ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.104 by root, Mon Nov 12 00:39:45 2007 UTC vs.
Revision 1.199 by root, Tue Dec 25 07:05:45 2007 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
36#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
37# include "config.h" 48# include "config.h"
49# endif
38 50
39# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 52# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
42# endif 54# endif
43# ifndef EV_USE_REALTIME 55# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 56# define EV_USE_REALTIME 1
45# endif 57# endif
58# else
59# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0
61# endif
62# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0
64# endif
46# endif 65# endif
47 66
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
72# endif
50# endif 73# endif
51 74
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 75# ifndef EV_USE_SELECT
76# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif
54# endif 81# endif
55 82
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 85# define EV_USE_POLL 1
86# else
87# define EV_USE_POLL 0
88# endif
58# endif 89# endif
59 90
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1
94# else
95# define EV_USE_EPOLL 0
96# endif
97# endif
98
99# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif
105# endif
106
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1
110# else
111# define EV_USE_PORT 0
112# endif
113# endif
114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
62# endif 121# endif
63 122
64#endif 123#endif
65 124
66#include <math.h> 125#include <math.h>
75#include <sys/types.h> 134#include <sys/types.h>
76#include <time.h> 135#include <time.h>
77 136
78#include <signal.h> 137#include <signal.h>
79 138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
80#ifndef _WIN32 145#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 146# include <sys/time.h>
83# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
84#else 149#else
85# define WIN32_LEAN_AND_MEAN 150# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 151# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 152# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 153# define EV_SELECT_IS_WINSOCKET 1
90#endif 155#endif
91 156
92/**/ 157/**/
93 158
94#ifndef EV_USE_MONOTONIC 159#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 160# define EV_USE_MONOTONIC 0
161#endif
162
163#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0
165#endif
166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
96#endif 169#endif
97 170
98#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 173#endif
102 174
103#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
104# ifdef _WIN32 176# ifdef _WIN32
105# define EV_USE_POLL 0 177# define EV_USE_POLL 0
114 186
115#ifndef EV_USE_KQUEUE 187#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 188# define EV_USE_KQUEUE 0
117#endif 189#endif
118 190
119#ifndef EV_USE_REALTIME 191#ifndef EV_USE_PORT
120# define EV_USE_REALTIME 1 192# define EV_USE_PORT 0
193#endif
194
195#ifndef EV_USE_INOTIFY
196# define EV_USE_INOTIFY 0
197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
202# else
203# define EV_PID_HASHSIZE 16
204# endif
205#endif
206
207#ifndef EV_INOTIFY_HASHSIZE
208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
121#endif 213#endif
122 214
123/**/ 215/**/
124 216
125#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
130#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
131# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
132# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
133#endif 225#endif
134 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
135#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
136# include <winsock.h> 243# include <winsock.h>
137#endif 244#endif
138 245
139/**/ 246/**/
140 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
145 261
146#ifdef EV_H
147# include EV_H
148#else
149# include "ev.h"
150#endif
151
152#if __GNUC__ >= 3 262#if __GNUC__ >= 4
153# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
154# define inline inline 264# define noinline __attribute__ ((noinline))
155#else 265#else
156# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
157# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
158#endif 271#endif
159 272
160#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
161#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
162 282
163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
164#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
165 285
166#define EMPTY /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */
167 288
168typedef struct ev_watcher *W; 289typedef ev_watcher *W;
169typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
170typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
171 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
173 298
174#ifdef _WIN32 299#ifdef _WIN32
175# include "ev_win32.c" 300# include "ev_win32.c"
176#endif 301#endif
177 302
178/*****************************************************************************/ 303/*****************************************************************************/
179 304
180static void (*syserr_cb)(const char *msg); 305static void (*syserr_cb)(const char *msg);
181 306
307void
182void ev_set_syserr_cb (void (*cb)(const char *msg)) 308ev_set_syserr_cb (void (*cb)(const char *msg))
183{ 309{
184 syserr_cb = cb; 310 syserr_cb = cb;
185} 311}
186 312
187static void 313static void noinline
188syserr (const char *msg) 314syserr (const char *msg)
189{ 315{
190 if (!msg) 316 if (!msg)
191 msg = "(libev) system error"; 317 msg = "(libev) system error";
192 318
199 } 325 }
200} 326}
201 327
202static void *(*alloc)(void *ptr, long size); 328static void *(*alloc)(void *ptr, long size);
203 329
330void
204void ev_set_allocator (void *(*cb)(void *ptr, long size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
205{ 332{
206 alloc = cb; 333 alloc = cb;
207} 334}
208 335
209static void * 336inline_speed void *
210ev_realloc (void *ptr, long size) 337ev_realloc (void *ptr, long size)
211{ 338{
212 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
213 340
214 if (!ptr && size) 341 if (!ptr && size)
238typedef struct 365typedef struct
239{ 366{
240 W w; 367 W w;
241 int events; 368 int events;
242} ANPENDING; 369} ANPENDING;
370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
243 377
244#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
245 379
246 struct ev_loop 380 struct ev_loop
247 { 381 {
251 #include "ev_vars.h" 385 #include "ev_vars.h"
252 #undef VAR 386 #undef VAR
253 }; 387 };
254 #include "ev_wrap.h" 388 #include "ev_wrap.h"
255 389
256 struct ev_loop default_loop_struct; 390 static struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop; 391 struct ev_loop *ev_default_loop_ptr;
258 392
259#else 393#else
260 394
261 ev_tstamp ev_rt_now; 395 ev_tstamp ev_rt_now;
262 #define VAR(name,decl) static decl; 396 #define VAR(name,decl) static decl;
263 #include "ev_vars.h" 397 #include "ev_vars.h"
264 #undef VAR 398 #undef VAR
265 399
266 static int default_loop; 400 static int ev_default_loop_ptr;
267 401
268#endif 402#endif
269 403
270/*****************************************************************************/ 404/*****************************************************************************/
271 405
281 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
282 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
283#endif 417#endif
284} 418}
285 419
286inline ev_tstamp 420ev_tstamp inline_size
287get_clock (void) 421get_clock (void)
288{ 422{
289#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
290 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
291 { 425 {
304{ 438{
305 return ev_rt_now; 439 return ev_rt_now;
306} 440}
307#endif 441#endif
308 442
309#define array_roundsize(type,n) ((n) | 4 & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
310 497
311#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
312 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
313 { \ 500 { \
314 int newcnt = cur; \ 501 int ocur_ = (cur); \
315 do \ 502 (base) = (type *)array_realloc \
316 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
317 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
318 } \
319 while ((cnt) > newcnt); \
320 \
321 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
322 init (base + cur, newcnt - cur); \
323 cur = newcnt; \
324 } 505 }
325 506
507#if 0
326#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
327 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
328 { \ 510 { \
329 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
330 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
331 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
332 } 514 }
515#endif
333 516
334#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
335 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
336 519
337/*****************************************************************************/ 520/*****************************************************************************/
338 521
339static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
340anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
341{ 552{
342 while (count--) 553 while (count--)
343 { 554 {
344 base->head = 0; 555 base->head = 0;
347 558
348 ++base; 559 ++base;
349 } 560 }
350} 561}
351 562
352void 563void inline_speed
353ev_feed_event (EV_P_ void *w, int revents)
354{
355 W w_ = (W)w;
356
357 if (w_->pending)
358 {
359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
360 return;
361 }
362
363 w_->pending = ++pendingcnt [ABSPRI (w_)];
364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
367}
368
369static void
370queue_events (EV_P_ W *events, int eventcnt, int type)
371{
372 int i;
373
374 for (i = 0; i < eventcnt; ++i)
375 ev_feed_event (EV_A_ events [i], type);
376}
377
378inline void
379fd_event (EV_P_ int fd, int revents) 564fd_event (EV_P_ int fd, int revents)
380{ 565{
381 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
382 struct ev_io *w; 567 ev_io *w;
383 568
384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
385 { 570 {
386 int ev = w->events & revents; 571 int ev = w->events & revents;
387 572
388 if (ev) 573 if (ev)
389 ev_feed_event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
391} 576}
392 577
393void 578void
394ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
395{ 580{
581 if (fd >= 0 && fd < anfdmax)
396 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
397} 583}
398 584
399/*****************************************************************************/ 585void inline_size
400
401static void
402fd_reify (EV_P) 586fd_reify (EV_P)
403{ 587{
404 int i; 588 int i;
405 589
406 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
407 { 591 {
408 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
409 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
410 struct ev_io *w; 594 ev_io *w;
411 595
412 int events = 0; 596 unsigned char events = 0;
413 597
414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
415 events |= w->events; 599 events |= (unsigned char)w->events;
416 600
417#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
418 if (events) 602 if (events)
419 { 603 {
420 unsigned long argp; 604 unsigned long argp;
421 anfd->handle = _get_osfhandle (fd); 605 anfd->handle = _get_osfhandle (fd);
422 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 606 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
423 } 607 }
424#endif 608#endif
425 609
610 {
611 unsigned char o_events = anfd->events;
612 unsigned char o_reify = anfd->reify;
613
426 anfd->reify = 0; 614 anfd->reify = 0;
427
428 method_modify (EV_A_ fd, anfd->events, events);
429 anfd->events = events; 615 anfd->events = events;
616
617 if (o_events != events || o_reify & EV_IOFDSET)
618 backend_modify (EV_A_ fd, o_events, events);
619 }
430 } 620 }
431 621
432 fdchangecnt = 0; 622 fdchangecnt = 0;
433} 623}
434 624
435static void 625void inline_size
436fd_change (EV_P_ int fd) 626fd_change (EV_P_ int fd, int flags)
437{ 627{
438 if (anfds [fd].reify) 628 unsigned char reify = anfds [fd].reify;
439 return;
440
441 anfds [fd].reify = 1; 629 anfds [fd].reify |= flags;
442 630
631 if (expect_true (!reify))
632 {
443 ++fdchangecnt; 633 ++fdchangecnt;
444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 634 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
445 fdchanges [fdchangecnt - 1] = fd; 635 fdchanges [fdchangecnt - 1] = fd;
636 }
446} 637}
447 638
448static void 639void inline_speed
449fd_kill (EV_P_ int fd) 640fd_kill (EV_P_ int fd)
450{ 641{
451 struct ev_io *w; 642 ev_io *w;
452 643
453 while ((w = (struct ev_io *)anfds [fd].head)) 644 while ((w = (ev_io *)anfds [fd].head))
454 { 645 {
455 ev_io_stop (EV_A_ w); 646 ev_io_stop (EV_A_ w);
456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 647 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
457 } 648 }
458} 649}
459 650
460static int 651int inline_size
461fd_valid (int fd) 652fd_valid (int fd)
462{ 653{
463#ifdef _WIN32 654#ifdef _WIN32
464 return _get_osfhandle (fd) != -1; 655 return _get_osfhandle (fd) != -1;
465#else 656#else
466 return fcntl (fd, F_GETFD) != -1; 657 return fcntl (fd, F_GETFD) != -1;
467#endif 658#endif
468} 659}
469 660
470/* called on EBADF to verify fds */ 661/* called on EBADF to verify fds */
471static void 662static void noinline
472fd_ebadf (EV_P) 663fd_ebadf (EV_P)
473{ 664{
474 int fd; 665 int fd;
475 666
476 for (fd = 0; fd < anfdmax; ++fd) 667 for (fd = 0; fd < anfdmax; ++fd)
478 if (!fd_valid (fd) == -1 && errno == EBADF) 669 if (!fd_valid (fd) == -1 && errno == EBADF)
479 fd_kill (EV_A_ fd); 670 fd_kill (EV_A_ fd);
480} 671}
481 672
482/* called on ENOMEM in select/poll to kill some fds and retry */ 673/* called on ENOMEM in select/poll to kill some fds and retry */
483static void 674static void noinline
484fd_enomem (EV_P) 675fd_enomem (EV_P)
485{ 676{
486 int fd; 677 int fd;
487 678
488 for (fd = anfdmax; fd--; ) 679 for (fd = anfdmax; fd--; )
491 fd_kill (EV_A_ fd); 682 fd_kill (EV_A_ fd);
492 return; 683 return;
493 } 684 }
494} 685}
495 686
496/* usually called after fork if method needs to re-arm all fds from scratch */ 687/* usually called after fork if backend needs to re-arm all fds from scratch */
497static void 688static void noinline
498fd_rearm_all (EV_P) 689fd_rearm_all (EV_P)
499{ 690{
500 int fd; 691 int fd;
501 692
502 /* this should be highly optimised to not do anything but set a flag */
503 for (fd = 0; fd < anfdmax; ++fd) 693 for (fd = 0; fd < anfdmax; ++fd)
504 if (anfds [fd].events) 694 if (anfds [fd].events)
505 { 695 {
506 anfds [fd].events = 0; 696 anfds [fd].events = 0;
507 fd_change (EV_A_ fd); 697 fd_change (EV_A_ fd, EV_IOFDSET | 1);
508 } 698 }
509} 699}
510 700
511/*****************************************************************************/ 701/*****************************************************************************/
512 702
513static void 703void inline_speed
514upheap (WT *heap, int k) 704upheap (WT *heap, int k)
515{ 705{
516 WT w = heap [k]; 706 WT w = heap [k];
517 707
518 while (k && heap [k >> 1]->at > w->at) 708 while (k)
519 { 709 {
710 int p = (k - 1) >> 1;
711
712 if (heap [p]->at <= w->at)
713 break;
714
520 heap [k] = heap [k >> 1]; 715 heap [k] = heap [p];
521 ((W)heap [k])->active = k + 1; 716 ((W)heap [k])->active = k + 1;
522 k >>= 1; 717 k = p;
523 } 718 }
524 719
525 heap [k] = w; 720 heap [k] = w;
526 ((W)heap [k])->active = k + 1; 721 ((W)heap [k])->active = k + 1;
527
528} 722}
529 723
530static void 724void inline_speed
531downheap (WT *heap, int N, int k) 725downheap (WT *heap, int N, int k)
532{ 726{
533 WT w = heap [k]; 727 WT w = heap [k];
534 728
535 while (k < (N >> 1)) 729 for (;;)
536 { 730 {
537 int j = k << 1; 731 int c = (k << 1) + 1;
538 732
539 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 733 if (c >= N)
540 ++j;
541
542 if (w->at <= heap [j]->at)
543 break; 734 break;
544 735
736 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
737 ? 1 : 0;
738
739 if (w->at <= heap [c]->at)
740 break;
741
545 heap [k] = heap [j]; 742 heap [k] = heap [c];
546 ((W)heap [k])->active = k + 1; 743 ((W)heap [k])->active = k + 1;
744
547 k = j; 745 k = c;
548 } 746 }
549 747
550 heap [k] = w; 748 heap [k] = w;
551 ((W)heap [k])->active = k + 1; 749 ((W)heap [k])->active = k + 1;
552} 750}
553 751
554inline void 752void inline_size
555adjustheap (WT *heap, int N, int k) 753adjustheap (WT *heap, int N, int k)
556{ 754{
557 upheap (heap, k); 755 upheap (heap, k);
558 downheap (heap, N, k); 756 downheap (heap, N, k);
559} 757}
569static ANSIG *signals; 767static ANSIG *signals;
570static int signalmax; 768static int signalmax;
571 769
572static int sigpipe [2]; 770static int sigpipe [2];
573static sig_atomic_t volatile gotsig; 771static sig_atomic_t volatile gotsig;
574static struct ev_io sigev; 772static ev_io sigev;
575 773
576static void 774void inline_size
577signals_init (ANSIG *base, int count) 775signals_init (ANSIG *base, int count)
578{ 776{
579 while (count--) 777 while (count--)
580 { 778 {
581 base->head = 0; 779 base->head = 0;
601 write (sigpipe [1], &signum, 1); 799 write (sigpipe [1], &signum, 1);
602 errno = old_errno; 800 errno = old_errno;
603 } 801 }
604} 802}
605 803
606void 804void noinline
607ev_feed_signal_event (EV_P_ int signum) 805ev_feed_signal_event (EV_P_ int signum)
608{ 806{
609 WL w; 807 WL w;
610 808
611#if EV_MULTIPLICITY 809#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 810 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
613#endif 811#endif
614 812
615 --signum; 813 --signum;
616 814
617 if (signum < 0 || signum >= signalmax) 815 if (signum < 0 || signum >= signalmax)
622 for (w = signals [signum].head; w; w = w->next) 820 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 821 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624} 822}
625 823
626static void 824static void
627sigcb (EV_P_ struct ev_io *iow, int revents) 825sigcb (EV_P_ ev_io *iow, int revents)
628{ 826{
629 int signum; 827 int signum;
630 828
631 read (sigpipe [0], &revents, 1); 829 read (sigpipe [0], &revents, 1);
632 gotsig = 0; 830 gotsig = 0;
634 for (signum = signalmax; signum--; ) 832 for (signum = signalmax; signum--; )
635 if (signals [signum].gotsig) 833 if (signals [signum].gotsig)
636 ev_feed_signal_event (EV_A_ signum + 1); 834 ev_feed_signal_event (EV_A_ signum + 1);
637} 835}
638 836
639inline void 837void inline_speed
640fd_intern (int fd) 838fd_intern (int fd)
641{ 839{
642#ifdef _WIN32 840#ifdef _WIN32
643 int arg = 1; 841 int arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 842 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
646 fcntl (fd, F_SETFD, FD_CLOEXEC); 844 fcntl (fd, F_SETFD, FD_CLOEXEC);
647 fcntl (fd, F_SETFL, O_NONBLOCK); 845 fcntl (fd, F_SETFL, O_NONBLOCK);
648#endif 846#endif
649} 847}
650 848
651static void 849static void noinline
652siginit (EV_P) 850siginit (EV_P)
653{ 851{
654 fd_intern (sigpipe [0]); 852 fd_intern (sigpipe [0]);
655 fd_intern (sigpipe [1]); 853 fd_intern (sigpipe [1]);
656 854
659 ev_unref (EV_A); /* child watcher should not keep loop alive */ 857 ev_unref (EV_A); /* child watcher should not keep loop alive */
660} 858}
661 859
662/*****************************************************************************/ 860/*****************************************************************************/
663 861
664static struct ev_child *childs [PID_HASHSIZE]; 862static WL childs [EV_PID_HASHSIZE];
665 863
666#ifndef _WIN32 864#ifndef _WIN32
667 865
668static struct ev_signal childev; 866static ev_signal childev;
867
868void inline_speed
869child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
870{
871 ev_child *w;
872
873 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
874 if (w->pid == pid || !w->pid)
875 {
876 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
877 w->rpid = pid;
878 w->rstatus = status;
879 ev_feed_event (EV_A_ (W)w, EV_CHILD);
880 }
881}
669 882
670#ifndef WCONTINUED 883#ifndef WCONTINUED
671# define WCONTINUED 0 884# define WCONTINUED 0
672#endif 885#endif
673 886
674static void 887static void
675child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
676{
677 struct ev_child *w;
678
679 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
680 if (w->pid == pid || !w->pid)
681 {
682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
683 w->rpid = pid;
684 w->rstatus = status;
685 ev_feed_event (EV_A_ (W)w, EV_CHILD);
686 }
687}
688
689static void
690childcb (EV_P_ struct ev_signal *sw, int revents) 888childcb (EV_P_ ev_signal *sw, int revents)
691{ 889{
692 int pid, status; 890 int pid, status;
693 891
892 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 893 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
695 { 894 if (!WCONTINUED
895 || errno != EINVAL
896 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
897 return;
898
696 /* make sure we are called again until all childs have been reaped */ 899 /* make sure we are called again until all childs have been reaped */
900 /* we need to do it this way so that the callback gets called before we continue */
697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 901 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
698 902
699 child_reap (EV_A_ sw, pid, pid, status); 903 child_reap (EV_A_ sw, pid, pid, status);
904 if (EV_PID_HASHSIZE > 1)
700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 905 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
701 }
702} 906}
703 907
704#endif 908#endif
705 909
706/*****************************************************************************/ 910/*****************************************************************************/
707 911
912#if EV_USE_PORT
913# include "ev_port.c"
914#endif
708#if EV_USE_KQUEUE 915#if EV_USE_KQUEUE
709# include "ev_kqueue.c" 916# include "ev_kqueue.c"
710#endif 917#endif
711#if EV_USE_EPOLL 918#if EV_USE_EPOLL
712# include "ev_epoll.c" 919# include "ev_epoll.c"
729{ 936{
730 return EV_VERSION_MINOR; 937 return EV_VERSION_MINOR;
731} 938}
732 939
733/* return true if we are running with elevated privileges and should ignore env variables */ 940/* return true if we are running with elevated privileges and should ignore env variables */
734static int 941int inline_size
735enable_secure (void) 942enable_secure (void)
736{ 943{
737#ifdef _WIN32 944#ifdef _WIN32
738 return 0; 945 return 0;
739#else 946#else
740 return getuid () != geteuid () 947 return getuid () != geteuid ()
741 || getgid () != getegid (); 948 || getgid () != getegid ();
742#endif 949#endif
743} 950}
744 951
745int 952unsigned int
746ev_method (EV_P) 953ev_supported_backends (void)
747{ 954{
748 return method; 955 unsigned int flags = 0;
749}
750 956
751static void 957 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
752loop_init (EV_P_ int methods) 958 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
959 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
960 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
961 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
962
963 return flags;
964}
965
966unsigned int
967ev_recommended_backends (void)
753{ 968{
754 if (!method) 969 unsigned int flags = ev_supported_backends ();
970
971#ifndef __NetBSD__
972 /* kqueue is borked on everything but netbsd apparently */
973 /* it usually doesn't work correctly on anything but sockets and pipes */
974 flags &= ~EVBACKEND_KQUEUE;
975#endif
976#ifdef __APPLE__
977 // flags &= ~EVBACKEND_KQUEUE; for documentation
978 flags &= ~EVBACKEND_POLL;
979#endif
980
981 return flags;
982}
983
984unsigned int
985ev_embeddable_backends (void)
986{
987 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
988
989 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
990 /* please fix it and tell me how to detect the fix */
991 flags &= ~EVBACKEND_EPOLL;
992
993 return flags;
994}
995
996unsigned int
997ev_backend (EV_P)
998{
999 return backend;
1000}
1001
1002unsigned int
1003ev_loop_count (EV_P)
1004{
1005 return loop_count;
1006}
1007
1008void
1009ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1010{
1011 io_blocktime = interval;
1012}
1013
1014void
1015ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1016{
1017 timeout_blocktime = interval;
1018}
1019
1020static void noinline
1021loop_init (EV_P_ unsigned int flags)
1022{
1023 if (!backend)
755 { 1024 {
756#if EV_USE_MONOTONIC 1025#if EV_USE_MONOTONIC
757 { 1026 {
758 struct timespec ts; 1027 struct timespec ts;
759 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1028 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
764 ev_rt_now = ev_time (); 1033 ev_rt_now = ev_time ();
765 mn_now = get_clock (); 1034 mn_now = get_clock ();
766 now_floor = mn_now; 1035 now_floor = mn_now;
767 rtmn_diff = ev_rt_now - mn_now; 1036 rtmn_diff = ev_rt_now - mn_now;
768 1037
769 if (methods == EVMETHOD_AUTO) 1038 io_blocktime = 0.;
770 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1039 timeout_blocktime = 0.;
1040
1041 /* pid check not overridable via env */
1042#ifndef _WIN32
1043 if (flags & EVFLAG_FORKCHECK)
1044 curpid = getpid ();
1045#endif
1046
1047 if (!(flags & EVFLAG_NOENV)
1048 && !enable_secure ()
1049 && getenv ("LIBEV_FLAGS"))
771 methods = atoi (getenv ("LIBEV_METHODS")); 1050 flags = atoi (getenv ("LIBEV_FLAGS"));
772 else
773 methods = EVMETHOD_ANY;
774 1051
775 method = 0; 1052 if (!(flags & 0x0000ffffUL))
1053 flags |= ev_recommended_backends ();
1054
1055 backend = 0;
1056 backend_fd = -1;
1057#if EV_USE_INOTIFY
1058 fs_fd = -2;
1059#endif
1060
1061#if EV_USE_PORT
1062 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1063#endif
776#if EV_USE_KQUEUE 1064#if EV_USE_KQUEUE
777 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1065 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
778#endif 1066#endif
779#if EV_USE_EPOLL 1067#if EV_USE_EPOLL
780 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1068 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
781#endif 1069#endif
782#if EV_USE_POLL 1070#if EV_USE_POLL
783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1071 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
784#endif 1072#endif
785#if EV_USE_SELECT 1073#if EV_USE_SELECT
786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1074 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
787#endif 1075#endif
788 1076
789 ev_init (&sigev, sigcb); 1077 ev_init (&sigev, sigcb);
790 ev_set_priority (&sigev, EV_MAXPRI); 1078 ev_set_priority (&sigev, EV_MAXPRI);
791 } 1079 }
792} 1080}
793 1081
794void 1082static void noinline
795loop_destroy (EV_P) 1083loop_destroy (EV_P)
796{ 1084{
797 int i; 1085 int i;
798 1086
1087#if EV_USE_INOTIFY
1088 if (fs_fd >= 0)
1089 close (fs_fd);
1090#endif
1091
1092 if (backend_fd >= 0)
1093 close (backend_fd);
1094
1095#if EV_USE_PORT
1096 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1097#endif
799#if EV_USE_KQUEUE 1098#if EV_USE_KQUEUE
800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1099 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
801#endif 1100#endif
802#if EV_USE_EPOLL 1101#if EV_USE_EPOLL
803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1102 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
804#endif 1103#endif
805#if EV_USE_POLL 1104#if EV_USE_POLL
806 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1105 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
807#endif 1106#endif
808#if EV_USE_SELECT 1107#if EV_USE_SELECT
809 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1108 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
810#endif 1109#endif
811 1110
812 for (i = NUMPRI; i--; ) 1111 for (i = NUMPRI; i--; )
1112 {
813 array_free (pending, [i]); 1113 array_free (pending, [i]);
1114#if EV_IDLE_ENABLE
1115 array_free (idle, [i]);
1116#endif
1117 }
1118
1119 ev_free (anfds); anfdmax = 0;
814 1120
815 /* have to use the microsoft-never-gets-it-right macro */ 1121 /* have to use the microsoft-never-gets-it-right macro */
816 array_free (fdchange, EMPTY); 1122 array_free (fdchange, EMPTY);
817 array_free (timer, EMPTY); 1123 array_free (timer, EMPTY);
818#if EV_PERIODICS 1124#if EV_PERIODIC_ENABLE
819 array_free (periodic, EMPTY); 1125 array_free (periodic, EMPTY);
820#endif 1126#endif
1127#if EV_FORK_ENABLE
821 array_free (idle, EMPTY); 1128 array_free (fork, EMPTY);
1129#endif
822 array_free (prepare, EMPTY); 1130 array_free (prepare, EMPTY);
823 array_free (check, EMPTY); 1131 array_free (check, EMPTY);
824 1132
825 method = 0; 1133 backend = 0;
826} 1134}
827 1135
828static void 1136void inline_size infy_fork (EV_P);
1137
1138void inline_size
829loop_fork (EV_P) 1139loop_fork (EV_P)
830{ 1140{
1141#if EV_USE_PORT
1142 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1143#endif
1144#if EV_USE_KQUEUE
1145 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1146#endif
831#if EV_USE_EPOLL 1147#if EV_USE_EPOLL
832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1148 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
833#endif 1149#endif
834#if EV_USE_KQUEUE 1150#if EV_USE_INOTIFY
835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1151 infy_fork (EV_A);
836#endif 1152#endif
837 1153
838 if (ev_is_active (&sigev)) 1154 if (ev_is_active (&sigev))
839 { 1155 {
840 /* default loop */ 1156 /* default loop */
853 postfork = 0; 1169 postfork = 0;
854} 1170}
855 1171
856#if EV_MULTIPLICITY 1172#if EV_MULTIPLICITY
857struct ev_loop * 1173struct ev_loop *
858ev_loop_new (int methods) 1174ev_loop_new (unsigned int flags)
859{ 1175{
860 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1176 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
861 1177
862 memset (loop, 0, sizeof (struct ev_loop)); 1178 memset (loop, 0, sizeof (struct ev_loop));
863 1179
864 loop_init (EV_A_ methods); 1180 loop_init (EV_A_ flags);
865 1181
866 if (ev_method (EV_A)) 1182 if (ev_backend (EV_A))
867 return loop; 1183 return loop;
868 1184
869 return 0; 1185 return 0;
870} 1186}
871 1187
884 1200
885#endif 1201#endif
886 1202
887#if EV_MULTIPLICITY 1203#if EV_MULTIPLICITY
888struct ev_loop * 1204struct ev_loop *
1205ev_default_loop_init (unsigned int flags)
889#else 1206#else
890int 1207int
1208ev_default_loop (unsigned int flags)
891#endif 1209#endif
892ev_default_loop (int methods)
893{ 1210{
894 if (sigpipe [0] == sigpipe [1]) 1211 if (sigpipe [0] == sigpipe [1])
895 if (pipe (sigpipe)) 1212 if (pipe (sigpipe))
896 return 0; 1213 return 0;
897 1214
898 if (!default_loop) 1215 if (!ev_default_loop_ptr)
899 { 1216 {
900#if EV_MULTIPLICITY 1217#if EV_MULTIPLICITY
901 struct ev_loop *loop = default_loop = &default_loop_struct; 1218 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
902#else 1219#else
903 default_loop = 1; 1220 ev_default_loop_ptr = 1;
904#endif 1221#endif
905 1222
906 loop_init (EV_A_ methods); 1223 loop_init (EV_A_ flags);
907 1224
908 if (ev_method (EV_A)) 1225 if (ev_backend (EV_A))
909 { 1226 {
910 siginit (EV_A); 1227 siginit (EV_A);
911 1228
912#ifndef _WIN32 1229#ifndef _WIN32
913 ev_signal_init (&childev, childcb, SIGCHLD); 1230 ev_signal_init (&childev, childcb, SIGCHLD);
915 ev_signal_start (EV_A_ &childev); 1232 ev_signal_start (EV_A_ &childev);
916 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1233 ev_unref (EV_A); /* child watcher should not keep loop alive */
917#endif 1234#endif
918 } 1235 }
919 else 1236 else
920 default_loop = 0; 1237 ev_default_loop_ptr = 0;
921 } 1238 }
922 1239
923 return default_loop; 1240 return ev_default_loop_ptr;
924} 1241}
925 1242
926void 1243void
927ev_default_destroy (void) 1244ev_default_destroy (void)
928{ 1245{
929#if EV_MULTIPLICITY 1246#if EV_MULTIPLICITY
930 struct ev_loop *loop = default_loop; 1247 struct ev_loop *loop = ev_default_loop_ptr;
931#endif 1248#endif
932 1249
933#ifndef _WIN32 1250#ifndef _WIN32
934 ev_ref (EV_A); /* child watcher */ 1251 ev_ref (EV_A); /* child watcher */
935 ev_signal_stop (EV_A_ &childev); 1252 ev_signal_stop (EV_A_ &childev);
946 1263
947void 1264void
948ev_default_fork (void) 1265ev_default_fork (void)
949{ 1266{
950#if EV_MULTIPLICITY 1267#if EV_MULTIPLICITY
951 struct ev_loop *loop = default_loop; 1268 struct ev_loop *loop = ev_default_loop_ptr;
952#endif 1269#endif
953 1270
954 if (method) 1271 if (backend)
955 postfork = 1; 1272 postfork = 1;
956} 1273}
957 1274
958/*****************************************************************************/ 1275/*****************************************************************************/
959 1276
960static int 1277void
961any_pending (EV_P) 1278ev_invoke (EV_P_ void *w, int revents)
962{ 1279{
963 int pri; 1280 EV_CB_INVOKE ((W)w, revents);
964
965 for (pri = NUMPRI; pri--; )
966 if (pendingcnt [pri])
967 return 1;
968
969 return 0;
970} 1281}
971 1282
972static void 1283void inline_speed
973call_pending (EV_P) 1284call_pending (EV_P)
974{ 1285{
975 int pri; 1286 int pri;
976 1287
977 for (pri = NUMPRI; pri--; ) 1288 for (pri = NUMPRI; pri--; )
978 while (pendingcnt [pri]) 1289 while (pendingcnt [pri])
979 { 1290 {
980 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1291 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
981 1292
982 if (p->w) 1293 if (expect_true (p->w))
983 { 1294 {
1295 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1296
984 p->w->pending = 0; 1297 p->w->pending = 0;
985 EV_CB_INVOKE (p->w, p->events); 1298 EV_CB_INVOKE (p->w, p->events);
986 } 1299 }
987 } 1300 }
988} 1301}
989 1302
990static void 1303void inline_size
991timers_reify (EV_P) 1304timers_reify (EV_P)
992{ 1305{
993 while (timercnt && ((WT)timers [0])->at <= mn_now) 1306 while (timercnt && ((WT)timers [0])->at <= mn_now)
994 { 1307 {
995 struct ev_timer *w = timers [0]; 1308 ev_timer *w = (ev_timer *)timers [0];
996 1309
997 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1310 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
998 1311
999 /* first reschedule or stop timer */ 1312 /* first reschedule or stop timer */
1000 if (w->repeat) 1313 if (w->repeat)
1001 { 1314 {
1002 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1315 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1003 1316
1004 ((WT)w)->at += w->repeat; 1317 ((WT)w)->at += w->repeat;
1005 if (((WT)w)->at < mn_now) 1318 if (((WT)w)->at < mn_now)
1006 ((WT)w)->at = mn_now; 1319 ((WT)w)->at = mn_now;
1007 1320
1008 downheap ((WT *)timers, timercnt, 0); 1321 downheap (timers, timercnt, 0);
1009 } 1322 }
1010 else 1323 else
1011 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1324 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1012 1325
1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1326 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1014 } 1327 }
1015} 1328}
1016 1329
1017#if EV_PERIODICS 1330#if EV_PERIODIC_ENABLE
1018static void 1331void inline_size
1019periodics_reify (EV_P) 1332periodics_reify (EV_P)
1020{ 1333{
1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1334 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1022 { 1335 {
1023 struct ev_periodic *w = periodics [0]; 1336 ev_periodic *w = (ev_periodic *)periodics [0];
1024 1337
1025 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1338 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1026 1339
1027 /* first reschedule or stop timer */ 1340 /* first reschedule or stop timer */
1028 if (w->reschedule_cb) 1341 if (w->reschedule_cb)
1029 { 1342 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1343 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1031
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1344 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1033 downheap ((WT *)periodics, periodiccnt, 0); 1345 downheap (periodics, periodiccnt, 0);
1034 } 1346 }
1035 else if (w->interval) 1347 else if (w->interval)
1036 { 1348 {
1037 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1349 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1038 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1351 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0); 1352 downheap (periodics, periodiccnt, 0);
1040 } 1353 }
1041 else 1354 else
1042 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1355 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1043 1356
1044 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1357 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1045 } 1358 }
1046} 1359}
1047 1360
1048static void 1361static void noinline
1049periodics_reschedule (EV_P) 1362periodics_reschedule (EV_P)
1050{ 1363{
1051 int i; 1364 int i;
1052 1365
1053 /* adjust periodics after time jump */ 1366 /* adjust periodics after time jump */
1054 for (i = 0; i < periodiccnt; ++i) 1367 for (i = 0; i < periodiccnt; ++i)
1055 { 1368 {
1056 struct ev_periodic *w = periodics [i]; 1369 ev_periodic *w = (ev_periodic *)periodics [i];
1057 1370
1058 if (w->reschedule_cb) 1371 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1372 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1060 else if (w->interval) 1373 else if (w->interval)
1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1374 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1062 } 1375 }
1063 1376
1064 /* now rebuild the heap */ 1377 /* now rebuild the heap */
1065 for (i = periodiccnt >> 1; i--; ) 1378 for (i = periodiccnt >> 1; i--; )
1066 downheap ((WT *)periodics, periodiccnt, i); 1379 downheap (periodics, periodiccnt, i);
1067} 1380}
1068#endif 1381#endif
1069 1382
1070inline int 1383#if EV_IDLE_ENABLE
1071time_update_monotonic (EV_P) 1384void inline_size
1385idle_reify (EV_P)
1072{ 1386{
1387 if (expect_false (idleall))
1388 {
1389 int pri;
1390
1391 for (pri = NUMPRI; pri--; )
1392 {
1393 if (pendingcnt [pri])
1394 break;
1395
1396 if (idlecnt [pri])
1397 {
1398 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1399 break;
1400 }
1401 }
1402 }
1403}
1404#endif
1405
1406void inline_speed
1407time_update (EV_P_ ev_tstamp max_block)
1408{
1409 int i;
1410
1411#if EV_USE_MONOTONIC
1412 if (expect_true (have_monotonic))
1413 {
1414 ev_tstamp odiff = rtmn_diff;
1415
1073 mn_now = get_clock (); 1416 mn_now = get_clock ();
1074 1417
1418 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1419 /* interpolate in the meantime */
1075 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1420 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1076 { 1421 {
1077 ev_rt_now = rtmn_diff + mn_now; 1422 ev_rt_now = rtmn_diff + mn_now;
1078 return 0; 1423 return;
1079 } 1424 }
1080 else 1425
1081 {
1082 now_floor = mn_now; 1426 now_floor = mn_now;
1083 ev_rt_now = ev_time (); 1427 ev_rt_now = ev_time ();
1084 return 1;
1085 }
1086}
1087 1428
1088static void 1429 /* loop a few times, before making important decisions.
1089time_update (EV_P) 1430 * on the choice of "4": one iteration isn't enough,
1090{ 1431 * in case we get preempted during the calls to
1091 int i; 1432 * ev_time and get_clock. a second call is almost guaranteed
1092 1433 * to succeed in that case, though. and looping a few more times
1093#if EV_USE_MONOTONIC 1434 * doesn't hurt either as we only do this on time-jumps or
1094 if (expect_true (have_monotonic)) 1435 * in the unlikely event of having been preempted here.
1095 { 1436 */
1096 if (time_update_monotonic (EV_A)) 1437 for (i = 4; --i; )
1097 { 1438 {
1098 ev_tstamp odiff = rtmn_diff;
1099
1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1101 {
1102 rtmn_diff = ev_rt_now - mn_now; 1439 rtmn_diff = ev_rt_now - mn_now;
1103 1440
1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1441 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1105 return; /* all is well */ 1442 return; /* all is well */
1106 1443
1107 ev_rt_now = ev_time (); 1444 ev_rt_now = ev_time ();
1108 mn_now = get_clock (); 1445 mn_now = get_clock ();
1109 now_floor = mn_now; 1446 now_floor = mn_now;
1110 } 1447 }
1111 1448
1112# if EV_PERIODICS 1449# if EV_PERIODIC_ENABLE
1450 periodics_reschedule (EV_A);
1451# endif
1452 /* no timer adjustment, as the monotonic clock doesn't jump */
1453 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1454 }
1455 else
1456#endif
1457 {
1458 ev_rt_now = ev_time ();
1459
1460 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1461 {
1462#if EV_PERIODIC_ENABLE
1113 periodics_reschedule (EV_A); 1463 periodics_reschedule (EV_A);
1114# endif 1464#endif
1115 /* no timer adjustment, as the monotonic clock doesn't jump */
1116 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1117 }
1118 }
1119 else
1120#endif
1121 {
1122 ev_rt_now = ev_time ();
1123
1124 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1125 {
1126#if EV_PERIODICS
1127 periodics_reschedule (EV_A);
1128#endif
1129
1130 /* adjust timers. this is easy, as the offset is the same for all */ 1465 /* adjust timers. this is easy, as the offset is the same for all of them */
1131 for (i = 0; i < timercnt; ++i) 1466 for (i = 0; i < timercnt; ++i)
1132 ((WT)timers [i])->at += ev_rt_now - mn_now; 1467 ((WT)timers [i])->at += ev_rt_now - mn_now;
1133 } 1468 }
1134 1469
1135 mn_now = ev_rt_now; 1470 mn_now = ev_rt_now;
1151static int loop_done; 1486static int loop_done;
1152 1487
1153void 1488void
1154ev_loop (EV_P_ int flags) 1489ev_loop (EV_P_ int flags)
1155{ 1490{
1156 double block;
1157 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1491 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1492 ? EVUNLOOP_ONE
1493 : EVUNLOOP_CANCEL;
1494
1495 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1158 1496
1159 do 1497 do
1160 { 1498 {
1499#ifndef _WIN32
1500 if (expect_false (curpid)) /* penalise the forking check even more */
1501 if (expect_false (getpid () != curpid))
1502 {
1503 curpid = getpid ();
1504 postfork = 1;
1505 }
1506#endif
1507
1508#if EV_FORK_ENABLE
1509 /* we might have forked, so queue fork handlers */
1510 if (expect_false (postfork))
1511 if (forkcnt)
1512 {
1513 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1514 call_pending (EV_A);
1515 }
1516#endif
1517
1161 /* queue check watchers (and execute them) */ 1518 /* queue prepare watchers (and execute them) */
1162 if (expect_false (preparecnt)) 1519 if (expect_false (preparecnt))
1163 { 1520 {
1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1521 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1165 call_pending (EV_A); 1522 call_pending (EV_A);
1166 } 1523 }
1167 1524
1525 if (expect_false (!activecnt))
1526 break;
1527
1168 /* we might have forked, so reify kernel state if necessary */ 1528 /* we might have forked, so reify kernel state if necessary */
1169 if (expect_false (postfork)) 1529 if (expect_false (postfork))
1170 loop_fork (EV_A); 1530 loop_fork (EV_A);
1171 1531
1172 /* update fd-related kernel structures */ 1532 /* update fd-related kernel structures */
1173 fd_reify (EV_A); 1533 fd_reify (EV_A);
1174 1534
1175 /* calculate blocking time */ 1535 /* calculate blocking time */
1536 {
1537 ev_tstamp waittime = 0.;
1538 ev_tstamp sleeptime = 0.;
1176 1539
1177 /* we only need this for !monotonic clock or timers, but as we basically 1540 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1178 always have timers, we just calculate it always */
1179#if EV_USE_MONOTONIC
1180 if (expect_true (have_monotonic))
1181 time_update_monotonic (EV_A);
1182 else
1183#endif
1184 { 1541 {
1185 ev_rt_now = ev_time (); 1542 /* update time to cancel out callback processing overhead */
1186 mn_now = ev_rt_now; 1543 time_update (EV_A_ 1e100);
1187 }
1188 1544
1189 if (flags & EVLOOP_NONBLOCK || idlecnt)
1190 block = 0.;
1191 else
1192 {
1193 block = MAX_BLOCKTIME; 1545 waittime = MAX_BLOCKTIME;
1194 1546
1195 if (timercnt) 1547 if (timercnt)
1196 { 1548 {
1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1549 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1198 if (block > to) block = to; 1550 if (waittime > to) waittime = to;
1199 } 1551 }
1200 1552
1201#if EV_PERIODICS 1553#if EV_PERIODIC_ENABLE
1202 if (periodiccnt) 1554 if (periodiccnt)
1203 { 1555 {
1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1556 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1205 if (block > to) block = to; 1557 if (waittime > to) waittime = to;
1206 } 1558 }
1207#endif 1559#endif
1208 1560
1209 if (block < 0.) block = 0.; 1561 if (expect_false (waittime < timeout_blocktime))
1562 waittime = timeout_blocktime;
1563
1564 sleeptime = waittime - backend_fudge;
1565
1566 if (expect_true (sleeptime > io_blocktime))
1567 sleeptime = io_blocktime;
1568
1569 if (sleeptime)
1570 {
1571 ev_sleep (sleeptime);
1572 waittime -= sleeptime;
1573 }
1210 } 1574 }
1211 1575
1212 method_poll (EV_A_ block); 1576 ++loop_count;
1577 backend_poll (EV_A_ waittime);
1213 1578
1214 /* update ev_rt_now, do magic */ 1579 /* update ev_rt_now, do magic */
1215 time_update (EV_A); 1580 time_update (EV_A_ waittime + sleeptime);
1581 }
1216 1582
1217 /* queue pending timers and reschedule them */ 1583 /* queue pending timers and reschedule them */
1218 timers_reify (EV_A); /* relative timers called last */ 1584 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS 1585#if EV_PERIODIC_ENABLE
1220 periodics_reify (EV_A); /* absolute timers called first */ 1586 periodics_reify (EV_A); /* absolute timers called first */
1221#endif 1587#endif
1222 1588
1589#if EV_IDLE_ENABLE
1223 /* queue idle watchers unless io or timers are pending */ 1590 /* queue idle watchers unless other events are pending */
1224 if (idlecnt && !any_pending (EV_A)) 1591 idle_reify (EV_A);
1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1592#endif
1226 1593
1227 /* queue check watchers, to be executed first */ 1594 /* queue check watchers, to be executed first */
1228 if (checkcnt) 1595 if (expect_false (checkcnt))
1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1596 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1230 1597
1231 call_pending (EV_A); 1598 call_pending (EV_A);
1599
1232 } 1600 }
1233 while (activecnt && !loop_done); 1601 while (expect_true (activecnt && !loop_done));
1234 1602
1235 if (loop_done != 2) 1603 if (loop_done == EVUNLOOP_ONE)
1236 loop_done = 0; 1604 loop_done = EVUNLOOP_CANCEL;
1237} 1605}
1238 1606
1239void 1607void
1240ev_unloop (EV_P_ int how) 1608ev_unloop (EV_P_ int how)
1241{ 1609{
1242 loop_done = how; 1610 loop_done = how;
1243} 1611}
1244 1612
1245/*****************************************************************************/ 1613/*****************************************************************************/
1246 1614
1247inline void 1615void inline_size
1248wlist_add (WL *head, WL elem) 1616wlist_add (WL *head, WL elem)
1249{ 1617{
1250 elem->next = *head; 1618 elem->next = *head;
1251 *head = elem; 1619 *head = elem;
1252} 1620}
1253 1621
1254inline void 1622void inline_size
1255wlist_del (WL *head, WL elem) 1623wlist_del (WL *head, WL elem)
1256{ 1624{
1257 while (*head) 1625 while (*head)
1258 { 1626 {
1259 if (*head == elem) 1627 if (*head == elem)
1264 1632
1265 head = &(*head)->next; 1633 head = &(*head)->next;
1266 } 1634 }
1267} 1635}
1268 1636
1269inline void 1637void inline_speed
1270ev_clear_pending (EV_P_ W w) 1638clear_pending (EV_P_ W w)
1271{ 1639{
1272 if (w->pending) 1640 if (w->pending)
1273 { 1641 {
1274 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1642 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1275 w->pending = 0; 1643 w->pending = 0;
1276 } 1644 }
1277} 1645}
1278 1646
1279inline void 1647int
1648ev_clear_pending (EV_P_ void *w)
1649{
1650 W w_ = (W)w;
1651 int pending = w_->pending;
1652
1653 if (expect_true (pending))
1654 {
1655 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1656 w_->pending = 0;
1657 p->w = 0;
1658 return p->events;
1659 }
1660 else
1661 return 0;
1662}
1663
1664void inline_size
1665pri_adjust (EV_P_ W w)
1666{
1667 int pri = w->priority;
1668 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1669 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1670 w->priority = pri;
1671}
1672
1673void inline_speed
1280ev_start (EV_P_ W w, int active) 1674ev_start (EV_P_ W w, int active)
1281{ 1675{
1282 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1676 pri_adjust (EV_A_ w);
1283 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1284
1285 w->active = active; 1677 w->active = active;
1286 ev_ref (EV_A); 1678 ev_ref (EV_A);
1287} 1679}
1288 1680
1289inline void 1681void inline_size
1290ev_stop (EV_P_ W w) 1682ev_stop (EV_P_ W w)
1291{ 1683{
1292 ev_unref (EV_A); 1684 ev_unref (EV_A);
1293 w->active = 0; 1685 w->active = 0;
1294} 1686}
1295 1687
1296/*****************************************************************************/ 1688/*****************************************************************************/
1297 1689
1298void 1690void noinline
1299ev_io_start (EV_P_ struct ev_io *w) 1691ev_io_start (EV_P_ ev_io *w)
1300{ 1692{
1301 int fd = w->fd; 1693 int fd = w->fd;
1302 1694
1303 if (ev_is_active (w)) 1695 if (expect_false (ev_is_active (w)))
1304 return; 1696 return;
1305 1697
1306 assert (("ev_io_start called with negative fd", fd >= 0)); 1698 assert (("ev_io_start called with negative fd", fd >= 0));
1307 1699
1308 ev_start (EV_A_ (W)w, 1); 1700 ev_start (EV_A_ (W)w, 1);
1309 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1701 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1310 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1702 wlist_add (&anfds[fd].head, (WL)w);
1311 1703
1312 fd_change (EV_A_ fd); 1704 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1705 w->events &= ~EV_IOFDSET;
1313} 1706}
1314 1707
1315void 1708void noinline
1316ev_io_stop (EV_P_ struct ev_io *w) 1709ev_io_stop (EV_P_ ev_io *w)
1317{ 1710{
1318 ev_clear_pending (EV_A_ (W)w); 1711 clear_pending (EV_A_ (W)w);
1319 if (!ev_is_active (w)) 1712 if (expect_false (!ev_is_active (w)))
1320 return; 1713 return;
1321 1714
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1715 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323 1716
1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1717 wlist_del (&anfds[w->fd].head, (WL)w);
1325 ev_stop (EV_A_ (W)w); 1718 ev_stop (EV_A_ (W)w);
1326 1719
1327 fd_change (EV_A_ w->fd); 1720 fd_change (EV_A_ w->fd, 1);
1328} 1721}
1329 1722
1330void 1723void noinline
1331ev_timer_start (EV_P_ struct ev_timer *w) 1724ev_timer_start (EV_P_ ev_timer *w)
1332{ 1725{
1333 if (ev_is_active (w)) 1726 if (expect_false (ev_is_active (w)))
1334 return; 1727 return;
1335 1728
1336 ((WT)w)->at += mn_now; 1729 ((WT)w)->at += mn_now;
1337 1730
1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1731 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1339 1732
1340 ev_start (EV_A_ (W)w, ++timercnt); 1733 ev_start (EV_A_ (W)w, ++timercnt);
1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1734 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1342 timers [timercnt - 1] = w; 1735 timers [timercnt - 1] = (WT)w;
1343 upheap ((WT *)timers, timercnt - 1); 1736 upheap (timers, timercnt - 1);
1344 1737
1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1738 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1346} 1739}
1347 1740
1348void 1741void noinline
1349ev_timer_stop (EV_P_ struct ev_timer *w) 1742ev_timer_stop (EV_P_ ev_timer *w)
1350{ 1743{
1351 ev_clear_pending (EV_A_ (W)w); 1744 clear_pending (EV_A_ (W)w);
1352 if (!ev_is_active (w)) 1745 if (expect_false (!ev_is_active (w)))
1353 return; 1746 return;
1354 1747
1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1748 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1356 1749
1357 if (((W)w)->active < timercnt--) 1750 {
1751 int active = ((W)w)->active;
1752
1753 if (expect_true (--active < --timercnt))
1358 { 1754 {
1359 timers [((W)w)->active - 1] = timers [timercnt]; 1755 timers [active] = timers [timercnt];
1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1756 adjustheap (timers, timercnt, active);
1361 } 1757 }
1758 }
1362 1759
1363 ((WT)w)->at -= mn_now; 1760 ((WT)w)->at -= mn_now;
1364 1761
1365 ev_stop (EV_A_ (W)w); 1762 ev_stop (EV_A_ (W)w);
1366} 1763}
1367 1764
1368void 1765void noinline
1369ev_timer_again (EV_P_ struct ev_timer *w) 1766ev_timer_again (EV_P_ ev_timer *w)
1370{ 1767{
1371 if (ev_is_active (w)) 1768 if (ev_is_active (w))
1372 { 1769 {
1373 if (w->repeat) 1770 if (w->repeat)
1374 { 1771 {
1375 ((WT)w)->at = mn_now + w->repeat; 1772 ((WT)w)->at = mn_now + w->repeat;
1376 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1773 adjustheap (timers, timercnt, ((W)w)->active - 1);
1377 } 1774 }
1378 else 1775 else
1379 ev_timer_stop (EV_A_ w); 1776 ev_timer_stop (EV_A_ w);
1380 } 1777 }
1381 else if (w->repeat) 1778 else if (w->repeat)
1779 {
1780 w->at = w->repeat;
1382 ev_timer_start (EV_A_ w); 1781 ev_timer_start (EV_A_ w);
1782 }
1383} 1783}
1384 1784
1385#if EV_PERIODICS 1785#if EV_PERIODIC_ENABLE
1386void 1786void noinline
1387ev_periodic_start (EV_P_ struct ev_periodic *w) 1787ev_periodic_start (EV_P_ ev_periodic *w)
1388{ 1788{
1389 if (ev_is_active (w)) 1789 if (expect_false (ev_is_active (w)))
1390 return; 1790 return;
1391 1791
1392 if (w->reschedule_cb) 1792 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1793 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval) 1794 else if (w->interval)
1395 { 1795 {
1396 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1796 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1397 /* this formula differs from the one in periodic_reify because we do not always round up */ 1797 /* this formula differs from the one in periodic_reify because we do not always round up */
1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1798 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1399 } 1799 }
1800 else
1801 ((WT)w)->at = w->offset;
1400 1802
1401 ev_start (EV_A_ (W)w, ++periodiccnt); 1803 ev_start (EV_A_ (W)w, ++periodiccnt);
1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1804 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1403 periodics [periodiccnt - 1] = w; 1805 periodics [periodiccnt - 1] = (WT)w;
1404 upheap ((WT *)periodics, periodiccnt - 1); 1806 upheap (periodics, periodiccnt - 1);
1405 1807
1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1808 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1407} 1809}
1408 1810
1409void 1811void noinline
1410ev_periodic_stop (EV_P_ struct ev_periodic *w) 1812ev_periodic_stop (EV_P_ ev_periodic *w)
1411{ 1813{
1412 ev_clear_pending (EV_A_ (W)w); 1814 clear_pending (EV_A_ (W)w);
1413 if (!ev_is_active (w)) 1815 if (expect_false (!ev_is_active (w)))
1414 return; 1816 return;
1415 1817
1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1818 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1417 1819
1418 if (((W)w)->active < periodiccnt--) 1820 {
1821 int active = ((W)w)->active;
1822
1823 if (expect_true (--active < --periodiccnt))
1419 { 1824 {
1420 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1825 periodics [active] = periodics [periodiccnt];
1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1826 adjustheap (periodics, periodiccnt, active);
1422 } 1827 }
1828 }
1423 1829
1424 ev_stop (EV_A_ (W)w); 1830 ev_stop (EV_A_ (W)w);
1425} 1831}
1426 1832
1427void 1833void noinline
1428ev_periodic_again (EV_P_ struct ev_periodic *w) 1834ev_periodic_again (EV_P_ ev_periodic *w)
1429{ 1835{
1430 /* TODO: use adjustheap and recalculation */ 1836 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w); 1837 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w); 1838 ev_periodic_start (EV_A_ w);
1433} 1839}
1434#endif 1840#endif
1435 1841
1436void
1437ev_idle_start (EV_P_ struct ev_idle *w)
1438{
1439 if (ev_is_active (w))
1440 return;
1441
1442 ev_start (EV_A_ (W)w, ++idlecnt);
1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1444 idles [idlecnt - 1] = w;
1445}
1446
1447void
1448ev_idle_stop (EV_P_ struct ev_idle *w)
1449{
1450 ev_clear_pending (EV_A_ (W)w);
1451 if (!ev_is_active (w))
1452 return;
1453
1454 idles [((W)w)->active - 1] = idles [--idlecnt];
1455 ev_stop (EV_A_ (W)w);
1456}
1457
1458void
1459ev_prepare_start (EV_P_ struct ev_prepare *w)
1460{
1461 if (ev_is_active (w))
1462 return;
1463
1464 ev_start (EV_A_ (W)w, ++preparecnt);
1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1466 prepares [preparecnt - 1] = w;
1467}
1468
1469void
1470ev_prepare_stop (EV_P_ struct ev_prepare *w)
1471{
1472 ev_clear_pending (EV_A_ (W)w);
1473 if (!ev_is_active (w))
1474 return;
1475
1476 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1477 ev_stop (EV_A_ (W)w);
1478}
1479
1480void
1481ev_check_start (EV_P_ struct ev_check *w)
1482{
1483 if (ev_is_active (w))
1484 return;
1485
1486 ev_start (EV_A_ (W)w, ++checkcnt);
1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1488 checks [checkcnt - 1] = w;
1489}
1490
1491void
1492ev_check_stop (EV_P_ struct ev_check *w)
1493{
1494 ev_clear_pending (EV_A_ (W)w);
1495 if (!ev_is_active (w))
1496 return;
1497
1498 checks [((W)w)->active - 1] = checks [--checkcnt];
1499 ev_stop (EV_A_ (W)w);
1500}
1501
1502#ifndef SA_RESTART 1842#ifndef SA_RESTART
1503# define SA_RESTART 0 1843# define SA_RESTART 0
1504#endif 1844#endif
1505 1845
1506void 1846void noinline
1507ev_signal_start (EV_P_ struct ev_signal *w) 1847ev_signal_start (EV_P_ ev_signal *w)
1508{ 1848{
1509#if EV_MULTIPLICITY 1849#if EV_MULTIPLICITY
1510 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1850 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1511#endif 1851#endif
1512 if (ev_is_active (w)) 1852 if (expect_false (ev_is_active (w)))
1513 return; 1853 return;
1514 1854
1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1855 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1516 1856
1857 {
1858#ifndef _WIN32
1859 sigset_t full, prev;
1860 sigfillset (&full);
1861 sigprocmask (SIG_SETMASK, &full, &prev);
1862#endif
1863
1864 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1865
1866#ifndef _WIN32
1867 sigprocmask (SIG_SETMASK, &prev, 0);
1868#endif
1869 }
1870
1517 ev_start (EV_A_ (W)w, 1); 1871 ev_start (EV_A_ (W)w, 1);
1518 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1519 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1872 wlist_add (&signals [w->signum - 1].head, (WL)w);
1520 1873
1521 if (!((WL)w)->next) 1874 if (!((WL)w)->next)
1522 { 1875 {
1523#if _WIN32 1876#if _WIN32
1524 signal (w->signum, sighandler); 1877 signal (w->signum, sighandler);
1530 sigaction (w->signum, &sa, 0); 1883 sigaction (w->signum, &sa, 0);
1531#endif 1884#endif
1532 } 1885 }
1533} 1886}
1534 1887
1535void 1888void noinline
1536ev_signal_stop (EV_P_ struct ev_signal *w) 1889ev_signal_stop (EV_P_ ev_signal *w)
1537{ 1890{
1538 ev_clear_pending (EV_A_ (W)w); 1891 clear_pending (EV_A_ (W)w);
1539 if (!ev_is_active (w)) 1892 if (expect_false (!ev_is_active (w)))
1540 return; 1893 return;
1541 1894
1542 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1895 wlist_del (&signals [w->signum - 1].head, (WL)w);
1543 ev_stop (EV_A_ (W)w); 1896 ev_stop (EV_A_ (W)w);
1544 1897
1545 if (!signals [w->signum - 1].head) 1898 if (!signals [w->signum - 1].head)
1546 signal (w->signum, SIG_DFL); 1899 signal (w->signum, SIG_DFL);
1547} 1900}
1548 1901
1549void 1902void
1550ev_child_start (EV_P_ struct ev_child *w) 1903ev_child_start (EV_P_ ev_child *w)
1551{ 1904{
1552#if EV_MULTIPLICITY 1905#if EV_MULTIPLICITY
1553 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1906 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1554#endif 1907#endif
1555 if (ev_is_active (w)) 1908 if (expect_false (ev_is_active (w)))
1556 return; 1909 return;
1557 1910
1558 ev_start (EV_A_ (W)w, 1); 1911 ev_start (EV_A_ (W)w, 1);
1559 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1912 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1560} 1913}
1561 1914
1562void 1915void
1563ev_child_stop (EV_P_ struct ev_child *w) 1916ev_child_stop (EV_P_ ev_child *w)
1564{ 1917{
1565 ev_clear_pending (EV_A_ (W)w); 1918 clear_pending (EV_A_ (W)w);
1566 if (!ev_is_active (w)) 1919 if (expect_false (!ev_is_active (w)))
1567 return; 1920 return;
1568 1921
1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1922 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1570 ev_stop (EV_A_ (W)w); 1923 ev_stop (EV_A_ (W)w);
1571} 1924}
1572 1925
1926#if EV_STAT_ENABLE
1927
1928# ifdef _WIN32
1929# undef lstat
1930# define lstat(a,b) _stati64 (a,b)
1931# endif
1932
1933#define DEF_STAT_INTERVAL 5.0074891
1934#define MIN_STAT_INTERVAL 0.1074891
1935
1936static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1937
1938#if EV_USE_INOTIFY
1939# define EV_INOTIFY_BUFSIZE 8192
1940
1941static void noinline
1942infy_add (EV_P_ ev_stat *w)
1943{
1944 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1945
1946 if (w->wd < 0)
1947 {
1948 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1949
1950 /* monitor some parent directory for speedup hints */
1951 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1952 {
1953 char path [4096];
1954 strcpy (path, w->path);
1955
1956 do
1957 {
1958 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1959 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1960
1961 char *pend = strrchr (path, '/');
1962
1963 if (!pend)
1964 break; /* whoops, no '/', complain to your admin */
1965
1966 *pend = 0;
1967 w->wd = inotify_add_watch (fs_fd, path, mask);
1968 }
1969 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1970 }
1971 }
1972 else
1973 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1974
1975 if (w->wd >= 0)
1976 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1977}
1978
1979static void noinline
1980infy_del (EV_P_ ev_stat *w)
1981{
1982 int slot;
1983 int wd = w->wd;
1984
1985 if (wd < 0)
1986 return;
1987
1988 w->wd = -2;
1989 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1990 wlist_del (&fs_hash [slot].head, (WL)w);
1991
1992 /* remove this watcher, if others are watching it, they will rearm */
1993 inotify_rm_watch (fs_fd, wd);
1994}
1995
1996static void noinline
1997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1998{
1999 if (slot < 0)
2000 /* overflow, need to check for all hahs slots */
2001 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2002 infy_wd (EV_A_ slot, wd, ev);
2003 else
2004 {
2005 WL w_;
2006
2007 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2008 {
2009 ev_stat *w = (ev_stat *)w_;
2010 w_ = w_->next; /* lets us remove this watcher and all before it */
2011
2012 if (w->wd == wd || wd == -1)
2013 {
2014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2015 {
2016 w->wd = -1;
2017 infy_add (EV_A_ w); /* re-add, no matter what */
2018 }
2019
2020 stat_timer_cb (EV_A_ &w->timer, 0);
2021 }
2022 }
2023 }
2024}
2025
2026static void
2027infy_cb (EV_P_ ev_io *w, int revents)
2028{
2029 char buf [EV_INOTIFY_BUFSIZE];
2030 struct inotify_event *ev = (struct inotify_event *)buf;
2031 int ofs;
2032 int len = read (fs_fd, buf, sizeof (buf));
2033
2034 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2035 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2036}
2037
2038void inline_size
2039infy_init (EV_P)
2040{
2041 if (fs_fd != -2)
2042 return;
2043
2044 fs_fd = inotify_init ();
2045
2046 if (fs_fd >= 0)
2047 {
2048 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2049 ev_set_priority (&fs_w, EV_MAXPRI);
2050 ev_io_start (EV_A_ &fs_w);
2051 }
2052}
2053
2054void inline_size
2055infy_fork (EV_P)
2056{
2057 int slot;
2058
2059 if (fs_fd < 0)
2060 return;
2061
2062 close (fs_fd);
2063 fs_fd = inotify_init ();
2064
2065 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2066 {
2067 WL w_ = fs_hash [slot].head;
2068 fs_hash [slot].head = 0;
2069
2070 while (w_)
2071 {
2072 ev_stat *w = (ev_stat *)w_;
2073 w_ = w_->next; /* lets us add this watcher */
2074
2075 w->wd = -1;
2076
2077 if (fs_fd >= 0)
2078 infy_add (EV_A_ w); /* re-add, no matter what */
2079 else
2080 ev_timer_start (EV_A_ &w->timer);
2081 }
2082
2083 }
2084}
2085
2086#endif
2087
2088void
2089ev_stat_stat (EV_P_ ev_stat *w)
2090{
2091 if (lstat (w->path, &w->attr) < 0)
2092 w->attr.st_nlink = 0;
2093 else if (!w->attr.st_nlink)
2094 w->attr.st_nlink = 1;
2095}
2096
2097static void noinline
2098stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2099{
2100 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2101
2102 /* we copy this here each the time so that */
2103 /* prev has the old value when the callback gets invoked */
2104 w->prev = w->attr;
2105 ev_stat_stat (EV_A_ w);
2106
2107 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2108 if (
2109 w->prev.st_dev != w->attr.st_dev
2110 || w->prev.st_ino != w->attr.st_ino
2111 || w->prev.st_mode != w->attr.st_mode
2112 || w->prev.st_nlink != w->attr.st_nlink
2113 || w->prev.st_uid != w->attr.st_uid
2114 || w->prev.st_gid != w->attr.st_gid
2115 || w->prev.st_rdev != w->attr.st_rdev
2116 || w->prev.st_size != w->attr.st_size
2117 || w->prev.st_atime != w->attr.st_atime
2118 || w->prev.st_mtime != w->attr.st_mtime
2119 || w->prev.st_ctime != w->attr.st_ctime
2120 ) {
2121 #if EV_USE_INOTIFY
2122 infy_del (EV_A_ w);
2123 infy_add (EV_A_ w);
2124 ev_stat_stat (EV_A_ w); /* avoid race... */
2125 #endif
2126
2127 ev_feed_event (EV_A_ w, EV_STAT);
2128 }
2129}
2130
2131void
2132ev_stat_start (EV_P_ ev_stat *w)
2133{
2134 if (expect_false (ev_is_active (w)))
2135 return;
2136
2137 /* since we use memcmp, we need to clear any padding data etc. */
2138 memset (&w->prev, 0, sizeof (ev_statdata));
2139 memset (&w->attr, 0, sizeof (ev_statdata));
2140
2141 ev_stat_stat (EV_A_ w);
2142
2143 if (w->interval < MIN_STAT_INTERVAL)
2144 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2145
2146 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2147 ev_set_priority (&w->timer, ev_priority (w));
2148
2149#if EV_USE_INOTIFY
2150 infy_init (EV_A);
2151
2152 if (fs_fd >= 0)
2153 infy_add (EV_A_ w);
2154 else
2155#endif
2156 ev_timer_start (EV_A_ &w->timer);
2157
2158 ev_start (EV_A_ (W)w, 1);
2159}
2160
2161void
2162ev_stat_stop (EV_P_ ev_stat *w)
2163{
2164 clear_pending (EV_A_ (W)w);
2165 if (expect_false (!ev_is_active (w)))
2166 return;
2167
2168#if EV_USE_INOTIFY
2169 infy_del (EV_A_ w);
2170#endif
2171 ev_timer_stop (EV_A_ &w->timer);
2172
2173 ev_stop (EV_A_ (W)w);
2174}
2175#endif
2176
2177#if EV_IDLE_ENABLE
2178void
2179ev_idle_start (EV_P_ ev_idle *w)
2180{
2181 if (expect_false (ev_is_active (w)))
2182 return;
2183
2184 pri_adjust (EV_A_ (W)w);
2185
2186 {
2187 int active = ++idlecnt [ABSPRI (w)];
2188
2189 ++idleall;
2190 ev_start (EV_A_ (W)w, active);
2191
2192 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2193 idles [ABSPRI (w)][active - 1] = w;
2194 }
2195}
2196
2197void
2198ev_idle_stop (EV_P_ ev_idle *w)
2199{
2200 clear_pending (EV_A_ (W)w);
2201 if (expect_false (!ev_is_active (w)))
2202 return;
2203
2204 {
2205 int active = ((W)w)->active;
2206
2207 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2208 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2209
2210 ev_stop (EV_A_ (W)w);
2211 --idleall;
2212 }
2213}
2214#endif
2215
2216void
2217ev_prepare_start (EV_P_ ev_prepare *w)
2218{
2219 if (expect_false (ev_is_active (w)))
2220 return;
2221
2222 ev_start (EV_A_ (W)w, ++preparecnt);
2223 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2224 prepares [preparecnt - 1] = w;
2225}
2226
2227void
2228ev_prepare_stop (EV_P_ ev_prepare *w)
2229{
2230 clear_pending (EV_A_ (W)w);
2231 if (expect_false (!ev_is_active (w)))
2232 return;
2233
2234 {
2235 int active = ((W)w)->active;
2236 prepares [active - 1] = prepares [--preparecnt];
2237 ((W)prepares [active - 1])->active = active;
2238 }
2239
2240 ev_stop (EV_A_ (W)w);
2241}
2242
2243void
2244ev_check_start (EV_P_ ev_check *w)
2245{
2246 if (expect_false (ev_is_active (w)))
2247 return;
2248
2249 ev_start (EV_A_ (W)w, ++checkcnt);
2250 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2251 checks [checkcnt - 1] = w;
2252}
2253
2254void
2255ev_check_stop (EV_P_ ev_check *w)
2256{
2257 clear_pending (EV_A_ (W)w);
2258 if (expect_false (!ev_is_active (w)))
2259 return;
2260
2261 {
2262 int active = ((W)w)->active;
2263 checks [active - 1] = checks [--checkcnt];
2264 ((W)checks [active - 1])->active = active;
2265 }
2266
2267 ev_stop (EV_A_ (W)w);
2268}
2269
2270#if EV_EMBED_ENABLE
2271void noinline
2272ev_embed_sweep (EV_P_ ev_embed *w)
2273{
2274 ev_loop (w->other, EVLOOP_NONBLOCK);
2275}
2276
2277static void
2278embed_io_cb (EV_P_ ev_io *io, int revents)
2279{
2280 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2281
2282 if (ev_cb (w))
2283 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2284 else
2285 ev_loop (w->other, EVLOOP_NONBLOCK);
2286}
2287
2288static void
2289embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2290{
2291 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2292
2293 {
2294 struct ev_loop *loop = w->other;
2295
2296 while (fdchangecnt)
2297 {
2298 fd_reify (EV_A);
2299 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2300 }
2301 }
2302}
2303
2304#if 0
2305static void
2306embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2307{
2308 ev_idle_stop (EV_A_ idle);
2309}
2310#endif
2311
2312void
2313ev_embed_start (EV_P_ ev_embed *w)
2314{
2315 if (expect_false (ev_is_active (w)))
2316 return;
2317
2318 {
2319 struct ev_loop *loop = w->other;
2320 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2321 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2322 }
2323
2324 ev_set_priority (&w->io, ev_priority (w));
2325 ev_io_start (EV_A_ &w->io);
2326
2327 ev_prepare_init (&w->prepare, embed_prepare_cb);
2328 ev_set_priority (&w->prepare, EV_MINPRI);
2329 ev_prepare_start (EV_A_ &w->prepare);
2330
2331 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2332
2333 ev_start (EV_A_ (W)w, 1);
2334}
2335
2336void
2337ev_embed_stop (EV_P_ ev_embed *w)
2338{
2339 clear_pending (EV_A_ (W)w);
2340 if (expect_false (!ev_is_active (w)))
2341 return;
2342
2343 ev_io_stop (EV_A_ &w->io);
2344 ev_prepare_stop (EV_A_ &w->prepare);
2345
2346 ev_stop (EV_A_ (W)w);
2347}
2348#endif
2349
2350#if EV_FORK_ENABLE
2351void
2352ev_fork_start (EV_P_ ev_fork *w)
2353{
2354 if (expect_false (ev_is_active (w)))
2355 return;
2356
2357 ev_start (EV_A_ (W)w, ++forkcnt);
2358 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2359 forks [forkcnt - 1] = w;
2360}
2361
2362void
2363ev_fork_stop (EV_P_ ev_fork *w)
2364{
2365 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w)))
2367 return;
2368
2369 {
2370 int active = ((W)w)->active;
2371 forks [active - 1] = forks [--forkcnt];
2372 ((W)forks [active - 1])->active = active;
2373 }
2374
2375 ev_stop (EV_A_ (W)w);
2376}
2377#endif
2378
1573/*****************************************************************************/ 2379/*****************************************************************************/
1574 2380
1575struct ev_once 2381struct ev_once
1576{ 2382{
1577 struct ev_io io; 2383 ev_io io;
1578 struct ev_timer to; 2384 ev_timer to;
1579 void (*cb)(int revents, void *arg); 2385 void (*cb)(int revents, void *arg);
1580 void *arg; 2386 void *arg;
1581}; 2387};
1582 2388
1583static void 2389static void
1592 2398
1593 cb (revents, arg); 2399 cb (revents, arg);
1594} 2400}
1595 2401
1596static void 2402static void
1597once_cb_io (EV_P_ struct ev_io *w, int revents) 2403once_cb_io (EV_P_ ev_io *w, int revents)
1598{ 2404{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2405 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1600} 2406}
1601 2407
1602static void 2408static void
1603once_cb_to (EV_P_ struct ev_timer *w, int revents) 2409once_cb_to (EV_P_ ev_timer *w, int revents)
1604{ 2410{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2411 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1606} 2412}
1607 2413
1608void 2414void
1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2415ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1610{ 2416{
1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2417 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1612 2418
1613 if (!once) 2419 if (expect_false (!once))
2420 {
1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2421 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1615 else 2422 return;
1616 { 2423 }
2424
1617 once->cb = cb; 2425 once->cb = cb;
1618 once->arg = arg; 2426 once->arg = arg;
1619 2427
1620 ev_init (&once->io, once_cb_io); 2428 ev_init (&once->io, once_cb_io);
1621 if (fd >= 0) 2429 if (fd >= 0)
1622 { 2430 {
1623 ev_io_set (&once->io, fd, events); 2431 ev_io_set (&once->io, fd, events);
1624 ev_io_start (EV_A_ &once->io); 2432 ev_io_start (EV_A_ &once->io);
1625 } 2433 }
1626 2434
1627 ev_init (&once->to, once_cb_to); 2435 ev_init (&once->to, once_cb_to);
1628 if (timeout >= 0.) 2436 if (timeout >= 0.)
1629 { 2437 {
1630 ev_timer_set (&once->to, timeout, 0.); 2438 ev_timer_set (&once->to, timeout, 0.);
1631 ev_timer_start (EV_A_ &once->to); 2439 ev_timer_start (EV_A_ &once->to);
1632 }
1633 } 2440 }
1634} 2441}
2442
2443#if EV_MULTIPLICITY
2444 #include "ev_wrap.h"
2445#endif
1635 2446
1636#ifdef __cplusplus 2447#ifdef __cplusplus
1637} 2448}
1638#endif 2449#endif
1639 2450

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines