void 665static void
627sigcb (EV_P_ struct ev_io *iow, int revents) 666sigcb (EV_P_ ev_io *iow, int revents)
628{ 667{
629 int signum; 668 int signum;
630 669
631 read (sigpipe [0], &revents, 1); 670 read (sigpipe [0], &revents, 1);
632 gotsig = 0; 671 gotsig = 0;
634 for (signum = signalmax; signum--; ) 673 for (signum = signalmax; signum--; )
635 if (signals [signum].gotsig) 674 if (signals [signum].gotsig)
636 ev_feed_signal_event (EV_A_ signum + 1); 675 ev_feed_signal_event (EV_A_ signum + 1);
637} 676}
638 677
639inline void 678static void
640fd_intern (int fd) 679fd_intern (int fd)
641{ 680{
642#ifdef _WIN32 681#ifdef _WIN32
643 int arg = 1; 682 int arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
659 ev_unref (EV_A); /* child watcher should not keep loop alive */ 698 ev_unref (EV_A); /* child watcher should not keep loop alive */
660} 699}
661 700
662/*****************************************************************************/ 701/*****************************************************************************/
663 702
664static struct ev_child *childs [PID_HASHSIZE]; 703static ev_child *childs [PID_HASHSIZE];
665 704
666#ifndef _WIN32 705#ifndef _WIN32
667 706
668static struct ev_signal childev; 707static ev_signal childev;
669 708
670#ifndef WCONTINUED 709#ifndef WCONTINUED
671# define WCONTINUED 0 710# define WCONTINUED 0
672#endif 711#endif
673 712
674static void 713static void
675child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 714child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
676{ 715{
677 struct ev_child *w; 716 ev_child *w;
678 717
679 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 718 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
680 if (w->pid == pid || !w->pid) 719 if (w->pid == pid || !w->pid)
681 { 720 {
682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
683 w->rpid = pid; 722 w->rpid = pid;
684 w->rstatus = status; 723 w->rstatus = status;
685 ev_feed_event (EV_A_ (W)w, EV_CHILD); 724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
686 } 725 }
687} 726}
688 727
689static void 728static void
690childcb (EV_P_ struct ev_signal *sw, int revents) 729childcb (EV_P_ ev_signal *sw, int revents)
691{ 730{
692 int pid, status; 731 int pid, status;
693 732
694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
695 { 734 {
696 /* make sure we are called again until all childs have been reaped */ 735 /* make sure we are called again until all childs have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */
697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
698 738
699 child_reap (EV_A_ sw, pid, pid, status); 739 child_reap (EV_A_ sw, pid, pid, status);
700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
701 } 741 }
702} 742}
703 743
704#endif 744#endif
705 745
706/*****************************************************************************/ 746/*****************************************************************************/
707 747
748#if EV_USE_PORT
749# include "ev_port.c"
750#endif
708#if EV_USE_KQUEUE 751#if EV_USE_KQUEUE
709# include "ev_kqueue.c" 752# include "ev_kqueue.c"
710#endif 753#endif
711#if EV_USE_EPOLL 754#if EV_USE_EPOLL
712# include "ev_epoll.c" 755# include "ev_epoll.c"
740 return getuid () != geteuid () 783 return getuid () != geteuid ()
741 || getgid () != getegid (); 784 || getgid () != getegid ();
742#endif 785#endif
743} 786}
744 787
745int 788unsigned int
746ev_method (EV_P) 789ev_supported_backends (void)
747{ 790{
748 return method; 791 unsigned int flags = 0;
749}
750 792
751static void 793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
752loop_init (EV_P_ int methods) 794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
797 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
798
799 return flags;
800}
801
802unsigned int
803ev_recommended_backends (void)
753{ 804{
754 if (!method) 805 unsigned int flags = ev_supported_backends ();
806
807#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE;
811#endif
812#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation
814 flags &= ~EVBACKEND_POLL;
815#endif
816
817 return flags;
818}
819
820unsigned int
821ev_embeddable_backends (void)
822{
823 return EVBACKEND_EPOLL
824 | EVBACKEND_KQUEUE
825 | EVBACKEND_PORT;
826}
827
828unsigned int
829ev_backend (EV_P)
830{
831 return backend;
832}
833
834static void
835loop_init (EV_P_ unsigned int flags)
836{
837 if (!backend)
755 { 838 {
756#if EV_USE_MONOTONIC 839#if EV_USE_MONOTONIC
757 { 840 {
758 struct timespec ts; 841 struct timespec ts;
759 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 842 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
764 ev_rt_now = ev_time (); 847 ev_rt_now = ev_time ();
765 mn_now = get_clock (); 848 mn_now = get_clock ();
766 now_floor = mn_now; 849 now_floor = mn_now;
767 rtmn_diff = ev_rt_now - mn_now; 850 rtmn_diff = ev_rt_now - mn_now;
768 851
769 if (methods == EVMETHOD_AUTO) 852 if (!(flags & EVFLAG_NOENV)
770 if (!enable_secure () && getenv ("LIBEV_METHODS")) 853 && !enable_secure ()
854 && getenv ("LIBEV_FLAGS"))
771 methods = atoi (getenv ("LIBEV_METHODS")); 855 flags = atoi (getenv ("LIBEV_FLAGS"));
772 else
773 methods = EVMETHOD_ANY;
774 856
775 method = 0; 857 if (!(flags & 0x0000ffffUL))
858 flags |= ev_recommended_backends ();
859
860 backend = 0;
861#if EV_USE_PORT
862 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
863#endif
776#if EV_USE_KQUEUE 864#if EV_USE_KQUEUE
777 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 865 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
778#endif 866#endif
779#if EV_USE_EPOLL 867#if EV_USE_EPOLL
780 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 868 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
781#endif 869#endif
782#if EV_USE_POLL 870#if EV_USE_POLL
783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 871 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
784#endif 872#endif
785#if EV_USE_SELECT 873#if EV_USE_SELECT
786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 874 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
787#endif 875#endif
788 876
789 ev_init (&sigev, sigcb); 877 ev_init (&sigev, sigcb);
790 ev_set_priority (&sigev, EV_MAXPRI); 878 ev_set_priority (&sigev, EV_MAXPRI);
791 } 879 }
792} 880}
793 881
794void 882static void
795loop_destroy (EV_P) 883loop_destroy (EV_P)
796{ 884{
797 int i; 885 int i;
798 886
887#if EV_USE_PORT
888 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
889#endif
799#if EV_USE_KQUEUE 890#if EV_USE_KQUEUE
800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 891 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
801#endif 892#endif
802#if EV_USE_EPOLL 893#if EV_USE_EPOLL
803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 894 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
804#endif 895#endif
805#if EV_USE_POLL 896#if EV_USE_POLL
806 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 897 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
807#endif 898#endif
808#if EV_USE_SELECT 899#if EV_USE_SELECT
809 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 900 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
810#endif 901#endif
811 902
812 for (i = NUMPRI; i--; ) 903 for (i = NUMPRI; i--; )
813 array_free (pending, [i]); 904 array_free (pending, [i]);
814 905
815 /* have to use the microsoft-never-gets-it-right macro */ 906 /* have to use the microsoft-never-gets-it-right macro */
816 array_free (fdchange, EMPTY); 907 array_free (fdchange, EMPTY0);
817 array_free (timer, EMPTY); 908 array_free (timer, EMPTY0);
818#if EV_PERIODICS 909#if EV_PERIODICS
819 array_free (periodic, EMPTY); 910 array_free (periodic, EMPTY0);
820#endif 911#endif
821 array_free (idle, EMPTY); 912 array_free (idle, EMPTY0);
822 array_free (prepare, EMPTY); 913 array_free (prepare, EMPTY0);
823 array_free (check, EMPTY); 914 array_free (check, EMPTY0);
824 915
825 method = 0; 916 backend = 0;
826} 917}
827 918
828static void 919static void
829loop_fork (EV_P) 920loop_fork (EV_P)
830{ 921{
922#if EV_USE_PORT
923 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
924#endif
925#if EV_USE_KQUEUE
926 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
927#endif
831#if EV_USE_EPOLL 928#if EV_USE_EPOLL
832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 929 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
833#endif
834#if EV_USE_KQUEUE
835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
836#endif 930#endif
837 931
838 if (ev_is_active (&sigev)) 932 if (ev_is_active (&sigev))
839 { 933 {
840 /* default loop */ 934 /* default loop */
853 postfork = 0; 947 postfork = 0;
854} 948}
855 949
856#if EV_MULTIPLICITY 950#if EV_MULTIPLICITY
857struct ev_loop * 951struct ev_loop *
858ev_loop_new (int methods) 952ev_loop_new (unsigned int flags)
859{ 953{
860 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 954 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
861 955
862 memset (loop, 0, sizeof (struct ev_loop)); 956 memset (loop, 0, sizeof (struct ev_loop));
863 957
864 loop_init (EV_A_ methods); 958 loop_init (EV_A_ flags);
865 959
866 if (ev_method (EV_A)) 960 if (ev_backend (EV_A))
867 return loop; 961 return loop;
868 962
869 return 0; 963 return 0;
870} 964}
871 965
884 978
885#endif 979#endif
886 980
887#if EV_MULTIPLICITY 981#if EV_MULTIPLICITY
888struct ev_loop * 982struct ev_loop *
983ev_default_loop_init (unsigned int flags)
889#else 984#else
890int 985int
986ev_default_loop (unsigned int flags)
891#endif 987#endif
892ev_default_loop (int methods)
893{ 988{
894 if (sigpipe [0] == sigpipe [1]) 989 if (sigpipe [0] == sigpipe [1])
895 if (pipe (sigpipe)) 990 if (pipe (sigpipe))
896 return 0; 991 return 0;
897 992
898 if (!default_loop) 993 if (!ev_default_loop_ptr)
899 { 994 {
900#if EV_MULTIPLICITY 995#if EV_MULTIPLICITY
901 struct ev_loop *loop = default_loop = &default_loop_struct; 996 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
902#else 997#else
903 default_loop = 1; 998 ev_default_loop_ptr = 1;
904#endif 999#endif
905 1000
906 loop_init (EV_A_ methods); 1001 loop_init (EV_A_ flags);
907 1002
908 if (ev_method (EV_A)) 1003 if (ev_backend (EV_A))
909 { 1004 {
910 siginit (EV_A); 1005 siginit (EV_A);
911 1006
912#ifndef _WIN32 1007#ifndef _WIN32
913 ev_signal_init (&childev, childcb, SIGCHLD); 1008 ev_signal_init (&childev, childcb, SIGCHLD);
915 ev_signal_start (EV_A_ &childev); 1010 ev_signal_start (EV_A_ &childev);
916 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1011 ev_unref (EV_A); /* child watcher should not keep loop alive */
917#endif 1012#endif
918 } 1013 }
919 else 1014 else
920 default_loop = 0; 1015 ev_default_loop_ptr = 0;
921 } 1016 }
922 1017
923 return default_loop; 1018 return ev_default_loop_ptr;
924} 1019}
925 1020
926void 1021void
927ev_default_destroy (void) 1022ev_default_destroy (void)
928{ 1023{
929#if EV_MULTIPLICITY 1024#if EV_MULTIPLICITY
930 struct ev_loop *loop = default_loop; 1025 struct ev_loop *loop = ev_default_loop_ptr;
931#endif 1026#endif
932 1027
933#ifndef _WIN32 1028#ifndef _WIN32
934 ev_ref (EV_A); /* child watcher */ 1029 ev_ref (EV_A); /* child watcher */
935 ev_signal_stop (EV_A_ &childev); 1030 ev_signal_stop (EV_A_ &childev);
946 1041
947void 1042void
948ev_default_fork (void) 1043ev_default_fork (void)
949{ 1044{
950#if EV_MULTIPLICITY 1045#if EV_MULTIPLICITY
951 struct ev_loop *loop = default_loop; 1046 struct ev_loop *loop = ev_default_loop_ptr;
952#endif 1047#endif
953 1048
954 if (method) 1049 if (backend)
955 postfork = 1; 1050 postfork = 1;
956} 1051}
957 1052
958/*****************************************************************************/ 1053/*****************************************************************************/
959 1054
967 return 1; 1062 return 1;
968 1063
969 return 0; 1064 return 0;
970} 1065}
971 1066
972static void 1067inline void
973call_pending (EV_P) 1068call_pending (EV_P)
974{ 1069{
975 int pri; 1070 int pri;
976 1071
977 for (pri = NUMPRI; pri--; ) 1072 for (pri = NUMPRI; pri--; )
978 while (pendingcnt [pri]) 1073 while (pendingcnt [pri])
979 { 1074 {
980 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1075 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
981 1076
982 if (p->w) 1077 if (expect_true (p->w))
983 { 1078 {
1079 assert (("non-pending watcher on pending list", p->w->pending));
1080
984 p->w->pending = 0; 1081 p->w->pending = 0;
985 EV_CB_INVOKE (p->w, p->events); 1082 EV_CB_INVOKE (p->w, p->events);
986 } 1083 }
987 } 1084 }
988} 1085}
989 1086
990static void 1087inline void
991timers_reify (EV_P) 1088timers_reify (EV_P)
992{ 1089{
993 while (timercnt && ((WT)timers [0])->at <= mn_now) 1090 while (timercnt && ((WT)timers [0])->at <= mn_now)
994 { 1091 {
995 struct ev_timer *w = timers [0]; 1092 ev_timer *w = timers [0];
996 1093
997 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1094 assert (("inactive timer on timer heap detected", ev_is_active (w)));
998 1095
999 /* first reschedule or stop timer */ 1096 /* first reschedule or stop timer */
1000 if (w->repeat) 1097 if (w->repeat)
1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1110 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1014 } 1111 }
1015} 1112}
1016 1113
1017#if EV_PERIODICS 1114#if EV_PERIODICS
1018static void 1115inline void
1019periodics_reify (EV_P) 1116periodics_reify (EV_P)
1020{ 1117{
1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1118 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1022 { 1119 {
1023 struct ev_periodic *w = periodics [0]; 1120 ev_periodic *w = periodics [0];
1024 1121
1025 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1122 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1026 1123
1027 /* first reschedule or stop timer */ 1124 /* first reschedule or stop timer */
1028 if (w->reschedule_cb) 1125 if (w->reschedule_cb)
1029 { 1126 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1127 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1031
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1128 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1033 downheap ((WT *)periodics, periodiccnt, 0); 1129 downheap ((WT *)periodics, periodiccnt, 0);
1034 } 1130 }
1035 else if (w->interval) 1131 else if (w->interval)
1036 { 1132 {
1051 int i; 1147 int i;
1052 1148
1053 /* adjust periodics after time jump */ 1149 /* adjust periodics after time jump */
1054 for (i = 0; i < periodiccnt; ++i) 1150 for (i = 0; i < periodiccnt; ++i)
1055 { 1151 {
1056 struct ev_periodic *w = periodics [i]; 1152 ev_periodic *w = periodics [i];
1057 1153
1058 if (w->reschedule_cb) 1154 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1155 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1060 else if (w->interval) 1156 else if (w->interval)
1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1157 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1083 ev_rt_now = ev_time (); 1179 ev_rt_now = ev_time ();
1084 return 1; 1180 return 1;
1085 } 1181 }
1086} 1182}
1087 1183
1088static void 1184inline void
1089time_update (EV_P) 1185time_update (EV_P)
1090{ 1186{
1091 int i; 1187 int i;
1092 1188
1093#if EV_USE_MONOTONIC 1189#if EV_USE_MONOTONIC
1095 { 1191 {
1096 if (time_update_monotonic (EV_A)) 1192 if (time_update_monotonic (EV_A))
1097 { 1193 {
1098 ev_tstamp odiff = rtmn_diff; 1194 ev_tstamp odiff = rtmn_diff;
1099 1195
1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1196 /* loop a few times, before making important decisions.
1197 * on the choice of "4": one iteration isn't enough,
1198 * in case we get preempted during the calls to
1199 * ev_time and get_clock. a second call is almost guarenteed
1200 * to succeed in that case, though. and looping a few more times
1201 * doesn't hurt either as we only do this on time-jumps or
1202 * in the unlikely event of getting preempted here.
1203 */
1204 for (i = 4; --i; )
1101 { 1205 {
1102 rtmn_diff = ev_rt_now - mn_now; 1206 rtmn_diff = ev_rt_now - mn_now;
1103 1207
1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1208 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1105 return; /* all is well */ 1209 return; /* all is well */
1151static int loop_done; 1255static int loop_done;
1152 1256
1153void 1257void
1154ev_loop (EV_P_ int flags) 1258ev_loop (EV_P_ int flags)
1155{ 1259{
1156 double block;
1157 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1260 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1261 ? EVUNLOOP_ONE
1262 : EVUNLOOP_CANCEL;
1158 1263
1159 do 1264 while (activecnt)
1160 { 1265 {
1161 /* queue check watchers (and execute them) */ 1266 /* queue check watchers (and execute them) */
1162 if (expect_false (preparecnt)) 1267 if (expect_false (preparecnt))
1163 { 1268 {
1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1269 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1171 1276
1172 /* update fd-related kernel structures */ 1277 /* update fd-related kernel structures */
1173 fd_reify (EV_A); 1278 fd_reify (EV_A);
1174 1279
1175 /* calculate blocking time */ 1280 /* calculate blocking time */
1281 {
1282 double block;
1176 1283
1177 /* we only need this for !monotonic clock or timers, but as we basically 1284 if (flags & EVLOOP_NONBLOCK || idlecnt)
1178 always have timers, we just calculate it always */ 1285 block = 0.; /* do not block at all */
1286 else
1287 {
1288 /* update time to cancel out callback processing overhead */
1179#if EV_USE_MONOTONIC 1289#if EV_USE_MONOTONIC
1180 if (expect_true (have_monotonic)) 1290 if (expect_true (have_monotonic))
1181 time_update_monotonic (EV_A); 1291 time_update_monotonic (EV_A);
1182 else 1292 else
1183#endif 1293#endif
1184 { 1294 {
1185 ev_rt_now = ev_time (); 1295 ev_rt_now = ev_time ();
1186 mn_now = ev_rt_now; 1296 mn_now = ev_rt_now;
1187 } 1297 }
1188 1298
1189 if (flags & EVLOOP_NONBLOCK || idlecnt)
1190 block = 0.;
1191 else
1192 {
1193 block = MAX_BLOCKTIME; 1299 block = MAX_BLOCKTIME;
1194 1300
1195 if (timercnt) 1301 if (timercnt)
1196 { 1302 {
1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1303 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1198 if (block > to) block = to; 1304 if (block > to) block = to;
1199 } 1305 }
1200 1306
1201#if EV_PERIODICS 1307#if EV_PERIODICS
1202 if (periodiccnt) 1308 if (periodiccnt)
1203 { 1309 {
1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1310 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1205 if (block > to) block = to; 1311 if (block > to) block = to;
1206 } 1312 }
1207#endif 1313#endif
1208 1314
1209 if (block < 0.) block = 0.; 1315 if (expect_false (block < 0.)) block = 0.;
1210 } 1316 }
1211 1317
1212 method_poll (EV_A_ block); 1318 backend_poll (EV_A_ block);
1319 }
1213 1320
1214 /* update ev_rt_now, do magic */ 1321 /* update ev_rt_now, do magic */
1215 time_update (EV_A); 1322 time_update (EV_A);
1216 1323
1217 /* queue pending timers and reschedule them */ 1324 /* queue pending timers and reschedule them */
1218 timers_reify (EV_A); /* relative timers called last */ 1325 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS 1326#if EV_PERIODICS
1220 periodics_reify (EV_A); /* absolute timers called first */ 1327 periodics_reify (EV_A); /* absolute timers called first */
1221#endif 1328#endif
1222 1329
1223 /* queue idle watchers unless io or timers are pending */ 1330 /* queue idle watchers unless other events are pending */
1224 if (idlecnt && !any_pending (EV_A)) 1331 if (idlecnt && !any_pending (EV_A))
1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1332 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1226 1333
1227 /* queue check watchers, to be executed first */ 1334 /* queue check watchers, to be executed first */
1228 if (checkcnt) 1335 if (expect_false (checkcnt))
1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1336 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1230 1337
1231 call_pending (EV_A); 1338 call_pending (EV_A);
1232 }
1233 while (activecnt && !loop_done);
1234 1339
1235 if (loop_done != 2) 1340 if (expect_false (loop_done))
1236 loop_done = 0; 1341 break;
1342 }
1343
1344 if (loop_done == EVUNLOOP_ONE)
1345 loop_done = EVUNLOOP_CANCEL;
1237} 1346}
1238 1347
1239void 1348void
1240ev_unloop (EV_P_ int how) 1349ev_unloop (EV_P_ int how)
1241{ 1350{
1294} 1403}
1295 1404
1296/*****************************************************************************/ 1405/*****************************************************************************/
1297 1406
1298void 1407void
1299ev_io_start (EV_P_ struct ev_io *w) 1408ev_io_start (EV_P_ ev_io *w)
1300{ 1409{
1301 int fd = w->fd; 1410 int fd = w->fd;
1302 1411
1303 if (ev_is_active (w)) 1412 if (expect_false (ev_is_active (w)))
1304 return; 1413 return;
1305 1414
1306 assert (("ev_io_start called with negative fd", fd >= 0)); 1415 assert (("ev_io_start called with negative fd", fd >= 0));
1307 1416
1308 ev_start (EV_A_ (W)w, 1); 1417 ev_start (EV_A_ (W)w, 1);
1311 1420
1312 fd_change (EV_A_ fd); 1421 fd_change (EV_A_ fd);
1313} 1422}
1314 1423
1315void 1424void
1316ev_io_stop (EV_P_ struct ev_io *w) 1425ev_io_stop (EV_P_ ev_io *w)
1317{ 1426{
1318 ev_clear_pending (EV_A_ (W)w); 1427 ev_clear_pending (EV_A_ (W)w);
1319 if (!ev_is_active (w)) 1428 if (expect_false (!ev_is_active (w)))
1320 return; 1429 return;
1321 1430
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1431 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323 1432
1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1433 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1326 1435
1327 fd_change (EV_A_ w->fd); 1436 fd_change (EV_A_ w->fd);
1328} 1437}
1329 1438
1330void 1439void
1331ev_timer_start (EV_P_ struct ev_timer *w) 1440ev_timer_start (EV_P_ ev_timer *w)
1332{ 1441{
1333 if (ev_is_active (w)) 1442 if (expect_false (ev_is_active (w)))
1334 return; 1443 return;
1335 1444
1336 ((WT)w)->at += mn_now; 1445 ((WT)w)->at += mn_now;
1337 1446
1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1447 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1339 1448
1340 ev_start (EV_A_ (W)w, ++timercnt); 1449 ev_start (EV_A_ (W)w, ++timercnt);
1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1450 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1342 timers [timercnt - 1] = w; 1451 timers [timercnt - 1] = w;
1343 upheap ((WT *)timers, timercnt - 1); 1452 upheap ((WT *)timers, timercnt - 1);
1344 1453
1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1346} 1455}
1347 1456
1348void 1457void
1349ev_timer_stop (EV_P_ struct ev_timer *w) 1458ev_timer_stop (EV_P_ ev_timer *w)
1350{ 1459{
1351 ev_clear_pending (EV_A_ (W)w); 1460 ev_clear_pending (EV_A_ (W)w);
1352 if (!ev_is_active (w)) 1461 if (expect_false (!ev_is_active (w)))
1353 return; 1462 return;
1354 1463
1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1464 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1356 1465
1357 if (((W)w)->active < timercnt--) 1466 if (expect_true (((W)w)->active < timercnt--))
1358 { 1467 {
1359 timers [((W)w)->active - 1] = timers [timercnt]; 1468 timers [((W)w)->active - 1] = timers [timercnt];
1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1469 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1361 } 1470 }
1362 1471
1364 1473
1365 ev_stop (EV_A_ (W)w); 1474 ev_stop (EV_A_ (W)w);
1366} 1475}
1367 1476
1368void 1477void
1369ev_timer_again (EV_P_ struct ev_timer *w) 1478ev_timer_again (EV_P_ ev_timer *w)
1370{ 1479{
1371 if (ev_is_active (w)) 1480 if (ev_is_active (w))
1372 { 1481 {
1373 if (w->repeat) 1482 if (w->repeat)
1374 { 1483 {
1377 } 1486 }
1378 else 1487 else
1379 ev_timer_stop (EV_A_ w); 1488 ev_timer_stop (EV_A_ w);
1380 } 1489 }
1381 else if (w->repeat) 1490 else if (w->repeat)
1491 {
1492 w->at = w->repeat;
1382 ev_timer_start (EV_A_ w); 1493 ev_timer_start (EV_A_ w);
1494 }
1383} 1495}
1384 1496
1385#if EV_PERIODICS 1497#if EV_PERIODICS
1386void 1498void
1387ev_periodic_start (EV_P_ struct ev_periodic *w) 1499ev_periodic_start (EV_P_ ev_periodic *w)
1388{ 1500{
1389 if (ev_is_active (w)) 1501 if (expect_false (ev_is_active (w)))
1390 return; 1502 return;
1391 1503
1392 if (w->reschedule_cb) 1504 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1505 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval) 1506 else if (w->interval)
1397 /* this formula differs from the one in periodic_reify because we do not always round up */ 1509 /* this formula differs from the one in periodic_reify because we do not always round up */
1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1510 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1399 } 1511 }
1400 1512
1401 ev_start (EV_A_ (W)w, ++periodiccnt); 1513 ev_start (EV_A_ (W)w, ++periodiccnt);
1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1514 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1403 periodics [periodiccnt - 1] = w; 1515 periodics [periodiccnt - 1] = w;
1404 upheap ((WT *)periodics, periodiccnt - 1); 1516 upheap ((WT *)periodics, periodiccnt - 1);
1405 1517
1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1407} 1519}
1408 1520
1409void 1521void
1410ev_periodic_stop (EV_P_ struct ev_periodic *w) 1522ev_periodic_stop (EV_P_ ev_periodic *w)
1411{ 1523{
1412 ev_clear_pending (EV_A_ (W)w); 1524 ev_clear_pending (EV_A_ (W)w);
1413 if (!ev_is_active (w)) 1525 if (expect_false (!ev_is_active (w)))
1414 return; 1526 return;
1415 1527
1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1528 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1417 1529
1418 if (((W)w)->active < periodiccnt--) 1530 if (expect_true (((W)w)->active < periodiccnt--))
1419 { 1531 {
1420 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1532 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1533 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1422 } 1534 }
1423 1535
1424 ev_stop (EV_A_ (W)w); 1536 ev_stop (EV_A_ (W)w);
1425} 1537}
1426 1538
1427void 1539void
1428ev_periodic_again (EV_P_ struct ev_periodic *w) 1540ev_periodic_again (EV_P_ ev_periodic *w)
1429{ 1541{
1430 /* TODO: use adjustheap and recalculation */ 1542 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w); 1543 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w); 1544 ev_periodic_start (EV_A_ w);
1433} 1545}
1434#endif 1546#endif
1435 1547
1436void 1548void
1437ev_idle_start (EV_P_ struct ev_idle *w) 1549ev_idle_start (EV_P_ ev_idle *w)
1438{ 1550{
1439 if (ev_is_active (w)) 1551 if (expect_false (ev_is_active (w)))
1440 return; 1552 return;
1441 1553
1442 ev_start (EV_A_ (W)w, ++idlecnt); 1554 ev_start (EV_A_ (W)w, ++idlecnt);
1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void)); 1555 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1444 idles [idlecnt - 1] = w; 1556 idles [idlecnt - 1] = w;
1445} 1557}
1446 1558
1447void 1559void
1448ev_idle_stop (EV_P_ struct ev_idle *w) 1560ev_idle_stop (EV_P_ ev_idle *w)
1449{ 1561{
1450 ev_clear_pending (EV_A_ (W)w); 1562 ev_clear_pending (EV_A_ (W)w);
1451 if (!ev_is_active (w)) 1563 if (expect_false (!ev_is_active (w)))
1452 return; 1564 return;
1453 1565
1566 {
1567 int active = ((W)w)->active;
1454 idles [((W)w)->active - 1] = idles [--idlecnt]; 1568 idles [active - 1] = idles [--idlecnt];
1569 ((W)idles [active - 1])->active = active;
1570 }
1571
1455 ev_stop (EV_A_ (W)w); 1572 ev_stop (EV_A_ (W)w);
1456} 1573}
1457 1574
1458void 1575void
1459ev_prepare_start (EV_P_ struct ev_prepare *w) 1576ev_prepare_start (EV_P_ ev_prepare *w)
1460{ 1577{
1461 if (ev_is_active (w)) 1578 if (expect_false (ev_is_active (w)))
1462 return; 1579 return;
1463 1580
1464 ev_start (EV_A_ (W)w, ++preparecnt); 1581 ev_start (EV_A_ (W)w, ++preparecnt);
1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void)); 1582 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1466 prepares [preparecnt - 1] = w; 1583 prepares [preparecnt - 1] = w;
1467} 1584}
1468 1585
1469void 1586void
1470ev_prepare_stop (EV_P_ struct ev_prepare *w) 1587ev_prepare_stop (EV_P_ ev_prepare *w)
1471{ 1588{
1472 ev_clear_pending (EV_A_ (W)w); 1589 ev_clear_pending (EV_A_ (W)w);
1473 if (!ev_is_active (w)) 1590 if (expect_false (!ev_is_active (w)))
1474 return; 1591 return;
1475 1592
1593 {
1594 int active = ((W)w)->active;
1476 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1595 prepares [active - 1] = prepares [--preparecnt];
1596 ((W)prepares [active - 1])->active = active;
1597 }
1598
1477 ev_stop (EV_A_ (W)w); 1599 ev_stop (EV_A_ (W)w);
1478} 1600}
1479 1601
1480void 1602void
1481ev_check_start (EV_P_ struct ev_check *w) 1603ev_check_start (EV_P_ ev_check *w)
1482{ 1604{
1483 if (ev_is_active (w)) 1605 if (expect_false (ev_is_active (w)))
1484 return; 1606 return;
1485 1607
1486 ev_start (EV_A_ (W)w, ++checkcnt); 1608 ev_start (EV_A_ (W)w, ++checkcnt);
1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void)); 1609 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1488 checks [checkcnt - 1] = w; 1610 checks [checkcnt - 1] = w;
1489} 1611}
1490 1612
1491void 1613void
1492ev_check_stop (EV_P_ struct ev_check *w) 1614ev_check_stop (EV_P_ ev_check *w)
1493{ 1615{
1494 ev_clear_pending (EV_A_ (W)w); 1616 ev_clear_pending (EV_A_ (W)w);
1495 if (!ev_is_active (w)) 1617 if (expect_false (!ev_is_active (w)))
1496 return; 1618 return;
1497 1619
1620 {
1621 int active = ((W)w)->active;
1498 checks [((W)w)->active - 1] = checks [--checkcnt]; 1622 checks [active - 1] = checks [--checkcnt];
1623 ((W)checks [active - 1])->active = active;
1624 }
1625
1499 ev_stop (EV_A_ (W)w); 1626 ev_stop (EV_A_ (W)w);
1500} 1627}
1501 1628
1502#ifndef SA_RESTART 1629#ifndef SA_RESTART
1503# define SA_RESTART 0 1630# define SA_RESTART 0
1504#endif 1631#endif
1505 1632
1506void 1633void
1507ev_signal_start (EV_P_ struct ev_signal *w) 1634ev_signal_start (EV_P_ ev_signal *w)
1508{ 1635{
1509#if EV_MULTIPLICITY 1636#if EV_MULTIPLICITY
1510 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1637 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1511#endif 1638#endif
1512 if (ev_is_active (w)) 1639 if (expect_false (ev_is_active (w)))
1513 return; 1640 return;
1514 1641
1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1642 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1516 1643
1517 ev_start (EV_A_ (W)w, 1); 1644 ev_start (EV_A_ (W)w, 1);
1531#endif 1658#endif
1532 } 1659 }
1533} 1660}
1534 1661
1535void 1662void
1536ev_signal_stop (EV_P_ struct ev_signal *w) 1663ev_signal_stop (EV_P_ ev_signal *w)
1537{ 1664{
1538 ev_clear_pending (EV_A_ (W)w); 1665 ev_clear_pending (EV_A_ (W)w);
1539 if (!ev_is_active (w)) 1666 if (expect_false (!ev_is_active (w)))
1540 return; 1667 return;
1541 1668
1542 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1669 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1543 ev_stop (EV_A_ (W)w); 1670 ev_stop (EV_A_ (W)w);
1544 1671
1545 if (!signals [w->signum - 1].head) 1672 if (!signals [w->signum - 1].head)
1546 signal (w->signum, SIG_DFL); 1673 signal (w->signum, SIG_DFL);
1547} 1674}
1548 1675
1549void 1676void
1550ev_child_start (EV_P_ struct ev_child *w) 1677ev_child_start (EV_P_ ev_child *w)
1551{ 1678{
1552#if EV_MULTIPLICITY 1679#if EV_MULTIPLICITY
1553 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1680 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1554#endif 1681#endif
1555 if (ev_is_active (w)) 1682 if (expect_false (ev_is_active (w)))
1556 return; 1683 return;
1557 1684
1558 ev_start (EV_A_ (W)w, 1); 1685 ev_start (EV_A_ (W)w, 1);
1559 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1686 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1560} 1687}
1561 1688
1562void 1689void
1563ev_child_stop (EV_P_ struct ev_child *w) 1690ev_child_stop (EV_P_ ev_child *w)
1564{ 1691{
1565 ev_clear_pending (EV_A_ (W)w); 1692 ev_clear_pending (EV_A_ (W)w);
1566 if (!ev_is_active (w)) 1693 if (expect_false (!ev_is_active (w)))
1567 return; 1694 return;
1568 1695
1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1696 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1570 ev_stop (EV_A_ (W)w); 1697 ev_stop (EV_A_ (W)w);
1571} 1698}
1572 1699
1700#if EV_MULTIPLICITY
1701void
1702ev_embed_sweep (EV_P_ ev_embed *w)
1703{
1704 ev_loop (w->loop, EVLOOP_NONBLOCK);
1705}
1706
1707static void
1708embed_cb (EV_P_ ev_io *io, int revents)
1709{
1710 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1711
1712 if (ev_cb (w))
1713 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1714 else
1715 ev_embed_sweep (loop, w);
1716}
1717
1718void
1719ev_embed_start (EV_P_ ev_embed *w)
1720{
1721 if (expect_false (ev_is_active (w)))
1722 return;
1723
1724 {
1725 struct ev_loop *loop = w->loop;
1726 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1727 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1728 }
1729
1730 ev_set_priority (&w->io, ev_priority (w));
1731 ev_io_start (EV_A_ &w->io);
1732 ev_start (EV_A_ (W)w, 1);
1733}
1734
1735void
1736ev_embed_stop (EV_P_ ev_embed *w)
1737{
1738 ev_clear_pending (EV_A_ (W)w);
1739 if (expect_false (!ev_is_active (w)))
1740 return;
1741
1742 ev_io_stop (EV_A_ &w->io);
1743 ev_stop (EV_A_ (W)w);
1744}
1745#endif
1746
1573/*****************************************************************************/ 1747/*****************************************************************************/
1574 1748
1575struct ev_once 1749struct ev_once
1576{ 1750{
1577 struct ev_io io; 1751 ev_io io;
1578 struct ev_timer to; 1752 ev_timer to;
1579 void (*cb)(int revents, void *arg); 1753 void (*cb)(int revents, void *arg);
1580 void *arg; 1754 void *arg;
1581}; 1755};
1582 1756
1583static void 1757static void
1592 1766
1593 cb (revents, arg); 1767 cb (revents, arg);
1594} 1768}
1595 1769
1596static void 1770static void
1597once_cb_io (EV_P_ struct ev_io *w, int revents) 1771once_cb_io (EV_P_ ev_io *w, int revents)
1598{ 1772{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1773 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1600} 1774}
1601 1775
1602static void 1776static void
1603once_cb_to (EV_P_ struct ev_timer *w, int revents) 1777once_cb_to (EV_P_ ev_timer *w, int revents)
1604{ 1778{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1779 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1606} 1780}
1607 1781
1608void 1782void
1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1783ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1610{ 1784{
1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 1785 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1612 1786
1613 if (!once) 1787 if (expect_false (!once))
1788 {
1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1789 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1615 else 1790 return;
1616 { 1791 }
1792
1617 once->cb = cb; 1793 once->cb = cb;
1618 once->arg = arg; 1794 once->arg = arg;
1619 1795
1620 ev_init (&once->io, once_cb_io); 1796 ev_init (&once->io, once_cb_io);
1621 if (fd >= 0) 1797 if (fd >= 0)
1622 { 1798 {
1623 ev_io_set (&once->io, fd, events); 1799 ev_io_set (&once->io, fd, events);
1624 ev_io_start (EV_A_ &once->io); 1800 ev_io_start (EV_A_ &once->io);
1625 } 1801 }
1626 1802
1627 ev_init (&once->to, once_cb_to); 1803 ev_init (&once->to, once_cb_to);
1628 if (timeout >= 0.) 1804 if (timeout >= 0.)
1629 { 1805 {
1630 ev_timer_set (&once->to, timeout, 0.); 1806 ev_timer_set (&once->to, timeout, 0.);
1631 ev_timer_start (EV_A_ &once->to); 1807 ev_timer_start (EV_A_ &once->to);
1632 }
1633 } 1808 }
1634} 1809}
1635 1810
1636#ifdef __cplusplus 1811#ifdef __cplusplus
1637} 1812}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines