ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC vs.
Revision 1.104 by root, Mon Nov 12 00:39:45 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
84#else
85# define WIN32_LEAN_AND_MEAN
86# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1
71#endif 89# endif
72#include <sys/time.h> 90#endif
73#include <time.h>
74 91
75/**/ 92/**/
76 93
77#ifndef EV_USE_MONOTONIC 94#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 95# define EV_USE_MONOTONIC 1
79#endif 96#endif
80 97
81#ifndef EV_USE_SELECT 98#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 99# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
83#endif 101#endif
84 102
85#ifndef EV_USE_POLL 103#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 104# ifdef _WIN32
105# define EV_USE_POLL 0
106# else
107# define EV_USE_POLL 1
108# endif
87#endif 109#endif
88 110
89#ifndef EV_USE_EPOLL 111#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 112# define EV_USE_EPOLL 0
91#endif 113#endif
92 114
93#ifndef EV_USE_KQUEUE 115#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 116# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif 117#endif
104 118
105#ifndef EV_USE_REALTIME 119#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1 120# define EV_USE_REALTIME 1
107#endif 121#endif
114#endif 128#endif
115 129
116#ifndef CLOCK_REALTIME 130#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 131# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 132# define EV_USE_REALTIME 0
133#endif
134
135#if EV_SELECT_IS_WINSOCKET
136# include <winsock.h>
119#endif 137#endif
120 138
121/**/ 139/**/
122 140
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 145
146#ifdef EV_H
147# include EV_H
148#else
128#include "ev.h" 149# include "ev.h"
150#endif
129 151
130#if __GNUC__ >= 3 152#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 153# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 154# define inline inline
133#else 155#else
139#define expect_true(expr) expect ((expr) != 0, 1) 161#define expect_true(expr) expect ((expr) != 0, 1)
140 162
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 164#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 165
166#define EMPTY /* required for microsofts broken pseudo-c compiler */
167
144typedef struct ev_watcher *W; 168typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 169typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 170typedef struct ev_watcher_time *WT;
147 171
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 173
150#if WIN32 174#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 175# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 176#endif
155 177
156/*****************************************************************************/ 178/*****************************************************************************/
157 179
158static void (*syserr_cb)(void); 180static void (*syserr_cb)(const char *msg);
159 181
160void ev_set_syserr_cb (void (*cb)(void)) 182void ev_set_syserr_cb (void (*cb)(const char *msg))
161{ 183{
162 syserr_cb = cb; 184 syserr_cb = cb;
163} 185}
164 186
165static void 187static void
166syserr (void) 188syserr (const char *msg)
167{ 189{
190 if (!msg)
191 msg = "(libev) system error";
192
168 if (syserr_cb) 193 if (syserr_cb)
169 syserr_cb (); 194 syserr_cb (msg);
170 else 195 else
171 { 196 {
172 perror ("libev"); 197 perror (msg);
173 abort (); 198 abort ();
174 } 199 }
175} 200}
176 201
177static void *(*alloc)(void *ptr, long size); 202static void *(*alloc)(void *ptr, long size);
203typedef struct 228typedef struct
204{ 229{
205 WL head; 230 WL head;
206 unsigned char events; 231 unsigned char events;
207 unsigned char reify; 232 unsigned char reify;
233#if EV_SELECT_IS_WINSOCKET
234 SOCKET handle;
235#endif
208} ANFD; 236} ANFD;
209 237
210typedef struct 238typedef struct
211{ 239{
212 W w; 240 W w;
213 int events; 241 int events;
214} ANPENDING; 242} ANPENDING;
215 243
216#if EV_MULTIPLICITY 244#if EV_MULTIPLICITY
217 245
218struct ev_loop 246 struct ev_loop
219{ 247 {
248 ev_tstamp ev_rt_now;
249 #define ev_rt_now ((loop)->ev_rt_now)
220# define VAR(name,decl) decl; 250 #define VAR(name,decl) decl;
221# include "ev_vars.h" 251 #include "ev_vars.h"
222};
223# undef VAR 252 #undef VAR
253 };
224# include "ev_wrap.h" 254 #include "ev_wrap.h"
255
256 struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop;
225 258
226#else 259#else
227 260
261 ev_tstamp ev_rt_now;
228# define VAR(name,decl) static decl; 262 #define VAR(name,decl) static decl;
229# include "ev_vars.h" 263 #include "ev_vars.h"
230# undef VAR 264 #undef VAR
265
266 static int default_loop;
231 267
232#endif 268#endif
233 269
234/*****************************************************************************/ 270/*****************************************************************************/
235 271
236inline ev_tstamp 272ev_tstamp
237ev_time (void) 273ev_time (void)
238{ 274{
239#if EV_USE_REALTIME 275#if EV_USE_REALTIME
240 struct timespec ts; 276 struct timespec ts;
241 clock_gettime (CLOCK_REALTIME, &ts); 277 clock_gettime (CLOCK_REALTIME, &ts);
260#endif 296#endif
261 297
262 return ev_time (); 298 return ev_time ();
263} 299}
264 300
301#if EV_MULTIPLICITY
265ev_tstamp 302ev_tstamp
266ev_now (EV_P) 303ev_now (EV_P)
267{ 304{
268 return rt_now; 305 return ev_rt_now;
269} 306}
307#endif
270 308
271#define array_roundsize(base,n) ((n) | 4 & ~3) 309#define array_roundsize(type,n) ((n) | 4 & ~3)
272 310
273#define array_needsize(base,cur,cnt,init) \ 311#define array_needsize(type,base,cur,cnt,init) \
274 if (expect_false ((cnt) > cur)) \ 312 if (expect_false ((cnt) > cur)) \
275 { \ 313 { \
276 int newcnt = cur; \ 314 int newcnt = cur; \
277 do \ 315 do \
278 { \ 316 { \
279 newcnt = array_roundsize (base, newcnt << 1); \ 317 newcnt = array_roundsize (type, newcnt << 1); \
280 } \ 318 } \
281 while ((cnt) > newcnt); \ 319 while ((cnt) > newcnt); \
282 \ 320 \
283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 321 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
284 init (base + cur, newcnt - cur); \ 322 init (base + cur, newcnt - cur); \
285 cur = newcnt; \ 323 cur = newcnt; \
286 } 324 }
287 325
288#define array_slim(stem) \ 326#define array_slim(type,stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 327 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \ 328 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \ 329 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 330 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 331 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 } 332 }
295 333
296#define array_free(stem, idx) \ 334#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 335 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
309 347
310 ++base; 348 ++base;
311 } 349 }
312} 350}
313 351
314static void 352void
315event (EV_P_ W w, int events) 353ev_feed_event (EV_P_ void *w, int revents)
316{ 354{
355 W w_ = (W)w;
356
317 if (w->pending) 357 if (w_->pending)
318 { 358 {
319 pendings [ABSPRI (w)][w->pending - 1].events |= events; 359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
320 return; 360 return;
321 } 361 }
322 362
323 w->pending = ++pendingcnt [ABSPRI (w)]; 363 w_->pending = ++pendingcnt [ABSPRI (w_)];
324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
325 pendings [ABSPRI (w)][w->pending - 1].w = w; 365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
326 pendings [ABSPRI (w)][w->pending - 1].events = events; 366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
327} 367}
328 368
329static void 369static void
330queue_events (EV_P_ W *events, int eventcnt, int type) 370queue_events (EV_P_ W *events, int eventcnt, int type)
331{ 371{
332 int i; 372 int i;
333 373
334 for (i = 0; i < eventcnt; ++i) 374 for (i = 0; i < eventcnt; ++i)
335 event (EV_A_ events [i], type); 375 ev_feed_event (EV_A_ events [i], type);
336} 376}
337 377
338static void 378inline void
339fd_event (EV_P_ int fd, int events) 379fd_event (EV_P_ int fd, int revents)
340{ 380{
341 ANFD *anfd = anfds + fd; 381 ANFD *anfd = anfds + fd;
342 struct ev_io *w; 382 struct ev_io *w;
343 383
344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
345 { 385 {
346 int ev = w->events & events; 386 int ev = w->events & revents;
347 387
348 if (ev) 388 if (ev)
349 event (EV_A_ (W)w, ev); 389 ev_feed_event (EV_A_ (W)w, ev);
350 } 390 }
391}
392
393void
394ev_feed_fd_event (EV_P_ int fd, int revents)
395{
396 fd_event (EV_A_ fd, revents);
351} 397}
352 398
353/*****************************************************************************/ 399/*****************************************************************************/
354 400
355static void 401static void
366 int events = 0; 412 int events = 0;
367 413
368 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
369 events |= w->events; 415 events |= w->events;
370 416
417#if EV_SELECT_IS_WINSOCKET
418 if (events)
419 {
420 unsigned long argp;
421 anfd->handle = _get_osfhandle (fd);
422 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
423 }
424#endif
425
371 anfd->reify = 0; 426 anfd->reify = 0;
372 427
373 method_modify (EV_A_ fd, anfd->events, events); 428 method_modify (EV_A_ fd, anfd->events, events);
374 anfd->events = events; 429 anfd->events = events;
375 } 430 }
378} 433}
379 434
380static void 435static void
381fd_change (EV_P_ int fd) 436fd_change (EV_P_ int fd)
382{ 437{
383 if (anfds [fd].reify || fdchangecnt < 0) 438 if (anfds [fd].reify)
384 return; 439 return;
385 440
386 anfds [fd].reify = 1; 441 anfds [fd].reify = 1;
387 442
388 ++fdchangecnt; 443 ++fdchangecnt;
389 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
390 fdchanges [fdchangecnt - 1] = fd; 445 fdchanges [fdchangecnt - 1] = fd;
391} 446}
392 447
393static void 448static void
394fd_kill (EV_P_ int fd) 449fd_kill (EV_P_ int fd)
396 struct ev_io *w; 451 struct ev_io *w;
397 452
398 while ((w = (struct ev_io *)anfds [fd].head)) 453 while ((w = (struct ev_io *)anfds [fd].head))
399 { 454 {
400 ev_io_stop (EV_A_ w); 455 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 } 457 }
458}
459
460static int
461fd_valid (int fd)
462{
463#ifdef _WIN32
464 return _get_osfhandle (fd) != -1;
465#else
466 return fcntl (fd, F_GETFD) != -1;
467#endif
403} 468}
404 469
405/* called on EBADF to verify fds */ 470/* called on EBADF to verify fds */
406static void 471static void
407fd_ebadf (EV_P) 472fd_ebadf (EV_P)
408{ 473{
409 int fd; 474 int fd;
410 475
411 for (fd = 0; fd < anfdmax; ++fd) 476 for (fd = 0; fd < anfdmax; ++fd)
412 if (anfds [fd].events) 477 if (anfds [fd].events)
413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 478 if (!fd_valid (fd) == -1 && errno == EBADF)
414 fd_kill (EV_A_ fd); 479 fd_kill (EV_A_ fd);
415} 480}
416 481
417/* called on ENOMEM in select/poll to kill some fds and retry */ 482/* called on ENOMEM in select/poll to kill some fds and retry */
418static void 483static void
426 fd_kill (EV_A_ fd); 491 fd_kill (EV_A_ fd);
427 return; 492 return;
428 } 493 }
429} 494}
430 495
431/* susually called after fork if method needs to re-arm all fds from scratch */ 496/* usually called after fork if method needs to re-arm all fds from scratch */
432static void 497static void
433fd_rearm_all (EV_P) 498fd_rearm_all (EV_P)
434{ 499{
435 int fd; 500 int fd;
436 501
484 549
485 heap [k] = w; 550 heap [k] = w;
486 ((W)heap [k])->active = k + 1; 551 ((W)heap [k])->active = k + 1;
487} 552}
488 553
554inline void
555adjustheap (WT *heap, int N, int k)
556{
557 upheap (heap, k);
558 downheap (heap, N, k);
559}
560
489/*****************************************************************************/ 561/*****************************************************************************/
490 562
491typedef struct 563typedef struct
492{ 564{
493 WL head; 565 WL head;
514} 586}
515 587
516static void 588static void
517sighandler (int signum) 589sighandler (int signum)
518{ 590{
519#if WIN32 591#if _WIN32
520 signal (signum, sighandler); 592 signal (signum, sighandler);
521#endif 593#endif
522 594
523 signals [signum - 1].gotsig = 1; 595 signals [signum - 1].gotsig = 1;
524 596
529 write (sigpipe [1], &signum, 1); 601 write (sigpipe [1], &signum, 1);
530 errno = old_errno; 602 errno = old_errno;
531 } 603 }
532} 604}
533 605
606void
607ev_feed_signal_event (EV_P_ int signum)
608{
609 WL w;
610
611#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
613#endif
614
615 --signum;
616
617 if (signum < 0 || signum >= signalmax)
618 return;
619
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624}
625
534static void 626static void
535sigcb (EV_P_ struct ev_io *iow, int revents) 627sigcb (EV_P_ struct ev_io *iow, int revents)
536{ 628{
537 WL w;
538 int signum; 629 int signum;
539 630
540 read (sigpipe [0], &revents, 1); 631 read (sigpipe [0], &revents, 1);
541 gotsig = 0; 632 gotsig = 0;
542 633
543 for (signum = signalmax; signum--; ) 634 for (signum = signalmax; signum--; )
544 if (signals [signum].gotsig) 635 if (signals [signum].gotsig)
545 { 636 ev_feed_signal_event (EV_A_ signum + 1);
546 signals [signum].gotsig = 0; 637}
547 638
548 for (w = signals [signum].head; w; w = w->next) 639inline void
549 event (EV_A_ (W)w, EV_SIGNAL); 640fd_intern (int fd)
550 } 641{
642#ifdef _WIN32
643 int arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
645#else
646 fcntl (fd, F_SETFD, FD_CLOEXEC);
647 fcntl (fd, F_SETFL, O_NONBLOCK);
648#endif
551} 649}
552 650
553static void 651static void
554siginit (EV_P) 652siginit (EV_P)
555{ 653{
556#ifndef WIN32 654 fd_intern (sigpipe [0]);
557 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 655 fd_intern (sigpipe [1]);
558 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
559
560 /* rather than sort out wether we really need nb, set it */
561 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
562 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
563#endif
564 656
565 ev_io_set (&sigev, sigpipe [0], EV_READ); 657 ev_io_set (&sigev, sigpipe [0], EV_READ);
566 ev_io_start (EV_A_ &sigev); 658 ev_io_start (EV_A_ &sigev);
567 ev_unref (EV_A); /* child watcher should not keep loop alive */ 659 ev_unref (EV_A); /* child watcher should not keep loop alive */
568} 660}
569 661
570/*****************************************************************************/ 662/*****************************************************************************/
571 663
572#ifndef WIN32
573
574static struct ev_child *childs [PID_HASHSIZE]; 664static struct ev_child *childs [PID_HASHSIZE];
665
666#ifndef _WIN32
667
575static struct ev_signal childev; 668static struct ev_signal childev;
576 669
577#ifndef WCONTINUED 670#ifndef WCONTINUED
578# define WCONTINUED 0 671# define WCONTINUED 0
579#endif 672#endif
587 if (w->pid == pid || !w->pid) 680 if (w->pid == pid || !w->pid)
588 { 681 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid; 683 w->rpid = pid;
591 w->rstatus = status; 684 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD); 685 ev_feed_event (EV_A_ (W)w, EV_CHILD);
593 } 686 }
594} 687}
595 688
596static void 689static void
597childcb (EV_P_ struct ev_signal *sw, int revents) 690childcb (EV_P_ struct ev_signal *sw, int revents)
599 int pid, status; 692 int pid, status;
600 693
601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
602 { 695 {
603 /* make sure we are called again until all childs have been reaped */ 696 /* make sure we are called again until all childs have been reaped */
604 event (EV_A_ (W)sw, EV_SIGNAL); 697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
605 698
606 child_reap (EV_A_ sw, pid, pid, status); 699 child_reap (EV_A_ sw, pid, pid, status);
607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
608 } 701 }
609} 702}
639 732
640/* return true if we are running with elevated privileges and should ignore env variables */ 733/* return true if we are running with elevated privileges and should ignore env variables */
641static int 734static int
642enable_secure (void) 735enable_secure (void)
643{ 736{
644#ifdef WIN32 737#ifdef _WIN32
645 return 0; 738 return 0;
646#else 739#else
647 return getuid () != geteuid () 740 return getuid () != geteuid ()
648 || getgid () != getegid (); 741 || getgid () != getegid ();
649#endif 742#endif
666 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 759 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
667 have_monotonic = 1; 760 have_monotonic = 1;
668 } 761 }
669#endif 762#endif
670 763
671 rt_now = ev_time (); 764 ev_rt_now = ev_time ();
672 mn_now = get_clock (); 765 mn_now = get_clock ();
673 now_floor = mn_now; 766 now_floor = mn_now;
674 rtmn_diff = rt_now - mn_now; 767 rtmn_diff = ev_rt_now - mn_now;
675 768
676 if (methods == EVMETHOD_AUTO) 769 if (methods == EVMETHOD_AUTO)
677 if (!enable_secure () && getenv ("LIBEV_METHODS")) 770 if (!enable_secure () && getenv ("LIBEV_METHODS"))
678 methods = atoi (getenv ("LIBEV_METHODS")); 771 methods = atoi (getenv ("LIBEV_METHODS"));
679 else 772 else
680 methods = EVMETHOD_ANY; 773 methods = EVMETHOD_ANY;
681 774
682 method = 0; 775 method = 0;
683#if EV_USE_WIN32
684 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
685#endif
686#if EV_USE_KQUEUE 776#if EV_USE_KQUEUE
687 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 777 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
688#endif 778#endif
689#if EV_USE_EPOLL 779#if EV_USE_EPOLL
690 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 780 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
694#endif 784#endif
695#if EV_USE_SELECT 785#if EV_USE_SELECT
696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
697#endif 787#endif
788
789 ev_init (&sigev, sigcb);
790 ev_set_priority (&sigev, EV_MAXPRI);
698 } 791 }
699} 792}
700 793
701void 794void
702loop_destroy (EV_P) 795loop_destroy (EV_P)
703{ 796{
704 int i; 797 int i;
705 798
706#if EV_USE_WIN32
707 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
708#endif
709#if EV_USE_KQUEUE 799#if EV_USE_KQUEUE
710 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
711#endif 801#endif
712#if EV_USE_EPOLL 802#if EV_USE_EPOLL
713 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
720#endif 810#endif
721 811
722 for (i = NUMPRI; i--; ) 812 for (i = NUMPRI; i--; )
723 array_free (pending, [i]); 813 array_free (pending, [i]);
724 814
815 /* have to use the microsoft-never-gets-it-right macro */
725 array_free (fdchange, ); 816 array_free (fdchange, EMPTY);
726 array_free (timer, ); 817 array_free (timer, EMPTY);
818#if EV_PERIODICS
727 array_free (periodic, ); 819 array_free (periodic, EMPTY);
820#endif
728 array_free (idle, ); 821 array_free (idle, EMPTY);
729 array_free (prepare, ); 822 array_free (prepare, EMPTY);
730 array_free (check, ); 823 array_free (check, EMPTY);
731 824
732 method = 0; 825 method = 0;
733 /*TODO*/
734} 826}
735 827
736void 828static void
737loop_fork (EV_P) 829loop_fork (EV_P)
738{ 830{
739 /*TODO*/
740#if EV_USE_EPOLL 831#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742#endif 833#endif
743#if EV_USE_KQUEUE 834#if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745#endif 836#endif
837
838 if (ev_is_active (&sigev))
839 {
840 /* default loop */
841
842 ev_ref (EV_A);
843 ev_io_stop (EV_A_ &sigev);
844 close (sigpipe [0]);
845 close (sigpipe [1]);
846
847 while (pipe (sigpipe))
848 syserr ("(libev) error creating pipe");
849
850 siginit (EV_A);
851 }
852
853 postfork = 0;
746} 854}
747 855
748#if EV_MULTIPLICITY 856#if EV_MULTIPLICITY
749struct ev_loop * 857struct ev_loop *
750ev_loop_new (int methods) 858ev_loop_new (int methods)
769} 877}
770 878
771void 879void
772ev_loop_fork (EV_P) 880ev_loop_fork (EV_P)
773{ 881{
774 loop_fork (EV_A); 882 postfork = 1;
775} 883}
776 884
777#endif 885#endif
778 886
779#if EV_MULTIPLICITY 887#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop * 888struct ev_loop *
784#else 889#else
785static int default_loop;
786
787int 890int
788#endif 891#endif
789ev_default_loop (int methods) 892ev_default_loop (int methods)
790{ 893{
791 if (sigpipe [0] == sigpipe [1]) 894 if (sigpipe [0] == sigpipe [1])
802 905
803 loop_init (EV_A_ methods); 906 loop_init (EV_A_ methods);
804 907
805 if (ev_method (EV_A)) 908 if (ev_method (EV_A))
806 { 909 {
807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
809 siginit (EV_A); 910 siginit (EV_A);
810 911
811#ifndef WIN32 912#ifndef _WIN32
812 ev_signal_init (&childev, childcb, SIGCHLD); 913 ev_signal_init (&childev, childcb, SIGCHLD);
813 ev_set_priority (&childev, EV_MAXPRI); 914 ev_set_priority (&childev, EV_MAXPRI);
814 ev_signal_start (EV_A_ &childev); 915 ev_signal_start (EV_A_ &childev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 916 ev_unref (EV_A); /* child watcher should not keep loop alive */
816#endif 917#endif
827{ 928{
828#if EV_MULTIPLICITY 929#if EV_MULTIPLICITY
829 struct ev_loop *loop = default_loop; 930 struct ev_loop *loop = default_loop;
830#endif 931#endif
831 932
933#ifndef _WIN32
832 ev_ref (EV_A); /* child watcher */ 934 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev); 935 ev_signal_stop (EV_A_ &childev);
936#endif
834 937
835 ev_ref (EV_A); /* signal watcher */ 938 ev_ref (EV_A); /* signal watcher */
836 ev_io_stop (EV_A_ &sigev); 939 ev_io_stop (EV_A_ &sigev);
837 940
838 close (sigpipe [0]); sigpipe [0] = 0; 941 close (sigpipe [0]); sigpipe [0] = 0;
846{ 949{
847#if EV_MULTIPLICITY 950#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop; 951 struct ev_loop *loop = default_loop;
849#endif 952#endif
850 953
851 loop_fork (EV_A); 954 if (method)
852 955 postfork = 1;
853 ev_io_stop (EV_A_ &sigev);
854 close (sigpipe [0]);
855 close (sigpipe [1]);
856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
859 siginit (EV_A);
860} 956}
861 957
862/*****************************************************************************/ 958/*****************************************************************************/
959
960static int
961any_pending (EV_P)
962{
963 int pri;
964
965 for (pri = NUMPRI; pri--; )
966 if (pendingcnt [pri])
967 return 1;
968
969 return 0;
970}
863 971
864static void 972static void
865call_pending (EV_P) 973call_pending (EV_P)
866{ 974{
867 int pri; 975 int pri;
872 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 980 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
873 981
874 if (p->w) 982 if (p->w)
875 { 983 {
876 p->w->pending = 0; 984 p->w->pending = 0;
877 p->w->cb (EV_A_ p->w, p->events); 985 EV_CB_INVOKE (p->w, p->events);
878 } 986 }
879 } 987 }
880} 988}
881 989
882static void 990static void
890 998
891 /* first reschedule or stop timer */ 999 /* first reschedule or stop timer */
892 if (w->repeat) 1000 if (w->repeat)
893 { 1001 {
894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1002 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1003
895 ((WT)w)->at = mn_now + w->repeat; 1004 ((WT)w)->at += w->repeat;
1005 if (((WT)w)->at < mn_now)
1006 ((WT)w)->at = mn_now;
1007
896 downheap ((WT *)timers, timercnt, 0); 1008 downheap ((WT *)timers, timercnt, 0);
897 } 1009 }
898 else 1010 else
899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1011 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
900 1012
901 event (EV_A_ (W)w, EV_TIMEOUT); 1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
902 } 1014 }
903} 1015}
904 1016
1017#if EV_PERIODICS
905static void 1018static void
906periodics_reify (EV_P) 1019periodics_reify (EV_P)
907{ 1020{
908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
909 { 1022 {
910 struct ev_periodic *w = periodics [0]; 1023 struct ev_periodic *w = periodics [0];
911 1024
912 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1025 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
913 1026
914 /* first reschedule or stop timer */ 1027 /* first reschedule or stop timer */
915 if (w->interval) 1028 if (w->reschedule_cb)
916 { 1029 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1031
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1033 downheap ((WT *)periodics, periodiccnt, 0);
1034 }
1035 else if (w->interval)
1036 {
917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1037 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1038 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
919 downheap ((WT *)periodics, periodiccnt, 0); 1039 downheap ((WT *)periodics, periodiccnt, 0);
920 } 1040 }
921 else 1041 else
922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1042 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
923 1043
924 event (EV_A_ (W)w, EV_PERIODIC); 1044 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
925 } 1045 }
926} 1046}
927 1047
928static void 1048static void
929periodics_reschedule (EV_P) 1049periodics_reschedule (EV_P)
933 /* adjust periodics after time jump */ 1053 /* adjust periodics after time jump */
934 for (i = 0; i < periodiccnt; ++i) 1054 for (i = 0; i < periodiccnt; ++i)
935 { 1055 {
936 struct ev_periodic *w = periodics [i]; 1056 struct ev_periodic *w = periodics [i];
937 1057
1058 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
938 if (w->interval) 1060 else if (w->interval)
939 {
940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
941
942 if (fabs (diff) >= 1e-4)
943 {
944 ev_periodic_stop (EV_A_ w);
945 ev_periodic_start (EV_A_ w);
946
947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
948 }
949 }
950 } 1062 }
1063
1064 /* now rebuild the heap */
1065 for (i = periodiccnt >> 1; i--; )
1066 downheap ((WT *)periodics, periodiccnt, i);
951} 1067}
1068#endif
952 1069
953inline int 1070inline int
954time_update_monotonic (EV_P) 1071time_update_monotonic (EV_P)
955{ 1072{
956 mn_now = get_clock (); 1073 mn_now = get_clock ();
957 1074
958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1075 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
959 { 1076 {
960 rt_now = rtmn_diff + mn_now; 1077 ev_rt_now = rtmn_diff + mn_now;
961 return 0; 1078 return 0;
962 } 1079 }
963 else 1080 else
964 { 1081 {
965 now_floor = mn_now; 1082 now_floor = mn_now;
966 rt_now = ev_time (); 1083 ev_rt_now = ev_time ();
967 return 1; 1084 return 1;
968 } 1085 }
969} 1086}
970 1087
971static void 1088static void
980 { 1097 {
981 ev_tstamp odiff = rtmn_diff; 1098 ev_tstamp odiff = rtmn_diff;
982 1099
983 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */
984 { 1101 {
985 rtmn_diff = rt_now - mn_now; 1102 rtmn_diff = ev_rt_now - mn_now;
986 1103
987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
988 return; /* all is well */ 1105 return; /* all is well */
989 1106
990 rt_now = ev_time (); 1107 ev_rt_now = ev_time ();
991 mn_now = get_clock (); 1108 mn_now = get_clock ();
992 now_floor = mn_now; 1109 now_floor = mn_now;
993 } 1110 }
994 1111
1112# if EV_PERIODICS
995 periodics_reschedule (EV_A); 1113 periodics_reschedule (EV_A);
1114# endif
996 /* no timer adjustment, as the monotonic clock doesn't jump */ 1115 /* no timer adjustment, as the monotonic clock doesn't jump */
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1116 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
998 } 1117 }
999 } 1118 }
1000 else 1119 else
1001#endif 1120#endif
1002 { 1121 {
1003 rt_now = ev_time (); 1122 ev_rt_now = ev_time ();
1004 1123
1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1124 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1006 { 1125 {
1126#if EV_PERIODICS
1007 periodics_reschedule (EV_A); 1127 periodics_reschedule (EV_A);
1128#endif
1008 1129
1009 /* adjust timers. this is easy, as the offset is the same for all */ 1130 /* adjust timers. this is easy, as the offset is the same for all */
1010 for (i = 0; i < timercnt; ++i) 1131 for (i = 0; i < timercnt; ++i)
1011 ((WT)timers [i])->at += rt_now - mn_now; 1132 ((WT)timers [i])->at += ev_rt_now - mn_now;
1012 } 1133 }
1013 1134
1014 mn_now = rt_now; 1135 mn_now = ev_rt_now;
1015 } 1136 }
1016} 1137}
1017 1138
1018void 1139void
1019ev_ref (EV_P) 1140ev_ref (EV_P)
1042 { 1163 {
1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1044 call_pending (EV_A); 1165 call_pending (EV_A);
1045 } 1166 }
1046 1167
1168 /* we might have forked, so reify kernel state if necessary */
1169 if (expect_false (postfork))
1170 loop_fork (EV_A);
1171
1047 /* update fd-related kernel structures */ 1172 /* update fd-related kernel structures */
1048 fd_reify (EV_A); 1173 fd_reify (EV_A);
1049 1174
1050 /* calculate blocking time */ 1175 /* calculate blocking time */
1051 1176
1052 /* we only need this for !monotonic clockor timers, but as we basically 1177 /* we only need this for !monotonic clock or timers, but as we basically
1053 always have timers, we just calculate it always */ 1178 always have timers, we just calculate it always */
1054#if EV_USE_MONOTONIC 1179#if EV_USE_MONOTONIC
1055 if (expect_true (have_monotonic)) 1180 if (expect_true (have_monotonic))
1056 time_update_monotonic (EV_A); 1181 time_update_monotonic (EV_A);
1057 else 1182 else
1058#endif 1183#endif
1059 { 1184 {
1060 rt_now = ev_time (); 1185 ev_rt_now = ev_time ();
1061 mn_now = rt_now; 1186 mn_now = ev_rt_now;
1062 } 1187 }
1063 1188
1064 if (flags & EVLOOP_NONBLOCK || idlecnt) 1189 if (flags & EVLOOP_NONBLOCK || idlecnt)
1065 block = 0.; 1190 block = 0.;
1066 else 1191 else
1071 { 1196 {
1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1073 if (block > to) block = to; 1198 if (block > to) block = to;
1074 } 1199 }
1075 1200
1201#if EV_PERIODICS
1076 if (periodiccnt) 1202 if (periodiccnt)
1077 { 1203 {
1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1079 if (block > to) block = to; 1205 if (block > to) block = to;
1080 } 1206 }
1207#endif
1081 1208
1082 if (block < 0.) block = 0.; 1209 if (block < 0.) block = 0.;
1083 } 1210 }
1084 1211
1085 method_poll (EV_A_ block); 1212 method_poll (EV_A_ block);
1086 1213
1087 /* update rt_now, do magic */ 1214 /* update ev_rt_now, do magic */
1088 time_update (EV_A); 1215 time_update (EV_A);
1089 1216
1090 /* queue pending timers and reschedule them */ 1217 /* queue pending timers and reschedule them */
1091 timers_reify (EV_A); /* relative timers called last */ 1218 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS
1092 periodics_reify (EV_A); /* absolute timers called first */ 1220 periodics_reify (EV_A); /* absolute timers called first */
1221#endif
1093 1222
1094 /* queue idle watchers unless io or timers are pending */ 1223 /* queue idle watchers unless io or timers are pending */
1095 if (!pendingcnt) 1224 if (idlecnt && !any_pending (EV_A))
1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1097 1226
1098 /* queue check watchers, to be executed first */ 1227 /* queue check watchers, to be executed first */
1099 if (checkcnt) 1228 if (checkcnt)
1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1175 return; 1304 return;
1176 1305
1177 assert (("ev_io_start called with negative fd", fd >= 0)); 1306 assert (("ev_io_start called with negative fd", fd >= 0));
1178 1307
1179 ev_start (EV_A_ (W)w, 1); 1308 ev_start (EV_A_ (W)w, 1);
1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1309 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1181 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1310 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1182 1311
1183 fd_change (EV_A_ fd); 1312 fd_change (EV_A_ fd);
1184} 1313}
1185 1314
1188{ 1317{
1189 ev_clear_pending (EV_A_ (W)w); 1318 ev_clear_pending (EV_A_ (W)w);
1190 if (!ev_is_active (w)) 1319 if (!ev_is_active (w))
1191 return; 1320 return;
1192 1321
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323
1193 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1194 ev_stop (EV_A_ (W)w); 1325 ev_stop (EV_A_ (W)w);
1195 1326
1196 fd_change (EV_A_ w->fd); 1327 fd_change (EV_A_ w->fd);
1197} 1328}
1205 ((WT)w)->at += mn_now; 1336 ((WT)w)->at += mn_now;
1206 1337
1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1208 1339
1209 ev_start (EV_A_ (W)w, ++timercnt); 1340 ev_start (EV_A_ (W)w, ++timercnt);
1210 array_needsize (timers, timermax, timercnt, ); 1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1211 timers [timercnt - 1] = w; 1342 timers [timercnt - 1] = w;
1212 upheap ((WT *)timers, timercnt - 1); 1343 upheap ((WT *)timers, timercnt - 1);
1213 1344
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215} 1346}
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1225 1356
1226 if (((W)w)->active < timercnt--) 1357 if (((W)w)->active < timercnt--)
1227 { 1358 {
1228 timers [((W)w)->active - 1] = timers [timercnt]; 1359 timers [((W)w)->active - 1] = timers [timercnt];
1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1230 } 1361 }
1231 1362
1232 ((WT)w)->at = w->repeat; 1363 ((WT)w)->at -= mn_now;
1233 1364
1234 ev_stop (EV_A_ (W)w); 1365 ev_stop (EV_A_ (W)w);
1235} 1366}
1236 1367
1237void 1368void
1240 if (ev_is_active (w)) 1371 if (ev_is_active (w))
1241 { 1372 {
1242 if (w->repeat) 1373 if (w->repeat)
1243 { 1374 {
1244 ((WT)w)->at = mn_now + w->repeat; 1375 ((WT)w)->at = mn_now + w->repeat;
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1376 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1246 } 1377 }
1247 else 1378 else
1248 ev_timer_stop (EV_A_ w); 1379 ev_timer_stop (EV_A_ w);
1249 } 1380 }
1250 else if (w->repeat) 1381 else if (w->repeat)
1251 ev_timer_start (EV_A_ w); 1382 ev_timer_start (EV_A_ w);
1252} 1383}
1253 1384
1385#if EV_PERIODICS
1254void 1386void
1255ev_periodic_start (EV_P_ struct ev_periodic *w) 1387ev_periodic_start (EV_P_ struct ev_periodic *w)
1256{ 1388{
1257 if (ev_is_active (w)) 1389 if (ev_is_active (w))
1258 return; 1390 return;
1259 1391
1392 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval)
1395 {
1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1396 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1261
1262 /* this formula differs from the one in periodic_reify because we do not always round up */ 1397 /* this formula differs from the one in periodic_reify because we do not always round up */
1263 if (w->interval)
1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1399 }
1265 1400
1266 ev_start (EV_A_ (W)w, ++periodiccnt); 1401 ev_start (EV_A_ (W)w, ++periodiccnt);
1267 array_needsize (periodics, periodicmax, periodiccnt, ); 1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1268 periodics [periodiccnt - 1] = w; 1403 periodics [periodiccnt - 1] = w;
1269 upheap ((WT *)periodics, periodiccnt - 1); 1404 upheap ((WT *)periodics, periodiccnt - 1);
1270 1405
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272} 1407}
1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1282 1417
1283 if (((W)w)->active < periodiccnt--) 1418 if (((W)w)->active < periodiccnt--)
1284 { 1419 {
1285 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1420 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1287 } 1422 }
1288 1423
1289 ev_stop (EV_A_ (W)w); 1424 ev_stop (EV_A_ (W)w);
1290} 1425}
1291 1426
1292void 1427void
1428ev_periodic_again (EV_P_ struct ev_periodic *w)
1429{
1430 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w);
1433}
1434#endif
1435
1436void
1293ev_idle_start (EV_P_ struct ev_idle *w) 1437ev_idle_start (EV_P_ struct ev_idle *w)
1294{ 1438{
1295 if (ev_is_active (w)) 1439 if (ev_is_active (w))
1296 return; 1440 return;
1297 1441
1298 ev_start (EV_A_ (W)w, ++idlecnt); 1442 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, ); 1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1300 idles [idlecnt - 1] = w; 1444 idles [idlecnt - 1] = w;
1301} 1445}
1302 1446
1303void 1447void
1304ev_idle_stop (EV_P_ struct ev_idle *w) 1448ev_idle_stop (EV_P_ struct ev_idle *w)
1305{ 1449{
1306 ev_clear_pending (EV_A_ (W)w); 1450 ev_clear_pending (EV_A_ (W)w);
1307 if (ev_is_active (w)) 1451 if (!ev_is_active (w))
1308 return; 1452 return;
1309 1453
1310 idles [((W)w)->active - 1] = idles [--idlecnt]; 1454 idles [((W)w)->active - 1] = idles [--idlecnt];
1311 ev_stop (EV_A_ (W)w); 1455 ev_stop (EV_A_ (W)w);
1312} 1456}
1316{ 1460{
1317 if (ev_is_active (w)) 1461 if (ev_is_active (w))
1318 return; 1462 return;
1319 1463
1320 ev_start (EV_A_ (W)w, ++preparecnt); 1464 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, ); 1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1322 prepares [preparecnt - 1] = w; 1466 prepares [preparecnt - 1] = w;
1323} 1467}
1324 1468
1325void 1469void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w) 1470ev_prepare_stop (EV_P_ struct ev_prepare *w)
1327{ 1471{
1328 ev_clear_pending (EV_A_ (W)w); 1472 ev_clear_pending (EV_A_ (W)w);
1329 if (ev_is_active (w)) 1473 if (!ev_is_active (w))
1330 return; 1474 return;
1331 1475
1332 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1476 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1333 ev_stop (EV_A_ (W)w); 1477 ev_stop (EV_A_ (W)w);
1334} 1478}
1338{ 1482{
1339 if (ev_is_active (w)) 1483 if (ev_is_active (w))
1340 return; 1484 return;
1341 1485
1342 ev_start (EV_A_ (W)w, ++checkcnt); 1486 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, ); 1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1344 checks [checkcnt - 1] = w; 1488 checks [checkcnt - 1] = w;
1345} 1489}
1346 1490
1347void 1491void
1348ev_check_stop (EV_P_ struct ev_check *w) 1492ev_check_stop (EV_P_ struct ev_check *w)
1349{ 1493{
1350 ev_clear_pending (EV_A_ (W)w); 1494 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w)) 1495 if (!ev_is_active (w))
1352 return; 1496 return;
1353 1497
1354 checks [((W)w)->active - 1] = checks [--checkcnt]; 1498 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 ev_stop (EV_A_ (W)w); 1499 ev_stop (EV_A_ (W)w);
1356} 1500}
1369 return; 1513 return;
1370 1514
1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1372 1516
1373 ev_start (EV_A_ (W)w, 1); 1517 ev_start (EV_A_ (W)w, 1);
1374 array_needsize (signals, signalmax, w->signum, signals_init); 1518 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1519 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1376 1520
1377 if (!((WL)w)->next) 1521 if (!((WL)w)->next)
1378 { 1522 {
1379#if WIN32 1523#if _WIN32
1380 signal (w->signum, sighandler); 1524 signal (w->signum, sighandler);
1381#else 1525#else
1382 struct sigaction sa; 1526 struct sigaction sa;
1383 sa.sa_handler = sighandler; 1527 sa.sa_handler = sighandler;
1384 sigfillset (&sa.sa_mask); 1528 sigfillset (&sa.sa_mask);
1417 1561
1418void 1562void
1419ev_child_stop (EV_P_ struct ev_child *w) 1563ev_child_stop (EV_P_ struct ev_child *w)
1420{ 1564{
1421 ev_clear_pending (EV_A_ (W)w); 1565 ev_clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w)) 1566 if (!ev_is_active (w))
1423 return; 1567 return;
1424 1568
1425 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1426 ev_stop (EV_A_ (W)w); 1570 ev_stop (EV_A_ (W)w);
1427} 1571}
1462} 1606}
1463 1607
1464void 1608void
1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1466{ 1610{
1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1468 1612
1469 if (!once) 1613 if (!once)
1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1471 else 1615 else
1472 { 1616 {
1473 once->cb = cb; 1617 once->cb = cb;
1474 once->arg = arg; 1618 once->arg = arg;
1475 1619
1476 ev_watcher_init (&once->io, once_cb_io); 1620 ev_init (&once->io, once_cb_io);
1477 if (fd >= 0) 1621 if (fd >= 0)
1478 { 1622 {
1479 ev_io_set (&once->io, fd, events); 1623 ev_io_set (&once->io, fd, events);
1480 ev_io_start (EV_A_ &once->io); 1624 ev_io_start (EV_A_ &once->io);
1481 } 1625 }
1482 1626
1483 ev_watcher_init (&once->to, once_cb_to); 1627 ev_init (&once->to, once_cb_to);
1484 if (timeout >= 0.) 1628 if (timeout >= 0.)
1485 { 1629 {
1486 ev_timer_set (&once->to, timeout, 0.); 1630 ev_timer_set (&once->to, timeout, 0.);
1487 ev_timer_start (EV_A_ &once->to); 1631 ev_timer_start (EV_A_ &once->to);
1488 } 1632 }
1489 } 1633 }
1490} 1634}
1491 1635
1636#ifdef __cplusplus
1637}
1638#endif
1639

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines