ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.105 by root, Mon Nov 12 01:02:09 2007 UTC vs.
Revision 1.182 by root, Wed Dec 12 01:27:08 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
43# ifndef EV_USE_REALTIME 47# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
45# endif 49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
46# endif 57# endif
47 58
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 59# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
50# endif 65# endif
51 66
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) && !defined (__APPLE__) 67# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
54# endif 73# endif
55 74
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
58# endif 81# endif
59 82
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) && !defined (__APPLE__) 83# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
62# endif 105# endif
63 106
64#endif 107#endif
65 108
66#include <math.h> 109#include <math.h>
75#include <sys/types.h> 118#include <sys/types.h>
76#include <time.h> 119#include <time.h>
77 120
78#include <signal.h> 121#include <signal.h>
79 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
80#ifndef _WIN32 129#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 130# include <sys/time.h>
83# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
84#else 133#else
85# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 135# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
90#endif 139#endif
91 140
92/**/ 141/**/
93 142
94#ifndef EV_USE_MONOTONIC 143#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 144# define EV_USE_MONOTONIC 0
145#endif
146
147#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0
96#endif 149#endif
97 150
98#ifndef EV_USE_SELECT 151#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 152# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 153#endif
102 154
103#ifndef EV_USE_POLL 155#ifndef EV_USE_POLL
104# ifdef _WIN32 156# ifdef _WIN32
105# define EV_USE_POLL 0 157# define EV_USE_POLL 0
114 166
115#ifndef EV_USE_KQUEUE 167#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 168# define EV_USE_KQUEUE 0
117#endif 169#endif
118 170
119#ifndef EV_USE_REALTIME 171#ifndef EV_USE_PORT
120# define EV_USE_REALTIME 1 172# define EV_USE_PORT 0
173#endif
174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
121#endif 193#endif
122 194
123/**/ 195/**/
124 196
125#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
134 206
135#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
136# include <winsock.h> 208# include <winsock.h>
137#endif 209#endif
138 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
139/**/ 219/**/
140 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
145
146#ifdef EV_H
147# include EV_H
148#else
149# include "ev.h"
150#endif
151 234
152#if __GNUC__ >= 3 235#if __GNUC__ >= 3
153# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
154# define inline inline 237# define noinline __attribute__ ((noinline))
155#else 238#else
156# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
157# define inline static 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
158#endif 244#endif
159 245
160#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
161#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
162 255
163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
164#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
165 258
166#define EMPTY /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
260#define EMPTY2(a,b) /* used to suppress some warnings */
167 261
168typedef struct ev_watcher *W; 262typedef ev_watcher *W;
169typedef struct ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
170typedef struct ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
171 265
172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
173 267
174#ifdef _WIN32 268#ifdef _WIN32
175# include "ev_win32.c" 269# include "ev_win32.c"
177 271
178/*****************************************************************************/ 272/*****************************************************************************/
179 273
180static void (*syserr_cb)(const char *msg); 274static void (*syserr_cb)(const char *msg);
181 275
276void
182void ev_set_syserr_cb (void (*cb)(const char *msg)) 277ev_set_syserr_cb (void (*cb)(const char *msg))
183{ 278{
184 syserr_cb = cb; 279 syserr_cb = cb;
185} 280}
186 281
187static void 282static void noinline
188syserr (const char *msg) 283syserr (const char *msg)
189{ 284{
190 if (!msg) 285 if (!msg)
191 msg = "(libev) system error"; 286 msg = "(libev) system error";
192 287
199 } 294 }
200} 295}
201 296
202static void *(*alloc)(void *ptr, long size); 297static void *(*alloc)(void *ptr, long size);
203 298
299void
204void ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
205{ 301{
206 alloc = cb; 302 alloc = cb;
207} 303}
208 304
209static void * 305inline_speed void *
210ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
211{ 307{
212 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
213 309
214 if (!ptr && size) 310 if (!ptr && size)
238typedef struct 334typedef struct
239{ 335{
240 W w; 336 W w;
241 int events; 337 int events;
242} ANPENDING; 338} ANPENDING;
339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
243 346
244#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
245 348
246 struct ev_loop 349 struct ev_loop
247 { 350 {
251 #include "ev_vars.h" 354 #include "ev_vars.h"
252 #undef VAR 355 #undef VAR
253 }; 356 };
254 #include "ev_wrap.h" 357 #include "ev_wrap.h"
255 358
256 struct ev_loop default_loop_struct; 359 static struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop; 360 struct ev_loop *ev_default_loop_ptr;
258 361
259#else 362#else
260 363
261 ev_tstamp ev_rt_now; 364 ev_tstamp ev_rt_now;
262 #define VAR(name,decl) static decl; 365 #define VAR(name,decl) static decl;
263 #include "ev_vars.h" 366 #include "ev_vars.h"
264 #undef VAR 367 #undef VAR
265 368
266 static int default_loop; 369 static int ev_default_loop_ptr;
267 370
268#endif 371#endif
269 372
270/*****************************************************************************/ 373/*****************************************************************************/
271 374
281 gettimeofday (&tv, 0); 384 gettimeofday (&tv, 0);
282 return tv.tv_sec + tv.tv_usec * 1e-6; 385 return tv.tv_sec + tv.tv_usec * 1e-6;
283#endif 386#endif
284} 387}
285 388
286inline ev_tstamp 389ev_tstamp inline_size
287get_clock (void) 390get_clock (void)
288{ 391{
289#if EV_USE_MONOTONIC 392#if EV_USE_MONOTONIC
290 if (expect_true (have_monotonic)) 393 if (expect_true (have_monotonic))
291 { 394 {
304{ 407{
305 return ev_rt_now; 408 return ev_rt_now;
306} 409}
307#endif 410#endif
308 411
309#define array_roundsize(type,n) ((n) | 4 & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
310 439
311#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
312 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
313 { \ 442 { \
314 int newcnt = cur; \ 443 int ocur_ = (cur); \
315 do \ 444 (base) = (type *)array_realloc \
316 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
317 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
318 } \
319 while ((cnt) > newcnt); \
320 \
321 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
322 init (base + cur, newcnt - cur); \
323 cur = newcnt; \
324 } 447 }
325 448
449#if 0
326#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
327 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
328 { \ 452 { \
329 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
330 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
331 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
332 } 456 }
457#endif
333 458
334#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
335 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
336 461
337/*****************************************************************************/ 462/*****************************************************************************/
338 463
339static void 464void noinline
465ev_feed_event (EV_P_ void *w, int revents)
466{
467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
469
470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents;
478 }
479}
480
481void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type)
483{
484 int i;
485
486 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type);
488}
489
490/*****************************************************************************/
491
492void inline_size
340anfds_init (ANFD *base, int count) 493anfds_init (ANFD *base, int count)
341{ 494{
342 while (count--) 495 while (count--)
343 { 496 {
344 base->head = 0; 497 base->head = 0;
347 500
348 ++base; 501 ++base;
349 } 502 }
350} 503}
351 504
352void 505void inline_speed
353ev_feed_event (EV_P_ void *w, int revents)
354{
355 W w_ = (W)w;
356
357 if (w_->pending)
358 {
359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
360 return;
361 }
362
363 w_->pending = ++pendingcnt [ABSPRI (w_)];
364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
367}
368
369static void
370queue_events (EV_P_ W *events, int eventcnt, int type)
371{
372 int i;
373
374 for (i = 0; i < eventcnt; ++i)
375 ev_feed_event (EV_A_ events [i], type);
376}
377
378inline void
379fd_event (EV_P_ int fd, int revents) 506fd_event (EV_P_ int fd, int revents)
380{ 507{
381 ANFD *anfd = anfds + fd; 508 ANFD *anfd = anfds + fd;
382 struct ev_io *w; 509 ev_io *w;
383 510
384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
385 { 512 {
386 int ev = w->events & revents; 513 int ev = w->events & revents;
387 514
388 if (ev) 515 if (ev)
389 ev_feed_event (EV_A_ (W)w, ev); 516 ev_feed_event (EV_A_ (W)w, ev);
391} 518}
392 519
393void 520void
394ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
395{ 522{
523 if (fd >= 0 && fd < anfdmax)
396 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
397} 525}
398 526
399/*****************************************************************************/ 527void inline_size
400
401static void
402fd_reify (EV_P) 528fd_reify (EV_P)
403{ 529{
404 int i; 530 int i;
405 531
406 for (i = 0; i < fdchangecnt; ++i) 532 for (i = 0; i < fdchangecnt; ++i)
407 { 533 {
408 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
409 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
410 struct ev_io *w; 536 ev_io *w;
411 537
412 int events = 0; 538 int events = 0;
413 539
414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
415 events |= w->events; 541 events |= w->events;
416 542
417#if EV_SELECT_IS_WINSOCKET 543#if EV_SELECT_IS_WINSOCKET
418 if (events) 544 if (events)
419 { 545 {
423 } 549 }
424#endif 550#endif
425 551
426 anfd->reify = 0; 552 anfd->reify = 0;
427 553
428 method_modify (EV_A_ fd, anfd->events, events); 554 backend_modify (EV_A_ fd, anfd->events, events);
429 anfd->events = events; 555 anfd->events = events;
430 } 556 }
431 557
432 fdchangecnt = 0; 558 fdchangecnt = 0;
433} 559}
434 560
435static void 561void inline_size
436fd_change (EV_P_ int fd) 562fd_change (EV_P_ int fd)
437{ 563{
438 if (anfds [fd].reify) 564 if (expect_false (anfds [fd].reify))
439 return; 565 return;
440 566
441 anfds [fd].reify = 1; 567 anfds [fd].reify = 1;
442 568
443 ++fdchangecnt; 569 ++fdchangecnt;
444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
445 fdchanges [fdchangecnt - 1] = fd; 571 fdchanges [fdchangecnt - 1] = fd;
446} 572}
447 573
448static void 574void inline_speed
449fd_kill (EV_P_ int fd) 575fd_kill (EV_P_ int fd)
450{ 576{
451 struct ev_io *w; 577 ev_io *w;
452 578
453 while ((w = (struct ev_io *)anfds [fd].head)) 579 while ((w = (ev_io *)anfds [fd].head))
454 { 580 {
455 ev_io_stop (EV_A_ w); 581 ev_io_stop (EV_A_ w);
456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
457 } 583 }
458} 584}
459 585
460static int 586int inline_size
461fd_valid (int fd) 587fd_valid (int fd)
462{ 588{
463#ifdef _WIN32 589#ifdef _WIN32
464 return _get_osfhandle (fd) != -1; 590 return _get_osfhandle (fd) != -1;
465#else 591#else
466 return fcntl (fd, F_GETFD) != -1; 592 return fcntl (fd, F_GETFD) != -1;
467#endif 593#endif
468} 594}
469 595
470/* called on EBADF to verify fds */ 596/* called on EBADF to verify fds */
471static void 597static void noinline
472fd_ebadf (EV_P) 598fd_ebadf (EV_P)
473{ 599{
474 int fd; 600 int fd;
475 601
476 for (fd = 0; fd < anfdmax; ++fd) 602 for (fd = 0; fd < anfdmax; ++fd)
478 if (!fd_valid (fd) == -1 && errno == EBADF) 604 if (!fd_valid (fd) == -1 && errno == EBADF)
479 fd_kill (EV_A_ fd); 605 fd_kill (EV_A_ fd);
480} 606}
481 607
482/* called on ENOMEM in select/poll to kill some fds and retry */ 608/* called on ENOMEM in select/poll to kill some fds and retry */
483static void 609static void noinline
484fd_enomem (EV_P) 610fd_enomem (EV_P)
485{ 611{
486 int fd; 612 int fd;
487 613
488 for (fd = anfdmax; fd--; ) 614 for (fd = anfdmax; fd--; )
491 fd_kill (EV_A_ fd); 617 fd_kill (EV_A_ fd);
492 return; 618 return;
493 } 619 }
494} 620}
495 621
496/* usually called after fork if method needs to re-arm all fds from scratch */ 622/* usually called after fork if backend needs to re-arm all fds from scratch */
497static void 623static void noinline
498fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
499{ 625{
500 int fd; 626 int fd;
501 627
502 /* this should be highly optimised to not do anything but set a flag */
503 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
504 if (anfds [fd].events) 629 if (anfds [fd].events)
505 { 630 {
506 anfds [fd].events = 0; 631 anfds [fd].events = 0;
507 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
508 } 633 }
509} 634}
510 635
511/*****************************************************************************/ 636/*****************************************************************************/
512 637
513static void 638void inline_speed
514upheap (WT *heap, int k) 639upheap (WT *heap, int k)
515{ 640{
516 WT w = heap [k]; 641 WT w = heap [k];
517 642
518 while (k && heap [k >> 1]->at > w->at) 643 while (k)
519 { 644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
520 heap [k] = heap [k >> 1]; 650 heap [k] = heap [p];
521 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
522 k >>= 1; 652 k = p;
523 } 653 }
524 654
525 heap [k] = w; 655 heap [k] = w;
526 ((W)heap [k])->active = k + 1; 656 ((W)heap [k])->active = k + 1;
527
528} 657}
529 658
530static void 659void inline_speed
531downheap (WT *heap, int N, int k) 660downheap (WT *heap, int N, int k)
532{ 661{
533 WT w = heap [k]; 662 WT w = heap [k];
534 663
535 while (k < (N >> 1)) 664 for (;;)
536 { 665 {
537 int j = k << 1; 666 int c = (k << 1) + 1;
538 667
539 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 668 if (c >= N)
540 ++j;
541
542 if (w->at <= heap [j]->at)
543 break; 669 break;
544 670
671 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
672 ? 1 : 0;
673
674 if (w->at <= heap [c]->at)
675 break;
676
545 heap [k] = heap [j]; 677 heap [k] = heap [c];
546 ((W)heap [k])->active = k + 1; 678 ((W)heap [k])->active = k + 1;
679
547 k = j; 680 k = c;
548 } 681 }
549 682
550 heap [k] = w; 683 heap [k] = w;
551 ((W)heap [k])->active = k + 1; 684 ((W)heap [k])->active = k + 1;
552} 685}
553 686
554inline void 687void inline_size
555adjustheap (WT *heap, int N, int k) 688adjustheap (WT *heap, int N, int k)
556{ 689{
557 upheap (heap, k); 690 upheap (heap, k);
558 downheap (heap, N, k); 691 downheap (heap, N, k);
559} 692}
569static ANSIG *signals; 702static ANSIG *signals;
570static int signalmax; 703static int signalmax;
571 704
572static int sigpipe [2]; 705static int sigpipe [2];
573static sig_atomic_t volatile gotsig; 706static sig_atomic_t volatile gotsig;
574static struct ev_io sigev; 707static ev_io sigev;
575 708
576static void 709void inline_size
577signals_init (ANSIG *base, int count) 710signals_init (ANSIG *base, int count)
578{ 711{
579 while (count--) 712 while (count--)
580 { 713 {
581 base->head = 0; 714 base->head = 0;
601 write (sigpipe [1], &signum, 1); 734 write (sigpipe [1], &signum, 1);
602 errno = old_errno; 735 errno = old_errno;
603 } 736 }
604} 737}
605 738
606void 739void noinline
607ev_feed_signal_event (EV_P_ int signum) 740ev_feed_signal_event (EV_P_ int signum)
608{ 741{
609 WL w; 742 WL w;
610 743
611#if EV_MULTIPLICITY 744#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 745 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
613#endif 746#endif
614 747
615 --signum; 748 --signum;
616 749
617 if (signum < 0 || signum >= signalmax) 750 if (signum < 0 || signum >= signalmax)
622 for (w = signals [signum].head; w; w = w->next) 755 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 756 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624} 757}
625 758
626static void 759static void
627sigcb (EV_P_ struct ev_io *iow, int revents) 760sigcb (EV_P_ ev_io *iow, int revents)
628{ 761{
629 int signum; 762 int signum;
630 763
631 read (sigpipe [0], &revents, 1); 764 read (sigpipe [0], &revents, 1);
632 gotsig = 0; 765 gotsig = 0;
634 for (signum = signalmax; signum--; ) 767 for (signum = signalmax; signum--; )
635 if (signals [signum].gotsig) 768 if (signals [signum].gotsig)
636 ev_feed_signal_event (EV_A_ signum + 1); 769 ev_feed_signal_event (EV_A_ signum + 1);
637} 770}
638 771
639inline void 772void inline_speed
640fd_intern (int fd) 773fd_intern (int fd)
641{ 774{
642#ifdef _WIN32 775#ifdef _WIN32
643 int arg = 1; 776 int arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 777 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
646 fcntl (fd, F_SETFD, FD_CLOEXEC); 779 fcntl (fd, F_SETFD, FD_CLOEXEC);
647 fcntl (fd, F_SETFL, O_NONBLOCK); 780 fcntl (fd, F_SETFL, O_NONBLOCK);
648#endif 781#endif
649} 782}
650 783
651static void 784static void noinline
652siginit (EV_P) 785siginit (EV_P)
653{ 786{
654 fd_intern (sigpipe [0]); 787 fd_intern (sigpipe [0]);
655 fd_intern (sigpipe [1]); 788 fd_intern (sigpipe [1]);
656 789
659 ev_unref (EV_A); /* child watcher should not keep loop alive */ 792 ev_unref (EV_A); /* child watcher should not keep loop alive */
660} 793}
661 794
662/*****************************************************************************/ 795/*****************************************************************************/
663 796
664static struct ev_child *childs [PID_HASHSIZE]; 797static WL childs [EV_PID_HASHSIZE];
665 798
666#ifndef _WIN32 799#ifndef _WIN32
667 800
668static struct ev_signal childev; 801static ev_signal childev;
802
803void inline_speed
804child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
805{
806 ev_child *w;
807
808 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
809 if (w->pid == pid || !w->pid)
810 {
811 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
812 w->rpid = pid;
813 w->rstatus = status;
814 ev_feed_event (EV_A_ (W)w, EV_CHILD);
815 }
816}
669 817
670#ifndef WCONTINUED 818#ifndef WCONTINUED
671# define WCONTINUED 0 819# define WCONTINUED 0
672#endif 820#endif
673 821
674static void 822static void
675child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
676{
677 struct ev_child *w;
678
679 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
680 if (w->pid == pid || !w->pid)
681 {
682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
683 w->rpid = pid;
684 w->rstatus = status;
685 ev_feed_event (EV_A_ (W)w, EV_CHILD);
686 }
687}
688
689static void
690childcb (EV_P_ struct ev_signal *sw, int revents) 823childcb (EV_P_ ev_signal *sw, int revents)
691{ 824{
692 int pid, status; 825 int pid, status;
693 826
827 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 828 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
695 { 829 if (!WCONTINUED
830 || errno != EINVAL
831 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
832 return;
833
696 /* make sure we are called again until all childs have been reaped */ 834 /* make sure we are called again until all childs have been reaped */
835 /* we need to do it this way so that the callback gets called before we continue */
697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 836 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
698 837
699 child_reap (EV_A_ sw, pid, pid, status); 838 child_reap (EV_A_ sw, pid, pid, status);
839 if (EV_PID_HASHSIZE > 1)
700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 840 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
701 }
702} 841}
703 842
704#endif 843#endif
705 844
706/*****************************************************************************/ 845/*****************************************************************************/
707 846
847#if EV_USE_PORT
848# include "ev_port.c"
849#endif
708#if EV_USE_KQUEUE 850#if EV_USE_KQUEUE
709# include "ev_kqueue.c" 851# include "ev_kqueue.c"
710#endif 852#endif
711#if EV_USE_EPOLL 853#if EV_USE_EPOLL
712# include "ev_epoll.c" 854# include "ev_epoll.c"
729{ 871{
730 return EV_VERSION_MINOR; 872 return EV_VERSION_MINOR;
731} 873}
732 874
733/* return true if we are running with elevated privileges and should ignore env variables */ 875/* return true if we are running with elevated privileges and should ignore env variables */
734static int 876int inline_size
735enable_secure (void) 877enable_secure (void)
736{ 878{
737#ifdef _WIN32 879#ifdef _WIN32
738 return 0; 880 return 0;
739#else 881#else
740 return getuid () != geteuid () 882 return getuid () != geteuid ()
741 || getgid () != getegid (); 883 || getgid () != getegid ();
742#endif 884#endif
743} 885}
744 886
745int 887unsigned int
746ev_method (EV_P) 888ev_supported_backends (void)
747{ 889{
748 return method; 890 unsigned int flags = 0;
749}
750 891
751static void 892 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
752loop_init (EV_P_ int methods) 893 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
894 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
895 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
896 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
897
898 return flags;
899}
900
901unsigned int
902ev_recommended_backends (void)
753{ 903{
754 if (!method) 904 unsigned int flags = ev_supported_backends ();
905
906#ifndef __NetBSD__
907 /* kqueue is borked on everything but netbsd apparently */
908 /* it usually doesn't work correctly on anything but sockets and pipes */
909 flags &= ~EVBACKEND_KQUEUE;
910#endif
911#ifdef __APPLE__
912 // flags &= ~EVBACKEND_KQUEUE; for documentation
913 flags &= ~EVBACKEND_POLL;
914#endif
915
916 return flags;
917}
918
919unsigned int
920ev_embeddable_backends (void)
921{
922 return EVBACKEND_EPOLL
923 | EVBACKEND_KQUEUE
924 | EVBACKEND_PORT;
925}
926
927unsigned int
928ev_backend (EV_P)
929{
930 return backend;
931}
932
933unsigned int
934ev_loop_count (EV_P)
935{
936 return loop_count;
937}
938
939static void noinline
940loop_init (EV_P_ unsigned int flags)
941{
942 if (!backend)
755 { 943 {
756#if EV_USE_MONOTONIC 944#if EV_USE_MONOTONIC
757 { 945 {
758 struct timespec ts; 946 struct timespec ts;
759 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 947 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
764 ev_rt_now = ev_time (); 952 ev_rt_now = ev_time ();
765 mn_now = get_clock (); 953 mn_now = get_clock ();
766 now_floor = mn_now; 954 now_floor = mn_now;
767 rtmn_diff = ev_rt_now - mn_now; 955 rtmn_diff = ev_rt_now - mn_now;
768 956
769 if (methods == EVMETHOD_AUTO) 957 /* pid check not overridable via env */
770 if (!enable_secure () && getenv ("LIBEV_METHODS")) 958#ifndef _WIN32
959 if (flags & EVFLAG_FORKCHECK)
960 curpid = getpid ();
961#endif
962
963 if (!(flags & EVFLAG_NOENV)
964 && !enable_secure ()
965 && getenv ("LIBEV_FLAGS"))
771 methods = atoi (getenv ("LIBEV_METHODS")); 966 flags = atoi (getenv ("LIBEV_FLAGS"));
772 else
773 methods = EVMETHOD_ANY;
774 967
775 method = 0; 968 if (!(flags & 0x0000ffffUL))
969 flags |= ev_recommended_backends ();
970
971 backend = 0;
972 backend_fd = -1;
973#if EV_USE_INOTIFY
974 fs_fd = -2;
975#endif
976
977#if EV_USE_PORT
978 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
979#endif
776#if EV_USE_KQUEUE 980#if EV_USE_KQUEUE
777 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 981 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
778#endif 982#endif
779#if EV_USE_EPOLL 983#if EV_USE_EPOLL
780 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 984 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
781#endif 985#endif
782#if EV_USE_POLL 986#if EV_USE_POLL
783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 987 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
784#endif 988#endif
785#if EV_USE_SELECT 989#if EV_USE_SELECT
786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 990 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
787#endif 991#endif
788 992
789 ev_init (&sigev, sigcb); 993 ev_init (&sigev, sigcb);
790 ev_set_priority (&sigev, EV_MAXPRI); 994 ev_set_priority (&sigev, EV_MAXPRI);
791 } 995 }
792} 996}
793 997
794void 998static void noinline
795loop_destroy (EV_P) 999loop_destroy (EV_P)
796{ 1000{
797 int i; 1001 int i;
798 1002
1003#if EV_USE_INOTIFY
1004 if (fs_fd >= 0)
1005 close (fs_fd);
1006#endif
1007
1008 if (backend_fd >= 0)
1009 close (backend_fd);
1010
1011#if EV_USE_PORT
1012 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1013#endif
799#if EV_USE_KQUEUE 1014#if EV_USE_KQUEUE
800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1015 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
801#endif 1016#endif
802#if EV_USE_EPOLL 1017#if EV_USE_EPOLL
803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1018 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
804#endif 1019#endif
805#if EV_USE_POLL 1020#if EV_USE_POLL
806 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1021 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
807#endif 1022#endif
808#if EV_USE_SELECT 1023#if EV_USE_SELECT
809 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1024 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
810#endif 1025#endif
811 1026
812 for (i = NUMPRI; i--; ) 1027 for (i = NUMPRI; i--; )
1028 {
813 array_free (pending, [i]); 1029 array_free (pending, [i]);
1030#if EV_IDLE_ENABLE
1031 array_free (idle, [i]);
1032#endif
1033 }
814 1034
815 /* have to use the microsoft-never-gets-it-right macro */ 1035 /* have to use the microsoft-never-gets-it-right macro */
816 array_free (fdchange, EMPTY); 1036 array_free (fdchange, EMPTY);
817 array_free (timer, EMPTY); 1037 array_free (timer, EMPTY);
818#if EV_PERIODICS 1038#if EV_PERIODIC_ENABLE
819 array_free (periodic, EMPTY); 1039 array_free (periodic, EMPTY);
820#endif 1040#endif
821 array_free (idle, EMPTY);
822 array_free (prepare, EMPTY); 1041 array_free (prepare, EMPTY);
823 array_free (check, EMPTY); 1042 array_free (check, EMPTY);
824 1043
825 method = 0; 1044 backend = 0;
826} 1045}
827 1046
828static void 1047void inline_size infy_fork (EV_P);
1048
1049void inline_size
829loop_fork (EV_P) 1050loop_fork (EV_P)
830{ 1051{
1052#if EV_USE_PORT
1053 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1054#endif
1055#if EV_USE_KQUEUE
1056 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1057#endif
831#if EV_USE_EPOLL 1058#if EV_USE_EPOLL
832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1059 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
833#endif 1060#endif
834#if EV_USE_KQUEUE 1061#if EV_USE_INOTIFY
835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1062 infy_fork (EV_A);
836#endif 1063#endif
837 1064
838 if (ev_is_active (&sigev)) 1065 if (ev_is_active (&sigev))
839 { 1066 {
840 /* default loop */ 1067 /* default loop */
853 postfork = 0; 1080 postfork = 0;
854} 1081}
855 1082
856#if EV_MULTIPLICITY 1083#if EV_MULTIPLICITY
857struct ev_loop * 1084struct ev_loop *
858ev_loop_new (int methods) 1085ev_loop_new (unsigned int flags)
859{ 1086{
860 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1087 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
861 1088
862 memset (loop, 0, sizeof (struct ev_loop)); 1089 memset (loop, 0, sizeof (struct ev_loop));
863 1090
864 loop_init (EV_A_ methods); 1091 loop_init (EV_A_ flags);
865 1092
866 if (ev_method (EV_A)) 1093 if (ev_backend (EV_A))
867 return loop; 1094 return loop;
868 1095
869 return 0; 1096 return 0;
870} 1097}
871 1098
884 1111
885#endif 1112#endif
886 1113
887#if EV_MULTIPLICITY 1114#if EV_MULTIPLICITY
888struct ev_loop * 1115struct ev_loop *
1116ev_default_loop_init (unsigned int flags)
889#else 1117#else
890int 1118int
1119ev_default_loop (unsigned int flags)
891#endif 1120#endif
892ev_default_loop (int methods)
893{ 1121{
894 if (sigpipe [0] == sigpipe [1]) 1122 if (sigpipe [0] == sigpipe [1])
895 if (pipe (sigpipe)) 1123 if (pipe (sigpipe))
896 return 0; 1124 return 0;
897 1125
898 if (!default_loop) 1126 if (!ev_default_loop_ptr)
899 { 1127 {
900#if EV_MULTIPLICITY 1128#if EV_MULTIPLICITY
901 struct ev_loop *loop = default_loop = &default_loop_struct; 1129 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
902#else 1130#else
903 default_loop = 1; 1131 ev_default_loop_ptr = 1;
904#endif 1132#endif
905 1133
906 loop_init (EV_A_ methods); 1134 loop_init (EV_A_ flags);
907 1135
908 if (ev_method (EV_A)) 1136 if (ev_backend (EV_A))
909 { 1137 {
910 siginit (EV_A); 1138 siginit (EV_A);
911 1139
912#ifndef _WIN32 1140#ifndef _WIN32
913 ev_signal_init (&childev, childcb, SIGCHLD); 1141 ev_signal_init (&childev, childcb, SIGCHLD);
915 ev_signal_start (EV_A_ &childev); 1143 ev_signal_start (EV_A_ &childev);
916 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1144 ev_unref (EV_A); /* child watcher should not keep loop alive */
917#endif 1145#endif
918 } 1146 }
919 else 1147 else
920 default_loop = 0; 1148 ev_default_loop_ptr = 0;
921 } 1149 }
922 1150
923 return default_loop; 1151 return ev_default_loop_ptr;
924} 1152}
925 1153
926void 1154void
927ev_default_destroy (void) 1155ev_default_destroy (void)
928{ 1156{
929#if EV_MULTIPLICITY 1157#if EV_MULTIPLICITY
930 struct ev_loop *loop = default_loop; 1158 struct ev_loop *loop = ev_default_loop_ptr;
931#endif 1159#endif
932 1160
933#ifndef _WIN32 1161#ifndef _WIN32
934 ev_ref (EV_A); /* child watcher */ 1162 ev_ref (EV_A); /* child watcher */
935 ev_signal_stop (EV_A_ &childev); 1163 ev_signal_stop (EV_A_ &childev);
946 1174
947void 1175void
948ev_default_fork (void) 1176ev_default_fork (void)
949{ 1177{
950#if EV_MULTIPLICITY 1178#if EV_MULTIPLICITY
951 struct ev_loop *loop = default_loop; 1179 struct ev_loop *loop = ev_default_loop_ptr;
952#endif 1180#endif
953 1181
954 if (method) 1182 if (backend)
955 postfork = 1; 1183 postfork = 1;
956} 1184}
957 1185
958/*****************************************************************************/ 1186/*****************************************************************************/
959 1187
960static int 1188void
961any_pending (EV_P) 1189ev_invoke (EV_P_ void *w, int revents)
962{ 1190{
963 int pri; 1191 EV_CB_INVOKE ((W)w, revents);
964
965 for (pri = NUMPRI; pri--; )
966 if (pendingcnt [pri])
967 return 1;
968
969 return 0;
970} 1192}
971 1193
972static void 1194void inline_speed
973call_pending (EV_P) 1195call_pending (EV_P)
974{ 1196{
975 int pri; 1197 int pri;
976 1198
977 for (pri = NUMPRI; pri--; ) 1199 for (pri = NUMPRI; pri--; )
978 while (pendingcnt [pri]) 1200 while (pendingcnt [pri])
979 { 1201 {
980 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1202 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
981 1203
982 if (p->w) 1204 if (expect_true (p->w))
983 { 1205 {
1206 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1207
984 p->w->pending = 0; 1208 p->w->pending = 0;
985 EV_CB_INVOKE (p->w, p->events); 1209 EV_CB_INVOKE (p->w, p->events);
986 } 1210 }
987 } 1211 }
988} 1212}
989 1213
990static void 1214void inline_size
991timers_reify (EV_P) 1215timers_reify (EV_P)
992{ 1216{
993 while (timercnt && ((WT)timers [0])->at <= mn_now) 1217 while (timercnt && ((WT)timers [0])->at <= mn_now)
994 { 1218 {
995 struct ev_timer *w = timers [0]; 1219 ev_timer *w = (ev_timer *)timers [0];
996 1220
997 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1221 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
998 1222
999 /* first reschedule or stop timer */ 1223 /* first reschedule or stop timer */
1000 if (w->repeat) 1224 if (w->repeat)
1001 { 1225 {
1002 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1226 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1003 1227
1004 ((WT)w)->at += w->repeat; 1228 ((WT)w)->at += w->repeat;
1005 if (((WT)w)->at < mn_now) 1229 if (((WT)w)->at < mn_now)
1006 ((WT)w)->at = mn_now; 1230 ((WT)w)->at = mn_now;
1007 1231
1008 downheap ((WT *)timers, timercnt, 0); 1232 downheap (timers, timercnt, 0);
1009 } 1233 }
1010 else 1234 else
1011 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1235 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1012 1236
1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1237 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1014 } 1238 }
1015} 1239}
1016 1240
1017#if EV_PERIODICS 1241#if EV_PERIODIC_ENABLE
1018static void 1242void inline_size
1019periodics_reify (EV_P) 1243periodics_reify (EV_P)
1020{ 1244{
1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1245 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1022 { 1246 {
1023 struct ev_periodic *w = periodics [0]; 1247 ev_periodic *w = (ev_periodic *)periodics [0];
1024 1248
1025 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1249 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1026 1250
1027 /* first reschedule or stop timer */ 1251 /* first reschedule or stop timer */
1028 if (w->reschedule_cb) 1252 if (w->reschedule_cb)
1029 { 1253 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1254 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1031
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1255 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1033 downheap ((WT *)periodics, periodiccnt, 0); 1256 downheap (periodics, periodiccnt, 0);
1034 } 1257 }
1035 else if (w->interval) 1258 else if (w->interval)
1036 { 1259 {
1037 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1260 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1261 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1038 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1262 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0); 1263 downheap (periodics, periodiccnt, 0);
1040 } 1264 }
1041 else 1265 else
1042 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1266 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1043 1267
1044 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1268 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1045 } 1269 }
1046} 1270}
1047 1271
1048static void 1272static void noinline
1049periodics_reschedule (EV_P) 1273periodics_reschedule (EV_P)
1050{ 1274{
1051 int i; 1275 int i;
1052 1276
1053 /* adjust periodics after time jump */ 1277 /* adjust periodics after time jump */
1054 for (i = 0; i < periodiccnt; ++i) 1278 for (i = 0; i < periodiccnt; ++i)
1055 { 1279 {
1056 struct ev_periodic *w = periodics [i]; 1280 ev_periodic *w = (ev_periodic *)periodics [i];
1057 1281
1058 if (w->reschedule_cb) 1282 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1283 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1060 else if (w->interval) 1284 else if (w->interval)
1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1285 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1062 } 1286 }
1063 1287
1064 /* now rebuild the heap */ 1288 /* now rebuild the heap */
1065 for (i = periodiccnt >> 1; i--; ) 1289 for (i = periodiccnt >> 1; i--; )
1066 downheap ((WT *)periodics, periodiccnt, i); 1290 downheap (periodics, periodiccnt, i);
1067} 1291}
1068#endif 1292#endif
1069 1293
1070inline int 1294#if EV_IDLE_ENABLE
1071time_update_monotonic (EV_P) 1295void inline_size
1296idle_reify (EV_P)
1072{ 1297{
1298 if (expect_false (idleall))
1299 {
1300 int pri;
1301
1302 for (pri = NUMPRI; pri--; )
1303 {
1304 if (pendingcnt [pri])
1305 break;
1306
1307 if (idlecnt [pri])
1308 {
1309 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1310 break;
1311 }
1312 }
1313 }
1314}
1315#endif
1316
1317void inline_speed
1318time_update (EV_P_ ev_tstamp max_block)
1319{
1320 int i;
1321
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1073 mn_now = get_clock (); 1327 mn_now = get_clock ();
1074 1328
1329 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1330 /* interpolate in the meantime */
1075 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1331 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1076 { 1332 {
1077 ev_rt_now = rtmn_diff + mn_now; 1333 ev_rt_now = rtmn_diff + mn_now;
1078 return 0; 1334 return;
1079 } 1335 }
1080 else 1336
1081 {
1082 now_floor = mn_now; 1337 now_floor = mn_now;
1083 ev_rt_now = ev_time (); 1338 ev_rt_now = ev_time ();
1084 return 1;
1085 }
1086}
1087 1339
1088static void 1340 /* loop a few times, before making important decisions.
1089time_update (EV_P) 1341 * on the choice of "4": one iteration isn't enough,
1090{ 1342 * in case we get preempted during the calls to
1091 int i; 1343 * ev_time and get_clock. a second call is almost guaranteed
1092 1344 * to succeed in that case, though. and looping a few more times
1093#if EV_USE_MONOTONIC 1345 * doesn't hurt either as we only do this on time-jumps or
1094 if (expect_true (have_monotonic)) 1346 * in the unlikely event of having been preempted here.
1095 { 1347 */
1096 if (time_update_monotonic (EV_A)) 1348 for (i = 4; --i; )
1097 { 1349 {
1098 ev_tstamp odiff = rtmn_diff;
1099
1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1101 {
1102 rtmn_diff = ev_rt_now - mn_now; 1350 rtmn_diff = ev_rt_now - mn_now;
1103 1351
1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1352 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1105 return; /* all is well */ 1353 return; /* all is well */
1106 1354
1107 ev_rt_now = ev_time (); 1355 ev_rt_now = ev_time ();
1108 mn_now = get_clock (); 1356 mn_now = get_clock ();
1109 now_floor = mn_now; 1357 now_floor = mn_now;
1110 } 1358 }
1111 1359
1112# if EV_PERIODICS 1360# if EV_PERIODIC_ENABLE
1361 periodics_reschedule (EV_A);
1362# endif
1363 /* no timer adjustment, as the monotonic clock doesn't jump */
1364 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1365 }
1366 else
1367#endif
1368 {
1369 ev_rt_now = ev_time ();
1370
1371 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 {
1373#if EV_PERIODIC_ENABLE
1113 periodics_reschedule (EV_A); 1374 periodics_reschedule (EV_A);
1114# endif 1375#endif
1115 /* no timer adjustment, as the monotonic clock doesn't jump */
1116 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1117 }
1118 }
1119 else
1120#endif
1121 {
1122 ev_rt_now = ev_time ();
1123
1124 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1125 {
1126#if EV_PERIODICS
1127 periodics_reschedule (EV_A);
1128#endif
1129
1130 /* adjust timers. this is easy, as the offset is the same for all */ 1376 /* adjust timers. this is easy, as the offset is the same for all of them */
1131 for (i = 0; i < timercnt; ++i) 1377 for (i = 0; i < timercnt; ++i)
1132 ((WT)timers [i])->at += ev_rt_now - mn_now; 1378 ((WT)timers [i])->at += ev_rt_now - mn_now;
1133 } 1379 }
1134 1380
1135 mn_now = ev_rt_now; 1381 mn_now = ev_rt_now;
1151static int loop_done; 1397static int loop_done;
1152 1398
1153void 1399void
1154ev_loop (EV_P_ int flags) 1400ev_loop (EV_P_ int flags)
1155{ 1401{
1156 double block;
1157 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1403 ? EVUNLOOP_ONE
1404 : EVUNLOOP_CANCEL;
1405
1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1158 1407
1159 do 1408 do
1160 { 1409 {
1410#ifndef _WIN32
1411 if (expect_false (curpid)) /* penalise the forking check even more */
1412 if (expect_false (getpid () != curpid))
1413 {
1414 curpid = getpid ();
1415 postfork = 1;
1416 }
1417#endif
1418
1419#if EV_FORK_ENABLE
1420 /* we might have forked, so queue fork handlers */
1421 if (expect_false (postfork))
1422 if (forkcnt)
1423 {
1424 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1425 call_pending (EV_A);
1426 }
1427#endif
1428
1161 /* queue check watchers (and execute them) */ 1429 /* queue prepare watchers (and execute them) */
1162 if (expect_false (preparecnt)) 1430 if (expect_false (preparecnt))
1163 { 1431 {
1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1432 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1165 call_pending (EV_A); 1433 call_pending (EV_A);
1166 } 1434 }
1167 1435
1436 if (expect_false (!activecnt))
1437 break;
1438
1168 /* we might have forked, so reify kernel state if necessary */ 1439 /* we might have forked, so reify kernel state if necessary */
1169 if (expect_false (postfork)) 1440 if (expect_false (postfork))
1170 loop_fork (EV_A); 1441 loop_fork (EV_A);
1171 1442
1172 /* update fd-related kernel structures */ 1443 /* update fd-related kernel structures */
1173 fd_reify (EV_A); 1444 fd_reify (EV_A);
1174 1445
1175 /* calculate blocking time */ 1446 /* calculate blocking time */
1447 {
1448 ev_tstamp block;
1176 1449
1177 /* we only need this for !monotonic clock or timers, but as we basically 1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1178 always have timers, we just calculate it always */ 1451 block = 0.; /* do not block at all */
1179#if EV_USE_MONOTONIC
1180 if (expect_true (have_monotonic))
1181 time_update_monotonic (EV_A);
1182 else 1452 else
1183#endif
1184 { 1453 {
1185 ev_rt_now = ev_time (); 1454 /* update time to cancel out callback processing overhead */
1186 mn_now = ev_rt_now; 1455 time_update (EV_A_ 1e100);
1187 }
1188 1456
1189 if (flags & EVLOOP_NONBLOCK || idlecnt)
1190 block = 0.;
1191 else
1192 {
1193 block = MAX_BLOCKTIME; 1457 block = MAX_BLOCKTIME;
1194 1458
1195 if (timercnt) 1459 if (timercnt)
1196 { 1460 {
1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1461 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1198 if (block > to) block = to; 1462 if (block > to) block = to;
1199 } 1463 }
1200 1464
1201#if EV_PERIODICS 1465#if EV_PERIODIC_ENABLE
1202 if (periodiccnt) 1466 if (periodiccnt)
1203 { 1467 {
1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1468 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1205 if (block > to) block = to; 1469 if (block > to) block = to;
1206 } 1470 }
1207#endif 1471#endif
1208 1472
1209 if (block < 0.) block = 0.; 1473 if (expect_false (block < 0.)) block = 0.;
1210 } 1474 }
1211 1475
1476 ++loop_count;
1212 method_poll (EV_A_ block); 1477 backend_poll (EV_A_ block);
1213 1478
1214 /* update ev_rt_now, do magic */ 1479 /* update ev_rt_now, do magic */
1215 time_update (EV_A); 1480 time_update (EV_A_ block);
1481 }
1216 1482
1217 /* queue pending timers and reschedule them */ 1483 /* queue pending timers and reschedule them */
1218 timers_reify (EV_A); /* relative timers called last */ 1484 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS 1485#if EV_PERIODIC_ENABLE
1220 periodics_reify (EV_A); /* absolute timers called first */ 1486 periodics_reify (EV_A); /* absolute timers called first */
1221#endif 1487#endif
1222 1488
1489#if EV_IDLE_ENABLE
1223 /* queue idle watchers unless io or timers are pending */ 1490 /* queue idle watchers unless other events are pending */
1224 if (idlecnt && !any_pending (EV_A)) 1491 idle_reify (EV_A);
1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1492#endif
1226 1493
1227 /* queue check watchers, to be executed first */ 1494 /* queue check watchers, to be executed first */
1228 if (checkcnt) 1495 if (expect_false (checkcnt))
1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1496 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1230 1497
1231 call_pending (EV_A); 1498 call_pending (EV_A);
1499
1232 } 1500 }
1233 while (activecnt && !loop_done); 1501 while (expect_true (activecnt && !loop_done));
1234 1502
1235 if (loop_done != 2) 1503 if (loop_done == EVUNLOOP_ONE)
1236 loop_done = 0; 1504 loop_done = EVUNLOOP_CANCEL;
1237} 1505}
1238 1506
1239void 1507void
1240ev_unloop (EV_P_ int how) 1508ev_unloop (EV_P_ int how)
1241{ 1509{
1242 loop_done = how; 1510 loop_done = how;
1243} 1511}
1244 1512
1245/*****************************************************************************/ 1513/*****************************************************************************/
1246 1514
1247inline void 1515void inline_size
1248wlist_add (WL *head, WL elem) 1516wlist_add (WL *head, WL elem)
1249{ 1517{
1250 elem->next = *head; 1518 elem->next = *head;
1251 *head = elem; 1519 *head = elem;
1252} 1520}
1253 1521
1254inline void 1522void inline_size
1255wlist_del (WL *head, WL elem) 1523wlist_del (WL *head, WL elem)
1256{ 1524{
1257 while (*head) 1525 while (*head)
1258 { 1526 {
1259 if (*head == elem) 1527 if (*head == elem)
1264 1532
1265 head = &(*head)->next; 1533 head = &(*head)->next;
1266 } 1534 }
1267} 1535}
1268 1536
1269inline void 1537void inline_speed
1270ev_clear_pending (EV_P_ W w) 1538clear_pending (EV_P_ W w)
1271{ 1539{
1272 if (w->pending) 1540 if (w->pending)
1273 { 1541 {
1274 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1542 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1275 w->pending = 0; 1543 w->pending = 0;
1276 } 1544 }
1277} 1545}
1278 1546
1279inline void 1547int
1548ev_clear_pending (EV_P_ void *w)
1549{
1550 W w_ = (W)w;
1551 int pending = w_->pending;
1552
1553 if (expect_true (pending))
1554 {
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 w_->pending = 0;
1557 p->w = 0;
1558 return p->events;
1559 }
1560 else
1561 return 0;
1562}
1563
1564void inline_size
1565pri_adjust (EV_P_ W w)
1566{
1567 int pri = w->priority;
1568 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1569 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1570 w->priority = pri;
1571}
1572
1573void inline_speed
1280ev_start (EV_P_ W w, int active) 1574ev_start (EV_P_ W w, int active)
1281{ 1575{
1282 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1576 pri_adjust (EV_A_ w);
1283 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1284
1285 w->active = active; 1577 w->active = active;
1286 ev_ref (EV_A); 1578 ev_ref (EV_A);
1287} 1579}
1288 1580
1289inline void 1581void inline_size
1290ev_stop (EV_P_ W w) 1582ev_stop (EV_P_ W w)
1291{ 1583{
1292 ev_unref (EV_A); 1584 ev_unref (EV_A);
1293 w->active = 0; 1585 w->active = 0;
1294} 1586}
1295 1587
1296/*****************************************************************************/ 1588/*****************************************************************************/
1297 1589
1298void 1590void noinline
1299ev_io_start (EV_P_ struct ev_io *w) 1591ev_io_start (EV_P_ ev_io *w)
1300{ 1592{
1301 int fd = w->fd; 1593 int fd = w->fd;
1302 1594
1303 if (ev_is_active (w)) 1595 if (expect_false (ev_is_active (w)))
1304 return; 1596 return;
1305 1597
1306 assert (("ev_io_start called with negative fd", fd >= 0)); 1598 assert (("ev_io_start called with negative fd", fd >= 0));
1307 1599
1308 ev_start (EV_A_ (W)w, 1); 1600 ev_start (EV_A_ (W)w, 1);
1309 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1601 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1310 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1602 wlist_add (&anfds[fd].head, (WL)w);
1311 1603
1312 fd_change (EV_A_ fd); 1604 fd_change (EV_A_ fd);
1313} 1605}
1314 1606
1315void 1607void noinline
1316ev_io_stop (EV_P_ struct ev_io *w) 1608ev_io_stop (EV_P_ ev_io *w)
1317{ 1609{
1318 ev_clear_pending (EV_A_ (W)w); 1610 clear_pending (EV_A_ (W)w);
1319 if (!ev_is_active (w)) 1611 if (expect_false (!ev_is_active (w)))
1320 return; 1612 return;
1321 1613
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1614 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323 1615
1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1616 wlist_del (&anfds[w->fd].head, (WL)w);
1325 ev_stop (EV_A_ (W)w); 1617 ev_stop (EV_A_ (W)w);
1326 1618
1327 fd_change (EV_A_ w->fd); 1619 fd_change (EV_A_ w->fd);
1328} 1620}
1329 1621
1330void 1622void noinline
1331ev_timer_start (EV_P_ struct ev_timer *w) 1623ev_timer_start (EV_P_ ev_timer *w)
1332{ 1624{
1333 if (ev_is_active (w)) 1625 if (expect_false (ev_is_active (w)))
1334 return; 1626 return;
1335 1627
1336 ((WT)w)->at += mn_now; 1628 ((WT)w)->at += mn_now;
1337 1629
1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1630 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1339 1631
1340 ev_start (EV_A_ (W)w, ++timercnt); 1632 ev_start (EV_A_ (W)w, ++timercnt);
1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1633 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1342 timers [timercnt - 1] = w; 1634 timers [timercnt - 1] = (WT)w;
1343 upheap ((WT *)timers, timercnt - 1); 1635 upheap (timers, timercnt - 1);
1344 1636
1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1637 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1346} 1638}
1347 1639
1348void 1640void noinline
1349ev_timer_stop (EV_P_ struct ev_timer *w) 1641ev_timer_stop (EV_P_ ev_timer *w)
1350{ 1642{
1351 ev_clear_pending (EV_A_ (W)w); 1643 clear_pending (EV_A_ (W)w);
1352 if (!ev_is_active (w)) 1644 if (expect_false (!ev_is_active (w)))
1353 return; 1645 return;
1354 1646
1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1647 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1356 1648
1357 if (((W)w)->active < timercnt--) 1649 {
1650 int active = ((W)w)->active;
1651
1652 if (expect_true (--active < --timercnt))
1358 { 1653 {
1359 timers [((W)w)->active - 1] = timers [timercnt]; 1654 timers [active] = timers [timercnt];
1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1655 adjustheap (timers, timercnt, active);
1361 } 1656 }
1657 }
1362 1658
1363 ((WT)w)->at -= mn_now; 1659 ((WT)w)->at -= mn_now;
1364 1660
1365 ev_stop (EV_A_ (W)w); 1661 ev_stop (EV_A_ (W)w);
1366} 1662}
1367 1663
1368void 1664void noinline
1369ev_timer_again (EV_P_ struct ev_timer *w) 1665ev_timer_again (EV_P_ ev_timer *w)
1370{ 1666{
1371 if (ev_is_active (w)) 1667 if (ev_is_active (w))
1372 { 1668 {
1373 if (w->repeat) 1669 if (w->repeat)
1374 { 1670 {
1375 ((WT)w)->at = mn_now + w->repeat; 1671 ((WT)w)->at = mn_now + w->repeat;
1376 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1672 adjustheap (timers, timercnt, ((W)w)->active - 1);
1377 } 1673 }
1378 else 1674 else
1379 ev_timer_stop (EV_A_ w); 1675 ev_timer_stop (EV_A_ w);
1380 } 1676 }
1381 else if (w->repeat) 1677 else if (w->repeat)
1678 {
1679 w->at = w->repeat;
1382 ev_timer_start (EV_A_ w); 1680 ev_timer_start (EV_A_ w);
1681 }
1383} 1682}
1384 1683
1385#if EV_PERIODICS 1684#if EV_PERIODIC_ENABLE
1386void 1685void noinline
1387ev_periodic_start (EV_P_ struct ev_periodic *w) 1686ev_periodic_start (EV_P_ ev_periodic *w)
1388{ 1687{
1389 if (ev_is_active (w)) 1688 if (expect_false (ev_is_active (w)))
1390 return; 1689 return;
1391 1690
1392 if (w->reschedule_cb) 1691 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1692 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval) 1693 else if (w->interval)
1395 { 1694 {
1396 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1695 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1397 /* this formula differs from the one in periodic_reify because we do not always round up */ 1696 /* this formula differs from the one in periodic_reify because we do not always round up */
1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1697 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1399 } 1698 }
1699 else
1700 ((WT)w)->at = w->offset;
1400 1701
1401 ev_start (EV_A_ (W)w, ++periodiccnt); 1702 ev_start (EV_A_ (W)w, ++periodiccnt);
1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1703 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1403 periodics [periodiccnt - 1] = w; 1704 periodics [periodiccnt - 1] = (WT)w;
1404 upheap ((WT *)periodics, periodiccnt - 1); 1705 upheap (periodics, periodiccnt - 1);
1405 1706
1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1707 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1407} 1708}
1408 1709
1409void 1710void noinline
1410ev_periodic_stop (EV_P_ struct ev_periodic *w) 1711ev_periodic_stop (EV_P_ ev_periodic *w)
1411{ 1712{
1412 ev_clear_pending (EV_A_ (W)w); 1713 clear_pending (EV_A_ (W)w);
1413 if (!ev_is_active (w)) 1714 if (expect_false (!ev_is_active (w)))
1414 return; 1715 return;
1415 1716
1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1717 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1417 1718
1418 if (((W)w)->active < periodiccnt--) 1719 {
1720 int active = ((W)w)->active;
1721
1722 if (expect_true (--active < --periodiccnt))
1419 { 1723 {
1420 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1724 periodics [active] = periodics [periodiccnt];
1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1725 adjustheap (periodics, periodiccnt, active);
1422 } 1726 }
1727 }
1423 1728
1424 ev_stop (EV_A_ (W)w); 1729 ev_stop (EV_A_ (W)w);
1425} 1730}
1426 1731
1427void 1732void noinline
1428ev_periodic_again (EV_P_ struct ev_periodic *w) 1733ev_periodic_again (EV_P_ ev_periodic *w)
1429{ 1734{
1430 /* TODO: use adjustheap and recalculation */ 1735 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w); 1736 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w); 1737 ev_periodic_start (EV_A_ w);
1433} 1738}
1434#endif 1739#endif
1435 1740
1436void
1437ev_idle_start (EV_P_ struct ev_idle *w)
1438{
1439 if (ev_is_active (w))
1440 return;
1441
1442 ev_start (EV_A_ (W)w, ++idlecnt);
1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1444 idles [idlecnt - 1] = w;
1445}
1446
1447void
1448ev_idle_stop (EV_P_ struct ev_idle *w)
1449{
1450 ev_clear_pending (EV_A_ (W)w);
1451 if (!ev_is_active (w))
1452 return;
1453
1454 idles [((W)w)->active - 1] = idles [--idlecnt];
1455 ev_stop (EV_A_ (W)w);
1456}
1457
1458void
1459ev_prepare_start (EV_P_ struct ev_prepare *w)
1460{
1461 if (ev_is_active (w))
1462 return;
1463
1464 ev_start (EV_A_ (W)w, ++preparecnt);
1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1466 prepares [preparecnt - 1] = w;
1467}
1468
1469void
1470ev_prepare_stop (EV_P_ struct ev_prepare *w)
1471{
1472 ev_clear_pending (EV_A_ (W)w);
1473 if (!ev_is_active (w))
1474 return;
1475
1476 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1477 ev_stop (EV_A_ (W)w);
1478}
1479
1480void
1481ev_check_start (EV_P_ struct ev_check *w)
1482{
1483 if (ev_is_active (w))
1484 return;
1485
1486 ev_start (EV_A_ (W)w, ++checkcnt);
1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1488 checks [checkcnt - 1] = w;
1489}
1490
1491void
1492ev_check_stop (EV_P_ struct ev_check *w)
1493{
1494 ev_clear_pending (EV_A_ (W)w);
1495 if (!ev_is_active (w))
1496 return;
1497
1498 checks [((W)w)->active - 1] = checks [--checkcnt];
1499 ev_stop (EV_A_ (W)w);
1500}
1501
1502#ifndef SA_RESTART 1741#ifndef SA_RESTART
1503# define SA_RESTART 0 1742# define SA_RESTART 0
1504#endif 1743#endif
1505 1744
1506void 1745void noinline
1507ev_signal_start (EV_P_ struct ev_signal *w) 1746ev_signal_start (EV_P_ ev_signal *w)
1508{ 1747{
1509#if EV_MULTIPLICITY 1748#if EV_MULTIPLICITY
1510 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1749 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1511#endif 1750#endif
1512 if (ev_is_active (w)) 1751 if (expect_false (ev_is_active (w)))
1513 return; 1752 return;
1514 1753
1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1754 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1516 1755
1756 {
1757#ifndef _WIN32
1758 sigset_t full, prev;
1759 sigfillset (&full);
1760 sigprocmask (SIG_SETMASK, &full, &prev);
1761#endif
1762
1763 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1764
1765#ifndef _WIN32
1766 sigprocmask (SIG_SETMASK, &prev, 0);
1767#endif
1768 }
1769
1517 ev_start (EV_A_ (W)w, 1); 1770 ev_start (EV_A_ (W)w, 1);
1518 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1519 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1771 wlist_add (&signals [w->signum - 1].head, (WL)w);
1520 1772
1521 if (!((WL)w)->next) 1773 if (!((WL)w)->next)
1522 { 1774 {
1523#if _WIN32 1775#if _WIN32
1524 signal (w->signum, sighandler); 1776 signal (w->signum, sighandler);
1530 sigaction (w->signum, &sa, 0); 1782 sigaction (w->signum, &sa, 0);
1531#endif 1783#endif
1532 } 1784 }
1533} 1785}
1534 1786
1535void 1787void noinline
1536ev_signal_stop (EV_P_ struct ev_signal *w) 1788ev_signal_stop (EV_P_ ev_signal *w)
1537{ 1789{
1538 ev_clear_pending (EV_A_ (W)w); 1790 clear_pending (EV_A_ (W)w);
1539 if (!ev_is_active (w)) 1791 if (expect_false (!ev_is_active (w)))
1540 return; 1792 return;
1541 1793
1542 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1794 wlist_del (&signals [w->signum - 1].head, (WL)w);
1543 ev_stop (EV_A_ (W)w); 1795 ev_stop (EV_A_ (W)w);
1544 1796
1545 if (!signals [w->signum - 1].head) 1797 if (!signals [w->signum - 1].head)
1546 signal (w->signum, SIG_DFL); 1798 signal (w->signum, SIG_DFL);
1547} 1799}
1548 1800
1549void 1801void
1550ev_child_start (EV_P_ struct ev_child *w) 1802ev_child_start (EV_P_ ev_child *w)
1551{ 1803{
1552#if EV_MULTIPLICITY 1804#if EV_MULTIPLICITY
1553 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1805 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1554#endif 1806#endif
1555 if (ev_is_active (w)) 1807 if (expect_false (ev_is_active (w)))
1556 return; 1808 return;
1557 1809
1558 ev_start (EV_A_ (W)w, 1); 1810 ev_start (EV_A_ (W)w, 1);
1559 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1811 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1560} 1812}
1561 1813
1562void 1814void
1563ev_child_stop (EV_P_ struct ev_child *w) 1815ev_child_stop (EV_P_ ev_child *w)
1564{ 1816{
1565 ev_clear_pending (EV_A_ (W)w); 1817 clear_pending (EV_A_ (W)w);
1566 if (!ev_is_active (w)) 1818 if (expect_false (!ev_is_active (w)))
1567 return; 1819 return;
1568 1820
1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1821 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1570 ev_stop (EV_A_ (W)w); 1822 ev_stop (EV_A_ (W)w);
1571} 1823}
1572 1824
1825#if EV_STAT_ENABLE
1826
1827# ifdef _WIN32
1828# undef lstat
1829# define lstat(a,b) _stati64 (a,b)
1830# endif
1831
1832#define DEF_STAT_INTERVAL 5.0074891
1833#define MIN_STAT_INTERVAL 0.1074891
1834
1835static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1836
1837#if EV_USE_INOTIFY
1838# define EV_INOTIFY_BUFSIZE 8192
1839
1840static void noinline
1841infy_add (EV_P_ ev_stat *w)
1842{
1843 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1844
1845 if (w->wd < 0)
1846 {
1847 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1848
1849 /* monitor some parent directory for speedup hints */
1850 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1851 {
1852 char path [4096];
1853 strcpy (path, w->path);
1854
1855 do
1856 {
1857 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1858 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1859
1860 char *pend = strrchr (path, '/');
1861
1862 if (!pend)
1863 break; /* whoops, no '/', complain to your admin */
1864
1865 *pend = 0;
1866 w->wd = inotify_add_watch (fs_fd, path, mask);
1867 }
1868 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1869 }
1870 }
1871 else
1872 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1873
1874 if (w->wd >= 0)
1875 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1876}
1877
1878static void noinline
1879infy_del (EV_P_ ev_stat *w)
1880{
1881 int slot;
1882 int wd = w->wd;
1883
1884 if (wd < 0)
1885 return;
1886
1887 w->wd = -2;
1888 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1889 wlist_del (&fs_hash [slot].head, (WL)w);
1890
1891 /* remove this watcher, if others are watching it, they will rearm */
1892 inotify_rm_watch (fs_fd, wd);
1893}
1894
1895static void noinline
1896infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1897{
1898 if (slot < 0)
1899 /* overflow, need to check for all hahs slots */
1900 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1901 infy_wd (EV_A_ slot, wd, ev);
1902 else
1903 {
1904 WL w_;
1905
1906 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1907 {
1908 ev_stat *w = (ev_stat *)w_;
1909 w_ = w_->next; /* lets us remove this watcher and all before it */
1910
1911 if (w->wd == wd || wd == -1)
1912 {
1913 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1914 {
1915 w->wd = -1;
1916 infy_add (EV_A_ w); /* re-add, no matter what */
1917 }
1918
1919 stat_timer_cb (EV_A_ &w->timer, 0);
1920 }
1921 }
1922 }
1923}
1924
1925static void
1926infy_cb (EV_P_ ev_io *w, int revents)
1927{
1928 char buf [EV_INOTIFY_BUFSIZE];
1929 struct inotify_event *ev = (struct inotify_event *)buf;
1930 int ofs;
1931 int len = read (fs_fd, buf, sizeof (buf));
1932
1933 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1934 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1935}
1936
1937void inline_size
1938infy_init (EV_P)
1939{
1940 if (fs_fd != -2)
1941 return;
1942
1943 fs_fd = inotify_init ();
1944
1945 if (fs_fd >= 0)
1946 {
1947 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1948 ev_set_priority (&fs_w, EV_MAXPRI);
1949 ev_io_start (EV_A_ &fs_w);
1950 }
1951}
1952
1953void inline_size
1954infy_fork (EV_P)
1955{
1956 int slot;
1957
1958 if (fs_fd < 0)
1959 return;
1960
1961 close (fs_fd);
1962 fs_fd = inotify_init ();
1963
1964 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1965 {
1966 WL w_ = fs_hash [slot].head;
1967 fs_hash [slot].head = 0;
1968
1969 while (w_)
1970 {
1971 ev_stat *w = (ev_stat *)w_;
1972 w_ = w_->next; /* lets us add this watcher */
1973
1974 w->wd = -1;
1975
1976 if (fs_fd >= 0)
1977 infy_add (EV_A_ w); /* re-add, no matter what */
1978 else
1979 ev_timer_start (EV_A_ &w->timer);
1980 }
1981
1982 }
1983}
1984
1985#endif
1986
1987void
1988ev_stat_stat (EV_P_ ev_stat *w)
1989{
1990 if (lstat (w->path, &w->attr) < 0)
1991 w->attr.st_nlink = 0;
1992 else if (!w->attr.st_nlink)
1993 w->attr.st_nlink = 1;
1994}
1995
1996static void noinline
1997stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1998{
1999 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2000
2001 /* we copy this here each the time so that */
2002 /* prev has the old value when the callback gets invoked */
2003 w->prev = w->attr;
2004 ev_stat_stat (EV_A_ w);
2005
2006 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2007 if (
2008 w->prev.st_dev != w->attr.st_dev
2009 || w->prev.st_ino != w->attr.st_ino
2010 || w->prev.st_mode != w->attr.st_mode
2011 || w->prev.st_nlink != w->attr.st_nlink
2012 || w->prev.st_uid != w->attr.st_uid
2013 || w->prev.st_gid != w->attr.st_gid
2014 || w->prev.st_rdev != w->attr.st_rdev
2015 || w->prev.st_size != w->attr.st_size
2016 || w->prev.st_atime != w->attr.st_atime
2017 || w->prev.st_mtime != w->attr.st_mtime
2018 || w->prev.st_ctime != w->attr.st_ctime
2019 ) {
2020 #if EV_USE_INOTIFY
2021 infy_del (EV_A_ w);
2022 infy_add (EV_A_ w);
2023 ev_stat_stat (EV_A_ w); /* avoid race... */
2024 #endif
2025
2026 ev_feed_event (EV_A_ w, EV_STAT);
2027 }
2028}
2029
2030void
2031ev_stat_start (EV_P_ ev_stat *w)
2032{
2033 if (expect_false (ev_is_active (w)))
2034 return;
2035
2036 /* since we use memcmp, we need to clear any padding data etc. */
2037 memset (&w->prev, 0, sizeof (ev_statdata));
2038 memset (&w->attr, 0, sizeof (ev_statdata));
2039
2040 ev_stat_stat (EV_A_ w);
2041
2042 if (w->interval < MIN_STAT_INTERVAL)
2043 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2044
2045 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2046 ev_set_priority (&w->timer, ev_priority (w));
2047
2048#if EV_USE_INOTIFY
2049 infy_init (EV_A);
2050
2051 if (fs_fd >= 0)
2052 infy_add (EV_A_ w);
2053 else
2054#endif
2055 ev_timer_start (EV_A_ &w->timer);
2056
2057 ev_start (EV_A_ (W)w, 1);
2058}
2059
2060void
2061ev_stat_stop (EV_P_ ev_stat *w)
2062{
2063 clear_pending (EV_A_ (W)w);
2064 if (expect_false (!ev_is_active (w)))
2065 return;
2066
2067#if EV_USE_INOTIFY
2068 infy_del (EV_A_ w);
2069#endif
2070 ev_timer_stop (EV_A_ &w->timer);
2071
2072 ev_stop (EV_A_ (W)w);
2073}
2074#endif
2075
2076#if EV_IDLE_ENABLE
2077void
2078ev_idle_start (EV_P_ ev_idle *w)
2079{
2080 if (expect_false (ev_is_active (w)))
2081 return;
2082
2083 pri_adjust (EV_A_ (W)w);
2084
2085 {
2086 int active = ++idlecnt [ABSPRI (w)];
2087
2088 ++idleall;
2089 ev_start (EV_A_ (W)w, active);
2090
2091 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2092 idles [ABSPRI (w)][active - 1] = w;
2093 }
2094}
2095
2096void
2097ev_idle_stop (EV_P_ ev_idle *w)
2098{
2099 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w)))
2101 return;
2102
2103 {
2104 int active = ((W)w)->active;
2105
2106 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2107 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2108
2109 ev_stop (EV_A_ (W)w);
2110 --idleall;
2111 }
2112}
2113#endif
2114
2115void
2116ev_prepare_start (EV_P_ ev_prepare *w)
2117{
2118 if (expect_false (ev_is_active (w)))
2119 return;
2120
2121 ev_start (EV_A_ (W)w, ++preparecnt);
2122 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2123 prepares [preparecnt - 1] = w;
2124}
2125
2126void
2127ev_prepare_stop (EV_P_ ev_prepare *w)
2128{
2129 clear_pending (EV_A_ (W)w);
2130 if (expect_false (!ev_is_active (w)))
2131 return;
2132
2133 {
2134 int active = ((W)w)->active;
2135 prepares [active - 1] = prepares [--preparecnt];
2136 ((W)prepares [active - 1])->active = active;
2137 }
2138
2139 ev_stop (EV_A_ (W)w);
2140}
2141
2142void
2143ev_check_start (EV_P_ ev_check *w)
2144{
2145 if (expect_false (ev_is_active (w)))
2146 return;
2147
2148 ev_start (EV_A_ (W)w, ++checkcnt);
2149 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2150 checks [checkcnt - 1] = w;
2151}
2152
2153void
2154ev_check_stop (EV_P_ ev_check *w)
2155{
2156 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w)))
2158 return;
2159
2160 {
2161 int active = ((W)w)->active;
2162 checks [active - 1] = checks [--checkcnt];
2163 ((W)checks [active - 1])->active = active;
2164 }
2165
2166 ev_stop (EV_A_ (W)w);
2167}
2168
2169#if EV_EMBED_ENABLE
2170void noinline
2171ev_embed_sweep (EV_P_ ev_embed *w)
2172{
2173 ev_loop (w->loop, EVLOOP_NONBLOCK);
2174}
2175
2176static void
2177embed_cb (EV_P_ ev_io *io, int revents)
2178{
2179 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2180
2181 if (ev_cb (w))
2182 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2183 else
2184 ev_embed_sweep (loop, w);
2185}
2186
2187void
2188ev_embed_start (EV_P_ ev_embed *w)
2189{
2190 if (expect_false (ev_is_active (w)))
2191 return;
2192
2193 {
2194 struct ev_loop *loop = w->loop;
2195 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2196 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2197 }
2198
2199 ev_set_priority (&w->io, ev_priority (w));
2200 ev_io_start (EV_A_ &w->io);
2201
2202 ev_start (EV_A_ (W)w, 1);
2203}
2204
2205void
2206ev_embed_stop (EV_P_ ev_embed *w)
2207{
2208 clear_pending (EV_A_ (W)w);
2209 if (expect_false (!ev_is_active (w)))
2210 return;
2211
2212 ev_io_stop (EV_A_ &w->io);
2213
2214 ev_stop (EV_A_ (W)w);
2215}
2216#endif
2217
2218#if EV_FORK_ENABLE
2219void
2220ev_fork_start (EV_P_ ev_fork *w)
2221{
2222 if (expect_false (ev_is_active (w)))
2223 return;
2224
2225 ev_start (EV_A_ (W)w, ++forkcnt);
2226 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2227 forks [forkcnt - 1] = w;
2228}
2229
2230void
2231ev_fork_stop (EV_P_ ev_fork *w)
2232{
2233 clear_pending (EV_A_ (W)w);
2234 if (expect_false (!ev_is_active (w)))
2235 return;
2236
2237 {
2238 int active = ((W)w)->active;
2239 forks [active - 1] = forks [--forkcnt];
2240 ((W)forks [active - 1])->active = active;
2241 }
2242
2243 ev_stop (EV_A_ (W)w);
2244}
2245#endif
2246
1573/*****************************************************************************/ 2247/*****************************************************************************/
1574 2248
1575struct ev_once 2249struct ev_once
1576{ 2250{
1577 struct ev_io io; 2251 ev_io io;
1578 struct ev_timer to; 2252 ev_timer to;
1579 void (*cb)(int revents, void *arg); 2253 void (*cb)(int revents, void *arg);
1580 void *arg; 2254 void *arg;
1581}; 2255};
1582 2256
1583static void 2257static void
1592 2266
1593 cb (revents, arg); 2267 cb (revents, arg);
1594} 2268}
1595 2269
1596static void 2270static void
1597once_cb_io (EV_P_ struct ev_io *w, int revents) 2271once_cb_io (EV_P_ ev_io *w, int revents)
1598{ 2272{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2273 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1600} 2274}
1601 2275
1602static void 2276static void
1603once_cb_to (EV_P_ struct ev_timer *w, int revents) 2277once_cb_to (EV_P_ ev_timer *w, int revents)
1604{ 2278{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2279 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1606} 2280}
1607 2281
1608void 2282void
1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2283ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1610{ 2284{
1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2285 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1612 2286
1613 if (!once) 2287 if (expect_false (!once))
2288 {
1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2289 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1615 else 2290 return;
1616 { 2291 }
2292
1617 once->cb = cb; 2293 once->cb = cb;
1618 once->arg = arg; 2294 once->arg = arg;
1619 2295
1620 ev_init (&once->io, once_cb_io); 2296 ev_init (&once->io, once_cb_io);
1621 if (fd >= 0) 2297 if (fd >= 0)
1622 { 2298 {
1623 ev_io_set (&once->io, fd, events); 2299 ev_io_set (&once->io, fd, events);
1624 ev_io_start (EV_A_ &once->io); 2300 ev_io_start (EV_A_ &once->io);
1625 } 2301 }
1626 2302
1627 ev_init (&once->to, once_cb_to); 2303 ev_init (&once->to, once_cb_to);
1628 if (timeout >= 0.) 2304 if (timeout >= 0.)
1629 { 2305 {
1630 ev_timer_set (&once->to, timeout, 0.); 2306 ev_timer_set (&once->to, timeout, 0.);
1631 ev_timer_start (EV_A_ &once->to); 2307 ev_timer_start (EV_A_ &once->to);
1632 }
1633 } 2308 }
1634} 2309}
1635 2310
1636#ifdef __cplusplus 2311#ifdef __cplusplus
1637} 2312}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines