ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.104 by root, Mon Nov 12 00:39:45 2007 UTC vs.
Revision 1.321 by root, Thu Dec 31 06:50:17 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
46# endif 76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
47 81
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
50# endif 95# endif
96# endif
51 97
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
54# endif 103# endif
55 104# endif
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
58# endif 111# endif
59 112# endif
113
114# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
62# endif 119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
63 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
64#endif 154#endif
65 155
66#include <math.h> 156#include <math.h>
67#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
68#include <fcntl.h> 159#include <fcntl.h>
69#include <stddef.h> 160#include <stddef.h>
70 161
71#include <stdio.h> 162#include <stdio.h>
72 163
75#include <sys/types.h> 166#include <sys/types.h>
76#include <time.h> 167#include <time.h>
77 168
78#include <signal.h> 169#include <signal.h>
79 170
171#ifdef EV_H
172# include EV_H
173#else
174# include "ev.h"
175#endif
176
80#ifndef _WIN32 177#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 178# include <sys/time.h>
83# include <sys/wait.h> 179# include <sys/wait.h>
180# include <unistd.h>
84#else 181#else
182# include <io.h>
85# define WIN32_LEAN_AND_MEAN 183# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 184# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 185# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 186# define EV_SELECT_IS_WINSOCKET 1
89# endif 187# endif
90#endif 188#endif
91 189
92/**/ 190/* this block tries to deduce configuration from header-defined symbols and defaults */
191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
93 226
94#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
95# define EV_USE_MONOTONIC 1 229# define EV_USE_MONOTONIC 1
230# else
231# define EV_USE_MONOTONIC 0
232# endif
233#endif
234
235#ifndef EV_USE_REALTIME
236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
237#endif
238
239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
243# define EV_USE_NANOSLEEP 0
244# endif
96#endif 245#endif
97 246
98#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 249#endif
102 250
103#ifndef EV_USE_POLL 251#ifndef EV_USE_POLL
104# ifdef _WIN32 252# ifdef _WIN32
105# define EV_USE_POLL 0 253# define EV_USE_POLL 0
107# define EV_USE_POLL 1 255# define EV_USE_POLL 1
108# endif 256# endif
109#endif 257#endif
110 258
111#ifndef EV_USE_EPOLL 259#ifndef EV_USE_EPOLL
260# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261# define EV_USE_EPOLL 1
262# else
112# define EV_USE_EPOLL 0 263# define EV_USE_EPOLL 0
264# endif
113#endif 265#endif
114 266
115#ifndef EV_USE_KQUEUE 267#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 268# define EV_USE_KQUEUE 0
117#endif 269#endif
118 270
119#ifndef EV_USE_REALTIME 271#ifndef EV_USE_PORT
272# define EV_USE_PORT 0
273#endif
274
275#ifndef EV_USE_INOTIFY
276# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
120# define EV_USE_REALTIME 1 277# define EV_USE_INOTIFY 1
278# else
279# define EV_USE_INOTIFY 0
121#endif 280# endif
281#endif
122 282
123/**/ 283#ifndef EV_PID_HASHSIZE
284# if EV_MINIMAL
285# define EV_PID_HASHSIZE 1
286# else
287# define EV_PID_HASHSIZE 16
288# endif
289#endif
290
291#ifndef EV_INOTIFY_HASHSIZE
292# if EV_MINIMAL
293# define EV_INOTIFY_HASHSIZE 1
294# else
295# define EV_INOTIFY_HASHSIZE 16
296# endif
297#endif
298
299#ifndef EV_USE_EVENTFD
300# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301# define EV_USE_EVENTFD 1
302# else
303# define EV_USE_EVENTFD 0
304# endif
305#endif
306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
124 348
125#ifndef CLOCK_MONOTONIC 349#ifndef CLOCK_MONOTONIC
126# undef EV_USE_MONOTONIC 350# undef EV_USE_MONOTONIC
127# define EV_USE_MONOTONIC 0 351# define EV_USE_MONOTONIC 0
128#endif 352#endif
130#ifndef CLOCK_REALTIME 354#ifndef CLOCK_REALTIME
131# undef EV_USE_REALTIME 355# undef EV_USE_REALTIME
132# define EV_USE_REALTIME 0 356# define EV_USE_REALTIME 0
133#endif 357#endif
134 358
359#if !EV_STAT_ENABLE
360# undef EV_USE_INOTIFY
361# define EV_USE_INOTIFY 0
362#endif
363
364#if !EV_USE_NANOSLEEP
365# ifndef _WIN32
366# include <sys/select.h>
367# endif
368#endif
369
370#if EV_USE_INOTIFY
371# include <sys/utsname.h>
372# include <sys/statfs.h>
373# include <sys/inotify.h>
374/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
375# ifndef IN_DONT_FOLLOW
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378# endif
379#endif
380
135#if EV_SELECT_IS_WINSOCKET 381#if EV_SELECT_IS_WINSOCKET
136# include <winsock.h> 382# include <winsock.h>
137#endif 383#endif
138 384
385#if EV_USE_EVENTFD
386/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
387# include <stdint.h>
388# ifndef EFD_NONBLOCK
389# define EFD_NONBLOCK O_NONBLOCK
390# endif
391# ifndef EFD_CLOEXEC
392# ifdef O_CLOEXEC
393# define EFD_CLOEXEC O_CLOEXEC
394# else
395# define EFD_CLOEXEC 02000000
396# endif
397# endif
398# ifdef __cplusplus
399extern "C" {
400# endif
401int eventfd (unsigned int initval, int flags);
402# ifdef __cplusplus
403}
404# endif
405#endif
406
407#if EV_USE_SIGNALFD
408/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
409# include <stdint.h>
410# ifndef SFD_NONBLOCK
411# define SFD_NONBLOCK O_NONBLOCK
412# endif
413# ifndef SFD_CLOEXEC
414# ifdef O_CLOEXEC
415# define SFD_CLOEXEC O_CLOEXEC
416# else
417# define SFD_CLOEXEC 02000000
418# endif
419# endif
420# ifdef __cplusplus
421extern "C" {
422# endif
423int signalfd (int fd, const sigset_t *mask, int flags);
424
425struct signalfd_siginfo
426{
427 uint32_t ssi_signo;
428 char pad[128 - sizeof (uint32_t)];
429};
430# ifdef __cplusplus
431}
432# endif
433#endif
434
435
139/**/ 436/**/
140 437
438#if EV_VERIFY >= 3
439# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
440#else
441# define EV_FREQUENT_CHECK do { } while (0)
442#endif
443
444/*
445 * This is used to avoid floating point rounding problems.
446 * It is added to ev_rt_now when scheduling periodics
447 * to ensure progress, time-wise, even when rounding
448 * errors are against us.
449 * This value is good at least till the year 4000.
450 * Better solutions welcome.
451 */
452#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
453
141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 454#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 455#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
145 456
146#ifdef EV_H
147# include EV_H
148#else
149# include "ev.h"
150#endif
151
152#if __GNUC__ >= 3 457#if __GNUC__ >= 4
153# define expect(expr,value) __builtin_expect ((expr),(value)) 458# define expect(expr,value) __builtin_expect ((expr),(value))
154# define inline inline 459# define noinline __attribute__ ((noinline))
155#else 460#else
156# define expect(expr,value) (expr) 461# define expect(expr,value) (expr)
157# define inline static 462# define noinline
463# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
464# define inline
465# endif
158#endif 466#endif
159 467
160#define expect_false(expr) expect ((expr) != 0, 0) 468#define expect_false(expr) expect ((expr) != 0, 0)
161#define expect_true(expr) expect ((expr) != 0, 1) 469#define expect_true(expr) expect ((expr) != 0, 1)
470#define inline_size static inline
162 471
472#if EV_MINIMAL
473# define inline_speed static noinline
474#else
475# define inline_speed static inline
476#endif
477
163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 478#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480#if EV_MINPRI == EV_MAXPRI
481# define ABSPRI(w) (((W)w), 0)
482#else
164#define ABSPRI(w) ((w)->priority - EV_MINPRI) 483# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484#endif
165 485
166#define EMPTY /* required for microsofts broken pseudo-c compiler */ 486#define EMPTY /* required for microsofts broken pseudo-c compiler */
487#define EMPTY2(a,b) /* used to suppress some warnings */
167 488
168typedef struct ev_watcher *W; 489typedef ev_watcher *W;
169typedef struct ev_watcher_list *WL; 490typedef ev_watcher_list *WL;
170typedef struct ev_watcher_time *WT; 491typedef ev_watcher_time *WT;
171 492
493#define ev_active(w) ((W)(w))->active
494#define ev_at(w) ((WT)(w))->at
495
496#if EV_USE_REALTIME
497/* sig_atomic_t is used to avoid per-thread variables or locking but still */
498/* giving it a reasonably high chance of working on typical architetcures */
499static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500#endif
501
502#if EV_USE_MONOTONIC
172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 503static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
504#endif
505
506#ifndef EV_FD_TO_WIN32_HANDLE
507# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508#endif
509#ifndef EV_WIN32_HANDLE_TO_FD
510# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
511#endif
512#ifndef EV_WIN32_CLOSE_FD
513# define EV_WIN32_CLOSE_FD(fd) close (fd)
514#endif
173 515
174#ifdef _WIN32 516#ifdef _WIN32
175# include "ev_win32.c" 517# include "ev_win32.c"
176#endif 518#endif
177 519
178/*****************************************************************************/ 520/*****************************************************************************/
179 521
180static void (*syserr_cb)(const char *msg); 522static void (*syserr_cb)(const char *msg);
181 523
524void
182void ev_set_syserr_cb (void (*cb)(const char *msg)) 525ev_set_syserr_cb (void (*cb)(const char *msg))
183{ 526{
184 syserr_cb = cb; 527 syserr_cb = cb;
185} 528}
186 529
187static void 530static void noinline
188syserr (const char *msg) 531ev_syserr (const char *msg)
189{ 532{
190 if (!msg) 533 if (!msg)
191 msg = "(libev) system error"; 534 msg = "(libev) system error";
192 535
193 if (syserr_cb) 536 if (syserr_cb)
197 perror (msg); 540 perror (msg);
198 abort (); 541 abort ();
199 } 542 }
200} 543}
201 544
545static void *
546ev_realloc_emul (void *ptr, long size)
547{
548 /* some systems, notably openbsd and darwin, fail to properly
549 * implement realloc (x, 0) (as required by both ansi c-98 and
550 * the single unix specification, so work around them here.
551 */
552
553 if (size)
554 return realloc (ptr, size);
555
556 free (ptr);
557 return 0;
558}
559
202static void *(*alloc)(void *ptr, long size); 560static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
203 561
562void
204void ev_set_allocator (void *(*cb)(void *ptr, long size)) 563ev_set_allocator (void *(*cb)(void *ptr, long size))
205{ 564{
206 alloc = cb; 565 alloc = cb;
207} 566}
208 567
209static void * 568inline_speed void *
210ev_realloc (void *ptr, long size) 569ev_realloc (void *ptr, long size)
211{ 570{
212 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 571 ptr = alloc (ptr, size);
213 572
214 if (!ptr && size) 573 if (!ptr && size)
215 { 574 {
216 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 575 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
217 abort (); 576 abort ();
223#define ev_malloc(size) ev_realloc (0, (size)) 582#define ev_malloc(size) ev_realloc (0, (size))
224#define ev_free(ptr) ev_realloc ((ptr), 0) 583#define ev_free(ptr) ev_realloc ((ptr), 0)
225 584
226/*****************************************************************************/ 585/*****************************************************************************/
227 586
587/* set in reify when reification needed */
588#define EV_ANFD_REIFY 1
589
590/* file descriptor info structure */
228typedef struct 591typedef struct
229{ 592{
230 WL head; 593 WL head;
231 unsigned char events; 594 unsigned char events; /* the events watched for */
595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
232 unsigned char reify; 597 unsigned char unused;
598#if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600#endif
233#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
234 SOCKET handle; 602 SOCKET handle;
235#endif 603#endif
236} ANFD; 604} ANFD;
237 605
606/* stores the pending event set for a given watcher */
238typedef struct 607typedef struct
239{ 608{
240 W w; 609 W w;
241 int events; 610 int events; /* the pending event set for the given watcher */
242} ANPENDING; 611} ANPENDING;
612
613#if EV_USE_INOTIFY
614/* hash table entry per inotify-id */
615typedef struct
616{
617 WL head;
618} ANFS;
619#endif
620
621/* Heap Entry */
622#if EV_HEAP_CACHE_AT
623 /* a heap element */
624 typedef struct {
625 ev_tstamp at;
626 WT w;
627 } ANHE;
628
629 #define ANHE_w(he) (he).w /* access watcher, read-write */
630 #define ANHE_at(he) (he).at /* access cached at, read-only */
631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
632#else
633 /* a heap element */
634 typedef WT ANHE;
635
636 #define ANHE_w(he) (he)
637 #define ANHE_at(he) (he)->at
638 #define ANHE_at_cache(he)
639#endif
243 640
244#if EV_MULTIPLICITY 641#if EV_MULTIPLICITY
245 642
246 struct ev_loop 643 struct ev_loop
247 { 644 {
251 #include "ev_vars.h" 648 #include "ev_vars.h"
252 #undef VAR 649 #undef VAR
253 }; 650 };
254 #include "ev_wrap.h" 651 #include "ev_wrap.h"
255 652
256 struct ev_loop default_loop_struct; 653 static struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop; 654 struct ev_loop *ev_default_loop_ptr;
258 655
259#else 656#else
260 657
261 ev_tstamp ev_rt_now; 658 ev_tstamp ev_rt_now;
262 #define VAR(name,decl) static decl; 659 #define VAR(name,decl) static decl;
263 #include "ev_vars.h" 660 #include "ev_vars.h"
264 #undef VAR 661 #undef VAR
265 662
266 static int default_loop; 663 static int ev_default_loop_ptr;
267 664
268#endif 665#endif
666
667#if EV_MINIMAL < 2
668# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670# define EV_INVOKE_PENDING invoke_cb (EV_A)
671#else
672# define EV_RELEASE_CB (void)0
673# define EV_ACQUIRE_CB (void)0
674# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675#endif
676
677#define EVUNLOOP_RECURSE 0x80
269 678
270/*****************************************************************************/ 679/*****************************************************************************/
271 680
681#ifndef EV_HAVE_EV_TIME
272ev_tstamp 682ev_tstamp
273ev_time (void) 683ev_time (void)
274{ 684{
275#if EV_USE_REALTIME 685#if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
276 struct timespec ts; 688 struct timespec ts;
277 clock_gettime (CLOCK_REALTIME, &ts); 689 clock_gettime (CLOCK_REALTIME, &ts);
278 return ts.tv_sec + ts.tv_nsec * 1e-9; 690 return ts.tv_sec + ts.tv_nsec * 1e-9;
279#else 691 }
692#endif
693
280 struct timeval tv; 694 struct timeval tv;
281 gettimeofday (&tv, 0); 695 gettimeofday (&tv, 0);
282 return tv.tv_sec + tv.tv_usec * 1e-6; 696 return tv.tv_sec + tv.tv_usec * 1e-6;
283#endif
284} 697}
698#endif
285 699
286inline ev_tstamp 700inline_size ev_tstamp
287get_clock (void) 701get_clock (void)
288{ 702{
289#if EV_USE_MONOTONIC 703#if EV_USE_MONOTONIC
290 if (expect_true (have_monotonic)) 704 if (expect_true (have_monotonic))
291 { 705 {
304{ 718{
305 return ev_rt_now; 719 return ev_rt_now;
306} 720}
307#endif 721#endif
308 722
309#define array_roundsize(type,n) ((n) | 4 & ~3) 723void
724ev_sleep (ev_tstamp delay)
725{
726 if (delay > 0.)
727 {
728#if EV_USE_NANOSLEEP
729 struct timespec ts;
730
731 ts.tv_sec = (time_t)delay;
732 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
733
734 nanosleep (&ts, 0);
735#elif defined(_WIN32)
736 Sleep ((unsigned long)(delay * 1e3));
737#else
738 struct timeval tv;
739
740 tv.tv_sec = (time_t)delay;
741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
742
743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
744 /* something not guaranteed by newer posix versions, but guaranteed */
745 /* by older ones */
746 select (0, 0, 0, 0, &tv);
747#endif
748 }
749}
750
751/*****************************************************************************/
752
753#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
754
755/* find a suitable new size for the given array, */
756/* hopefully by rounding to a ncie-to-malloc size */
757inline_size int
758array_nextsize (int elem, int cur, int cnt)
759{
760 int ncur = cur + 1;
761
762 do
763 ncur <<= 1;
764 while (cnt > ncur);
765
766 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
767 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
768 {
769 ncur *= elem;
770 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
771 ncur = ncur - sizeof (void *) * 4;
772 ncur /= elem;
773 }
774
775 return ncur;
776}
777
778static noinline void *
779array_realloc (int elem, void *base, int *cur, int cnt)
780{
781 *cur = array_nextsize (elem, *cur, cnt);
782 return ev_realloc (base, elem * *cur);
783}
784
785#define array_init_zero(base,count) \
786 memset ((void *)(base), 0, sizeof (*(base)) * (count))
310 787
311#define array_needsize(type,base,cur,cnt,init) \ 788#define array_needsize(type,base,cur,cnt,init) \
312 if (expect_false ((cnt) > cur)) \ 789 if (expect_false ((cnt) > (cur))) \
313 { \ 790 { \
314 int newcnt = cur; \ 791 int ocur_ = (cur); \
315 do \ 792 (base) = (type *)array_realloc \
316 { \ 793 (sizeof (type), (base), &(cur), (cnt)); \
317 newcnt = array_roundsize (type, newcnt << 1); \ 794 init ((base) + (ocur_), (cur) - ocur_); \
318 } \
319 while ((cnt) > newcnt); \
320 \
321 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
322 init (base + cur, newcnt - cur); \
323 cur = newcnt; \
324 } 795 }
325 796
797#if 0
326#define array_slim(type,stem) \ 798#define array_slim(type,stem) \
327 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 799 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
328 { \ 800 { \
329 stem ## max = array_roundsize (stem ## cnt >> 1); \ 801 stem ## max = array_roundsize (stem ## cnt >> 1); \
330 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 802 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
331 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
332 } 804 }
805#endif
333 806
334#define array_free(stem, idx) \ 807#define array_free(stem, idx) \
335 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
336 809
337/*****************************************************************************/ 810/*****************************************************************************/
338 811
339static void 812/* dummy callback for pending events */
340anfds_init (ANFD *base, int count) 813static void noinline
814pendingcb (EV_P_ ev_prepare *w, int revents)
341{ 815{
342 while (count--)
343 {
344 base->head = 0;
345 base->events = EV_NONE;
346 base->reify = 0;
347
348 ++base;
349 }
350} 816}
351 817
352void 818void noinline
353ev_feed_event (EV_P_ void *w, int revents) 819ev_feed_event (EV_P_ void *w, int revents)
354{ 820{
355 W w_ = (W)w; 821 W w_ = (W)w;
822 int pri = ABSPRI (w_);
356 823
357 if (w_->pending) 824 if (expect_false (w_->pending))
825 pendings [pri][w_->pending - 1].events |= revents;
826 else
358 { 827 {
828 w_->pending = ++pendingcnt [pri];
829 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
830 pendings [pri][w_->pending - 1].w = w_;
359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 831 pendings [pri][w_->pending - 1].events = revents;
360 return;
361 } 832 }
362
363 w_->pending = ++pendingcnt [ABSPRI (w_)];
364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
367} 833}
368 834
369static void 835inline_speed void
836feed_reverse (EV_P_ W w)
837{
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840}
841
842inline_size void
843feed_reverse_done (EV_P_ int revents)
844{
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848}
849
850inline_speed void
370queue_events (EV_P_ W *events, int eventcnt, int type) 851queue_events (EV_P_ W *events, int eventcnt, int type)
371{ 852{
372 int i; 853 int i;
373 854
374 for (i = 0; i < eventcnt; ++i) 855 for (i = 0; i < eventcnt; ++i)
375 ev_feed_event (EV_A_ events [i], type); 856 ev_feed_event (EV_A_ events [i], type);
376} 857}
377 858
859/*****************************************************************************/
860
378inline void 861inline_speed void
379fd_event (EV_P_ int fd, int revents) 862fd_event_nc (EV_P_ int fd, int revents)
380{ 863{
381 ANFD *anfd = anfds + fd; 864 ANFD *anfd = anfds + fd;
382 struct ev_io *w; 865 ev_io *w;
383 866
384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
385 { 868 {
386 int ev = w->events & revents; 869 int ev = w->events & revents;
387 870
388 if (ev) 871 if (ev)
389 ev_feed_event (EV_A_ (W)w, ev); 872 ev_feed_event (EV_A_ (W)w, ev);
390 } 873 }
391} 874}
392 875
876/* do not submit kernel events for fds that have reify set */
877/* because that means they changed while we were polling for new events */
878inline_speed void
879fd_event (EV_P_ int fd, int revents)
880{
881 ANFD *anfd = anfds + fd;
882
883 if (expect_true (!anfd->reify))
884 fd_event_nc (EV_A_ fd, revents);
885}
886
393void 887void
394ev_feed_fd_event (EV_P_ int fd, int revents) 888ev_feed_fd_event (EV_P_ int fd, int revents)
395{ 889{
890 if (fd >= 0 && fd < anfdmax)
396 fd_event (EV_A_ fd, revents); 891 fd_event_nc (EV_A_ fd, revents);
397} 892}
398 893
399/*****************************************************************************/ 894/* make sure the external fd watch events are in-sync */
400 895/* with the kernel/libev internal state */
401static void 896inline_size void
402fd_reify (EV_P) 897fd_reify (EV_P)
403{ 898{
404 int i; 899 int i;
405 900
406 for (i = 0; i < fdchangecnt; ++i) 901 for (i = 0; i < fdchangecnt; ++i)
407 { 902 {
408 int fd = fdchanges [i]; 903 int fd = fdchanges [i];
409 ANFD *anfd = anfds + fd; 904 ANFD *anfd = anfds + fd;
410 struct ev_io *w; 905 ev_io *w;
411 906
412 int events = 0; 907 unsigned char events = 0;
413 908
414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 909 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
415 events |= w->events; 910 events |= (unsigned char)w->events;
416 911
417#if EV_SELECT_IS_WINSOCKET 912#if EV_SELECT_IS_WINSOCKET
418 if (events) 913 if (events)
419 { 914 {
420 unsigned long argp; 915 unsigned long arg;
421 anfd->handle = _get_osfhandle (fd); 916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
422 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
423 } 918 }
424#endif 919#endif
425 920
921 {
922 unsigned char o_events = anfd->events;
923 unsigned char o_reify = anfd->reify;
924
426 anfd->reify = 0; 925 anfd->reify = 0;
427
428 method_modify (EV_A_ fd, anfd->events, events);
429 anfd->events = events; 926 anfd->events = events;
927
928 if (o_events != events || o_reify & EV__IOFDSET)
929 backend_modify (EV_A_ fd, o_events, events);
930 }
430 } 931 }
431 932
432 fdchangecnt = 0; 933 fdchangecnt = 0;
433} 934}
434 935
435static void 936/* something about the given fd changed */
937inline_size void
436fd_change (EV_P_ int fd) 938fd_change (EV_P_ int fd, int flags)
437{ 939{
438 if (anfds [fd].reify) 940 unsigned char reify = anfds [fd].reify;
439 return;
440
441 anfds [fd].reify = 1; 941 anfds [fd].reify |= flags;
442 942
943 if (expect_true (!reify))
944 {
443 ++fdchangecnt; 945 ++fdchangecnt;
444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
445 fdchanges [fdchangecnt - 1] = fd; 947 fdchanges [fdchangecnt - 1] = fd;
948 }
446} 949}
447 950
448static void 951/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952inline_speed void
449fd_kill (EV_P_ int fd) 953fd_kill (EV_P_ int fd)
450{ 954{
451 struct ev_io *w; 955 ev_io *w;
452 956
453 while ((w = (struct ev_io *)anfds [fd].head)) 957 while ((w = (ev_io *)anfds [fd].head))
454 { 958 {
455 ev_io_stop (EV_A_ w); 959 ev_io_stop (EV_A_ w);
456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
457 } 961 }
458} 962}
459 963
460static int 964/* check whether the given fd is atcually valid, for error recovery */
965inline_size int
461fd_valid (int fd) 966fd_valid (int fd)
462{ 967{
463#ifdef _WIN32 968#ifdef _WIN32
464 return _get_osfhandle (fd) != -1; 969 return _get_osfhandle (fd) != -1;
465#else 970#else
466 return fcntl (fd, F_GETFD) != -1; 971 return fcntl (fd, F_GETFD) != -1;
467#endif 972#endif
468} 973}
469 974
470/* called on EBADF to verify fds */ 975/* called on EBADF to verify fds */
471static void 976static void noinline
472fd_ebadf (EV_P) 977fd_ebadf (EV_P)
473{ 978{
474 int fd; 979 int fd;
475 980
476 for (fd = 0; fd < anfdmax; ++fd) 981 for (fd = 0; fd < anfdmax; ++fd)
477 if (anfds [fd].events) 982 if (anfds [fd].events)
478 if (!fd_valid (fd) == -1 && errno == EBADF) 983 if (!fd_valid (fd) && errno == EBADF)
479 fd_kill (EV_A_ fd); 984 fd_kill (EV_A_ fd);
480} 985}
481 986
482/* called on ENOMEM in select/poll to kill some fds and retry */ 987/* called on ENOMEM in select/poll to kill some fds and retry */
483static void 988static void noinline
484fd_enomem (EV_P) 989fd_enomem (EV_P)
485{ 990{
486 int fd; 991 int fd;
487 992
488 for (fd = anfdmax; fd--; ) 993 for (fd = anfdmax; fd--; )
489 if (anfds [fd].events) 994 if (anfds [fd].events)
490 { 995 {
491 fd_kill (EV_A_ fd); 996 fd_kill (EV_A_ fd);
492 return; 997 break;
493 } 998 }
494} 999}
495 1000
496/* usually called after fork if method needs to re-arm all fds from scratch */ 1001/* usually called after fork if backend needs to re-arm all fds from scratch */
497static void 1002static void noinline
498fd_rearm_all (EV_P) 1003fd_rearm_all (EV_P)
499{ 1004{
500 int fd; 1005 int fd;
501 1006
502 /* this should be highly optimised to not do anything but set a flag */
503 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
504 if (anfds [fd].events) 1008 if (anfds [fd].events)
505 { 1009 {
506 anfds [fd].events = 0; 1010 anfds [fd].events = 0;
507 fd_change (EV_A_ fd); 1011 anfds [fd].emask = 0;
1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
508 } 1013 }
509} 1014}
510 1015
511/*****************************************************************************/ 1016/*****************************************************************************/
512 1017
513static void 1018/*
514upheap (WT *heap, int k) 1019 * the heap functions want a real array index. array index 0 uis guaranteed to not
515{ 1020 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
516 WT w = heap [k]; 1021 * the branching factor of the d-tree.
1022 */
517 1023
518 while (k && heap [k >> 1]->at > w->at) 1024/*
519 { 1025 * at the moment we allow libev the luxury of two heaps,
520 heap [k] = heap [k >> 1]; 1026 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
521 ((W)heap [k])->active = k + 1; 1027 * which is more cache-efficient.
522 k >>= 1; 1028 * the difference is about 5% with 50000+ watchers.
523 } 1029 */
1030#if EV_USE_4HEAP
524 1031
525 heap [k] = w; 1032#define DHEAP 4
526 ((W)heap [k])->active = k + 1; 1033#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1034#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1035#define UPHEAP_DONE(p,k) ((p) == (k))
527 1036
528} 1037/* away from the root */
529 1038inline_speed void
530static void
531downheap (WT *heap, int N, int k) 1039downheap (ANHE *heap, int N, int k)
532{ 1040{
533 WT w = heap [k]; 1041 ANHE he = heap [k];
1042 ANHE *E = heap + N + HEAP0;
534 1043
535 while (k < (N >> 1)) 1044 for (;;)
536 { 1045 {
537 int j = k << 1; 1046 ev_tstamp minat;
1047 ANHE *minpos;
1048 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
538 1049
539 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1050 /* find minimum child */
1051 if (expect_true (pos + DHEAP - 1 < E))
540 ++j; 1052 {
541 1053 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
542 if (w->at <= heap [j]->at) 1054 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1056 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1057 }
1058 else if (pos < E)
1059 {
1060 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else
543 break; 1066 break;
544 1067
1068 if (ANHE_at (he) <= minat)
1069 break;
1070
1071 heap [k] = *minpos;
1072 ev_active (ANHE_w (*minpos)) = k;
1073
1074 k = minpos - heap;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080
1081#else /* 4HEAP */
1082
1083#define HEAP0 1
1084#define HPARENT(k) ((k) >> 1)
1085#define UPHEAP_DONE(p,k) (!(p))
1086
1087/* away from the root */
1088inline_speed void
1089downheap (ANHE *heap, int N, int k)
1090{
1091 ANHE he = heap [k];
1092
1093 for (;;)
1094 {
1095 int c = k << 1;
1096
1097 if (c >= N + HEAP0)
1098 break;
1099
1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1101 ? 1 : 0;
1102
1103 if (ANHE_at (he) <= ANHE_at (heap [c]))
1104 break;
1105
545 heap [k] = heap [j]; 1106 heap [k] = heap [c];
546 ((W)heap [k])->active = k + 1; 1107 ev_active (ANHE_w (heap [k])) = k;
1108
547 k = j; 1109 k = c;
548 } 1110 }
549 1111
550 heap [k] = w; 1112 heap [k] = he;
551 ((W)heap [k])->active = k + 1; 1113 ev_active (ANHE_w (he)) = k;
552} 1114}
1115#endif
553 1116
1117/* towards the root */
1118inline_speed void
1119upheap (ANHE *heap, int k)
1120{
1121 ANHE he = heap [k];
1122
1123 for (;;)
1124 {
1125 int p = HPARENT (k);
1126
1127 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1128 break;
1129
1130 heap [k] = heap [p];
1131 ev_active (ANHE_w (heap [k])) = k;
1132 k = p;
1133 }
1134
1135 heap [k] = he;
1136 ev_active (ANHE_w (he)) = k;
1137}
1138
1139/* move an element suitably so it is in a correct place */
554inline void 1140inline_size void
555adjustheap (WT *heap, int N, int k) 1141adjustheap (ANHE *heap, int N, int k)
556{ 1142{
1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
557 upheap (heap, k); 1144 upheap (heap, k);
1145 else
558 downheap (heap, N, k); 1146 downheap (heap, N, k);
1147}
1148
1149/* rebuild the heap: this function is used only once and executed rarely */
1150inline_size void
1151reheap (ANHE *heap, int N)
1152{
1153 int i;
1154
1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1156 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1157 for (i = 0; i < N; ++i)
1158 upheap (heap, i + HEAP0);
559} 1159}
560 1160
561/*****************************************************************************/ 1161/*****************************************************************************/
562 1162
1163/* associate signal watchers to a signal signal */
563typedef struct 1164typedef struct
564{ 1165{
1166 EV_ATOMIC_T pending;
1167#if EV_MULTIPLICITY
1168 EV_P;
1169#endif
565 WL head; 1170 WL head;
566 sig_atomic_t volatile gotsig;
567} ANSIG; 1171} ANSIG;
568 1172
569static ANSIG *signals; 1173static ANSIG signals [EV_NSIG - 1];
570static int signalmax;
571 1174
572static int sigpipe [2]; 1175/*****************************************************************************/
573static sig_atomic_t volatile gotsig;
574static struct ev_io sigev;
575 1176
576static void 1177/* used to prepare libev internal fd's */
577signals_init (ANSIG *base, int count) 1178/* this is not fork-safe */
578{
579 while (count--)
580 {
581 base->head = 0;
582 base->gotsig = 0;
583
584 ++base;
585 }
586}
587
588static void
589sighandler (int signum)
590{
591#if _WIN32
592 signal (signum, sighandler);
593#endif
594
595 signals [signum - 1].gotsig = 1;
596
597 if (!gotsig)
598 {
599 int old_errno = errno;
600 gotsig = 1;
601 write (sigpipe [1], &signum, 1);
602 errno = old_errno;
603 }
604}
605
606void
607ev_feed_signal_event (EV_P_ int signum)
608{
609 WL w;
610
611#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
613#endif
614
615 --signum;
616
617 if (signum < 0 || signum >= signalmax)
618 return;
619
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624}
625
626static void
627sigcb (EV_P_ struct ev_io *iow, int revents)
628{
629 int signum;
630
631 read (sigpipe [0], &revents, 1);
632 gotsig = 0;
633
634 for (signum = signalmax; signum--; )
635 if (signals [signum].gotsig)
636 ev_feed_signal_event (EV_A_ signum + 1);
637}
638
639inline void 1179inline_speed void
640fd_intern (int fd) 1180fd_intern (int fd)
641{ 1181{
642#ifdef _WIN32 1182#ifdef _WIN32
643 int arg = 1; 1183 unsigned long arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1184 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
645#else 1185#else
646 fcntl (fd, F_SETFD, FD_CLOEXEC); 1186 fcntl (fd, F_SETFD, FD_CLOEXEC);
647 fcntl (fd, F_SETFL, O_NONBLOCK); 1187 fcntl (fd, F_SETFL, O_NONBLOCK);
648#endif 1188#endif
649} 1189}
650 1190
1191static void noinline
1192evpipe_init (EV_P)
1193{
1194 if (!ev_is_active (&pipe_w))
1195 {
1196#if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
1202 {
1203 evpipe [0] = -1;
1204 fd_intern (evfd); /* doing it twice doesn't hurt */
1205 ev_io_set (&pipe_w, evfd, EV_READ);
1206 }
1207 else
1208#endif
1209 {
1210 while (pipe (evpipe))
1211 ev_syserr ("(libev) error creating signal/async pipe");
1212
1213 fd_intern (evpipe [0]);
1214 fd_intern (evpipe [1]);
1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1216 }
1217
1218 ev_io_start (EV_A_ &pipe_w);
1219 ev_unref (EV_A); /* watcher should not keep loop alive */
1220 }
1221}
1222
1223inline_size void
1224evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1225{
1226 if (!*flag)
1227 {
1228 int old_errno = errno; /* save errno because write might clobber it */
1229
1230 *flag = 1;
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 {
1235 uint64_t counter = 1;
1236 write (evfd, &counter, sizeof (uint64_t));
1237 }
1238 else
1239#endif
1240 write (evpipe [1], &old_errno, 1);
1241
1242 errno = old_errno;
1243 }
1244}
1245
1246/* called whenever the libev signal pipe */
1247/* got some events (signal, async) */
651static void 1248static void
652siginit (EV_P) 1249pipecb (EV_P_ ev_io *iow, int revents)
653{ 1250{
654 fd_intern (sigpipe [0]); 1251 int i;
655 fd_intern (sigpipe [1]);
656 1252
657 ev_io_set (&sigev, sigpipe [0], EV_READ); 1253#if EV_USE_EVENTFD
658 ev_io_start (EV_A_ &sigev); 1254 if (evfd >= 0)
659 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1255 {
1256 uint64_t counter;
1257 read (evfd, &counter, sizeof (uint64_t));
1258 }
1259 else
1260#endif
1261 {
1262 char dummy;
1263 read (evpipe [0], &dummy, 1);
1264 }
1265
1266 if (sig_pending)
1267 {
1268 sig_pending = 0;
1269
1270 for (i = EV_NSIG - 1; i--; )
1271 if (expect_false (signals [i].pending))
1272 ev_feed_signal_event (EV_A_ i + 1);
1273 }
1274
1275#if EV_ASYNC_ENABLE
1276 if (async_pending)
1277 {
1278 async_pending = 0;
1279
1280 for (i = asynccnt; i--; )
1281 if (asyncs [i]->sent)
1282 {
1283 asyncs [i]->sent = 0;
1284 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1285 }
1286 }
1287#endif
660} 1288}
661 1289
662/*****************************************************************************/ 1290/*****************************************************************************/
663 1291
664static struct ev_child *childs [PID_HASHSIZE]; 1292static void
1293ev_sighandler (int signum)
1294{
1295#if EV_MULTIPLICITY
1296 EV_P = signals [signum - 1].loop;
1297#endif
1298
1299#if _WIN32
1300 signal (signum, ev_sighandler);
1301#endif
1302
1303 signals [signum - 1].pending = 1;
1304 evpipe_write (EV_A_ &sig_pending);
1305}
1306
1307void noinline
1308ev_feed_signal_event (EV_P_ int signum)
1309{
1310 WL w;
1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
1317#if EV_MULTIPLICITY
1318 /* it is permissible to try to feed a signal to the wrong loop */
1319 /* or, likely more useful, feeding a signal nobody is waiting for */
1320
1321 if (expect_false (signals [signum].loop != EV_A))
1322 return;
1323#endif
1324
1325 signals [signum].pending = 0;
1326
1327 for (w = signals [signum].head; w; w = w->next)
1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1329}
1330
1331#if EV_USE_SIGNALFD
1332static void
1333sigfdcb (EV_P_ ev_io *iow, int revents)
1334{
1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1336
1337 for (;;)
1338 {
1339 ssize_t res = read (sigfd, si, sizeof (si));
1340
1341 /* not ISO-C, as res might be -1, but works with SuS */
1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1344
1345 if (res < (ssize_t)sizeof (si))
1346 break;
1347 }
1348}
1349#endif
1350
1351/*****************************************************************************/
1352
1353static WL childs [EV_PID_HASHSIZE];
665 1354
666#ifndef _WIN32 1355#ifndef _WIN32
667 1356
668static struct ev_signal childev; 1357static ev_signal childev;
1358
1359#ifndef WIFCONTINUED
1360# define WIFCONTINUED(status) 0
1361#endif
1362
1363/* handle a single child status event */
1364inline_speed void
1365child_reap (EV_P_ int chain, int pid, int status)
1366{
1367 ev_child *w;
1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1369
1370 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1371 {
1372 if ((w->pid == pid || !w->pid)
1373 && (!traced || (w->flags & 1)))
1374 {
1375 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1376 w->rpid = pid;
1377 w->rstatus = status;
1378 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1379 }
1380 }
1381}
669 1382
670#ifndef WCONTINUED 1383#ifndef WCONTINUED
671# define WCONTINUED 0 1384# define WCONTINUED 0
672#endif 1385#endif
673 1386
1387/* called on sigchld etc., calls waitpid */
674static void 1388static void
675child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
676{
677 struct ev_child *w;
678
679 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
680 if (w->pid == pid || !w->pid)
681 {
682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
683 w->rpid = pid;
684 w->rstatus = status;
685 ev_feed_event (EV_A_ (W)w, EV_CHILD);
686 }
687}
688
689static void
690childcb (EV_P_ struct ev_signal *sw, int revents) 1389childcb (EV_P_ ev_signal *sw, int revents)
691{ 1390{
692 int pid, status; 1391 int pid, status;
693 1392
1393 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1394 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
695 { 1395 if (!WCONTINUED
1396 || errno != EINVAL
1397 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1398 return;
1399
696 /* make sure we are called again until all childs have been reaped */ 1400 /* make sure we are called again until all children have been reaped */
1401 /* we need to do it this way so that the callback gets called before we continue */
697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1402 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
698 1403
699 child_reap (EV_A_ sw, pid, pid, status); 1404 child_reap (EV_A_ pid, pid, status);
1405 if (EV_PID_HASHSIZE > 1)
700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1406 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
701 }
702} 1407}
703 1408
704#endif 1409#endif
705 1410
706/*****************************************************************************/ 1411/*****************************************************************************/
707 1412
1413#if EV_USE_PORT
1414# include "ev_port.c"
1415#endif
708#if EV_USE_KQUEUE 1416#if EV_USE_KQUEUE
709# include "ev_kqueue.c" 1417# include "ev_kqueue.c"
710#endif 1418#endif
711#if EV_USE_EPOLL 1419#if EV_USE_EPOLL
712# include "ev_epoll.c" 1420# include "ev_epoll.c"
729{ 1437{
730 return EV_VERSION_MINOR; 1438 return EV_VERSION_MINOR;
731} 1439}
732 1440
733/* return true if we are running with elevated privileges and should ignore env variables */ 1441/* return true if we are running with elevated privileges and should ignore env variables */
734static int 1442int inline_size
735enable_secure (void) 1443enable_secure (void)
736{ 1444{
737#ifdef _WIN32 1445#ifdef _WIN32
738 return 0; 1446 return 0;
739#else 1447#else
740 return getuid () != geteuid () 1448 return getuid () != geteuid ()
741 || getgid () != getegid (); 1449 || getgid () != getegid ();
742#endif 1450#endif
743} 1451}
744 1452
745int 1453unsigned int
746ev_method (EV_P) 1454ev_supported_backends (void)
747{ 1455{
748 return method; 1456 unsigned int flags = 0;
749}
750 1457
751static void 1458 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
752loop_init (EV_P_ int methods) 1459 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1460 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1461 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1462 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1463
1464 return flags;
1465}
1466
1467unsigned int
1468ev_recommended_backends (void)
753{ 1469{
754 if (!method) 1470 unsigned int flags = ev_supported_backends ();
1471
1472#ifndef __NetBSD__
1473 /* kqueue is borked on everything but netbsd apparently */
1474 /* it usually doesn't work correctly on anything but sockets and pipes */
1475 flags &= ~EVBACKEND_KQUEUE;
1476#endif
1477#ifdef __APPLE__
1478 /* only select works correctly on that "unix-certified" platform */
1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1481#endif
1482
1483 return flags;
1484}
1485
1486unsigned int
1487ev_embeddable_backends (void)
1488{
1489 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1490
1491 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1492 /* please fix it and tell me how to detect the fix */
1493 flags &= ~EVBACKEND_EPOLL;
1494
1495 return flags;
1496}
1497
1498unsigned int
1499ev_backend (EV_P)
1500{
1501 return backend;
1502}
1503
1504#if EV_MINIMAL < 2
1505unsigned int
1506ev_loop_count (EV_P)
1507{
1508 return loop_count;
1509}
1510
1511unsigned int
1512ev_loop_depth (EV_P)
1513{
1514 return loop_depth;
1515}
1516
1517void
1518ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1519{
1520 io_blocktime = interval;
1521}
1522
1523void
1524ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1525{
1526 timeout_blocktime = interval;
1527}
1528
1529void
1530ev_set_userdata (EV_P_ void *data)
1531{
1532 userdata = data;
1533}
1534
1535void *
1536ev_userdata (EV_P)
1537{
1538 return userdata;
1539}
1540
1541void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542{
1543 invoke_cb = invoke_pending_cb;
1544}
1545
1546void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547{
1548 release_cb = release;
1549 acquire_cb = acquire;
1550}
1551#endif
1552
1553/* initialise a loop structure, must be zero-initialised */
1554static void noinline
1555loop_init (EV_P_ unsigned int flags)
1556{
1557 if (!backend)
755 { 1558 {
1559#if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567#endif
1568
756#if EV_USE_MONOTONIC 1569#if EV_USE_MONOTONIC
1570 if (!have_monotonic)
757 { 1571 {
758 struct timespec ts; 1572 struct timespec ts;
1573
759 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
760 have_monotonic = 1; 1575 have_monotonic = 1;
761 } 1576 }
762#endif 1577#endif
763 1578
1579 /* pid check not overridable via env */
1580#ifndef _WIN32
1581 if (flags & EVFLAG_FORKCHECK)
1582 curpid = getpid ();
1583#endif
1584
1585 if (!(flags & EVFLAG_NOENV)
1586 && !enable_secure ()
1587 && getenv ("LIBEV_FLAGS"))
1588 flags = atoi (getenv ("LIBEV_FLAGS"));
1589
764 ev_rt_now = ev_time (); 1590 ev_rt_now = ev_time ();
765 mn_now = get_clock (); 1591 mn_now = get_clock ();
766 now_floor = mn_now; 1592 now_floor = mn_now;
767 rtmn_diff = ev_rt_now - mn_now; 1593 rtmn_diff = ev_rt_now - mn_now;
1594#if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596#endif
768 1597
769 if (methods == EVMETHOD_AUTO) 1598 io_blocktime = 0.;
770 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1599 timeout_blocktime = 0.;
771 methods = atoi (getenv ("LIBEV_METHODS")); 1600 backend = 0;
772 else 1601 backend_fd = -1;
773 methods = EVMETHOD_ANY; 1602 sig_pending = 0;
1603#if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605#endif
1606#if EV_USE_INOTIFY
1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1608#endif
1609#if EV_USE_SIGNALFD
1610 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1611#endif
774 1612
775 method = 0; 1613 if (!(flags & 0x0000ffffU))
1614 flags |= ev_recommended_backends ();
1615
1616#if EV_USE_PORT
1617 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1618#endif
776#if EV_USE_KQUEUE 1619#if EV_USE_KQUEUE
777 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1620 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
778#endif 1621#endif
779#if EV_USE_EPOLL 1622#if EV_USE_EPOLL
780 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1623 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
781#endif 1624#endif
782#if EV_USE_POLL 1625#if EV_USE_POLL
783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1626 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
784#endif 1627#endif
785#if EV_USE_SELECT 1628#if EV_USE_SELECT
786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
787#endif 1630#endif
788 1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
789 ev_init (&sigev, sigcb); 1634 ev_init (&pipe_w, pipecb);
790 ev_set_priority (&sigev, EV_MAXPRI); 1635 ev_set_priority (&pipe_w, EV_MAXPRI);
791 } 1636 }
792} 1637}
793 1638
794void 1639/* free up a loop structure */
1640static void noinline
795loop_destroy (EV_P) 1641loop_destroy (EV_P)
796{ 1642{
797 int i; 1643 int i;
798 1644
1645 if (ev_is_active (&pipe_w))
1646 {
1647 /*ev_ref (EV_A);*/
1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1649
1650#if EV_USE_EVENTFD
1651 if (evfd >= 0)
1652 close (evfd);
1653#endif
1654
1655 if (evpipe [0] >= 0)
1656 {
1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1659 }
1660 }
1661
1662#if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 close (sigfd);
1665#endif
1666
1667#if EV_USE_INOTIFY
1668 if (fs_fd >= 0)
1669 close (fs_fd);
1670#endif
1671
1672 if (backend_fd >= 0)
1673 close (backend_fd);
1674
1675#if EV_USE_PORT
1676 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1677#endif
799#if EV_USE_KQUEUE 1678#if EV_USE_KQUEUE
800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1679 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
801#endif 1680#endif
802#if EV_USE_EPOLL 1681#if EV_USE_EPOLL
803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1682 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
804#endif 1683#endif
805#if EV_USE_POLL 1684#if EV_USE_POLL
806 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1685 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
807#endif 1686#endif
808#if EV_USE_SELECT 1687#if EV_USE_SELECT
809 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1688 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
810#endif 1689#endif
811 1690
812 for (i = NUMPRI; i--; ) 1691 for (i = NUMPRI; i--; )
1692 {
813 array_free (pending, [i]); 1693 array_free (pending, [i]);
1694#if EV_IDLE_ENABLE
1695 array_free (idle, [i]);
1696#endif
1697 }
1698
1699 ev_free (anfds); anfds = 0; anfdmax = 0;
814 1700
815 /* have to use the microsoft-never-gets-it-right macro */ 1701 /* have to use the microsoft-never-gets-it-right macro */
1702 array_free (rfeed, EMPTY);
816 array_free (fdchange, EMPTY); 1703 array_free (fdchange, EMPTY);
817 array_free (timer, EMPTY); 1704 array_free (timer, EMPTY);
818#if EV_PERIODICS 1705#if EV_PERIODIC_ENABLE
819 array_free (periodic, EMPTY); 1706 array_free (periodic, EMPTY);
820#endif 1707#endif
1708#if EV_FORK_ENABLE
821 array_free (idle, EMPTY); 1709 array_free (fork, EMPTY);
1710#endif
822 array_free (prepare, EMPTY); 1711 array_free (prepare, EMPTY);
823 array_free (check, EMPTY); 1712 array_free (check, EMPTY);
1713#if EV_ASYNC_ENABLE
1714 array_free (async, EMPTY);
1715#endif
824 1716
825 method = 0; 1717 backend = 0;
826} 1718}
827 1719
828static void 1720#if EV_USE_INOTIFY
1721inline_size void infy_fork (EV_P);
1722#endif
1723
1724inline_size void
829loop_fork (EV_P) 1725loop_fork (EV_P)
830{ 1726{
1727#if EV_USE_PORT
1728 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1729#endif
1730#if EV_USE_KQUEUE
1731 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1732#endif
831#if EV_USE_EPOLL 1733#if EV_USE_EPOLL
832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1734 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
833#endif 1735#endif
834#if EV_USE_KQUEUE 1736#if EV_USE_INOTIFY
835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1737 infy_fork (EV_A);
836#endif 1738#endif
837 1739
838 if (ev_is_active (&sigev)) 1740 if (ev_is_active (&pipe_w))
839 { 1741 {
840 /* default loop */ 1742 /* this "locks" the handlers against writing to the pipe */
1743 /* while we modify the fd vars */
1744 sig_pending = 1;
1745#if EV_ASYNC_ENABLE
1746 async_pending = 1;
1747#endif
841 1748
842 ev_ref (EV_A); 1749 ev_ref (EV_A);
843 ev_io_stop (EV_A_ &sigev); 1750 ev_io_stop (EV_A_ &pipe_w);
844 close (sigpipe [0]);
845 close (sigpipe [1]);
846 1751
847 while (pipe (sigpipe)) 1752#if EV_USE_EVENTFD
848 syserr ("(libev) error creating pipe"); 1753 if (evfd >= 0)
1754 close (evfd);
1755#endif
849 1756
1757 if (evpipe [0] >= 0)
1758 {
1759 EV_WIN32_CLOSE_FD (evpipe [0]);
1760 EV_WIN32_CLOSE_FD (evpipe [1]);
1761 }
1762
850 siginit (EV_A); 1763 evpipe_init (EV_A);
1764 /* now iterate over everything, in case we missed something */
1765 pipecb (EV_A_ &pipe_w, EV_READ);
851 } 1766 }
852 1767
853 postfork = 0; 1768 postfork = 0;
854} 1769}
1770
1771#if EV_MULTIPLICITY
1772
1773struct ev_loop *
1774ev_loop_new (unsigned int flags)
1775{
1776 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1777
1778 memset (EV_A, 0, sizeof (struct ev_loop));
1779 loop_init (EV_A_ flags);
1780
1781 if (ev_backend (EV_A))
1782 return EV_A;
1783
1784 return 0;
1785}
1786
1787void
1788ev_loop_destroy (EV_P)
1789{
1790 loop_destroy (EV_A);
1791 ev_free (loop);
1792}
1793
1794void
1795ev_loop_fork (EV_P)
1796{
1797 postfork = 1; /* must be in line with ev_default_fork */
1798}
1799#endif /* multiplicity */
1800
1801#if EV_VERIFY
1802static void noinline
1803verify_watcher (EV_P_ W w)
1804{
1805 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1806
1807 if (w->pending)
1808 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1809}
1810
1811static void noinline
1812verify_heap (EV_P_ ANHE *heap, int N)
1813{
1814 int i;
1815
1816 for (i = HEAP0; i < N + HEAP0; ++i)
1817 {
1818 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1819 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1820 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1821
1822 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1823 }
1824}
1825
1826static void noinline
1827array_verify (EV_P_ W *ws, int cnt)
1828{
1829 while (cnt--)
1830 {
1831 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1832 verify_watcher (EV_A_ ws [cnt]);
1833 }
1834}
1835#endif
1836
1837#if EV_MINIMAL < 2
1838void
1839ev_loop_verify (EV_P)
1840{
1841#if EV_VERIFY
1842 int i;
1843 WL w;
1844
1845 assert (activecnt >= -1);
1846
1847 assert (fdchangemax >= fdchangecnt);
1848 for (i = 0; i < fdchangecnt; ++i)
1849 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1850
1851 assert (anfdmax >= 0);
1852 for (i = 0; i < anfdmax; ++i)
1853 for (w = anfds [i].head; w; w = w->next)
1854 {
1855 verify_watcher (EV_A_ (W)w);
1856 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1857 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1858 }
1859
1860 assert (timermax >= timercnt);
1861 verify_heap (EV_A_ timers, timercnt);
1862
1863#if EV_PERIODIC_ENABLE
1864 assert (periodicmax >= periodiccnt);
1865 verify_heap (EV_A_ periodics, periodiccnt);
1866#endif
1867
1868 for (i = NUMPRI; i--; )
1869 {
1870 assert (pendingmax [i] >= pendingcnt [i]);
1871#if EV_IDLE_ENABLE
1872 assert (idleall >= 0);
1873 assert (idlemax [i] >= idlecnt [i]);
1874 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1875#endif
1876 }
1877
1878#if EV_FORK_ENABLE
1879 assert (forkmax >= forkcnt);
1880 array_verify (EV_A_ (W *)forks, forkcnt);
1881#endif
1882
1883#if EV_ASYNC_ENABLE
1884 assert (asyncmax >= asynccnt);
1885 array_verify (EV_A_ (W *)asyncs, asynccnt);
1886#endif
1887
1888 assert (preparemax >= preparecnt);
1889 array_verify (EV_A_ (W *)prepares, preparecnt);
1890
1891 assert (checkmax >= checkcnt);
1892 array_verify (EV_A_ (W *)checks, checkcnt);
1893
1894# if 0
1895 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1896 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1897# endif
1898#endif
1899}
1900#endif
855 1901
856#if EV_MULTIPLICITY 1902#if EV_MULTIPLICITY
857struct ev_loop * 1903struct ev_loop *
858ev_loop_new (int methods) 1904ev_default_loop_init (unsigned int flags)
859{
860 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
861
862 memset (loop, 0, sizeof (struct ev_loop));
863
864 loop_init (EV_A_ methods);
865
866 if (ev_method (EV_A))
867 return loop;
868
869 return 0;
870}
871
872void
873ev_loop_destroy (EV_P)
874{
875 loop_destroy (EV_A);
876 ev_free (loop);
877}
878
879void
880ev_loop_fork (EV_P)
881{
882 postfork = 1;
883}
884
885#endif
886
887#if EV_MULTIPLICITY
888struct ev_loop *
889#else 1905#else
890int 1906int
1907ev_default_loop (unsigned int flags)
891#endif 1908#endif
892ev_default_loop (int methods)
893{ 1909{
894 if (sigpipe [0] == sigpipe [1])
895 if (pipe (sigpipe))
896 return 0;
897
898 if (!default_loop) 1910 if (!ev_default_loop_ptr)
899 { 1911 {
900#if EV_MULTIPLICITY 1912#if EV_MULTIPLICITY
901 struct ev_loop *loop = default_loop = &default_loop_struct; 1913 EV_P = ev_default_loop_ptr = &default_loop_struct;
902#else 1914#else
903 default_loop = 1; 1915 ev_default_loop_ptr = 1;
904#endif 1916#endif
905 1917
906 loop_init (EV_A_ methods); 1918 loop_init (EV_A_ flags);
907 1919
908 if (ev_method (EV_A)) 1920 if (ev_backend (EV_A))
909 { 1921 {
910 siginit (EV_A);
911
912#ifndef _WIN32 1922#ifndef _WIN32
913 ev_signal_init (&childev, childcb, SIGCHLD); 1923 ev_signal_init (&childev, childcb, SIGCHLD);
914 ev_set_priority (&childev, EV_MAXPRI); 1924 ev_set_priority (&childev, EV_MAXPRI);
915 ev_signal_start (EV_A_ &childev); 1925 ev_signal_start (EV_A_ &childev);
916 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1926 ev_unref (EV_A); /* child watcher should not keep loop alive */
917#endif 1927#endif
918 } 1928 }
919 else 1929 else
920 default_loop = 0; 1930 ev_default_loop_ptr = 0;
921 } 1931 }
922 1932
923 return default_loop; 1933 return ev_default_loop_ptr;
924} 1934}
925 1935
926void 1936void
927ev_default_destroy (void) 1937ev_default_destroy (void)
928{ 1938{
929#if EV_MULTIPLICITY 1939#if EV_MULTIPLICITY
930 struct ev_loop *loop = default_loop; 1940 EV_P = ev_default_loop_ptr;
931#endif 1941#endif
1942
1943 ev_default_loop_ptr = 0;
932 1944
933#ifndef _WIN32 1945#ifndef _WIN32
934 ev_ref (EV_A); /* child watcher */ 1946 ev_ref (EV_A); /* child watcher */
935 ev_signal_stop (EV_A_ &childev); 1947 ev_signal_stop (EV_A_ &childev);
936#endif 1948#endif
937 1949
938 ev_ref (EV_A); /* signal watcher */
939 ev_io_stop (EV_A_ &sigev);
940
941 close (sigpipe [0]); sigpipe [0] = 0;
942 close (sigpipe [1]); sigpipe [1] = 0;
943
944 loop_destroy (EV_A); 1950 loop_destroy (EV_A);
945} 1951}
946 1952
947void 1953void
948ev_default_fork (void) 1954ev_default_fork (void)
949{ 1955{
950#if EV_MULTIPLICITY 1956#if EV_MULTIPLICITY
951 struct ev_loop *loop = default_loop; 1957 EV_P = ev_default_loop_ptr;
952#endif 1958#endif
953 1959
954 if (method) 1960 postfork = 1; /* must be in line with ev_loop_fork */
955 postfork = 1;
956} 1961}
957 1962
958/*****************************************************************************/ 1963/*****************************************************************************/
959 1964
960static int 1965void
961any_pending (EV_P) 1966ev_invoke (EV_P_ void *w, int revents)
1967{
1968 EV_CB_INVOKE ((W)w, revents);
1969}
1970
1971unsigned int
1972ev_pending_count (EV_P)
962{ 1973{
963 int pri; 1974 int pri;
1975 unsigned int count = 0;
964 1976
965 for (pri = NUMPRI; pri--; ) 1977 for (pri = NUMPRI; pri--; )
966 if (pendingcnt [pri]) 1978 count += pendingcnt [pri];
967 return 1;
968 1979
969 return 0; 1980 return count;
970} 1981}
971 1982
972static void 1983void noinline
973call_pending (EV_P) 1984ev_invoke_pending (EV_P)
974{ 1985{
975 int pri; 1986 int pri;
976 1987
977 for (pri = NUMPRI; pri--; ) 1988 for (pri = NUMPRI; pri--; )
978 while (pendingcnt [pri]) 1989 while (pendingcnt [pri])
979 { 1990 {
980 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1991 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
981 1992
982 if (p->w) 1993 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
983 { 1994 /* ^ this is no longer true, as pending_w could be here */
1995
984 p->w->pending = 0; 1996 p->w->pending = 0;
985 EV_CB_INVOKE (p->w, p->events); 1997 EV_CB_INVOKE (p->w, p->events);
986 } 1998 EV_FREQUENT_CHECK;
987 } 1999 }
988} 2000}
989 2001
990static void 2002#if EV_IDLE_ENABLE
2003/* make idle watchers pending. this handles the "call-idle */
2004/* only when higher priorities are idle" logic */
2005inline_size void
2006idle_reify (EV_P)
2007{
2008 if (expect_false (idleall))
2009 {
2010 int pri;
2011
2012 for (pri = NUMPRI; pri--; )
2013 {
2014 if (pendingcnt [pri])
2015 break;
2016
2017 if (idlecnt [pri])
2018 {
2019 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2020 break;
2021 }
2022 }
2023 }
2024}
2025#endif
2026
2027/* make timers pending */
2028inline_size void
991timers_reify (EV_P) 2029timers_reify (EV_P)
992{ 2030{
2031 EV_FREQUENT_CHECK;
2032
993 while (timercnt && ((WT)timers [0])->at <= mn_now) 2033 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
994 { 2034 {
995 struct ev_timer *w = timers [0]; 2035 do
996
997 assert (("inactive timer on timer heap detected", ev_is_active (w)));
998
999 /* first reschedule or stop timer */
1000 if (w->repeat)
1001 { 2036 {
2037 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2038
2039 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2040
2041 /* first reschedule or stop timer */
2042 if (w->repeat)
2043 {
2044 ev_at (w) += w->repeat;
2045 if (ev_at (w) < mn_now)
2046 ev_at (w) = mn_now;
2047
1002 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2048 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1003 2049
1004 ((WT)w)->at += w->repeat; 2050 ANHE_at_cache (timers [HEAP0]);
1005 if (((WT)w)->at < mn_now)
1006 ((WT)w)->at = mn_now;
1007
1008 downheap ((WT *)timers, timercnt, 0); 2051 downheap (timers, timercnt, HEAP0);
2052 }
2053 else
2054 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2055
2056 EV_FREQUENT_CHECK;
2057 feed_reverse (EV_A_ (W)w);
1009 } 2058 }
1010 else 2059 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1011 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1012 2060
1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2061 feed_reverse_done (EV_A_ EV_TIMEOUT);
1014 } 2062 }
1015} 2063}
1016 2064
1017#if EV_PERIODICS 2065#if EV_PERIODIC_ENABLE
1018static void 2066/* make periodics pending */
2067inline_size void
1019periodics_reify (EV_P) 2068periodics_reify (EV_P)
1020{ 2069{
2070 EV_FREQUENT_CHECK;
2071
1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2072 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1022 { 2073 {
1023 struct ev_periodic *w = periodics [0]; 2074 int feed_count = 0;
1024 2075
2076 do
2077 {
2078 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2079
1025 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2080 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1026 2081
1027 /* first reschedule or stop timer */ 2082 /* first reschedule or stop timer */
2083 if (w->reschedule_cb)
2084 {
2085 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2086
2087 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2088
2089 ANHE_at_cache (periodics [HEAP0]);
2090 downheap (periodics, periodiccnt, HEAP0);
2091 }
2092 else if (w->interval)
2093 {
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 /* if next trigger time is not sufficiently in the future, put it there */
2096 /* this might happen because of floating point inexactness */
2097 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2098 {
2099 ev_at (w) += w->interval;
2100
2101 /* if interval is unreasonably low we might still have a time in the past */
2102 /* so correct this. this will make the periodic very inexact, but the user */
2103 /* has effectively asked to get triggered more often than possible */
2104 if (ev_at (w) < ev_rt_now)
2105 ev_at (w) = ev_rt_now;
2106 }
2107
2108 ANHE_at_cache (periodics [HEAP0]);
2109 downheap (periodics, periodiccnt, HEAP0);
2110 }
2111 else
2112 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2113
2114 EV_FREQUENT_CHECK;
2115 feed_reverse (EV_A_ (W)w);
2116 }
2117 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2118
2119 feed_reverse_done (EV_A_ EV_PERIODIC);
2120 }
2121}
2122
2123/* simply recalculate all periodics */
2124/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2125static void noinline
2126periodics_reschedule (EV_P)
2127{
2128 int i;
2129
2130 /* adjust periodics after time jump */
2131 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2132 {
2133 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2134
1028 if (w->reschedule_cb) 2135 if (w->reschedule_cb)
2136 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2137 else if (w->interval)
2138 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2139
2140 ANHE_at_cache (periodics [i]);
2141 }
2142
2143 reheap (periodics, periodiccnt);
2144}
2145#endif
2146
2147/* adjust all timers by a given offset */
2148static void noinline
2149timers_reschedule (EV_P_ ev_tstamp adjust)
2150{
2151 int i;
2152
2153 for (i = 0; i < timercnt; ++i)
2154 {
2155 ANHE *he = timers + i + HEAP0;
2156 ANHE_w (*he)->at += adjust;
2157 ANHE_at_cache (*he);
2158 }
2159}
2160
2161/* fetch new monotonic and realtime times from the kernel */
2162/* also detetc if there was a timejump, and act accordingly */
2163inline_speed void
2164time_update (EV_P_ ev_tstamp max_block)
2165{
2166#if EV_USE_MONOTONIC
2167 if (expect_true (have_monotonic))
2168 {
2169 int i;
2170 ev_tstamp odiff = rtmn_diff;
2171
2172 mn_now = get_clock ();
2173
2174 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2175 /* interpolate in the meantime */
2176 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1029 { 2177 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2178 ev_rt_now = rtmn_diff + mn_now;
1031 2179 return;
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1033 downheap ((WT *)periodics, periodiccnt, 0);
1034 } 2180 }
1035 else if (w->interval)
1036 {
1037 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1038 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0);
1040 }
1041 else
1042 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1043 2181
1044 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1045 }
1046}
1047
1048static void
1049periodics_reschedule (EV_P)
1050{
1051 int i;
1052
1053 /* adjust periodics after time jump */
1054 for (i = 0; i < periodiccnt; ++i)
1055 {
1056 struct ev_periodic *w = periodics [i];
1057
1058 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1060 else if (w->interval)
1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1062 }
1063
1064 /* now rebuild the heap */
1065 for (i = periodiccnt >> 1; i--; )
1066 downheap ((WT *)periodics, periodiccnt, i);
1067}
1068#endif
1069
1070inline int
1071time_update_monotonic (EV_P)
1072{
1073 mn_now = get_clock ();
1074
1075 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1076 {
1077 ev_rt_now = rtmn_diff + mn_now;
1078 return 0;
1079 }
1080 else
1081 {
1082 now_floor = mn_now; 2182 now_floor = mn_now;
1083 ev_rt_now = ev_time (); 2183 ev_rt_now = ev_time ();
1084 return 1;
1085 }
1086}
1087 2184
1088static void 2185 /* loop a few times, before making important decisions.
1089time_update (EV_P) 2186 * on the choice of "4": one iteration isn't enough,
1090{ 2187 * in case we get preempted during the calls to
1091 int i; 2188 * ev_time and get_clock. a second call is almost guaranteed
1092 2189 * to succeed in that case, though. and looping a few more times
1093#if EV_USE_MONOTONIC 2190 * doesn't hurt either as we only do this on time-jumps or
1094 if (expect_true (have_monotonic)) 2191 * in the unlikely event of having been preempted here.
1095 { 2192 */
1096 if (time_update_monotonic (EV_A)) 2193 for (i = 4; --i; )
1097 { 2194 {
1098 ev_tstamp odiff = rtmn_diff;
1099
1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1101 {
1102 rtmn_diff = ev_rt_now - mn_now; 2195 rtmn_diff = ev_rt_now - mn_now;
1103 2196
1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2197 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1105 return; /* all is well */ 2198 return; /* all is well */
1106 2199
1107 ev_rt_now = ev_time (); 2200 ev_rt_now = ev_time ();
1108 mn_now = get_clock (); 2201 mn_now = get_clock ();
1109 now_floor = mn_now; 2202 now_floor = mn_now;
1110 } 2203 }
1111 2204
2205 /* no timer adjustment, as the monotonic clock doesn't jump */
2206 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1112# if EV_PERIODICS 2207# if EV_PERIODIC_ENABLE
2208 periodics_reschedule (EV_A);
2209# endif
2210 }
2211 else
2212#endif
2213 {
2214 ev_rt_now = ev_time ();
2215
2216 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2217 {
2218 /* adjust timers. this is easy, as the offset is the same for all of them */
2219 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2220#if EV_PERIODIC_ENABLE
1113 periodics_reschedule (EV_A); 2221 periodics_reschedule (EV_A);
1114# endif 2222#endif
1115 /* no timer adjustment, as the monotonic clock doesn't jump */
1116 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1117 } 2223 }
1118 }
1119 else
1120#endif
1121 {
1122 ev_rt_now = ev_time ();
1123
1124 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1125 {
1126#if EV_PERIODICS
1127 periodics_reschedule (EV_A);
1128#endif
1129
1130 /* adjust timers. this is easy, as the offset is the same for all */
1131 for (i = 0; i < timercnt; ++i)
1132 ((WT)timers [i])->at += ev_rt_now - mn_now;
1133 }
1134 2224
1135 mn_now = ev_rt_now; 2225 mn_now = ev_rt_now;
1136 } 2226 }
1137} 2227}
1138 2228
1139void 2229void
1140ev_ref (EV_P)
1141{
1142 ++activecnt;
1143}
1144
1145void
1146ev_unref (EV_P)
1147{
1148 --activecnt;
1149}
1150
1151static int loop_done;
1152
1153void
1154ev_loop (EV_P_ int flags) 2230ev_loop (EV_P_ int flags)
1155{ 2231{
1156 double block; 2232#if EV_MINIMAL < 2
1157 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2233 ++loop_depth;
2234#endif
2235
2236 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2237
2238 loop_done = EVUNLOOP_CANCEL;
2239
2240 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1158 2241
1159 do 2242 do
1160 { 2243 {
2244#if EV_VERIFY >= 2
2245 ev_loop_verify (EV_A);
2246#endif
2247
2248#ifndef _WIN32
2249 if (expect_false (curpid)) /* penalise the forking check even more */
2250 if (expect_false (getpid () != curpid))
2251 {
2252 curpid = getpid ();
2253 postfork = 1;
2254 }
2255#endif
2256
2257#if EV_FORK_ENABLE
2258 /* we might have forked, so queue fork handlers */
2259 if (expect_false (postfork))
2260 if (forkcnt)
2261 {
2262 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2263 EV_INVOKE_PENDING;
2264 }
2265#endif
2266
1161 /* queue check watchers (and execute them) */ 2267 /* queue prepare watchers (and execute them) */
1162 if (expect_false (preparecnt)) 2268 if (expect_false (preparecnt))
1163 { 2269 {
1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2270 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1165 call_pending (EV_A); 2271 EV_INVOKE_PENDING;
1166 } 2272 }
2273
2274 if (expect_false (loop_done))
2275 break;
1167 2276
1168 /* we might have forked, so reify kernel state if necessary */ 2277 /* we might have forked, so reify kernel state if necessary */
1169 if (expect_false (postfork)) 2278 if (expect_false (postfork))
1170 loop_fork (EV_A); 2279 loop_fork (EV_A);
1171 2280
1172 /* update fd-related kernel structures */ 2281 /* update fd-related kernel structures */
1173 fd_reify (EV_A); 2282 fd_reify (EV_A);
1174 2283
1175 /* calculate blocking time */ 2284 /* calculate blocking time */
2285 {
2286 ev_tstamp waittime = 0.;
2287 ev_tstamp sleeptime = 0.;
1176 2288
1177 /* we only need this for !monotonic clock or timers, but as we basically 2289 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1178 always have timers, we just calculate it always */
1179#if EV_USE_MONOTONIC
1180 if (expect_true (have_monotonic))
1181 time_update_monotonic (EV_A);
1182 else
1183#endif
1184 { 2290 {
1185 ev_rt_now = ev_time (); 2291 /* remember old timestamp for io_blocktime calculation */
1186 mn_now = ev_rt_now; 2292 ev_tstamp prev_mn_now = mn_now;
1187 }
1188 2293
1189 if (flags & EVLOOP_NONBLOCK || idlecnt) 2294 /* update time to cancel out callback processing overhead */
1190 block = 0.; 2295 time_update (EV_A_ 1e100);
1191 else 2296
1192 {
1193 block = MAX_BLOCKTIME; 2297 waittime = MAX_BLOCKTIME;
1194 2298
1195 if (timercnt) 2299 if (timercnt)
1196 { 2300 {
1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2301 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1198 if (block > to) block = to; 2302 if (waittime > to) waittime = to;
1199 } 2303 }
1200 2304
1201#if EV_PERIODICS 2305#if EV_PERIODIC_ENABLE
1202 if (periodiccnt) 2306 if (periodiccnt)
1203 { 2307 {
1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2308 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1205 if (block > to) block = to; 2309 if (waittime > to) waittime = to;
1206 } 2310 }
1207#endif 2311#endif
1208 2312
1209 if (block < 0.) block = 0.; 2313 /* don't let timeouts decrease the waittime below timeout_blocktime */
2314 if (expect_false (waittime < timeout_blocktime))
2315 waittime = timeout_blocktime;
2316
2317 /* extra check because io_blocktime is commonly 0 */
2318 if (expect_false (io_blocktime))
2319 {
2320 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2321
2322 if (sleeptime > waittime - backend_fudge)
2323 sleeptime = waittime - backend_fudge;
2324
2325 if (expect_true (sleeptime > 0.))
2326 {
2327 ev_sleep (sleeptime);
2328 waittime -= sleeptime;
2329 }
2330 }
1210 } 2331 }
1211 2332
1212 method_poll (EV_A_ block); 2333#if EV_MINIMAL < 2
2334 ++loop_count;
2335#endif
2336 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2337 backend_poll (EV_A_ waittime);
2338 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1213 2339
1214 /* update ev_rt_now, do magic */ 2340 /* update ev_rt_now, do magic */
1215 time_update (EV_A); 2341 time_update (EV_A_ waittime + sleeptime);
2342 }
1216 2343
1217 /* queue pending timers and reschedule them */ 2344 /* queue pending timers and reschedule them */
1218 timers_reify (EV_A); /* relative timers called last */ 2345 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS 2346#if EV_PERIODIC_ENABLE
1220 periodics_reify (EV_A); /* absolute timers called first */ 2347 periodics_reify (EV_A); /* absolute timers called first */
1221#endif 2348#endif
1222 2349
2350#if EV_IDLE_ENABLE
1223 /* queue idle watchers unless io or timers are pending */ 2351 /* queue idle watchers unless other events are pending */
1224 if (idlecnt && !any_pending (EV_A)) 2352 idle_reify (EV_A);
1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2353#endif
1226 2354
1227 /* queue check watchers, to be executed first */ 2355 /* queue check watchers, to be executed first */
1228 if (checkcnt) 2356 if (expect_false (checkcnt))
1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2357 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1230 2358
1231 call_pending (EV_A); 2359 EV_INVOKE_PENDING;
1232 } 2360 }
1233 while (activecnt && !loop_done); 2361 while (expect_true (
2362 activecnt
2363 && !loop_done
2364 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2365 ));
1234 2366
1235 if (loop_done != 2) 2367 if (loop_done == EVUNLOOP_ONE)
1236 loop_done = 0; 2368 loop_done = EVUNLOOP_CANCEL;
2369
2370#if EV_MINIMAL < 2
2371 --loop_depth;
2372#endif
1237} 2373}
1238 2374
1239void 2375void
1240ev_unloop (EV_P_ int how) 2376ev_unloop (EV_P_ int how)
1241{ 2377{
1242 loop_done = how; 2378 loop_done = how;
1243} 2379}
1244 2380
2381void
2382ev_ref (EV_P)
2383{
2384 ++activecnt;
2385}
2386
2387void
2388ev_unref (EV_P)
2389{
2390 --activecnt;
2391}
2392
2393void
2394ev_now_update (EV_P)
2395{
2396 time_update (EV_A_ 1e100);
2397}
2398
2399void
2400ev_suspend (EV_P)
2401{
2402 ev_now_update (EV_A);
2403}
2404
2405void
2406ev_resume (EV_P)
2407{
2408 ev_tstamp mn_prev = mn_now;
2409
2410 ev_now_update (EV_A);
2411 timers_reschedule (EV_A_ mn_now - mn_prev);
2412#if EV_PERIODIC_ENABLE
2413 /* TODO: really do this? */
2414 periodics_reschedule (EV_A);
2415#endif
2416}
2417
1245/*****************************************************************************/ 2418/*****************************************************************************/
2419/* singly-linked list management, used when the expected list length is short */
1246 2420
1247inline void 2421inline_size void
1248wlist_add (WL *head, WL elem) 2422wlist_add (WL *head, WL elem)
1249{ 2423{
1250 elem->next = *head; 2424 elem->next = *head;
1251 *head = elem; 2425 *head = elem;
1252} 2426}
1253 2427
1254inline void 2428inline_size void
1255wlist_del (WL *head, WL elem) 2429wlist_del (WL *head, WL elem)
1256{ 2430{
1257 while (*head) 2431 while (*head)
1258 { 2432 {
1259 if (*head == elem) 2433 if (expect_true (*head == elem))
1260 { 2434 {
1261 *head = elem->next; 2435 *head = elem->next;
1262 return; 2436 break;
1263 } 2437 }
1264 2438
1265 head = &(*head)->next; 2439 head = &(*head)->next;
1266 } 2440 }
1267} 2441}
1268 2442
2443/* internal, faster, version of ev_clear_pending */
1269inline void 2444inline_speed void
1270ev_clear_pending (EV_P_ W w) 2445clear_pending (EV_P_ W w)
1271{ 2446{
1272 if (w->pending) 2447 if (w->pending)
1273 { 2448 {
1274 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2449 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1275 w->pending = 0; 2450 w->pending = 0;
1276 } 2451 }
1277} 2452}
1278 2453
2454int
2455ev_clear_pending (EV_P_ void *w)
2456{
2457 W w_ = (W)w;
2458 int pending = w_->pending;
2459
2460 if (expect_true (pending))
2461 {
2462 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2463 p->w = (W)&pending_w;
2464 w_->pending = 0;
2465 return p->events;
2466 }
2467 else
2468 return 0;
2469}
2470
1279inline void 2471inline_size void
2472pri_adjust (EV_P_ W w)
2473{
2474 int pri = ev_priority (w);
2475 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2476 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2477 ev_set_priority (w, pri);
2478}
2479
2480inline_speed void
1280ev_start (EV_P_ W w, int active) 2481ev_start (EV_P_ W w, int active)
1281{ 2482{
1282 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2483 pri_adjust (EV_A_ w);
1283 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1284
1285 w->active = active; 2484 w->active = active;
1286 ev_ref (EV_A); 2485 ev_ref (EV_A);
1287} 2486}
1288 2487
1289inline void 2488inline_size void
1290ev_stop (EV_P_ W w) 2489ev_stop (EV_P_ W w)
1291{ 2490{
1292 ev_unref (EV_A); 2491 ev_unref (EV_A);
1293 w->active = 0; 2492 w->active = 0;
1294} 2493}
1295 2494
1296/*****************************************************************************/ 2495/*****************************************************************************/
1297 2496
1298void 2497void noinline
1299ev_io_start (EV_P_ struct ev_io *w) 2498ev_io_start (EV_P_ ev_io *w)
1300{ 2499{
1301 int fd = w->fd; 2500 int fd = w->fd;
1302 2501
1303 if (ev_is_active (w)) 2502 if (expect_false (ev_is_active (w)))
1304 return; 2503 return;
1305 2504
1306 assert (("ev_io_start called with negative fd", fd >= 0)); 2505 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2506 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2507
2508 EV_FREQUENT_CHECK;
1307 2509
1308 ev_start (EV_A_ (W)w, 1); 2510 ev_start (EV_A_ (W)w, 1);
1309 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2511 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1310 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2512 wlist_add (&anfds[fd].head, (WL)w);
1311 2513
1312 fd_change (EV_A_ fd); 2514 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1313} 2515 w->events &= ~EV__IOFDSET;
1314 2516
1315void 2517 EV_FREQUENT_CHECK;
2518}
2519
2520void noinline
1316ev_io_stop (EV_P_ struct ev_io *w) 2521ev_io_stop (EV_P_ ev_io *w)
1317{ 2522{
1318 ev_clear_pending (EV_A_ (W)w); 2523 clear_pending (EV_A_ (W)w);
1319 if (!ev_is_active (w)) 2524 if (expect_false (!ev_is_active (w)))
1320 return; 2525 return;
1321 2526
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2527 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323 2528
2529 EV_FREQUENT_CHECK;
2530
1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2531 wlist_del (&anfds[w->fd].head, (WL)w);
1325 ev_stop (EV_A_ (W)w); 2532 ev_stop (EV_A_ (W)w);
1326 2533
1327 fd_change (EV_A_ w->fd); 2534 fd_change (EV_A_ w->fd, 1);
1328}
1329 2535
1330void 2536 EV_FREQUENT_CHECK;
2537}
2538
2539void noinline
1331ev_timer_start (EV_P_ struct ev_timer *w) 2540ev_timer_start (EV_P_ ev_timer *w)
1332{ 2541{
1333 if (ev_is_active (w)) 2542 if (expect_false (ev_is_active (w)))
1334 return; 2543 return;
1335 2544
1336 ((WT)w)->at += mn_now; 2545 ev_at (w) += mn_now;
1337 2546
1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2547 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1339 2548
2549 EV_FREQUENT_CHECK;
2550
2551 ++timercnt;
1340 ev_start (EV_A_ (W)w, ++timercnt); 2552 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2553 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1342 timers [timercnt - 1] = w; 2554 ANHE_w (timers [ev_active (w)]) = (WT)w;
1343 upheap ((WT *)timers, timercnt - 1); 2555 ANHE_at_cache (timers [ev_active (w)]);
2556 upheap (timers, ev_active (w));
1344 2557
2558 EV_FREQUENT_CHECK;
2559
1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2560 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1346} 2561}
1347 2562
1348void 2563void noinline
1349ev_timer_stop (EV_P_ struct ev_timer *w) 2564ev_timer_stop (EV_P_ ev_timer *w)
1350{ 2565{
1351 ev_clear_pending (EV_A_ (W)w); 2566 clear_pending (EV_A_ (W)w);
1352 if (!ev_is_active (w)) 2567 if (expect_false (!ev_is_active (w)))
1353 return; 2568 return;
1354 2569
2570 EV_FREQUENT_CHECK;
2571
2572 {
2573 int active = ev_active (w);
2574
1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2575 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1356 2576
1357 if (((W)w)->active < timercnt--) 2577 --timercnt;
2578
2579 if (expect_true (active < timercnt + HEAP0))
1358 { 2580 {
1359 timers [((W)w)->active - 1] = timers [timercnt]; 2581 timers [active] = timers [timercnt + HEAP0];
1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2582 adjustheap (timers, timercnt, active);
1361 } 2583 }
2584 }
1362 2585
1363 ((WT)w)->at -= mn_now; 2586 EV_FREQUENT_CHECK;
2587
2588 ev_at (w) -= mn_now;
1364 2589
1365 ev_stop (EV_A_ (W)w); 2590 ev_stop (EV_A_ (W)w);
1366} 2591}
1367 2592
1368void 2593void noinline
1369ev_timer_again (EV_P_ struct ev_timer *w) 2594ev_timer_again (EV_P_ ev_timer *w)
1370{ 2595{
2596 EV_FREQUENT_CHECK;
2597
1371 if (ev_is_active (w)) 2598 if (ev_is_active (w))
1372 { 2599 {
1373 if (w->repeat) 2600 if (w->repeat)
1374 { 2601 {
1375 ((WT)w)->at = mn_now + w->repeat; 2602 ev_at (w) = mn_now + w->repeat;
2603 ANHE_at_cache (timers [ev_active (w)]);
1376 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2604 adjustheap (timers, timercnt, ev_active (w));
1377 } 2605 }
1378 else 2606 else
1379 ev_timer_stop (EV_A_ w); 2607 ev_timer_stop (EV_A_ w);
1380 } 2608 }
1381 else if (w->repeat) 2609 else if (w->repeat)
2610 {
2611 ev_at (w) = w->repeat;
1382 ev_timer_start (EV_A_ w); 2612 ev_timer_start (EV_A_ w);
1383} 2613 }
1384 2614
2615 EV_FREQUENT_CHECK;
2616}
2617
2618ev_tstamp
2619ev_timer_remaining (EV_P_ ev_timer *w)
2620{
2621 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2622}
2623
1385#if EV_PERIODICS 2624#if EV_PERIODIC_ENABLE
1386void 2625void noinline
1387ev_periodic_start (EV_P_ struct ev_periodic *w) 2626ev_periodic_start (EV_P_ ev_periodic *w)
1388{ 2627{
1389 if (ev_is_active (w)) 2628 if (expect_false (ev_is_active (w)))
1390 return; 2629 return;
1391 2630
1392 if (w->reschedule_cb) 2631 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval) 2633 else if (w->interval)
1395 { 2634 {
1396 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2635 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1397 /* this formula differs from the one in periodic_reify because we do not always round up */ 2636 /* this formula differs from the one in periodic_reify because we do not always round up */
1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2637 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1399 } 2638 }
2639 else
2640 ev_at (w) = w->offset;
1400 2641
2642 EV_FREQUENT_CHECK;
2643
2644 ++periodiccnt;
1401 ev_start (EV_A_ (W)w, ++periodiccnt); 2645 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2646 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1403 periodics [periodiccnt - 1] = w; 2647 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1404 upheap ((WT *)periodics, periodiccnt - 1); 2648 ANHE_at_cache (periodics [ev_active (w)]);
2649 upheap (periodics, ev_active (w));
1405 2650
2651 EV_FREQUENT_CHECK;
2652
1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2653 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1407} 2654}
1408 2655
1409void 2656void noinline
1410ev_periodic_stop (EV_P_ struct ev_periodic *w) 2657ev_periodic_stop (EV_P_ ev_periodic *w)
1411{ 2658{
1412 ev_clear_pending (EV_A_ (W)w); 2659 clear_pending (EV_A_ (W)w);
1413 if (!ev_is_active (w)) 2660 if (expect_false (!ev_is_active (w)))
1414 return; 2661 return;
1415 2662
2663 EV_FREQUENT_CHECK;
2664
2665 {
2666 int active = ev_active (w);
2667
1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2668 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1417 2669
1418 if (((W)w)->active < periodiccnt--) 2670 --periodiccnt;
2671
2672 if (expect_true (active < periodiccnt + HEAP0))
1419 { 2673 {
1420 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2674 periodics [active] = periodics [periodiccnt + HEAP0];
1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2675 adjustheap (periodics, periodiccnt, active);
1422 } 2676 }
2677 }
2678
2679 EV_FREQUENT_CHECK;
1423 2680
1424 ev_stop (EV_A_ (W)w); 2681 ev_stop (EV_A_ (W)w);
1425} 2682}
1426 2683
1427void 2684void noinline
1428ev_periodic_again (EV_P_ struct ev_periodic *w) 2685ev_periodic_again (EV_P_ ev_periodic *w)
1429{ 2686{
1430 /* TODO: use adjustheap and recalculation */ 2687 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w); 2688 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w); 2689 ev_periodic_start (EV_A_ w);
1433} 2690}
1434#endif 2691#endif
1435 2692
1436void
1437ev_idle_start (EV_P_ struct ev_idle *w)
1438{
1439 if (ev_is_active (w))
1440 return;
1441
1442 ev_start (EV_A_ (W)w, ++idlecnt);
1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1444 idles [idlecnt - 1] = w;
1445}
1446
1447void
1448ev_idle_stop (EV_P_ struct ev_idle *w)
1449{
1450 ev_clear_pending (EV_A_ (W)w);
1451 if (!ev_is_active (w))
1452 return;
1453
1454 idles [((W)w)->active - 1] = idles [--idlecnt];
1455 ev_stop (EV_A_ (W)w);
1456}
1457
1458void
1459ev_prepare_start (EV_P_ struct ev_prepare *w)
1460{
1461 if (ev_is_active (w))
1462 return;
1463
1464 ev_start (EV_A_ (W)w, ++preparecnt);
1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1466 prepares [preparecnt - 1] = w;
1467}
1468
1469void
1470ev_prepare_stop (EV_P_ struct ev_prepare *w)
1471{
1472 ev_clear_pending (EV_A_ (W)w);
1473 if (!ev_is_active (w))
1474 return;
1475
1476 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1477 ev_stop (EV_A_ (W)w);
1478}
1479
1480void
1481ev_check_start (EV_P_ struct ev_check *w)
1482{
1483 if (ev_is_active (w))
1484 return;
1485
1486 ev_start (EV_A_ (W)w, ++checkcnt);
1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1488 checks [checkcnt - 1] = w;
1489}
1490
1491void
1492ev_check_stop (EV_P_ struct ev_check *w)
1493{
1494 ev_clear_pending (EV_A_ (W)w);
1495 if (!ev_is_active (w))
1496 return;
1497
1498 checks [((W)w)->active - 1] = checks [--checkcnt];
1499 ev_stop (EV_A_ (W)w);
1500}
1501
1502#ifndef SA_RESTART 2693#ifndef SA_RESTART
1503# define SA_RESTART 0 2694# define SA_RESTART 0
1504#endif 2695#endif
1505 2696
1506void 2697void noinline
1507ev_signal_start (EV_P_ struct ev_signal *w) 2698ev_signal_start (EV_P_ ev_signal *w)
1508{ 2699{
2700 if (expect_false (ev_is_active (w)))
2701 return;
2702
2703 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2704
1509#if EV_MULTIPLICITY 2705#if EV_MULTIPLICITY
1510 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2706 assert (("libev: a signal must not be attached to two different loops",
2707 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2708
2709 signals [w->signum - 1].loop = EV_A;
2710#endif
2711
2712 EV_FREQUENT_CHECK;
2713
2714#if EV_USE_SIGNALFD
2715 if (sigfd == -2)
2716 {
2717 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2718 if (sigfd < 0 && errno == EINVAL)
2719 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2720
2721 if (sigfd >= 0)
2722 {
2723 fd_intern (sigfd); /* doing it twice will not hurt */
2724
2725 sigemptyset (&sigfd_set);
2726
2727 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2728 ev_set_priority (&sigfd_w, EV_MAXPRI);
2729 ev_io_start (EV_A_ &sigfd_w);
2730 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2731 }
2732 }
2733
2734 if (sigfd >= 0)
2735 {
2736 /* TODO: check .head */
2737 sigaddset (&sigfd_set, w->signum);
2738 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2739
2740 signalfd (sigfd, &sigfd_set, 0);
2741 }
2742#endif
2743
2744 ev_start (EV_A_ (W)w, 1);
2745 wlist_add (&signals [w->signum - 1].head, (WL)w);
2746
2747 if (!((WL)w)->next)
2748# if EV_USE_SIGNALFD
2749 if (sigfd < 0) /*TODO*/
1511#endif 2750# endif
1512 if (ev_is_active (w)) 2751 {
2752# if _WIN32
2753 evpipe_init (EV_A);
2754
2755 signal (w->signum, ev_sighandler);
2756# else
2757 struct sigaction sa;
2758
2759 evpipe_init (EV_A);
2760
2761 sa.sa_handler = ev_sighandler;
2762 sigfillset (&sa.sa_mask);
2763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2764 sigaction (w->signum, &sa, 0);
2765
2766 sigemptyset (&sa.sa_mask);
2767 sigaddset (&sa.sa_mask, w->signum);
2768 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2769#endif
2770 }
2771
2772 EV_FREQUENT_CHECK;
2773}
2774
2775void noinline
2776ev_signal_stop (EV_P_ ev_signal *w)
2777{
2778 clear_pending (EV_A_ (W)w);
2779 if (expect_false (!ev_is_active (w)))
1513 return; 2780 return;
1514 2781
1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2782 EV_FREQUENT_CHECK;
2783
2784 wlist_del (&signals [w->signum - 1].head, (WL)w);
2785 ev_stop (EV_A_ (W)w);
2786
2787 if (!signals [w->signum - 1].head)
2788 {
2789#if EV_MULTIPLICITY
2790 signals [w->signum - 1].loop = 0; /* unattach from signal */
2791#endif
2792#if EV_USE_SIGNALFD
2793 if (sigfd >= 0)
2794 {
2795 sigset_t ss;
2796
2797 sigemptyset (&ss);
2798 sigaddset (&ss, w->signum);
2799 sigdelset (&sigfd_set, w->signum);
2800
2801 signalfd (sigfd, &sigfd_set, 0);
2802 sigprocmask (SIG_UNBLOCK, &ss, 0);
2803 }
2804 else
2805#endif
2806 signal (w->signum, SIG_DFL);
2807 }
2808
2809 EV_FREQUENT_CHECK;
2810}
2811
2812void
2813ev_child_start (EV_P_ ev_child *w)
2814{
2815#if EV_MULTIPLICITY
2816 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2817#endif
2818 if (expect_false (ev_is_active (w)))
2819 return;
2820
2821 EV_FREQUENT_CHECK;
1516 2822
1517 ev_start (EV_A_ (W)w, 1); 2823 ev_start (EV_A_ (W)w, 1);
1518 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2824 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1519 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1520 2825
1521 if (!((WL)w)->next) 2826 EV_FREQUENT_CHECK;
2827}
2828
2829void
2830ev_child_stop (EV_P_ ev_child *w)
2831{
2832 clear_pending (EV_A_ (W)w);
2833 if (expect_false (!ev_is_active (w)))
2834 return;
2835
2836 EV_FREQUENT_CHECK;
2837
2838 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2839 ev_stop (EV_A_ (W)w);
2840
2841 EV_FREQUENT_CHECK;
2842}
2843
2844#if EV_STAT_ENABLE
2845
2846# ifdef _WIN32
2847# undef lstat
2848# define lstat(a,b) _stati64 (a,b)
2849# endif
2850
2851#define DEF_STAT_INTERVAL 5.0074891
2852#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2853#define MIN_STAT_INTERVAL 0.1074891
2854
2855static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2856
2857#if EV_USE_INOTIFY
2858# define EV_INOTIFY_BUFSIZE 8192
2859
2860static void noinline
2861infy_add (EV_P_ ev_stat *w)
2862{
2863 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2864
2865 if (w->wd >= 0)
2866 {
2867 struct statfs sfs;
2868
2869 /* now local changes will be tracked by inotify, but remote changes won't */
2870 /* unless the filesystem is known to be local, we therefore still poll */
2871 /* also do poll on <2.6.25, but with normal frequency */
2872
2873 if (!fs_2625)
2874 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2875 else if (!statfs (w->path, &sfs)
2876 && (sfs.f_type == 0x1373 /* devfs */
2877 || sfs.f_type == 0xEF53 /* ext2/3 */
2878 || sfs.f_type == 0x3153464a /* jfs */
2879 || sfs.f_type == 0x52654973 /* reiser3 */
2880 || sfs.f_type == 0x01021994 /* tempfs */
2881 || sfs.f_type == 0x58465342 /* xfs */))
2882 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2883 else
2884 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1522 { 2885 }
2886 else
2887 {
2888 /* can't use inotify, continue to stat */
2889 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2890
2891 /* if path is not there, monitor some parent directory for speedup hints */
2892 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2893 /* but an efficiency issue only */
2894 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2895 {
2896 char path [4096];
2897 strcpy (path, w->path);
2898
2899 do
2900 {
2901 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2902 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2903
2904 char *pend = strrchr (path, '/');
2905
2906 if (!pend || pend == path)
2907 break;
2908
2909 *pend = 0;
2910 w->wd = inotify_add_watch (fs_fd, path, mask);
2911 }
2912 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2913 }
2914 }
2915
2916 if (w->wd >= 0)
2917 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2918
2919 /* now re-arm timer, if required */
2920 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2921 ev_timer_again (EV_A_ &w->timer);
2922 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2923}
2924
2925static void noinline
2926infy_del (EV_P_ ev_stat *w)
2927{
2928 int slot;
2929 int wd = w->wd;
2930
2931 if (wd < 0)
2932 return;
2933
2934 w->wd = -2;
2935 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2936 wlist_del (&fs_hash [slot].head, (WL)w);
2937
2938 /* remove this watcher, if others are watching it, they will rearm */
2939 inotify_rm_watch (fs_fd, wd);
2940}
2941
2942static void noinline
2943infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2944{
2945 if (slot < 0)
2946 /* overflow, need to check for all hash slots */
2947 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2948 infy_wd (EV_A_ slot, wd, ev);
2949 else
2950 {
2951 WL w_;
2952
2953 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2954 {
2955 ev_stat *w = (ev_stat *)w_;
2956 w_ = w_->next; /* lets us remove this watcher and all before it */
2957
2958 if (w->wd == wd || wd == -1)
2959 {
2960 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2961 {
2962 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2963 w->wd = -1;
2964 infy_add (EV_A_ w); /* re-add, no matter what */
2965 }
2966
2967 stat_timer_cb (EV_A_ &w->timer, 0);
2968 }
2969 }
2970 }
2971}
2972
2973static void
2974infy_cb (EV_P_ ev_io *w, int revents)
2975{
2976 char buf [EV_INOTIFY_BUFSIZE];
2977 struct inotify_event *ev = (struct inotify_event *)buf;
2978 int ofs;
2979 int len = read (fs_fd, buf, sizeof (buf));
2980
2981 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2982 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2983}
2984
2985inline_size void
2986check_2625 (EV_P)
2987{
2988 /* kernels < 2.6.25 are borked
2989 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2990 */
2991 struct utsname buf;
2992 int major, minor, micro;
2993
2994 if (uname (&buf))
2995 return;
2996
2997 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2998 return;
2999
3000 if (major < 2
3001 || (major == 2 && minor < 6)
3002 || (major == 2 && minor == 6 && micro < 25))
3003 return;
3004
3005 fs_2625 = 1;
3006}
3007
3008inline_size int
3009infy_newfd (void)
3010{
3011#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3012 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3013 if (fd >= 0)
3014 return fd;
3015#endif
3016 return inotify_init ();
3017}
3018
3019inline_size void
3020infy_init (EV_P)
3021{
3022 if (fs_fd != -2)
3023 return;
3024
3025 fs_fd = -1;
3026
3027 check_2625 (EV_A);
3028
3029 fs_fd = infy_newfd ();
3030
3031 if (fs_fd >= 0)
3032 {
3033 fd_intern (fs_fd);
3034 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3035 ev_set_priority (&fs_w, EV_MAXPRI);
3036 ev_io_start (EV_A_ &fs_w);
3037 ev_unref (EV_A);
3038 }
3039}
3040
3041inline_size void
3042infy_fork (EV_P)
3043{
3044 int slot;
3045
3046 if (fs_fd < 0)
3047 return;
3048
3049 ev_ref (EV_A);
3050 ev_io_stop (EV_A_ &fs_w);
3051 close (fs_fd);
3052 fs_fd = infy_newfd ();
3053
3054 if (fs_fd >= 0)
3055 {
3056 fd_intern (fs_fd);
3057 ev_io_set (&fs_w, fs_fd, EV_READ);
3058 ev_io_start (EV_A_ &fs_w);
3059 ev_unref (EV_A);
3060 }
3061
3062 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3063 {
3064 WL w_ = fs_hash [slot].head;
3065 fs_hash [slot].head = 0;
3066
3067 while (w_)
3068 {
3069 ev_stat *w = (ev_stat *)w_;
3070 w_ = w_->next; /* lets us add this watcher */
3071
3072 w->wd = -1;
3073
3074 if (fs_fd >= 0)
3075 infy_add (EV_A_ w); /* re-add, no matter what */
3076 else
3077 {
3078 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3079 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3080 ev_timer_again (EV_A_ &w->timer);
3081 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3082 }
3083 }
3084 }
3085}
3086
3087#endif
3088
1523#if _WIN32 3089#ifdef _WIN32
1524 signal (w->signum, sighandler); 3090# define EV_LSTAT(p,b) _stati64 (p, b)
1525#else 3091#else
1526 struct sigaction sa; 3092# define EV_LSTAT(p,b) lstat (p, b)
1527 sa.sa_handler = sighandler;
1528 sigfillset (&sa.sa_mask);
1529 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1530 sigaction (w->signum, &sa, 0);
1531#endif 3093#endif
1532 }
1533}
1534 3094
1535void 3095void
1536ev_signal_stop (EV_P_ struct ev_signal *w) 3096ev_stat_stat (EV_P_ ev_stat *w)
1537{ 3097{
1538 ev_clear_pending (EV_A_ (W)w); 3098 if (lstat (w->path, &w->attr) < 0)
1539 if (!ev_is_active (w)) 3099 w->attr.st_nlink = 0;
3100 else if (!w->attr.st_nlink)
3101 w->attr.st_nlink = 1;
3102}
3103
3104static void noinline
3105stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3106{
3107 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3108
3109 ev_statdata prev = w->attr;
3110 ev_stat_stat (EV_A_ w);
3111
3112 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3113 if (
3114 prev.st_dev != w->attr.st_dev
3115 || prev.st_ino != w->attr.st_ino
3116 || prev.st_mode != w->attr.st_mode
3117 || prev.st_nlink != w->attr.st_nlink
3118 || prev.st_uid != w->attr.st_uid
3119 || prev.st_gid != w->attr.st_gid
3120 || prev.st_rdev != w->attr.st_rdev
3121 || prev.st_size != w->attr.st_size
3122 || prev.st_atime != w->attr.st_atime
3123 || prev.st_mtime != w->attr.st_mtime
3124 || prev.st_ctime != w->attr.st_ctime
3125 ) {
3126 /* we only update w->prev on actual differences */
3127 /* in case we test more often than invoke the callback, */
3128 /* to ensure that prev is always different to attr */
3129 w->prev = prev;
3130
3131 #if EV_USE_INOTIFY
3132 if (fs_fd >= 0)
3133 {
3134 infy_del (EV_A_ w);
3135 infy_add (EV_A_ w);
3136 ev_stat_stat (EV_A_ w); /* avoid race... */
3137 }
3138 #endif
3139
3140 ev_feed_event (EV_A_ w, EV_STAT);
3141 }
3142}
3143
3144void
3145ev_stat_start (EV_P_ ev_stat *w)
3146{
3147 if (expect_false (ev_is_active (w)))
1540 return; 3148 return;
1541 3149
1542 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3150 ev_stat_stat (EV_A_ w);
3151
3152 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3153 w->interval = MIN_STAT_INTERVAL;
3154
3155 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3156 ev_set_priority (&w->timer, ev_priority (w));
3157
3158#if EV_USE_INOTIFY
3159 infy_init (EV_A);
3160
3161 if (fs_fd >= 0)
3162 infy_add (EV_A_ w);
3163 else
3164#endif
3165 {
3166 ev_timer_again (EV_A_ &w->timer);
3167 ev_unref (EV_A);
3168 }
3169
3170 ev_start (EV_A_ (W)w, 1);
3171
3172 EV_FREQUENT_CHECK;
3173}
3174
3175void
3176ev_stat_stop (EV_P_ ev_stat *w)
3177{
3178 clear_pending (EV_A_ (W)w);
3179 if (expect_false (!ev_is_active (w)))
3180 return;
3181
3182 EV_FREQUENT_CHECK;
3183
3184#if EV_USE_INOTIFY
3185 infy_del (EV_A_ w);
3186#endif
3187
3188 if (ev_is_active (&w->timer))
3189 {
3190 ev_ref (EV_A);
3191 ev_timer_stop (EV_A_ &w->timer);
3192 }
3193
1543 ev_stop (EV_A_ (W)w); 3194 ev_stop (EV_A_ (W)w);
1544 3195
1545 if (!signals [w->signum - 1].head) 3196 EV_FREQUENT_CHECK;
1546 signal (w->signum, SIG_DFL);
1547} 3197}
3198#endif
1548 3199
3200#if EV_IDLE_ENABLE
1549void 3201void
1550ev_child_start (EV_P_ struct ev_child *w) 3202ev_idle_start (EV_P_ ev_idle *w)
1551{ 3203{
1552#if EV_MULTIPLICITY
1553 assert (("child watchers are only supported in the default loop", loop == default_loop));
1554#endif
1555 if (ev_is_active (w)) 3204 if (expect_false (ev_is_active (w)))
1556 return; 3205 return;
1557 3206
3207 pri_adjust (EV_A_ (W)w);
3208
3209 EV_FREQUENT_CHECK;
3210
3211 {
3212 int active = ++idlecnt [ABSPRI (w)];
3213
3214 ++idleall;
3215 ev_start (EV_A_ (W)w, active);
3216
3217 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3218 idles [ABSPRI (w)][active - 1] = w;
3219 }
3220
3221 EV_FREQUENT_CHECK;
3222}
3223
3224void
3225ev_idle_stop (EV_P_ ev_idle *w)
3226{
3227 clear_pending (EV_A_ (W)w);
3228 if (expect_false (!ev_is_active (w)))
3229 return;
3230
3231 EV_FREQUENT_CHECK;
3232
3233 {
3234 int active = ev_active (w);
3235
3236 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3237 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3238
3239 ev_stop (EV_A_ (W)w);
3240 --idleall;
3241 }
3242
3243 EV_FREQUENT_CHECK;
3244}
3245#endif
3246
3247void
3248ev_prepare_start (EV_P_ ev_prepare *w)
3249{
3250 if (expect_false (ev_is_active (w)))
3251 return;
3252
3253 EV_FREQUENT_CHECK;
3254
3255 ev_start (EV_A_ (W)w, ++preparecnt);
3256 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3257 prepares [preparecnt - 1] = w;
3258
3259 EV_FREQUENT_CHECK;
3260}
3261
3262void
3263ev_prepare_stop (EV_P_ ev_prepare *w)
3264{
3265 clear_pending (EV_A_ (W)w);
3266 if (expect_false (!ev_is_active (w)))
3267 return;
3268
3269 EV_FREQUENT_CHECK;
3270
3271 {
3272 int active = ev_active (w);
3273
3274 prepares [active - 1] = prepares [--preparecnt];
3275 ev_active (prepares [active - 1]) = active;
3276 }
3277
3278 ev_stop (EV_A_ (W)w);
3279
3280 EV_FREQUENT_CHECK;
3281}
3282
3283void
3284ev_check_start (EV_P_ ev_check *w)
3285{
3286 if (expect_false (ev_is_active (w)))
3287 return;
3288
3289 EV_FREQUENT_CHECK;
3290
3291 ev_start (EV_A_ (W)w, ++checkcnt);
3292 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3293 checks [checkcnt - 1] = w;
3294
3295 EV_FREQUENT_CHECK;
3296}
3297
3298void
3299ev_check_stop (EV_P_ ev_check *w)
3300{
3301 clear_pending (EV_A_ (W)w);
3302 if (expect_false (!ev_is_active (w)))
3303 return;
3304
3305 EV_FREQUENT_CHECK;
3306
3307 {
3308 int active = ev_active (w);
3309
3310 checks [active - 1] = checks [--checkcnt];
3311 ev_active (checks [active - 1]) = active;
3312 }
3313
3314 ev_stop (EV_A_ (W)w);
3315
3316 EV_FREQUENT_CHECK;
3317}
3318
3319#if EV_EMBED_ENABLE
3320void noinline
3321ev_embed_sweep (EV_P_ ev_embed *w)
3322{
3323 ev_loop (w->other, EVLOOP_NONBLOCK);
3324}
3325
3326static void
3327embed_io_cb (EV_P_ ev_io *io, int revents)
3328{
3329 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3330
3331 if (ev_cb (w))
3332 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3333 else
3334 ev_loop (w->other, EVLOOP_NONBLOCK);
3335}
3336
3337static void
3338embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3339{
3340 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3341
3342 {
3343 EV_P = w->other;
3344
3345 while (fdchangecnt)
3346 {
3347 fd_reify (EV_A);
3348 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3349 }
3350 }
3351}
3352
3353static void
3354embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3355{
3356 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3357
3358 ev_embed_stop (EV_A_ w);
3359
3360 {
3361 EV_P = w->other;
3362
3363 ev_loop_fork (EV_A);
3364 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3365 }
3366
3367 ev_embed_start (EV_A_ w);
3368}
3369
3370#if 0
3371static void
3372embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3373{
3374 ev_idle_stop (EV_A_ idle);
3375}
3376#endif
3377
3378void
3379ev_embed_start (EV_P_ ev_embed *w)
3380{
3381 if (expect_false (ev_is_active (w)))
3382 return;
3383
3384 {
3385 EV_P = w->other;
3386 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3387 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3388 }
3389
3390 EV_FREQUENT_CHECK;
3391
3392 ev_set_priority (&w->io, ev_priority (w));
3393 ev_io_start (EV_A_ &w->io);
3394
3395 ev_prepare_init (&w->prepare, embed_prepare_cb);
3396 ev_set_priority (&w->prepare, EV_MINPRI);
3397 ev_prepare_start (EV_A_ &w->prepare);
3398
3399 ev_fork_init (&w->fork, embed_fork_cb);
3400 ev_fork_start (EV_A_ &w->fork);
3401
3402 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3403
1558 ev_start (EV_A_ (W)w, 1); 3404 ev_start (EV_A_ (W)w, 1);
1559 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1560}
1561 3405
3406 EV_FREQUENT_CHECK;
3407}
3408
1562void 3409void
1563ev_child_stop (EV_P_ struct ev_child *w) 3410ev_embed_stop (EV_P_ ev_embed *w)
1564{ 3411{
1565 ev_clear_pending (EV_A_ (W)w); 3412 clear_pending (EV_A_ (W)w);
1566 if (!ev_is_active (w)) 3413 if (expect_false (!ev_is_active (w)))
1567 return; 3414 return;
1568 3415
1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3416 EV_FREQUENT_CHECK;
3417
3418 ev_io_stop (EV_A_ &w->io);
3419 ev_prepare_stop (EV_A_ &w->prepare);
3420 ev_fork_stop (EV_A_ &w->fork);
3421
3422 EV_FREQUENT_CHECK;
3423}
3424#endif
3425
3426#if EV_FORK_ENABLE
3427void
3428ev_fork_start (EV_P_ ev_fork *w)
3429{
3430 if (expect_false (ev_is_active (w)))
3431 return;
3432
3433 EV_FREQUENT_CHECK;
3434
3435 ev_start (EV_A_ (W)w, ++forkcnt);
3436 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3437 forks [forkcnt - 1] = w;
3438
3439 EV_FREQUENT_CHECK;
3440}
3441
3442void
3443ev_fork_stop (EV_P_ ev_fork *w)
3444{
3445 clear_pending (EV_A_ (W)w);
3446 if (expect_false (!ev_is_active (w)))
3447 return;
3448
3449 EV_FREQUENT_CHECK;
3450
3451 {
3452 int active = ev_active (w);
3453
3454 forks [active - 1] = forks [--forkcnt];
3455 ev_active (forks [active - 1]) = active;
3456 }
3457
1570 ev_stop (EV_A_ (W)w); 3458 ev_stop (EV_A_ (W)w);
3459
3460 EV_FREQUENT_CHECK;
1571} 3461}
3462#endif
3463
3464#if EV_ASYNC_ENABLE
3465void
3466ev_async_start (EV_P_ ev_async *w)
3467{
3468 if (expect_false (ev_is_active (w)))
3469 return;
3470
3471 evpipe_init (EV_A);
3472
3473 EV_FREQUENT_CHECK;
3474
3475 ev_start (EV_A_ (W)w, ++asynccnt);
3476 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3477 asyncs [asynccnt - 1] = w;
3478
3479 EV_FREQUENT_CHECK;
3480}
3481
3482void
3483ev_async_stop (EV_P_ ev_async *w)
3484{
3485 clear_pending (EV_A_ (W)w);
3486 if (expect_false (!ev_is_active (w)))
3487 return;
3488
3489 EV_FREQUENT_CHECK;
3490
3491 {
3492 int active = ev_active (w);
3493
3494 asyncs [active - 1] = asyncs [--asynccnt];
3495 ev_active (asyncs [active - 1]) = active;
3496 }
3497
3498 ev_stop (EV_A_ (W)w);
3499
3500 EV_FREQUENT_CHECK;
3501}
3502
3503void
3504ev_async_send (EV_P_ ev_async *w)
3505{
3506 w->sent = 1;
3507 evpipe_write (EV_A_ &async_pending);
3508}
3509#endif
1572 3510
1573/*****************************************************************************/ 3511/*****************************************************************************/
1574 3512
1575struct ev_once 3513struct ev_once
1576{ 3514{
1577 struct ev_io io; 3515 ev_io io;
1578 struct ev_timer to; 3516 ev_timer to;
1579 void (*cb)(int revents, void *arg); 3517 void (*cb)(int revents, void *arg);
1580 void *arg; 3518 void *arg;
1581}; 3519};
1582 3520
1583static void 3521static void
1584once_cb (EV_P_ struct ev_once *once, int revents) 3522once_cb (EV_P_ struct ev_once *once, int revents)
1585{ 3523{
1586 void (*cb)(int revents, void *arg) = once->cb; 3524 void (*cb)(int revents, void *arg) = once->cb;
1587 void *arg = once->arg; 3525 void *arg = once->arg;
1588 3526
1589 ev_io_stop (EV_A_ &once->io); 3527 ev_io_stop (EV_A_ &once->io);
1590 ev_timer_stop (EV_A_ &once->to); 3528 ev_timer_stop (EV_A_ &once->to);
1591 ev_free (once); 3529 ev_free (once);
1592 3530
1593 cb (revents, arg); 3531 cb (revents, arg);
1594} 3532}
1595 3533
1596static void 3534static void
1597once_cb_io (EV_P_ struct ev_io *w, int revents) 3535once_cb_io (EV_P_ ev_io *w, int revents)
1598{ 3536{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3537 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3538
3539 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1600} 3540}
1601 3541
1602static void 3542static void
1603once_cb_to (EV_P_ struct ev_timer *w, int revents) 3543once_cb_to (EV_P_ ev_timer *w, int revents)
1604{ 3544{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3545 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3546
3547 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1606} 3548}
1607 3549
1608void 3550void
1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3551ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1610{ 3552{
1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3553 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1612 3554
1613 if (!once) 3555 if (expect_false (!once))
3556 {
1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3557 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1615 else 3558 return;
1616 { 3559 }
3560
1617 once->cb = cb; 3561 once->cb = cb;
1618 once->arg = arg; 3562 once->arg = arg;
1619 3563
1620 ev_init (&once->io, once_cb_io); 3564 ev_init (&once->io, once_cb_io);
1621 if (fd >= 0) 3565 if (fd >= 0)
3566 {
3567 ev_io_set (&once->io, fd, events);
3568 ev_io_start (EV_A_ &once->io);
3569 }
3570
3571 ev_init (&once->to, once_cb_to);
3572 if (timeout >= 0.)
3573 {
3574 ev_timer_set (&once->to, timeout, 0.);
3575 ev_timer_start (EV_A_ &once->to);
3576 }
3577}
3578
3579/*****************************************************************************/
3580
3581#if EV_WALK_ENABLE
3582void
3583ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3584{
3585 int i, j;
3586 ev_watcher_list *wl, *wn;
3587
3588 if (types & (EV_IO | EV_EMBED))
3589 for (i = 0; i < anfdmax; ++i)
3590 for (wl = anfds [i].head; wl; )
1622 { 3591 {
1623 ev_io_set (&once->io, fd, events); 3592 wn = wl->next;
1624 ev_io_start (EV_A_ &once->io); 3593
3594#if EV_EMBED_ENABLE
3595 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3596 {
3597 if (types & EV_EMBED)
3598 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3599 }
3600 else
3601#endif
3602#if EV_USE_INOTIFY
3603 if (ev_cb ((ev_io *)wl) == infy_cb)
3604 ;
3605 else
3606#endif
3607 if ((ev_io *)wl != &pipe_w)
3608 if (types & EV_IO)
3609 cb (EV_A_ EV_IO, wl);
3610
3611 wl = wn;
1625 } 3612 }
1626 3613
1627 ev_init (&once->to, once_cb_to); 3614 if (types & (EV_TIMER | EV_STAT))
1628 if (timeout >= 0.) 3615 for (i = timercnt + HEAP0; i-- > HEAP0; )
3616#if EV_STAT_ENABLE
3617 /*TODO: timer is not always active*/
3618 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1629 { 3619 {
1630 ev_timer_set (&once->to, timeout, 0.); 3620 if (types & EV_STAT)
1631 ev_timer_start (EV_A_ &once->to); 3621 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1632 } 3622 }
1633 } 3623 else
3624#endif
3625 if (types & EV_TIMER)
3626 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3627
3628#if EV_PERIODIC_ENABLE
3629 if (types & EV_PERIODIC)
3630 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3631 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3632#endif
3633
3634#if EV_IDLE_ENABLE
3635 if (types & EV_IDLE)
3636 for (j = NUMPRI; i--; )
3637 for (i = idlecnt [j]; i--; )
3638 cb (EV_A_ EV_IDLE, idles [j][i]);
3639#endif
3640
3641#if EV_FORK_ENABLE
3642 if (types & EV_FORK)
3643 for (i = forkcnt; i--; )
3644 if (ev_cb (forks [i]) != embed_fork_cb)
3645 cb (EV_A_ EV_FORK, forks [i]);
3646#endif
3647
3648#if EV_ASYNC_ENABLE
3649 if (types & EV_ASYNC)
3650 for (i = asynccnt; i--; )
3651 cb (EV_A_ EV_ASYNC, asyncs [i]);
3652#endif
3653
3654 if (types & EV_PREPARE)
3655 for (i = preparecnt; i--; )
3656#if EV_EMBED_ENABLE
3657 if (ev_cb (prepares [i]) != embed_prepare_cb)
3658#endif
3659 cb (EV_A_ EV_PREPARE, prepares [i]);
3660
3661 if (types & EV_CHECK)
3662 for (i = checkcnt; i--; )
3663 cb (EV_A_ EV_CHECK, checks [i]);
3664
3665 if (types & EV_SIGNAL)
3666 for (i = 0; i < EV_NSIG - 1; ++i)
3667 for (wl = signals [i].head; wl; )
3668 {
3669 wn = wl->next;
3670 cb (EV_A_ EV_SIGNAL, wl);
3671 wl = wn;
3672 }
3673
3674 if (types & EV_CHILD)
3675 for (i = EV_PID_HASHSIZE; i--; )
3676 for (wl = childs [i]; wl; )
3677 {
3678 wn = wl->next;
3679 cb (EV_A_ EV_CHILD, wl);
3680 wl = wn;
3681 }
3682/* EV_STAT 0x00001000 /* stat data changed */
3683/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1634} 3684}
3685#endif
3686
3687#if EV_MULTIPLICITY
3688 #include "ev_wrap.h"
3689#endif
1635 3690
1636#ifdef __cplusplus 3691#ifdef __cplusplus
1637} 3692}
1638#endif 3693#endif
1639 3694

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines