ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC vs.
Revision 1.104 by root, Mon Nov 12 00:39:45 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
84#else
85# define WIN32_LEAN_AND_MEAN
86# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1
71#endif 89# endif
72#include <sys/time.h> 90#endif
73#include <time.h>
74 91
75/**/ 92/**/
76 93
77#ifndef EV_USE_MONOTONIC 94#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 95# define EV_USE_MONOTONIC 1
79#endif 96#endif
80 97
81#ifndef EV_USE_SELECT 98#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 99# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
83#endif 101#endif
84 102
85#ifndef EV_USE_POLL 103#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 104# ifdef _WIN32
105# define EV_USE_POLL 0
106# else
107# define EV_USE_POLL 1
108# endif
87#endif 109#endif
88 110
89#ifndef EV_USE_EPOLL 111#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 112# define EV_USE_EPOLL 0
91#endif 113#endif
106#endif 128#endif
107 129
108#ifndef CLOCK_REALTIME 130#ifndef CLOCK_REALTIME
109# undef EV_USE_REALTIME 131# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0 132# define EV_USE_REALTIME 0
133#endif
134
135#if EV_SELECT_IS_WINSOCKET
136# include <winsock.h>
111#endif 137#endif
112 138
113/**/ 139/**/
114 140
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
119 145
146#ifdef EV_H
147# include EV_H
148#else
120#include "ev.h" 149# include "ev.h"
150#endif
121 151
122#if __GNUC__ >= 3 152#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value)) 153# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline 154# define inline inline
125#else 155#else
131#define expect_true(expr) expect ((expr) != 0, 1) 161#define expect_true(expr) expect ((expr) != 0, 1)
132 162
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI) 164#define ABSPRI(w) ((w)->priority - EV_MINPRI)
135 165
166#define EMPTY /* required for microsofts broken pseudo-c compiler */
167
136typedef struct ev_watcher *W; 168typedef struct ev_watcher *W;
137typedef struct ev_watcher_list *WL; 169typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 170typedef struct ev_watcher_time *WT;
139 171
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 173
174#ifdef _WIN32
175# include "ev_win32.c"
176#endif
177
142/*****************************************************************************/ 178/*****************************************************************************/
143 179
180static void (*syserr_cb)(const char *msg);
181
182void ev_set_syserr_cb (void (*cb)(const char *msg))
183{
184 syserr_cb = cb;
185}
186
187static void
188syserr (const char *msg)
189{
190 if (!msg)
191 msg = "(libev) system error";
192
193 if (syserr_cb)
194 syserr_cb (msg);
195 else
196 {
197 perror (msg);
198 abort ();
199 }
200}
201
202static void *(*alloc)(void *ptr, long size);
203
204void ev_set_allocator (void *(*cb)(void *ptr, long size))
205{
206 alloc = cb;
207}
208
209static void *
210ev_realloc (void *ptr, long size)
211{
212 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
213
214 if (!ptr && size)
215 {
216 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
217 abort ();
218 }
219
220 return ptr;
221}
222
223#define ev_malloc(size) ev_realloc (0, (size))
224#define ev_free(ptr) ev_realloc ((ptr), 0)
225
226/*****************************************************************************/
227
144typedef struct 228typedef struct
145{ 229{
146 struct ev_watcher_list *head; 230 WL head;
147 unsigned char events; 231 unsigned char events;
148 unsigned char reify; 232 unsigned char reify;
233#if EV_SELECT_IS_WINSOCKET
234 SOCKET handle;
235#endif
149} ANFD; 236} ANFD;
150 237
151typedef struct 238typedef struct
152{ 239{
153 W w; 240 W w;
154 int events; 241 int events;
155} ANPENDING; 242} ANPENDING;
156 243
157#if EV_MULTIPLICITY 244#if EV_MULTIPLICITY
158 245
159struct ev_loop 246 struct ev_loop
160{ 247 {
248 ev_tstamp ev_rt_now;
249 #define ev_rt_now ((loop)->ev_rt_now)
161# define VAR(name,decl) decl; 250 #define VAR(name,decl) decl;
162# include "ev_vars.h" 251 #include "ev_vars.h"
163};
164# undef VAR 252 #undef VAR
253 };
165# include "ev_wrap.h" 254 #include "ev_wrap.h"
255
256 struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop;
166 258
167#else 259#else
168 260
261 ev_tstamp ev_rt_now;
169# define VAR(name,decl) static decl; 262 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 263 #include "ev_vars.h"
171# undef VAR 264 #undef VAR
265
266 static int default_loop;
172 267
173#endif 268#endif
174 269
175/*****************************************************************************/ 270/*****************************************************************************/
176 271
177inline ev_tstamp 272ev_tstamp
178ev_time (void) 273ev_time (void)
179{ 274{
180#if EV_USE_REALTIME 275#if EV_USE_REALTIME
181 struct timespec ts; 276 struct timespec ts;
182 clock_gettime (CLOCK_REALTIME, &ts); 277 clock_gettime (CLOCK_REALTIME, &ts);
201#endif 296#endif
202 297
203 return ev_time (); 298 return ev_time ();
204} 299}
205 300
301#if EV_MULTIPLICITY
206ev_tstamp 302ev_tstamp
207ev_now (EV_P) 303ev_now (EV_P)
208{ 304{
209 return rt_now; 305 return ev_rt_now;
210} 306}
307#endif
211 308
212#define array_roundsize(base,n) ((n) | 4 & ~3) 309#define array_roundsize(type,n) ((n) | 4 & ~3)
213 310
214#define array_needsize(base,cur,cnt,init) \ 311#define array_needsize(type,base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 312 if (expect_false ((cnt) > cur)) \
216 { \ 313 { \
217 int newcnt = cur; \ 314 int newcnt = cur; \
218 do \ 315 do \
219 { \ 316 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 317 newcnt = array_roundsize (type, newcnt << 1); \
221 } \ 318 } \
222 while ((cnt) > newcnt); \ 319 while ((cnt) > newcnt); \
223 \ 320 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 321 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
225 init (base + cur, newcnt - cur); \ 322 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 323 cur = newcnt; \
227 } 324 }
325
326#define array_slim(type,stem) \
327 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
328 { \
329 stem ## max = array_roundsize (stem ## cnt >> 1); \
330 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
331 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
332 }
333
334#define array_free(stem, idx) \
335 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 336
229/*****************************************************************************/ 337/*****************************************************************************/
230 338
231static void 339static void
232anfds_init (ANFD *base, int count) 340anfds_init (ANFD *base, int count)
239 347
240 ++base; 348 ++base;
241 } 349 }
242} 350}
243 351
244static void 352void
245event (EV_P_ W w, int events) 353ev_feed_event (EV_P_ void *w, int revents)
246{ 354{
355 W w_ = (W)w;
356
247 if (w->pending) 357 if (w_->pending)
248 { 358 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
250 return; 360 return;
251 } 361 }
252 362
253 w->pending = ++pendingcnt [ABSPRI (w)]; 363 w_->pending = ++pendingcnt [ABSPRI (w_)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
255 pendings [ABSPRI (w)][w->pending - 1].w = w; 365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
256 pendings [ABSPRI (w)][w->pending - 1].events = events; 366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
257} 367}
258 368
259static void 369static void
260queue_events (EV_P_ W *events, int eventcnt, int type) 370queue_events (EV_P_ W *events, int eventcnt, int type)
261{ 371{
262 int i; 372 int i;
263 373
264 for (i = 0; i < eventcnt; ++i) 374 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type); 375 ev_feed_event (EV_A_ events [i], type);
266} 376}
267 377
268static void 378inline void
269fd_event (EV_P_ int fd, int events) 379fd_event (EV_P_ int fd, int revents)
270{ 380{
271 ANFD *anfd = anfds + fd; 381 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 382 struct ev_io *w;
273 383
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
275 { 385 {
276 int ev = w->events & events; 386 int ev = w->events & revents;
277 387
278 if (ev) 388 if (ev)
279 event (EV_A_ (W)w, ev); 389 ev_feed_event (EV_A_ (W)w, ev);
280 } 390 }
391}
392
393void
394ev_feed_fd_event (EV_P_ int fd, int revents)
395{
396 fd_event (EV_A_ fd, revents);
281} 397}
282 398
283/*****************************************************************************/ 399/*****************************************************************************/
284 400
285static void 401static void
296 int events = 0; 412 int events = 0;
297 413
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events; 415 events |= w->events;
300 416
417#if EV_SELECT_IS_WINSOCKET
418 if (events)
419 {
420 unsigned long argp;
421 anfd->handle = _get_osfhandle (fd);
422 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
423 }
424#endif
425
301 anfd->reify = 0; 426 anfd->reify = 0;
302 427
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 428 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 429 anfd->events = events;
307 }
308 } 430 }
309 431
310 fdchangecnt = 0; 432 fdchangecnt = 0;
311} 433}
312 434
313static void 435static void
314fd_change (EV_P_ int fd) 436fd_change (EV_P_ int fd)
315{ 437{
316 if (anfds [fd].reify || fdchangecnt < 0) 438 if (anfds [fd].reify)
317 return; 439 return;
318 440
319 anfds [fd].reify = 1; 441 anfds [fd].reify = 1;
320 442
321 ++fdchangecnt; 443 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
323 fdchanges [fdchangecnt - 1] = fd; 445 fdchanges [fdchangecnt - 1] = fd;
324} 446}
325 447
326static void 448static void
327fd_kill (EV_P_ int fd) 449fd_kill (EV_P_ int fd)
329 struct ev_io *w; 451 struct ev_io *w;
330 452
331 while ((w = (struct ev_io *)anfds [fd].head)) 453 while ((w = (struct ev_io *)anfds [fd].head))
332 { 454 {
333 ev_io_stop (EV_A_ w); 455 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 457 }
458}
459
460static int
461fd_valid (int fd)
462{
463#ifdef _WIN32
464 return _get_osfhandle (fd) != -1;
465#else
466 return fcntl (fd, F_GETFD) != -1;
467#endif
336} 468}
337 469
338/* called on EBADF to verify fds */ 470/* called on EBADF to verify fds */
339static void 471static void
340fd_ebadf (EV_P) 472fd_ebadf (EV_P)
341{ 473{
342 int fd; 474 int fd;
343 475
344 for (fd = 0; fd < anfdmax; ++fd) 476 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 477 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 478 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 479 fd_kill (EV_A_ fd);
348} 480}
349 481
350/* called on ENOMEM in select/poll to kill some fds and retry */ 482/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 483static void
352fd_enomem (EV_P) 484fd_enomem (EV_P)
353{ 485{
354 int fd = anfdmax; 486 int fd;
355 487
356 while (fd--) 488 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 489 if (anfds [fd].events)
358 { 490 {
359 close (fd);
360 fd_kill (EV_A_ fd); 491 fd_kill (EV_A_ fd);
361 return; 492 return;
362 } 493 }
363} 494}
364 495
365/* susually called after fork if method needs to re-arm all fds from scratch */ 496/* usually called after fork if method needs to re-arm all fds from scratch */
366static void 497static void
367fd_rearm_all (EV_P) 498fd_rearm_all (EV_P)
368{ 499{
369 int fd; 500 int fd;
370 501
385 WT w = heap [k]; 516 WT w = heap [k];
386 517
387 while (k && heap [k >> 1]->at > w->at) 518 while (k && heap [k >> 1]->at > w->at)
388 { 519 {
389 heap [k] = heap [k >> 1]; 520 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 521 ((W)heap [k])->active = k + 1;
391 k >>= 1; 522 k >>= 1;
392 } 523 }
393 524
394 heap [k] = w; 525 heap [k] = w;
395 heap [k]->active = k + 1; 526 ((W)heap [k])->active = k + 1;
396 527
397} 528}
398 529
399static void 530static void
400downheap (WT *heap, int N, int k) 531downheap (WT *heap, int N, int k)
410 541
411 if (w->at <= heap [j]->at) 542 if (w->at <= heap [j]->at)
412 break; 543 break;
413 544
414 heap [k] = heap [j]; 545 heap [k] = heap [j];
415 heap [k]->active = k + 1; 546 ((W)heap [k])->active = k + 1;
416 k = j; 547 k = j;
417 } 548 }
418 549
419 heap [k] = w; 550 heap [k] = w;
420 heap [k]->active = k + 1; 551 ((W)heap [k])->active = k + 1;
552}
553
554inline void
555adjustheap (WT *heap, int N, int k)
556{
557 upheap (heap, k);
558 downheap (heap, N, k);
421} 559}
422 560
423/*****************************************************************************/ 561/*****************************************************************************/
424 562
425typedef struct 563typedef struct
426{ 564{
427 struct ev_watcher_list *head; 565 WL head;
428 sig_atomic_t volatile gotsig; 566 sig_atomic_t volatile gotsig;
429} ANSIG; 567} ANSIG;
430 568
431static ANSIG *signals; 569static ANSIG *signals;
432static int signalmax; 570static int signalmax;
448} 586}
449 587
450static void 588static void
451sighandler (int signum) 589sighandler (int signum)
452{ 590{
591#if _WIN32
592 signal (signum, sighandler);
593#endif
594
453 signals [signum - 1].gotsig = 1; 595 signals [signum - 1].gotsig = 1;
454 596
455 if (!gotsig) 597 if (!gotsig)
456 { 598 {
457 int old_errno = errno; 599 int old_errno = errno;
459 write (sigpipe [1], &signum, 1); 601 write (sigpipe [1], &signum, 1);
460 errno = old_errno; 602 errno = old_errno;
461 } 603 }
462} 604}
463 605
606void
607ev_feed_signal_event (EV_P_ int signum)
608{
609 WL w;
610
611#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
613#endif
614
615 --signum;
616
617 if (signum < 0 || signum >= signalmax)
618 return;
619
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624}
625
464static void 626static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 627sigcb (EV_P_ struct ev_io *iow, int revents)
466{ 628{
467 struct ev_watcher_list *w;
468 int signum; 629 int signum;
469 630
470 read (sigpipe [0], &revents, 1); 631 read (sigpipe [0], &revents, 1);
471 gotsig = 0; 632 gotsig = 0;
472 633
473 for (signum = signalmax; signum--; ) 634 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig) 635 if (signals [signum].gotsig)
475 { 636 ev_feed_signal_event (EV_A_ signum + 1);
476 signals [signum].gotsig = 0; 637}
477 638
478 for (w = signals [signum].head; w; w = w->next) 639inline void
479 event (EV_A_ (W)w, EV_SIGNAL); 640fd_intern (int fd)
480 } 641{
642#ifdef _WIN32
643 int arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
645#else
646 fcntl (fd, F_SETFD, FD_CLOEXEC);
647 fcntl (fd, F_SETFL, O_NONBLOCK);
648#endif
481} 649}
482 650
483static void 651static void
484siginit (EV_P) 652siginit (EV_P)
485{ 653{
486#ifndef WIN32 654 fd_intern (sigpipe [0]);
487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 655 fd_intern (sigpipe [1]);
488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
489
490 /* rather than sort out wether we really need nb, set it */
491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
494 656
495 ev_io_set (&sigev, sigpipe [0], EV_READ); 657 ev_io_set (&sigev, sigpipe [0], EV_READ);
496 ev_io_start (EV_A_ &sigev); 658 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */ 659 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 660}
499 661
500/*****************************************************************************/ 662/*****************************************************************************/
501 663
502#ifndef WIN32
503
504static struct ev_child *childs [PID_HASHSIZE]; 664static struct ev_child *childs [PID_HASHSIZE];
665
666#ifndef _WIN32
667
505static struct ev_signal childev; 668static struct ev_signal childev;
506 669
507#ifndef WCONTINUED 670#ifndef WCONTINUED
508# define WCONTINUED 0 671# define WCONTINUED 0
509#endif 672#endif
514 struct ev_child *w; 677 struct ev_child *w;
515 678
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 679 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid) 680 if (w->pid == pid || !w->pid)
518 { 681 {
519 w->priority = sw->priority; /* need to do it *now* */ 682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
520 w->rpid = pid; 683 w->rpid = pid;
521 w->rstatus = status; 684 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD); 685 ev_feed_event (EV_A_ (W)w, EV_CHILD);
523 } 686 }
524} 687}
525 688
526static void 689static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 690childcb (EV_P_ struct ev_signal *sw, int revents)
529 int pid, status; 692 int pid, status;
530 693
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 695 {
533 /* make sure we are called again until all childs have been reaped */ 696 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL); 697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 698
536 child_reap (EV_A_ sw, pid, pid, status); 699 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 } 701 }
539} 702}
569 732
570/* return true if we are running with elevated privileges and should ignore env variables */ 733/* return true if we are running with elevated privileges and should ignore env variables */
571static int 734static int
572enable_secure (void) 735enable_secure (void)
573{ 736{
574#ifdef WIN32 737#ifdef _WIN32
575 return 0; 738 return 0;
576#else 739#else
577 return getuid () != geteuid () 740 return getuid () != geteuid ()
578 || getgid () != getegid (); 741 || getgid () != getegid ();
579#endif 742#endif
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 759 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1; 760 have_monotonic = 1;
598 } 761 }
599#endif 762#endif
600 763
601 rt_now = ev_time (); 764 ev_rt_now = ev_time ();
602 mn_now = get_clock (); 765 mn_now = get_clock ();
603 now_floor = mn_now; 766 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now; 767 rtmn_diff = ev_rt_now - mn_now;
605 768
606 if (methods == EVMETHOD_AUTO) 769 if (methods == EVMETHOD_AUTO)
607 if (!enable_secure () && getenv ("LIBEV_METHODS")) 770 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS")); 771 methods = atoi (getenv ("LIBEV_METHODS"));
609 else 772 else
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif 784#endif
622#if EV_USE_SELECT 785#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif 787#endif
788
789 ev_init (&sigev, sigcb);
790 ev_set_priority (&sigev, EV_MAXPRI);
625 } 791 }
626} 792}
627 793
628void 794void
629loop_destroy (EV_P) 795loop_destroy (EV_P)
630{ 796{
797 int i;
798
631#if EV_USE_KQUEUE 799#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif 801#endif
634#if EV_USE_EPOLL 802#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
639#endif 807#endif
640#if EV_USE_SELECT 808#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 809 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif 810#endif
643 811
812 for (i = NUMPRI; i--; )
813 array_free (pending, [i]);
814
815 /* have to use the microsoft-never-gets-it-right macro */
816 array_free (fdchange, EMPTY);
817 array_free (timer, EMPTY);
818#if EV_PERIODICS
819 array_free (periodic, EMPTY);
820#endif
821 array_free (idle, EMPTY);
822 array_free (prepare, EMPTY);
823 array_free (check, EMPTY);
824
644 method = 0; 825 method = 0;
645 /*TODO*/
646} 826}
647 827
648void 828static void
649loop_fork (EV_P) 829loop_fork (EV_P)
650{ 830{
651 /*TODO*/
652#if EV_USE_EPOLL 831#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif 833#endif
655#if EV_USE_KQUEUE 834#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif 836#endif
837
838 if (ev_is_active (&sigev))
839 {
840 /* default loop */
841
842 ev_ref (EV_A);
843 ev_io_stop (EV_A_ &sigev);
844 close (sigpipe [0]);
845 close (sigpipe [1]);
846
847 while (pipe (sigpipe))
848 syserr ("(libev) error creating pipe");
849
850 siginit (EV_A);
851 }
852
853 postfork = 0;
658} 854}
659 855
660#if EV_MULTIPLICITY 856#if EV_MULTIPLICITY
661struct ev_loop * 857struct ev_loop *
662ev_loop_new (int methods) 858ev_loop_new (int methods)
663{ 859{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 860 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
861
862 memset (loop, 0, sizeof (struct ev_loop));
665 863
666 loop_init (EV_A_ methods); 864 loop_init (EV_A_ methods);
667 865
668 if (ev_method (EV_A)) 866 if (ev_method (EV_A))
669 return loop; 867 return loop;
673 871
674void 872void
675ev_loop_destroy (EV_P) 873ev_loop_destroy (EV_P)
676{ 874{
677 loop_destroy (EV_A); 875 loop_destroy (EV_A);
678 free (loop); 876 ev_free (loop);
679} 877}
680 878
681void 879void
682ev_loop_fork (EV_P) 880ev_loop_fork (EV_P)
683{ 881{
684 loop_fork (EV_A); 882 postfork = 1;
685} 883}
686 884
687#endif 885#endif
688 886
689#if EV_MULTIPLICITY 887#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop * 888struct ev_loop *
694#else 889#else
695static int default_loop;
696
697int 890int
698#endif 891#endif
699ev_default_loop (int methods) 892ev_default_loop (int methods)
700{ 893{
701 if (sigpipe [0] == sigpipe [1]) 894 if (sigpipe [0] == sigpipe [1])
712 905
713 loop_init (EV_A_ methods); 906 loop_init (EV_A_ methods);
714 907
715 if (ev_method (EV_A)) 908 if (ev_method (EV_A))
716 { 909 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 910 siginit (EV_A);
720 911
721#ifndef WIN32 912#ifndef _WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 913 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 914 ev_set_priority (&childev, EV_MAXPRI);
724 ev_signal_start (EV_A_ &childev); 915 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */ 916 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif 917#endif
737{ 928{
738#if EV_MULTIPLICITY 929#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 930 struct ev_loop *loop = default_loop;
740#endif 931#endif
741 932
933#ifndef _WIN32
742 ev_ref (EV_A); /* child watcher */ 934 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 935 ev_signal_stop (EV_A_ &childev);
936#endif
744 937
745 ev_ref (EV_A); /* signal watcher */ 938 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev); 939 ev_io_stop (EV_A_ &sigev);
747 940
748 close (sigpipe [0]); sigpipe [0] = 0; 941 close (sigpipe [0]); sigpipe [0] = 0;
756{ 949{
757#if EV_MULTIPLICITY 950#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 951 struct ev_loop *loop = default_loop;
759#endif 952#endif
760 953
761 loop_fork (EV_A); 954 if (method)
762 955 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 956}
771 957
772/*****************************************************************************/ 958/*****************************************************************************/
959
960static int
961any_pending (EV_P)
962{
963 int pri;
964
965 for (pri = NUMPRI; pri--; )
966 if (pendingcnt [pri])
967 return 1;
968
969 return 0;
970}
773 971
774static void 972static void
775call_pending (EV_P) 973call_pending (EV_P)
776{ 974{
777 int pri; 975 int pri;
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 980 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 981
784 if (p->w) 982 if (p->w)
785 { 983 {
786 p->w->pending = 0; 984 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events); 985 EV_CB_INVOKE (p->w, p->events);
788 } 986 }
789 } 987 }
790} 988}
791 989
792static void 990static void
793timers_reify (EV_P) 991timers_reify (EV_P)
794{ 992{
795 while (timercnt && timers [0]->at <= mn_now) 993 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 994 {
797 struct ev_timer *w = timers [0]; 995 struct ev_timer *w = timers [0];
798 996
799 assert (("inactive timer on timer heap detected", ev_is_active (w))); 997 assert (("inactive timer on timer heap detected", ev_is_active (w)));
800 998
801 /* first reschedule or stop timer */ 999 /* first reschedule or stop timer */
802 if (w->repeat) 1000 if (w->repeat)
803 { 1001 {
804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1002 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1003
805 w->at = mn_now + w->repeat; 1004 ((WT)w)->at += w->repeat;
1005 if (((WT)w)->at < mn_now)
1006 ((WT)w)->at = mn_now;
1007
806 downheap ((WT *)timers, timercnt, 0); 1008 downheap ((WT *)timers, timercnt, 0);
807 } 1009 }
808 else 1010 else
809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1011 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
810 1012
811 event (EV_A_ (W)w, EV_TIMEOUT); 1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
812 } 1014 }
813} 1015}
814 1016
1017#if EV_PERIODICS
815static void 1018static void
816periodics_reify (EV_P) 1019periodics_reify (EV_P)
817{ 1020{
818 while (periodiccnt && periodics [0]->at <= rt_now) 1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
819 { 1022 {
820 struct ev_periodic *w = periodics [0]; 1023 struct ev_periodic *w = periodics [0];
821 1024
822 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1025 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
823 1026
824 /* first reschedule or stop timer */ 1027 /* first reschedule or stop timer */
825 if (w->interval) 1028 if (w->reschedule_cb)
826 { 1029 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1031
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1033 downheap ((WT *)periodics, periodiccnt, 0);
1034 }
1035 else if (w->interval)
1036 {
827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1037 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1038 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
829 downheap ((WT *)periodics, periodiccnt, 0); 1039 downheap ((WT *)periodics, periodiccnt, 0);
830 } 1040 }
831 else 1041 else
832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1042 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
833 1043
834 event (EV_A_ (W)w, EV_PERIODIC); 1044 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
835 } 1045 }
836} 1046}
837 1047
838static void 1048static void
839periodics_reschedule (EV_P) 1049periodics_reschedule (EV_P)
843 /* adjust periodics after time jump */ 1053 /* adjust periodics after time jump */
844 for (i = 0; i < periodiccnt; ++i) 1054 for (i = 0; i < periodiccnt; ++i)
845 { 1055 {
846 struct ev_periodic *w = periodics [i]; 1056 struct ev_periodic *w = periodics [i];
847 1057
1058 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
848 if (w->interval) 1060 else if (w->interval)
849 {
850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
851
852 if (fabs (diff) >= 1e-4)
853 {
854 ev_periodic_stop (EV_A_ w);
855 ev_periodic_start (EV_A_ w);
856
857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
858 }
859 }
860 } 1062 }
1063
1064 /* now rebuild the heap */
1065 for (i = periodiccnt >> 1; i--; )
1066 downheap ((WT *)periodics, periodiccnt, i);
861} 1067}
1068#endif
862 1069
863inline int 1070inline int
864time_update_monotonic (EV_P) 1071time_update_monotonic (EV_P)
865{ 1072{
866 mn_now = get_clock (); 1073 mn_now = get_clock ();
867 1074
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1075 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 { 1076 {
870 rt_now = rtmn_diff + mn_now; 1077 ev_rt_now = rtmn_diff + mn_now;
871 return 0; 1078 return 0;
872 } 1079 }
873 else 1080 else
874 { 1081 {
875 now_floor = mn_now; 1082 now_floor = mn_now;
876 rt_now = ev_time (); 1083 ev_rt_now = ev_time ();
877 return 1; 1084 return 1;
878 } 1085 }
879} 1086}
880 1087
881static void 1088static void
890 { 1097 {
891 ev_tstamp odiff = rtmn_diff; 1098 ev_tstamp odiff = rtmn_diff;
892 1099
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */
894 { 1101 {
895 rtmn_diff = rt_now - mn_now; 1102 rtmn_diff = ev_rt_now - mn_now;
896 1103
897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
898 return; /* all is well */ 1105 return; /* all is well */
899 1106
900 rt_now = ev_time (); 1107 ev_rt_now = ev_time ();
901 mn_now = get_clock (); 1108 mn_now = get_clock ();
902 now_floor = mn_now; 1109 now_floor = mn_now;
903 } 1110 }
904 1111
1112# if EV_PERIODICS
905 periodics_reschedule (EV_A); 1113 periodics_reschedule (EV_A);
1114# endif
906 /* no timer adjustment, as the monotonic clock doesn't jump */ 1115 /* no timer adjustment, as the monotonic clock doesn't jump */
907 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1116 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
908 } 1117 }
909 } 1118 }
910 else 1119 else
911#endif 1120#endif
912 { 1121 {
913 rt_now = ev_time (); 1122 ev_rt_now = ev_time ();
914 1123
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1124 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
916 { 1125 {
1126#if EV_PERIODICS
917 periodics_reschedule (EV_A); 1127 periodics_reschedule (EV_A);
1128#endif
918 1129
919 /* adjust timers. this is easy, as the offset is the same for all */ 1130 /* adjust timers. this is easy, as the offset is the same for all */
920 for (i = 0; i < timercnt; ++i) 1131 for (i = 0; i < timercnt; ++i)
921 timers [i]->at += rt_now - mn_now; 1132 ((WT)timers [i])->at += ev_rt_now - mn_now;
922 } 1133 }
923 1134
924 mn_now = rt_now; 1135 mn_now = ev_rt_now;
925 } 1136 }
926} 1137}
927 1138
928void 1139void
929ev_ref (EV_P) 1140ev_ref (EV_P)
952 { 1163 {
953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
954 call_pending (EV_A); 1165 call_pending (EV_A);
955 } 1166 }
956 1167
1168 /* we might have forked, so reify kernel state if necessary */
1169 if (expect_false (postfork))
1170 loop_fork (EV_A);
1171
957 /* update fd-related kernel structures */ 1172 /* update fd-related kernel structures */
958 fd_reify (EV_A); 1173 fd_reify (EV_A);
959 1174
960 /* calculate blocking time */ 1175 /* calculate blocking time */
961 1176
962 /* we only need this for !monotonic clockor timers, but as we basically 1177 /* we only need this for !monotonic clock or timers, but as we basically
963 always have timers, we just calculate it always */ 1178 always have timers, we just calculate it always */
964#if EV_USE_MONOTONIC 1179#if EV_USE_MONOTONIC
965 if (expect_true (have_monotonic)) 1180 if (expect_true (have_monotonic))
966 time_update_monotonic (EV_A); 1181 time_update_monotonic (EV_A);
967 else 1182 else
968#endif 1183#endif
969 { 1184 {
970 rt_now = ev_time (); 1185 ev_rt_now = ev_time ();
971 mn_now = rt_now; 1186 mn_now = ev_rt_now;
972 } 1187 }
973 1188
974 if (flags & EVLOOP_NONBLOCK || idlecnt) 1189 if (flags & EVLOOP_NONBLOCK || idlecnt)
975 block = 0.; 1190 block = 0.;
976 else 1191 else
977 { 1192 {
978 block = MAX_BLOCKTIME; 1193 block = MAX_BLOCKTIME;
979 1194
980 if (timercnt) 1195 if (timercnt)
981 { 1196 {
982 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
983 if (block > to) block = to; 1198 if (block > to) block = to;
984 } 1199 }
985 1200
1201#if EV_PERIODICS
986 if (periodiccnt) 1202 if (periodiccnt)
987 { 1203 {
988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
989 if (block > to) block = to; 1205 if (block > to) block = to;
990 } 1206 }
1207#endif
991 1208
992 if (block < 0.) block = 0.; 1209 if (block < 0.) block = 0.;
993 } 1210 }
994 1211
995 method_poll (EV_A_ block); 1212 method_poll (EV_A_ block);
996 1213
997 /* update rt_now, do magic */ 1214 /* update ev_rt_now, do magic */
998 time_update (EV_A); 1215 time_update (EV_A);
999 1216
1000 /* queue pending timers and reschedule them */ 1217 /* queue pending timers and reschedule them */
1001 timers_reify (EV_A); /* relative timers called last */ 1218 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS
1002 periodics_reify (EV_A); /* absolute timers called first */ 1220 periodics_reify (EV_A); /* absolute timers called first */
1221#endif
1003 1222
1004 /* queue idle watchers unless io or timers are pending */ 1223 /* queue idle watchers unless io or timers are pending */
1005 if (!pendingcnt) 1224 if (idlecnt && !any_pending (EV_A))
1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1007 1226
1008 /* queue check watchers, to be executed first */ 1227 /* queue check watchers, to be executed first */
1009 if (checkcnt) 1228 if (checkcnt)
1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1085 return; 1304 return;
1086 1305
1087 assert (("ev_io_start called with negative fd", fd >= 0)); 1306 assert (("ev_io_start called with negative fd", fd >= 0));
1088 1307
1089 ev_start (EV_A_ (W)w, 1); 1308 ev_start (EV_A_ (W)w, 1);
1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1309 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1091 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1310 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1092 1311
1093 fd_change (EV_A_ fd); 1312 fd_change (EV_A_ fd);
1094} 1313}
1095 1314
1098{ 1317{
1099 ev_clear_pending (EV_A_ (W)w); 1318 ev_clear_pending (EV_A_ (W)w);
1100 if (!ev_is_active (w)) 1319 if (!ev_is_active (w))
1101 return; 1320 return;
1102 1321
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323
1103 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1104 ev_stop (EV_A_ (W)w); 1325 ev_stop (EV_A_ (W)w);
1105 1326
1106 fd_change (EV_A_ w->fd); 1327 fd_change (EV_A_ w->fd);
1107} 1328}
1110ev_timer_start (EV_P_ struct ev_timer *w) 1331ev_timer_start (EV_P_ struct ev_timer *w)
1111{ 1332{
1112 if (ev_is_active (w)) 1333 if (ev_is_active (w))
1113 return; 1334 return;
1114 1335
1115 w->at += mn_now; 1336 ((WT)w)->at += mn_now;
1116 1337
1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1118 1339
1119 ev_start (EV_A_ (W)w, ++timercnt); 1340 ev_start (EV_A_ (W)w, ++timercnt);
1120 array_needsize (timers, timermax, timercnt, ); 1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1121 timers [timercnt - 1] = w; 1342 timers [timercnt - 1] = w;
1122 upheap ((WT *)timers, timercnt - 1); 1343 upheap ((WT *)timers, timercnt - 1);
1344
1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1123} 1346}
1124 1347
1125void 1348void
1126ev_timer_stop (EV_P_ struct ev_timer *w) 1349ev_timer_stop (EV_P_ struct ev_timer *w)
1127{ 1350{
1128 ev_clear_pending (EV_A_ (W)w); 1351 ev_clear_pending (EV_A_ (W)w);
1129 if (!ev_is_active (w)) 1352 if (!ev_is_active (w))
1130 return; 1353 return;
1131 1354
1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1356
1132 if (w->active < timercnt--) 1357 if (((W)w)->active < timercnt--)
1133 { 1358 {
1134 timers [w->active - 1] = timers [timercnt]; 1359 timers [((W)w)->active - 1] = timers [timercnt];
1135 downheap ((WT *)timers, timercnt, w->active - 1); 1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1136 } 1361 }
1137 1362
1138 w->at = w->repeat; 1363 ((WT)w)->at -= mn_now;
1139 1364
1140 ev_stop (EV_A_ (W)w); 1365 ev_stop (EV_A_ (W)w);
1141} 1366}
1142 1367
1143void 1368void
1145{ 1370{
1146 if (ev_is_active (w)) 1371 if (ev_is_active (w))
1147 { 1372 {
1148 if (w->repeat) 1373 if (w->repeat)
1149 { 1374 {
1150 w->at = mn_now + w->repeat; 1375 ((WT)w)->at = mn_now + w->repeat;
1151 downheap ((WT *)timers, timercnt, w->active - 1); 1376 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1152 } 1377 }
1153 else 1378 else
1154 ev_timer_stop (EV_A_ w); 1379 ev_timer_stop (EV_A_ w);
1155 } 1380 }
1156 else if (w->repeat) 1381 else if (w->repeat)
1157 ev_timer_start (EV_A_ w); 1382 ev_timer_start (EV_A_ w);
1158} 1383}
1159 1384
1385#if EV_PERIODICS
1160void 1386void
1161ev_periodic_start (EV_P_ struct ev_periodic *w) 1387ev_periodic_start (EV_P_ struct ev_periodic *w)
1162{ 1388{
1163 if (ev_is_active (w)) 1389 if (ev_is_active (w))
1164 return; 1390 return;
1165 1391
1392 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval)
1395 {
1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1396 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1167
1168 /* this formula differs from the one in periodic_reify because we do not always round up */ 1397 /* this formula differs from the one in periodic_reify because we do not always round up */
1169 if (w->interval)
1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1399 }
1171 1400
1172 ev_start (EV_A_ (W)w, ++periodiccnt); 1401 ev_start (EV_A_ (W)w, ++periodiccnt);
1173 array_needsize (periodics, periodicmax, periodiccnt, ); 1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1174 periodics [periodiccnt - 1] = w; 1403 periodics [periodiccnt - 1] = w;
1175 upheap ((WT *)periodics, periodiccnt - 1); 1404 upheap ((WT *)periodics, periodiccnt - 1);
1405
1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1176} 1407}
1177 1408
1178void 1409void
1179ev_periodic_stop (EV_P_ struct ev_periodic *w) 1410ev_periodic_stop (EV_P_ struct ev_periodic *w)
1180{ 1411{
1181 ev_clear_pending (EV_A_ (W)w); 1412 ev_clear_pending (EV_A_ (W)w);
1182 if (!ev_is_active (w)) 1413 if (!ev_is_active (w))
1183 return; 1414 return;
1184 1415
1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1417
1185 if (w->active < periodiccnt--) 1418 if (((W)w)->active < periodiccnt--)
1186 { 1419 {
1187 periodics [w->active - 1] = periodics [periodiccnt]; 1420 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1188 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1189 } 1422 }
1190 1423
1191 ev_stop (EV_A_ (W)w); 1424 ev_stop (EV_A_ (W)w);
1192} 1425}
1193 1426
1194void 1427void
1428ev_periodic_again (EV_P_ struct ev_periodic *w)
1429{
1430 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w);
1433}
1434#endif
1435
1436void
1195ev_idle_start (EV_P_ struct ev_idle *w) 1437ev_idle_start (EV_P_ struct ev_idle *w)
1196{ 1438{
1197 if (ev_is_active (w)) 1439 if (ev_is_active (w))
1198 return; 1440 return;
1199 1441
1200 ev_start (EV_A_ (W)w, ++idlecnt); 1442 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, ); 1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1202 idles [idlecnt - 1] = w; 1444 idles [idlecnt - 1] = w;
1203} 1445}
1204 1446
1205void 1447void
1206ev_idle_stop (EV_P_ struct ev_idle *w) 1448ev_idle_stop (EV_P_ struct ev_idle *w)
1207{ 1449{
1208 ev_clear_pending (EV_A_ (W)w); 1450 ev_clear_pending (EV_A_ (W)w);
1451 if (!ev_is_active (w))
1452 return;
1453
1454 idles [((W)w)->active - 1] = idles [--idlecnt];
1455 ev_stop (EV_A_ (W)w);
1456}
1457
1458void
1459ev_prepare_start (EV_P_ struct ev_prepare *w)
1460{
1209 if (ev_is_active (w)) 1461 if (ev_is_active (w))
1210 return; 1462 return;
1211 1463
1212 idles [w->active - 1] = idles [--idlecnt]; 1464 ev_start (EV_A_ (W)w, ++preparecnt);
1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1466 prepares [preparecnt - 1] = w;
1467}
1468
1469void
1470ev_prepare_stop (EV_P_ struct ev_prepare *w)
1471{
1472 ev_clear_pending (EV_A_ (W)w);
1473 if (!ev_is_active (w))
1474 return;
1475
1476 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1213 ev_stop (EV_A_ (W)w); 1477 ev_stop (EV_A_ (W)w);
1214} 1478}
1215 1479
1216void 1480void
1217ev_prepare_start (EV_P_ struct ev_prepare *w) 1481ev_check_start (EV_P_ struct ev_check *w)
1218{ 1482{
1219 if (ev_is_active (w)) 1483 if (ev_is_active (w))
1220 return; 1484 return;
1221 1485
1222 ev_start (EV_A_ (W)w, ++preparecnt); 1486 ev_start (EV_A_ (W)w, ++checkcnt);
1223 array_needsize (prepares, preparemax, preparecnt, ); 1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1224 prepares [preparecnt - 1] = w; 1488 checks [checkcnt - 1] = w;
1225} 1489}
1226 1490
1227void 1491void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w) 1492ev_check_stop (EV_P_ struct ev_check *w)
1229{ 1493{
1230 ev_clear_pending (EV_A_ (W)w); 1494 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w)) 1495 if (!ev_is_active (w))
1232 return; 1496 return;
1233 1497
1234 prepares [w->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w);
1236}
1237
1238void
1239ev_check_start (EV_P_ struct ev_check *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, );
1246 checks [checkcnt - 1] = w;
1247}
1248
1249void
1250ev_check_stop (EV_P_ struct ev_check *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 checks [w->active - 1] = checks [--checkcnt]; 1498 checks [((W)w)->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w); 1499 ev_stop (EV_A_ (W)w);
1258} 1500}
1259 1501
1260#ifndef SA_RESTART 1502#ifndef SA_RESTART
1261# define SA_RESTART 0 1503# define SA_RESTART 0
1271 return; 1513 return;
1272 1514
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1274 1516
1275 ev_start (EV_A_ (W)w, 1); 1517 ev_start (EV_A_ (W)w, 1);
1276 array_needsize (signals, signalmax, w->signum, signals_init); 1518 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1519 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1278 1520
1279 if (!w->next) 1521 if (!((WL)w)->next)
1280 { 1522 {
1523#if _WIN32
1524 signal (w->signum, sighandler);
1525#else
1281 struct sigaction sa; 1526 struct sigaction sa;
1282 sa.sa_handler = sighandler; 1527 sa.sa_handler = sighandler;
1283 sigfillset (&sa.sa_mask); 1528 sigfillset (&sa.sa_mask);
1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1529 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1285 sigaction (w->signum, &sa, 0); 1530 sigaction (w->signum, &sa, 0);
1531#endif
1286 } 1532 }
1287} 1533}
1288 1534
1289void 1535void
1290ev_signal_stop (EV_P_ struct ev_signal *w) 1536ev_signal_stop (EV_P_ struct ev_signal *w)
1315 1561
1316void 1562void
1317ev_child_stop (EV_P_ struct ev_child *w) 1563ev_child_stop (EV_P_ struct ev_child *w)
1318{ 1564{
1319 ev_clear_pending (EV_A_ (W)w); 1565 ev_clear_pending (EV_A_ (W)w);
1320 if (ev_is_active (w)) 1566 if (!ev_is_active (w))
1321 return; 1567 return;
1322 1568
1323 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1324 ev_stop (EV_A_ (W)w); 1570 ev_stop (EV_A_ (W)w);
1325} 1571}
1340 void (*cb)(int revents, void *arg) = once->cb; 1586 void (*cb)(int revents, void *arg) = once->cb;
1341 void *arg = once->arg; 1587 void *arg = once->arg;
1342 1588
1343 ev_io_stop (EV_A_ &once->io); 1589 ev_io_stop (EV_A_ &once->io);
1344 ev_timer_stop (EV_A_ &once->to); 1590 ev_timer_stop (EV_A_ &once->to);
1345 free (once); 1591 ev_free (once);
1346 1592
1347 cb (revents, arg); 1593 cb (revents, arg);
1348} 1594}
1349 1595
1350static void 1596static void
1360} 1606}
1361 1607
1362void 1608void
1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1364{ 1610{
1365 struct ev_once *once = malloc (sizeof (struct ev_once)); 1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1366 1612
1367 if (!once) 1613 if (!once)
1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1369 else 1615 else
1370 { 1616 {
1371 once->cb = cb; 1617 once->cb = cb;
1372 once->arg = arg; 1618 once->arg = arg;
1373 1619
1374 ev_watcher_init (&once->io, once_cb_io); 1620 ev_init (&once->io, once_cb_io);
1375 if (fd >= 0) 1621 if (fd >= 0)
1376 { 1622 {
1377 ev_io_set (&once->io, fd, events); 1623 ev_io_set (&once->io, fd, events);
1378 ev_io_start (EV_A_ &once->io); 1624 ev_io_start (EV_A_ &once->io);
1379 } 1625 }
1380 1626
1381 ev_watcher_init (&once->to, once_cb_to); 1627 ev_init (&once->to, once_cb_to);
1382 if (timeout >= 0.) 1628 if (timeout >= 0.)
1383 { 1629 {
1384 ev_timer_set (&once->to, timeout, 0.); 1630 ev_timer_set (&once->to, timeout, 0.);
1385 ev_timer_start (EV_A_ &once->to); 1631 ev_timer_start (EV_A_ &once->to);
1386 } 1632 }
1387 } 1633 }
1388} 1634}
1389 1635
1636#ifdef __cplusplus
1637}
1638#endif
1639

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines