ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.105 by root, Mon Nov 12 01:02:09 2007 UTC vs.
Revision 1.231 by root, Mon May 5 20:47:33 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) && !defined (__APPLE__) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) && !defined (__APPLE__) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
63 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
64#endif 132#endif
65 133
66#include <math.h> 134#include <math.h>
67#include <stdlib.h> 135#include <stdlib.h>
68#include <fcntl.h> 136#include <fcntl.h>
75#include <sys/types.h> 143#include <sys/types.h>
76#include <time.h> 144#include <time.h>
77 145
78#include <signal.h> 146#include <signal.h>
79 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
80#ifndef _WIN32 154#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 155# include <sys/time.h>
83# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
84#else 158#else
85# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 160# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
89# endif 163# endif
90#endif 164#endif
91 165
92/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
93 167
94#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
96#endif 178#endif
97 179
98#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 182#endif
102 183
103#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
104# ifdef _WIN32 185# ifdef _WIN32
105# define EV_USE_POLL 0 186# define EV_USE_POLL 0
107# define EV_USE_POLL 1 188# define EV_USE_POLL 1
108# endif 189# endif
109#endif 190#endif
110 191
111#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
112# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
113#endif 198#endif
114 199
115#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
117#endif 202#endif
118 203
119#ifndef EV_USE_REALTIME 204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
120# define EV_USE_REALTIME 1 210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
121#endif 213# endif
214#endif
122 215
123/**/ 216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
124 241
125#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
126# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
127# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
128#endif 245#endif
130#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
131# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
132# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
133#endif 250#endif
134 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
135#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
136# include <winsock.h> 268# include <winsock.h>
137#endif 269#endif
138 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
139/**/ 283/**/
140 284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
145 298
146#ifdef EV_H
147# include EV_H
148#else
149# include "ev.h"
150#endif
151
152#if __GNUC__ >= 3 299#if __GNUC__ >= 4
153# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
154# define inline inline 301# define noinline __attribute__ ((noinline))
155#else 302#else
156# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
157# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
158#endif 308#endif
159 309
160#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
161#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
162 319
163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
164#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
165 322
166#define EMPTY /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
167 325
168typedef struct ev_watcher *W; 326typedef ev_watcher *W;
169typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
170typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
171 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
173 338
174#ifdef _WIN32 339#ifdef _WIN32
175# include "ev_win32.c" 340# include "ev_win32.c"
176#endif 341#endif
177 342
178/*****************************************************************************/ 343/*****************************************************************************/
179 344
180static void (*syserr_cb)(const char *msg); 345static void (*syserr_cb)(const char *msg);
181 346
347void
182void ev_set_syserr_cb (void (*cb)(const char *msg)) 348ev_set_syserr_cb (void (*cb)(const char *msg))
183{ 349{
184 syserr_cb = cb; 350 syserr_cb = cb;
185} 351}
186 352
187static void 353static void noinline
188syserr (const char *msg) 354syserr (const char *msg)
189{ 355{
190 if (!msg) 356 if (!msg)
191 msg = "(libev) system error"; 357 msg = "(libev) system error";
192 358
197 perror (msg); 363 perror (msg);
198 abort (); 364 abort ();
199 } 365 }
200} 366}
201 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
202static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
203 384
385void
204void ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
205{ 387{
206 alloc = cb; 388 alloc = cb;
207} 389}
208 390
209static void * 391inline_speed void *
210ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
211{ 393{
212 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
213 395
214 if (!ptr && size) 396 if (!ptr && size)
215 { 397 {
216 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
217 abort (); 399 abort ();
238typedef struct 420typedef struct
239{ 421{
240 W w; 422 W w;
241 int events; 423 int events;
242} ANPENDING; 424} ANPENDING;
425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
243 432
244#if EV_MULTIPLICITY 433#if EV_MULTIPLICITY
245 434
246 struct ev_loop 435 struct ev_loop
247 { 436 {
251 #include "ev_vars.h" 440 #include "ev_vars.h"
252 #undef VAR 441 #undef VAR
253 }; 442 };
254 #include "ev_wrap.h" 443 #include "ev_wrap.h"
255 444
256 struct ev_loop default_loop_struct; 445 static struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop; 446 struct ev_loop *ev_default_loop_ptr;
258 447
259#else 448#else
260 449
261 ev_tstamp ev_rt_now; 450 ev_tstamp ev_rt_now;
262 #define VAR(name,decl) static decl; 451 #define VAR(name,decl) static decl;
263 #include "ev_vars.h" 452 #include "ev_vars.h"
264 #undef VAR 453 #undef VAR
265 454
266 static int default_loop; 455 static int ev_default_loop_ptr;
267 456
268#endif 457#endif
269 458
270/*****************************************************************************/ 459/*****************************************************************************/
271 460
281 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
282 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
283#endif 472#endif
284} 473}
285 474
286inline ev_tstamp 475ev_tstamp inline_size
287get_clock (void) 476get_clock (void)
288{ 477{
289#if EV_USE_MONOTONIC 478#if EV_USE_MONOTONIC
290 if (expect_true (have_monotonic)) 479 if (expect_true (have_monotonic))
291 { 480 {
304{ 493{
305 return ev_rt_now; 494 return ev_rt_now;
306} 495}
307#endif 496#endif
308 497
309#define array_roundsize(type,n) ((n) | 4 & ~3) 498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525int inline_size
526array_nextsize (int elem, int cur, int cnt)
527{
528 int ncur = cur + 1;
529
530 do
531 ncur <<= 1;
532 while (cnt > ncur);
533
534 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
535 if (elem * ncur > 4096)
536 {
537 ncur *= elem;
538 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
539 ncur = ncur - sizeof (void *) * 4;
540 ncur /= elem;
541 }
542
543 return ncur;
544}
545
546static noinline void *
547array_realloc (int elem, void *base, int *cur, int cnt)
548{
549 *cur = array_nextsize (elem, *cur, cnt);
550 return ev_realloc (base, elem * *cur);
551}
310 552
311#define array_needsize(type,base,cur,cnt,init) \ 553#define array_needsize(type,base,cur,cnt,init) \
312 if (expect_false ((cnt) > cur)) \ 554 if (expect_false ((cnt) > (cur))) \
313 { \ 555 { \
314 int newcnt = cur; \ 556 int ocur_ = (cur); \
315 do \ 557 (base) = (type *)array_realloc \
316 { \ 558 (sizeof (type), (base), &(cur), (cnt)); \
317 newcnt = array_roundsize (type, newcnt << 1); \ 559 init ((base) + (ocur_), (cur) - ocur_); \
318 } \
319 while ((cnt) > newcnt); \
320 \
321 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
322 init (base + cur, newcnt - cur); \
323 cur = newcnt; \
324 } 560 }
325 561
562#if 0
326#define array_slim(type,stem) \ 563#define array_slim(type,stem) \
327 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 564 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
328 { \ 565 { \
329 stem ## max = array_roundsize (stem ## cnt >> 1); \ 566 stem ## max = array_roundsize (stem ## cnt >> 1); \
330 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 567 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
331 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 568 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
332 } 569 }
570#endif
333 571
334#define array_free(stem, idx) \ 572#define array_free(stem, idx) \
335 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 573 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
336 574
337/*****************************************************************************/ 575/*****************************************************************************/
338 576
339static void 577void noinline
578ev_feed_event (EV_P_ void *w, int revents)
579{
580 W w_ = (W)w;
581 int pri = ABSPRI (w_);
582
583 if (expect_false (w_->pending))
584 pendings [pri][w_->pending - 1].events |= revents;
585 else
586 {
587 w_->pending = ++pendingcnt [pri];
588 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
589 pendings [pri][w_->pending - 1].w = w_;
590 pendings [pri][w_->pending - 1].events = revents;
591 }
592}
593
594void inline_speed
595queue_events (EV_P_ W *events, int eventcnt, int type)
596{
597 int i;
598
599 for (i = 0; i < eventcnt; ++i)
600 ev_feed_event (EV_A_ events [i], type);
601}
602
603/*****************************************************************************/
604
605void inline_size
340anfds_init (ANFD *base, int count) 606anfds_init (ANFD *base, int count)
341{ 607{
342 while (count--) 608 while (count--)
343 { 609 {
344 base->head = 0; 610 base->head = 0;
347 613
348 ++base; 614 ++base;
349 } 615 }
350} 616}
351 617
352void 618void inline_speed
353ev_feed_event (EV_P_ void *w, int revents)
354{
355 W w_ = (W)w;
356
357 if (w_->pending)
358 {
359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
360 return;
361 }
362
363 w_->pending = ++pendingcnt [ABSPRI (w_)];
364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
367}
368
369static void
370queue_events (EV_P_ W *events, int eventcnt, int type)
371{
372 int i;
373
374 for (i = 0; i < eventcnt; ++i)
375 ev_feed_event (EV_A_ events [i], type);
376}
377
378inline void
379fd_event (EV_P_ int fd, int revents) 619fd_event (EV_P_ int fd, int revents)
380{ 620{
381 ANFD *anfd = anfds + fd; 621 ANFD *anfd = anfds + fd;
382 struct ev_io *w; 622 ev_io *w;
383 623
384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 624 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
385 { 625 {
386 int ev = w->events & revents; 626 int ev = w->events & revents;
387 627
388 if (ev) 628 if (ev)
389 ev_feed_event (EV_A_ (W)w, ev); 629 ev_feed_event (EV_A_ (W)w, ev);
391} 631}
392 632
393void 633void
394ev_feed_fd_event (EV_P_ int fd, int revents) 634ev_feed_fd_event (EV_P_ int fd, int revents)
395{ 635{
636 if (fd >= 0 && fd < anfdmax)
396 fd_event (EV_A_ fd, revents); 637 fd_event (EV_A_ fd, revents);
397} 638}
398 639
399/*****************************************************************************/ 640void inline_size
400
401static void
402fd_reify (EV_P) 641fd_reify (EV_P)
403{ 642{
404 int i; 643 int i;
405 644
406 for (i = 0; i < fdchangecnt; ++i) 645 for (i = 0; i < fdchangecnt; ++i)
407 { 646 {
408 int fd = fdchanges [i]; 647 int fd = fdchanges [i];
409 ANFD *anfd = anfds + fd; 648 ANFD *anfd = anfds + fd;
410 struct ev_io *w; 649 ev_io *w;
411 650
412 int events = 0; 651 unsigned char events = 0;
413 652
414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
415 events |= w->events; 654 events |= (unsigned char)w->events;
416 655
417#if EV_SELECT_IS_WINSOCKET 656#if EV_SELECT_IS_WINSOCKET
418 if (events) 657 if (events)
419 { 658 {
420 unsigned long argp; 659 unsigned long argp;
660 #ifdef EV_FD_TO_WIN32_HANDLE
661 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
662 #else
421 anfd->handle = _get_osfhandle (fd); 663 anfd->handle = _get_osfhandle (fd);
664 #endif
422 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 665 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
423 } 666 }
424#endif 667#endif
425 668
669 {
670 unsigned char o_events = anfd->events;
671 unsigned char o_reify = anfd->reify;
672
426 anfd->reify = 0; 673 anfd->reify = 0;
427
428 method_modify (EV_A_ fd, anfd->events, events);
429 anfd->events = events; 674 anfd->events = events;
675
676 if (o_events != events || o_reify & EV_IOFDSET)
677 backend_modify (EV_A_ fd, o_events, events);
678 }
430 } 679 }
431 680
432 fdchangecnt = 0; 681 fdchangecnt = 0;
433} 682}
434 683
435static void 684void inline_size
436fd_change (EV_P_ int fd) 685fd_change (EV_P_ int fd, int flags)
437{ 686{
438 if (anfds [fd].reify) 687 unsigned char reify = anfds [fd].reify;
439 return;
440
441 anfds [fd].reify = 1; 688 anfds [fd].reify |= flags;
442 689
690 if (expect_true (!reify))
691 {
443 ++fdchangecnt; 692 ++fdchangecnt;
444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 693 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
445 fdchanges [fdchangecnt - 1] = fd; 694 fdchanges [fdchangecnt - 1] = fd;
695 }
446} 696}
447 697
448static void 698void inline_speed
449fd_kill (EV_P_ int fd) 699fd_kill (EV_P_ int fd)
450{ 700{
451 struct ev_io *w; 701 ev_io *w;
452 702
453 while ((w = (struct ev_io *)anfds [fd].head)) 703 while ((w = (ev_io *)anfds [fd].head))
454 { 704 {
455 ev_io_stop (EV_A_ w); 705 ev_io_stop (EV_A_ w);
456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 706 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
457 } 707 }
458} 708}
459 709
460static int 710int inline_size
461fd_valid (int fd) 711fd_valid (int fd)
462{ 712{
463#ifdef _WIN32 713#ifdef _WIN32
464 return _get_osfhandle (fd) != -1; 714 return _get_osfhandle (fd) != -1;
465#else 715#else
466 return fcntl (fd, F_GETFD) != -1; 716 return fcntl (fd, F_GETFD) != -1;
467#endif 717#endif
468} 718}
469 719
470/* called on EBADF to verify fds */ 720/* called on EBADF to verify fds */
471static void 721static void noinline
472fd_ebadf (EV_P) 722fd_ebadf (EV_P)
473{ 723{
474 int fd; 724 int fd;
475 725
476 for (fd = 0; fd < anfdmax; ++fd) 726 for (fd = 0; fd < anfdmax; ++fd)
478 if (!fd_valid (fd) == -1 && errno == EBADF) 728 if (!fd_valid (fd) == -1 && errno == EBADF)
479 fd_kill (EV_A_ fd); 729 fd_kill (EV_A_ fd);
480} 730}
481 731
482/* called on ENOMEM in select/poll to kill some fds and retry */ 732/* called on ENOMEM in select/poll to kill some fds and retry */
483static void 733static void noinline
484fd_enomem (EV_P) 734fd_enomem (EV_P)
485{ 735{
486 int fd; 736 int fd;
487 737
488 for (fd = anfdmax; fd--; ) 738 for (fd = anfdmax; fd--; )
491 fd_kill (EV_A_ fd); 741 fd_kill (EV_A_ fd);
492 return; 742 return;
493 } 743 }
494} 744}
495 745
496/* usually called after fork if method needs to re-arm all fds from scratch */ 746/* usually called after fork if backend needs to re-arm all fds from scratch */
497static void 747static void noinline
498fd_rearm_all (EV_P) 748fd_rearm_all (EV_P)
499{ 749{
500 int fd; 750 int fd;
501 751
502 /* this should be highly optimised to not do anything but set a flag */
503 for (fd = 0; fd < anfdmax; ++fd) 752 for (fd = 0; fd < anfdmax; ++fd)
504 if (anfds [fd].events) 753 if (anfds [fd].events)
505 { 754 {
506 anfds [fd].events = 0; 755 anfds [fd].events = 0;
507 fd_change (EV_A_ fd); 756 fd_change (EV_A_ fd, EV_IOFDSET | 1);
508 } 757 }
509} 758}
510 759
511/*****************************************************************************/ 760/*****************************************************************************/
512 761
513static void 762/* towards the root */
763void inline_speed
514upheap (WT *heap, int k) 764upheap (WT *heap, int k)
515{ 765{
516 WT w = heap [k]; 766 WT w = heap [k];
517 767
518 while (k && heap [k >> 1]->at > w->at) 768 for (;;)
519 { 769 {
770 int p = k >> 1;
771
772 /* maybe we could use a dummy element at heap [0]? */
773 if (!p || heap [p]->at <= w->at)
774 break;
775
520 heap [k] = heap [k >> 1]; 776 heap [k] = heap [p];
521 ((W)heap [k])->active = k + 1; 777 ev_active (heap [k]) = k;
522 k >>= 1; 778 k = p;
523 } 779 }
524 780
525 heap [k] = w; 781 heap [k] = w;
526 ((W)heap [k])->active = k + 1; 782 ev_active (heap [k]) = k;
527
528} 783}
529 784
530static void 785/* away from the root */
786void inline_speed
531downheap (WT *heap, int N, int k) 787downheap (WT *heap, int N, int k)
532{ 788{
533 WT w = heap [k]; 789 WT w = heap [k];
534 790
535 while (k < (N >> 1)) 791 for (;;)
536 { 792 {
537 int j = k << 1; 793 int c = k << 1;
538 794
539 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 795 if (c > N)
540 ++j;
541
542 if (w->at <= heap [j]->at)
543 break; 796 break;
544 797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
545 heap [k] = heap [j]; 804 heap [k] = heap [c];
546 ((W)heap [k])->active = k + 1; 805 ev_active (heap [k]) = k;
806
547 k = j; 807 k = c;
548 } 808 }
549 809
550 heap [k] = w; 810 heap [k] = w;
551 ((W)heap [k])->active = k + 1; 811 ev_active (heap [k]) = k;
552} 812}
553 813
554inline void 814void inline_size
555adjustheap (WT *heap, int N, int k) 815adjustheap (WT *heap, int N, int k)
556{ 816{
557 upheap (heap, k); 817 upheap (heap, k);
558 downheap (heap, N, k); 818 downheap (heap, N, k);
559} 819}
561/*****************************************************************************/ 821/*****************************************************************************/
562 822
563typedef struct 823typedef struct
564{ 824{
565 WL head; 825 WL head;
566 sig_atomic_t volatile gotsig; 826 EV_ATOMIC_T gotsig;
567} ANSIG; 827} ANSIG;
568 828
569static ANSIG *signals; 829static ANSIG *signals;
570static int signalmax; 830static int signalmax;
571 831
572static int sigpipe [2]; 832static EV_ATOMIC_T gotsig;
573static sig_atomic_t volatile gotsig;
574static struct ev_io sigev;
575 833
576static void 834void inline_size
577signals_init (ANSIG *base, int count) 835signals_init (ANSIG *base, int count)
578{ 836{
579 while (count--) 837 while (count--)
580 { 838 {
581 base->head = 0; 839 base->head = 0;
583 841
584 ++base; 842 ++base;
585 } 843 }
586} 844}
587 845
588static void 846/*****************************************************************************/
589sighandler (int signum)
590{
591#if _WIN32
592 signal (signum, sighandler);
593#endif
594 847
595 signals [signum - 1].gotsig = 1; 848void inline_speed
596
597 if (!gotsig)
598 {
599 int old_errno = errno;
600 gotsig = 1;
601 write (sigpipe [1], &signum, 1);
602 errno = old_errno;
603 }
604}
605
606void
607ev_feed_signal_event (EV_P_ int signum)
608{
609 WL w;
610
611#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
613#endif
614
615 --signum;
616
617 if (signum < 0 || signum >= signalmax)
618 return;
619
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624}
625
626static void
627sigcb (EV_P_ struct ev_io *iow, int revents)
628{
629 int signum;
630
631 read (sigpipe [0], &revents, 1);
632 gotsig = 0;
633
634 for (signum = signalmax; signum--; )
635 if (signals [signum].gotsig)
636 ev_feed_signal_event (EV_A_ signum + 1);
637}
638
639inline void
640fd_intern (int fd) 849fd_intern (int fd)
641{ 850{
642#ifdef _WIN32 851#ifdef _WIN32
643 int arg = 1; 852 int arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 853 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
646 fcntl (fd, F_SETFD, FD_CLOEXEC); 855 fcntl (fd, F_SETFD, FD_CLOEXEC);
647 fcntl (fd, F_SETFL, O_NONBLOCK); 856 fcntl (fd, F_SETFL, O_NONBLOCK);
648#endif 857#endif
649} 858}
650 859
860static void noinline
861evpipe_init (EV_P)
862{
863 if (!ev_is_active (&pipeev))
864 {
865#if EV_USE_EVENTFD
866 if ((evfd = eventfd (0, 0)) >= 0)
867 {
868 evpipe [0] = -1;
869 fd_intern (evfd);
870 ev_io_set (&pipeev, evfd, EV_READ);
871 }
872 else
873#endif
874 {
875 while (pipe (evpipe))
876 syserr ("(libev) error creating signal/async pipe");
877
878 fd_intern (evpipe [0]);
879 fd_intern (evpipe [1]);
880 ev_io_set (&pipeev, evpipe [0], EV_READ);
881 }
882
883 ev_io_start (EV_A_ &pipeev);
884 ev_unref (EV_A); /* watcher should not keep loop alive */
885 }
886}
887
888void inline_size
889evpipe_write (EV_P_ EV_ATOMIC_T *flag)
890{
891 if (!*flag)
892 {
893 int old_errno = errno; /* save errno because write might clobber it */
894
895 *flag = 1;
896
897#if EV_USE_EVENTFD
898 if (evfd >= 0)
899 {
900 uint64_t counter = 1;
901 write (evfd, &counter, sizeof (uint64_t));
902 }
903 else
904#endif
905 write (evpipe [1], &old_errno, 1);
906
907 errno = old_errno;
908 }
909}
910
651static void 911static void
652siginit (EV_P) 912pipecb (EV_P_ ev_io *iow, int revents)
653{ 913{
654 fd_intern (sigpipe [0]); 914#if EV_USE_EVENTFD
655 fd_intern (sigpipe [1]); 915 if (evfd >= 0)
916 {
917 uint64_t counter = 1;
918 read (evfd, &counter, sizeof (uint64_t));
919 }
920 else
921#endif
922 {
923 char dummy;
924 read (evpipe [0], &dummy, 1);
925 }
656 926
657 ev_io_set (&sigev, sigpipe [0], EV_READ); 927 if (gotsig && ev_is_default_loop (EV_A))
658 ev_io_start (EV_A_ &sigev); 928 {
659 ev_unref (EV_A); /* child watcher should not keep loop alive */ 929 int signum;
930 gotsig = 0;
931
932 for (signum = signalmax; signum--; )
933 if (signals [signum].gotsig)
934 ev_feed_signal_event (EV_A_ signum + 1);
935 }
936
937#if EV_ASYNC_ENABLE
938 if (gotasync)
939 {
940 int i;
941 gotasync = 0;
942
943 for (i = asynccnt; i--; )
944 if (asyncs [i]->sent)
945 {
946 asyncs [i]->sent = 0;
947 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
948 }
949 }
950#endif
660} 951}
661 952
662/*****************************************************************************/ 953/*****************************************************************************/
663 954
664static struct ev_child *childs [PID_HASHSIZE]; 955static void
956ev_sighandler (int signum)
957{
958#if EV_MULTIPLICITY
959 struct ev_loop *loop = &default_loop_struct;
960#endif
961
962#if _WIN32
963 signal (signum, ev_sighandler);
964#endif
965
966 signals [signum - 1].gotsig = 1;
967 evpipe_write (EV_A_ &gotsig);
968}
969
970void noinline
971ev_feed_signal_event (EV_P_ int signum)
972{
973 WL w;
974
975#if EV_MULTIPLICITY
976 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
977#endif
978
979 --signum;
980
981 if (signum < 0 || signum >= signalmax)
982 return;
983
984 signals [signum].gotsig = 0;
985
986 for (w = signals [signum].head; w; w = w->next)
987 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
988}
989
990/*****************************************************************************/
991
992static WL childs [EV_PID_HASHSIZE];
665 993
666#ifndef _WIN32 994#ifndef _WIN32
667 995
668static struct ev_signal childev; 996static ev_signal childev;
997
998#ifndef WIFCONTINUED
999# define WIFCONTINUED(status) 0
1000#endif
1001
1002void inline_speed
1003child_reap (EV_P_ int chain, int pid, int status)
1004{
1005 ev_child *w;
1006 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1007
1008 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1009 {
1010 if ((w->pid == pid || !w->pid)
1011 && (!traced || (w->flags & 1)))
1012 {
1013 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1014 w->rpid = pid;
1015 w->rstatus = status;
1016 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1017 }
1018 }
1019}
669 1020
670#ifndef WCONTINUED 1021#ifndef WCONTINUED
671# define WCONTINUED 0 1022# define WCONTINUED 0
672#endif 1023#endif
673 1024
674static void 1025static void
675child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
676{
677 struct ev_child *w;
678
679 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
680 if (w->pid == pid || !w->pid)
681 {
682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
683 w->rpid = pid;
684 w->rstatus = status;
685 ev_feed_event (EV_A_ (W)w, EV_CHILD);
686 }
687}
688
689static void
690childcb (EV_P_ struct ev_signal *sw, int revents) 1026childcb (EV_P_ ev_signal *sw, int revents)
691{ 1027{
692 int pid, status; 1028 int pid, status;
693 1029
1030 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1031 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
695 { 1032 if (!WCONTINUED
1033 || errno != EINVAL
1034 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1035 return;
1036
696 /* make sure we are called again until all childs have been reaped */ 1037 /* make sure we are called again until all children have been reaped */
1038 /* we need to do it this way so that the callback gets called before we continue */
697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1039 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
698 1040
699 child_reap (EV_A_ sw, pid, pid, status); 1041 child_reap (EV_A_ pid, pid, status);
1042 if (EV_PID_HASHSIZE > 1)
700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1043 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
701 }
702} 1044}
703 1045
704#endif 1046#endif
705 1047
706/*****************************************************************************/ 1048/*****************************************************************************/
707 1049
1050#if EV_USE_PORT
1051# include "ev_port.c"
1052#endif
708#if EV_USE_KQUEUE 1053#if EV_USE_KQUEUE
709# include "ev_kqueue.c" 1054# include "ev_kqueue.c"
710#endif 1055#endif
711#if EV_USE_EPOLL 1056#if EV_USE_EPOLL
712# include "ev_epoll.c" 1057# include "ev_epoll.c"
729{ 1074{
730 return EV_VERSION_MINOR; 1075 return EV_VERSION_MINOR;
731} 1076}
732 1077
733/* return true if we are running with elevated privileges and should ignore env variables */ 1078/* return true if we are running with elevated privileges and should ignore env variables */
734static int 1079int inline_size
735enable_secure (void) 1080enable_secure (void)
736{ 1081{
737#ifdef _WIN32 1082#ifdef _WIN32
738 return 0; 1083 return 0;
739#else 1084#else
740 return getuid () != geteuid () 1085 return getuid () != geteuid ()
741 || getgid () != getegid (); 1086 || getgid () != getegid ();
742#endif 1087#endif
743} 1088}
744 1089
745int 1090unsigned int
746ev_method (EV_P) 1091ev_supported_backends (void)
747{ 1092{
748 return method; 1093 unsigned int flags = 0;
749}
750 1094
751static void 1095 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
752loop_init (EV_P_ int methods) 1096 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1097 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1098 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1099 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1100
1101 return flags;
1102}
1103
1104unsigned int
1105ev_recommended_backends (void)
753{ 1106{
754 if (!method) 1107 unsigned int flags = ev_supported_backends ();
1108
1109#ifndef __NetBSD__
1110 /* kqueue is borked on everything but netbsd apparently */
1111 /* it usually doesn't work correctly on anything but sockets and pipes */
1112 flags &= ~EVBACKEND_KQUEUE;
1113#endif
1114#ifdef __APPLE__
1115 // flags &= ~EVBACKEND_KQUEUE; for documentation
1116 flags &= ~EVBACKEND_POLL;
1117#endif
1118
1119 return flags;
1120}
1121
1122unsigned int
1123ev_embeddable_backends (void)
1124{
1125 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1126
1127 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1128 /* please fix it and tell me how to detect the fix */
1129 flags &= ~EVBACKEND_EPOLL;
1130
1131 return flags;
1132}
1133
1134unsigned int
1135ev_backend (EV_P)
1136{
1137 return backend;
1138}
1139
1140unsigned int
1141ev_loop_count (EV_P)
1142{
1143 return loop_count;
1144}
1145
1146void
1147ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1148{
1149 io_blocktime = interval;
1150}
1151
1152void
1153ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1154{
1155 timeout_blocktime = interval;
1156}
1157
1158static void noinline
1159loop_init (EV_P_ unsigned int flags)
1160{
1161 if (!backend)
755 { 1162 {
756#if EV_USE_MONOTONIC 1163#if EV_USE_MONOTONIC
757 { 1164 {
758 struct timespec ts; 1165 struct timespec ts;
759 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1166 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
760 have_monotonic = 1; 1167 have_monotonic = 1;
761 } 1168 }
762#endif 1169#endif
763 1170
764 ev_rt_now = ev_time (); 1171 ev_rt_now = ev_time ();
765 mn_now = get_clock (); 1172 mn_now = get_clock ();
766 now_floor = mn_now; 1173 now_floor = mn_now;
767 rtmn_diff = ev_rt_now - mn_now; 1174 rtmn_diff = ev_rt_now - mn_now;
768 1175
769 if (methods == EVMETHOD_AUTO) 1176 io_blocktime = 0.;
770 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1177 timeout_blocktime = 0.;
1178 backend = 0;
1179 backend_fd = -1;
1180 gotasync = 0;
1181#if EV_USE_INOTIFY
1182 fs_fd = -2;
1183#endif
1184
1185 /* pid check not overridable via env */
1186#ifndef _WIN32
1187 if (flags & EVFLAG_FORKCHECK)
1188 curpid = getpid ();
1189#endif
1190
1191 if (!(flags & EVFLAG_NOENV)
1192 && !enable_secure ()
1193 && getenv ("LIBEV_FLAGS"))
771 methods = atoi (getenv ("LIBEV_METHODS")); 1194 flags = atoi (getenv ("LIBEV_FLAGS"));
772 else
773 methods = EVMETHOD_ANY;
774 1195
775 method = 0; 1196 if (!(flags & 0x0000ffffU))
1197 flags |= ev_recommended_backends ();
1198
1199#if EV_USE_PORT
1200 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1201#endif
776#if EV_USE_KQUEUE 1202#if EV_USE_KQUEUE
777 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1203 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
778#endif 1204#endif
779#if EV_USE_EPOLL 1205#if EV_USE_EPOLL
780 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1206 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
781#endif 1207#endif
782#if EV_USE_POLL 1208#if EV_USE_POLL
783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1209 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
784#endif 1210#endif
785#if EV_USE_SELECT 1211#if EV_USE_SELECT
786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1212 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
787#endif 1213#endif
788 1214
789 ev_init (&sigev, sigcb); 1215 ev_init (&pipeev, pipecb);
790 ev_set_priority (&sigev, EV_MAXPRI); 1216 ev_set_priority (&pipeev, EV_MAXPRI);
791 } 1217 }
792} 1218}
793 1219
794void 1220static void noinline
795loop_destroy (EV_P) 1221loop_destroy (EV_P)
796{ 1222{
797 int i; 1223 int i;
798 1224
1225 if (ev_is_active (&pipeev))
1226 {
1227 ev_ref (EV_A); /* signal watcher */
1228 ev_io_stop (EV_A_ &pipeev);
1229
1230#if EV_USE_EVENTFD
1231 if (evfd >= 0)
1232 close (evfd);
1233#endif
1234
1235 if (evpipe [0] >= 0)
1236 {
1237 close (evpipe [0]);
1238 close (evpipe [1]);
1239 }
1240 }
1241
1242#if EV_USE_INOTIFY
1243 if (fs_fd >= 0)
1244 close (fs_fd);
1245#endif
1246
1247 if (backend_fd >= 0)
1248 close (backend_fd);
1249
1250#if EV_USE_PORT
1251 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1252#endif
799#if EV_USE_KQUEUE 1253#if EV_USE_KQUEUE
800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1254 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
801#endif 1255#endif
802#if EV_USE_EPOLL 1256#if EV_USE_EPOLL
803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1257 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
804#endif 1258#endif
805#if EV_USE_POLL 1259#if EV_USE_POLL
806 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1260 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
807#endif 1261#endif
808#if EV_USE_SELECT 1262#if EV_USE_SELECT
809 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1263 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
810#endif 1264#endif
811 1265
812 for (i = NUMPRI; i--; ) 1266 for (i = NUMPRI; i--; )
1267 {
813 array_free (pending, [i]); 1268 array_free (pending, [i]);
1269#if EV_IDLE_ENABLE
1270 array_free (idle, [i]);
1271#endif
1272 }
1273
1274 ev_free (anfds); anfdmax = 0;
814 1275
815 /* have to use the microsoft-never-gets-it-right macro */ 1276 /* have to use the microsoft-never-gets-it-right macro */
816 array_free (fdchange, EMPTY); 1277 array_free (fdchange, EMPTY);
817 array_free (timer, EMPTY); 1278 array_free (timer, EMPTY);
818#if EV_PERIODICS 1279#if EV_PERIODIC_ENABLE
819 array_free (periodic, EMPTY); 1280 array_free (periodic, EMPTY);
820#endif 1281#endif
1282#if EV_FORK_ENABLE
821 array_free (idle, EMPTY); 1283 array_free (fork, EMPTY);
1284#endif
822 array_free (prepare, EMPTY); 1285 array_free (prepare, EMPTY);
823 array_free (check, EMPTY); 1286 array_free (check, EMPTY);
1287#if EV_ASYNC_ENABLE
1288 array_free (async, EMPTY);
1289#endif
824 1290
825 method = 0; 1291 backend = 0;
826} 1292}
827 1293
828static void 1294#if EV_USE_INOTIFY
1295void inline_size infy_fork (EV_P);
1296#endif
1297
1298void inline_size
829loop_fork (EV_P) 1299loop_fork (EV_P)
830{ 1300{
1301#if EV_USE_PORT
1302 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1303#endif
1304#if EV_USE_KQUEUE
1305 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1306#endif
831#if EV_USE_EPOLL 1307#if EV_USE_EPOLL
832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1308 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
833#endif 1309#endif
834#if EV_USE_KQUEUE 1310#if EV_USE_INOTIFY
835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1311 infy_fork (EV_A);
836#endif 1312#endif
837 1313
838 if (ev_is_active (&sigev)) 1314 if (ev_is_active (&pipeev))
839 { 1315 {
840 /* default loop */ 1316 /* this "locks" the handlers against writing to the pipe */
1317 /* while we modify the fd vars */
1318 gotsig = 1;
1319#if EV_ASYNC_ENABLE
1320 gotasync = 1;
1321#endif
841 1322
842 ev_ref (EV_A); 1323 ev_ref (EV_A);
843 ev_io_stop (EV_A_ &sigev); 1324 ev_io_stop (EV_A_ &pipeev);
1325
1326#if EV_USE_EVENTFD
1327 if (evfd >= 0)
1328 close (evfd);
1329#endif
1330
1331 if (evpipe [0] >= 0)
1332 {
844 close (sigpipe [0]); 1333 close (evpipe [0]);
845 close (sigpipe [1]); 1334 close (evpipe [1]);
1335 }
846 1336
847 while (pipe (sigpipe))
848 syserr ("(libev) error creating pipe");
849
850 siginit (EV_A); 1337 evpipe_init (EV_A);
1338 /* now iterate over everything, in case we missed something */
1339 pipecb (EV_A_ &pipeev, EV_READ);
851 } 1340 }
852 1341
853 postfork = 0; 1342 postfork = 0;
854} 1343}
855 1344
856#if EV_MULTIPLICITY 1345#if EV_MULTIPLICITY
857struct ev_loop * 1346struct ev_loop *
858ev_loop_new (int methods) 1347ev_loop_new (unsigned int flags)
859{ 1348{
860 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1349 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
861 1350
862 memset (loop, 0, sizeof (struct ev_loop)); 1351 memset (loop, 0, sizeof (struct ev_loop));
863 1352
864 loop_init (EV_A_ methods); 1353 loop_init (EV_A_ flags);
865 1354
866 if (ev_method (EV_A)) 1355 if (ev_backend (EV_A))
867 return loop; 1356 return loop;
868 1357
869 return 0; 1358 return 0;
870} 1359}
871 1360
877} 1366}
878 1367
879void 1368void
880ev_loop_fork (EV_P) 1369ev_loop_fork (EV_P)
881{ 1370{
882 postfork = 1; 1371 postfork = 1; /* must be in line with ev_default_fork */
883} 1372}
884 1373
885#endif 1374#endif
886 1375
887#if EV_MULTIPLICITY 1376#if EV_MULTIPLICITY
888struct ev_loop * 1377struct ev_loop *
1378ev_default_loop_init (unsigned int flags)
889#else 1379#else
890int 1380int
1381ev_default_loop (unsigned int flags)
891#endif 1382#endif
892ev_default_loop (int methods)
893{ 1383{
894 if (sigpipe [0] == sigpipe [1])
895 if (pipe (sigpipe))
896 return 0;
897
898 if (!default_loop) 1384 if (!ev_default_loop_ptr)
899 { 1385 {
900#if EV_MULTIPLICITY 1386#if EV_MULTIPLICITY
901 struct ev_loop *loop = default_loop = &default_loop_struct; 1387 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
902#else 1388#else
903 default_loop = 1; 1389 ev_default_loop_ptr = 1;
904#endif 1390#endif
905 1391
906 loop_init (EV_A_ methods); 1392 loop_init (EV_A_ flags);
907 1393
908 if (ev_method (EV_A)) 1394 if (ev_backend (EV_A))
909 { 1395 {
910 siginit (EV_A);
911
912#ifndef _WIN32 1396#ifndef _WIN32
913 ev_signal_init (&childev, childcb, SIGCHLD); 1397 ev_signal_init (&childev, childcb, SIGCHLD);
914 ev_set_priority (&childev, EV_MAXPRI); 1398 ev_set_priority (&childev, EV_MAXPRI);
915 ev_signal_start (EV_A_ &childev); 1399 ev_signal_start (EV_A_ &childev);
916 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1400 ev_unref (EV_A); /* child watcher should not keep loop alive */
917#endif 1401#endif
918 } 1402 }
919 else 1403 else
920 default_loop = 0; 1404 ev_default_loop_ptr = 0;
921 } 1405 }
922 1406
923 return default_loop; 1407 return ev_default_loop_ptr;
924} 1408}
925 1409
926void 1410void
927ev_default_destroy (void) 1411ev_default_destroy (void)
928{ 1412{
929#if EV_MULTIPLICITY 1413#if EV_MULTIPLICITY
930 struct ev_loop *loop = default_loop; 1414 struct ev_loop *loop = ev_default_loop_ptr;
931#endif 1415#endif
932 1416
933#ifndef _WIN32 1417#ifndef _WIN32
934 ev_ref (EV_A); /* child watcher */ 1418 ev_ref (EV_A); /* child watcher */
935 ev_signal_stop (EV_A_ &childev); 1419 ev_signal_stop (EV_A_ &childev);
936#endif 1420#endif
937 1421
938 ev_ref (EV_A); /* signal watcher */
939 ev_io_stop (EV_A_ &sigev);
940
941 close (sigpipe [0]); sigpipe [0] = 0;
942 close (sigpipe [1]); sigpipe [1] = 0;
943
944 loop_destroy (EV_A); 1422 loop_destroy (EV_A);
945} 1423}
946 1424
947void 1425void
948ev_default_fork (void) 1426ev_default_fork (void)
949{ 1427{
950#if EV_MULTIPLICITY 1428#if EV_MULTIPLICITY
951 struct ev_loop *loop = default_loop; 1429 struct ev_loop *loop = ev_default_loop_ptr;
952#endif 1430#endif
953 1431
954 if (method) 1432 if (backend)
955 postfork = 1; 1433 postfork = 1; /* must be in line with ev_loop_fork */
956} 1434}
957 1435
958/*****************************************************************************/ 1436/*****************************************************************************/
959 1437
960static int 1438void
961any_pending (EV_P) 1439ev_invoke (EV_P_ void *w, int revents)
962{ 1440{
963 int pri; 1441 EV_CB_INVOKE ((W)w, revents);
964
965 for (pri = NUMPRI; pri--; )
966 if (pendingcnt [pri])
967 return 1;
968
969 return 0;
970} 1442}
971 1443
972static void 1444void inline_speed
973call_pending (EV_P) 1445call_pending (EV_P)
974{ 1446{
975 int pri; 1447 int pri;
976 1448
977 for (pri = NUMPRI; pri--; ) 1449 for (pri = NUMPRI; pri--; )
978 while (pendingcnt [pri]) 1450 while (pendingcnt [pri])
979 { 1451 {
980 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1452 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
981 1453
982 if (p->w) 1454 if (expect_true (p->w))
983 { 1455 {
1456 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1457
984 p->w->pending = 0; 1458 p->w->pending = 0;
985 EV_CB_INVOKE (p->w, p->events); 1459 EV_CB_INVOKE (p->w, p->events);
986 } 1460 }
987 } 1461 }
988} 1462}
989 1463
990static void 1464void inline_size
991timers_reify (EV_P) 1465timers_reify (EV_P)
992{ 1466{
993 while (timercnt && ((WT)timers [0])->at <= mn_now) 1467 while (timercnt && ev_at (timers [1]) <= mn_now)
994 { 1468 {
995 struct ev_timer *w = timers [0]; 1469 ev_timer *w = (ev_timer *)timers [1];
996 1470
997 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
998 1472
999 /* first reschedule or stop timer */ 1473 /* first reschedule or stop timer */
1000 if (w->repeat) 1474 if (w->repeat)
1001 { 1475 {
1002 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1003 1477
1004 ((WT)w)->at += w->repeat; 1478 ev_at (w) += w->repeat;
1005 if (((WT)w)->at < mn_now) 1479 if (ev_at (w) < mn_now)
1006 ((WT)w)->at = mn_now; 1480 ev_at (w) = mn_now;
1007 1481
1008 downheap ((WT *)timers, timercnt, 0); 1482 downheap (timers, timercnt, 1);
1009 } 1483 }
1010 else 1484 else
1011 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1012 1486
1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1014 } 1488 }
1015} 1489}
1016 1490
1017#if EV_PERIODICS 1491#if EV_PERIODIC_ENABLE
1018static void 1492void inline_size
1019periodics_reify (EV_P) 1493periodics_reify (EV_P)
1020{ 1494{
1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1022 { 1496 {
1023 struct ev_periodic *w = periodics [0]; 1497 ev_periodic *w = (ev_periodic *)periodics [1];
1024 1498
1025 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1026 1500
1027 /* first reschedule or stop timer */ 1501 /* first reschedule or stop timer */
1028 if (w->reschedule_cb) 1502 if (w->reschedule_cb)
1029 { 1503 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1031
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1033 downheap ((WT *)periodics, periodiccnt, 0); 1506 downheap (periodics, periodiccnt, 1);
1034 } 1507 }
1035 else if (w->interval) 1508 else if (w->interval)
1036 { 1509 {
1037 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1038 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0); 1513 downheap (periodics, periodiccnt, 1);
1040 } 1514 }
1041 else 1515 else
1042 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1043 1517
1044 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1045 } 1519 }
1046} 1520}
1047 1521
1048static void 1522static void noinline
1049periodics_reschedule (EV_P) 1523periodics_reschedule (EV_P)
1050{ 1524{
1051 int i; 1525 int i;
1052 1526
1053 /* adjust periodics after time jump */ 1527 /* adjust periodics after time jump */
1054 for (i = 0; i < periodiccnt; ++i) 1528 for (i = 1; i <= periodiccnt; ++i)
1055 { 1529 {
1056 struct ev_periodic *w = periodics [i]; 1530 ev_periodic *w = (ev_periodic *)periodics [i];
1057 1531
1058 if (w->reschedule_cb) 1532 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1060 else if (w->interval) 1534 else if (w->interval)
1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1062 } 1536 }
1063 1537
1064 /* now rebuild the heap */ 1538 /* now rebuild the heap */
1065 for (i = periodiccnt >> 1; i--; ) 1539 for (i = periodiccnt >> 1; i--; )
1066 downheap ((WT *)periodics, periodiccnt, i); 1540 downheap (periodics, periodiccnt, i);
1067} 1541}
1068#endif 1542#endif
1069 1543
1070inline int 1544#if EV_IDLE_ENABLE
1071time_update_monotonic (EV_P) 1545void inline_size
1546idle_reify (EV_P)
1072{ 1547{
1548 if (expect_false (idleall))
1549 {
1550 int pri;
1551
1552 for (pri = NUMPRI; pri--; )
1553 {
1554 if (pendingcnt [pri])
1555 break;
1556
1557 if (idlecnt [pri])
1558 {
1559 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1560 break;
1561 }
1562 }
1563 }
1564}
1565#endif
1566
1567void inline_speed
1568time_update (EV_P_ ev_tstamp max_block)
1569{
1570 int i;
1571
1572#if EV_USE_MONOTONIC
1573 if (expect_true (have_monotonic))
1574 {
1575 ev_tstamp odiff = rtmn_diff;
1576
1073 mn_now = get_clock (); 1577 mn_now = get_clock ();
1074 1578
1579 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1580 /* interpolate in the meantime */
1075 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1581 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1076 { 1582 {
1077 ev_rt_now = rtmn_diff + mn_now; 1583 ev_rt_now = rtmn_diff + mn_now;
1078 return 0; 1584 return;
1079 } 1585 }
1080 else 1586
1081 {
1082 now_floor = mn_now; 1587 now_floor = mn_now;
1083 ev_rt_now = ev_time (); 1588 ev_rt_now = ev_time ();
1084 return 1;
1085 }
1086}
1087 1589
1088static void 1590 /* loop a few times, before making important decisions.
1089time_update (EV_P) 1591 * on the choice of "4": one iteration isn't enough,
1090{ 1592 * in case we get preempted during the calls to
1091 int i; 1593 * ev_time and get_clock. a second call is almost guaranteed
1092 1594 * to succeed in that case, though. and looping a few more times
1093#if EV_USE_MONOTONIC 1595 * doesn't hurt either as we only do this on time-jumps or
1094 if (expect_true (have_monotonic)) 1596 * in the unlikely event of having been preempted here.
1095 { 1597 */
1096 if (time_update_monotonic (EV_A)) 1598 for (i = 4; --i; )
1097 { 1599 {
1098 ev_tstamp odiff = rtmn_diff;
1099
1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1101 {
1102 rtmn_diff = ev_rt_now - mn_now; 1600 rtmn_diff = ev_rt_now - mn_now;
1103 1601
1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1105 return; /* all is well */ 1603 return; /* all is well */
1106 1604
1107 ev_rt_now = ev_time (); 1605 ev_rt_now = ev_time ();
1108 mn_now = get_clock (); 1606 mn_now = get_clock ();
1109 now_floor = mn_now; 1607 now_floor = mn_now;
1110 } 1608 }
1111 1609
1112# if EV_PERIODICS 1610# if EV_PERIODIC_ENABLE
1611 periodics_reschedule (EV_A);
1612# endif
1613 /* no timer adjustment, as the monotonic clock doesn't jump */
1614 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1615 }
1616 else
1617#endif
1618 {
1619 ev_rt_now = ev_time ();
1620
1621 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1622 {
1623#if EV_PERIODIC_ENABLE
1113 periodics_reschedule (EV_A); 1624 periodics_reschedule (EV_A);
1114# endif 1625#endif
1115 /* no timer adjustment, as the monotonic clock doesn't jump */ 1626 /* adjust timers. this is easy, as the offset is the same for all of them */
1116 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1627 for (i = 1; i <= timercnt; ++i)
1628 ev_at (timers [i]) += ev_rt_now - mn_now;
1117 } 1629 }
1118 }
1119 else
1120#endif
1121 {
1122 ev_rt_now = ev_time ();
1123
1124 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1125 {
1126#if EV_PERIODICS
1127 periodics_reschedule (EV_A);
1128#endif
1129
1130 /* adjust timers. this is easy, as the offset is the same for all */
1131 for (i = 0; i < timercnt; ++i)
1132 ((WT)timers [i])->at += ev_rt_now - mn_now;
1133 }
1134 1630
1135 mn_now = ev_rt_now; 1631 mn_now = ev_rt_now;
1136 } 1632 }
1137} 1633}
1138 1634
1151static int loop_done; 1647static int loop_done;
1152 1648
1153void 1649void
1154ev_loop (EV_P_ int flags) 1650ev_loop (EV_P_ int flags)
1155{ 1651{
1156 double block; 1652 loop_done = EVUNLOOP_CANCEL;
1157 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1653
1654 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1158 1655
1159 do 1656 do
1160 { 1657 {
1658#ifndef _WIN32
1659 if (expect_false (curpid)) /* penalise the forking check even more */
1660 if (expect_false (getpid () != curpid))
1661 {
1662 curpid = getpid ();
1663 postfork = 1;
1664 }
1665#endif
1666
1667#if EV_FORK_ENABLE
1668 /* we might have forked, so queue fork handlers */
1669 if (expect_false (postfork))
1670 if (forkcnt)
1671 {
1672 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1673 call_pending (EV_A);
1674 }
1675#endif
1676
1161 /* queue check watchers (and execute them) */ 1677 /* queue prepare watchers (and execute them) */
1162 if (expect_false (preparecnt)) 1678 if (expect_false (preparecnt))
1163 { 1679 {
1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1680 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1165 call_pending (EV_A); 1681 call_pending (EV_A);
1166 } 1682 }
1167 1683
1684 if (expect_false (!activecnt))
1685 break;
1686
1168 /* we might have forked, so reify kernel state if necessary */ 1687 /* we might have forked, so reify kernel state if necessary */
1169 if (expect_false (postfork)) 1688 if (expect_false (postfork))
1170 loop_fork (EV_A); 1689 loop_fork (EV_A);
1171 1690
1172 /* update fd-related kernel structures */ 1691 /* update fd-related kernel structures */
1173 fd_reify (EV_A); 1692 fd_reify (EV_A);
1174 1693
1175 /* calculate blocking time */ 1694 /* calculate blocking time */
1695 {
1696 ev_tstamp waittime = 0.;
1697 ev_tstamp sleeptime = 0.;
1176 1698
1177 /* we only need this for !monotonic clock or timers, but as we basically 1699 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1178 always have timers, we just calculate it always */
1179#if EV_USE_MONOTONIC
1180 if (expect_true (have_monotonic))
1181 time_update_monotonic (EV_A);
1182 else
1183#endif
1184 { 1700 {
1185 ev_rt_now = ev_time (); 1701 /* update time to cancel out callback processing overhead */
1186 mn_now = ev_rt_now; 1702 time_update (EV_A_ 1e100);
1187 }
1188 1703
1189 if (flags & EVLOOP_NONBLOCK || idlecnt)
1190 block = 0.;
1191 else
1192 {
1193 block = MAX_BLOCKTIME; 1704 waittime = MAX_BLOCKTIME;
1194 1705
1195 if (timercnt) 1706 if (timercnt)
1196 { 1707 {
1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1198 if (block > to) block = to; 1709 if (waittime > to) waittime = to;
1199 } 1710 }
1200 1711
1201#if EV_PERIODICS 1712#if EV_PERIODIC_ENABLE
1202 if (periodiccnt) 1713 if (periodiccnt)
1203 { 1714 {
1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1205 if (block > to) block = to; 1716 if (waittime > to) waittime = to;
1206 } 1717 }
1207#endif 1718#endif
1208 1719
1209 if (block < 0.) block = 0.; 1720 if (expect_false (waittime < timeout_blocktime))
1721 waittime = timeout_blocktime;
1722
1723 sleeptime = waittime - backend_fudge;
1724
1725 if (expect_true (sleeptime > io_blocktime))
1726 sleeptime = io_blocktime;
1727
1728 if (sleeptime)
1729 {
1730 ev_sleep (sleeptime);
1731 waittime -= sleeptime;
1732 }
1210 } 1733 }
1211 1734
1212 method_poll (EV_A_ block); 1735 ++loop_count;
1736 backend_poll (EV_A_ waittime);
1213 1737
1214 /* update ev_rt_now, do magic */ 1738 /* update ev_rt_now, do magic */
1215 time_update (EV_A); 1739 time_update (EV_A_ waittime + sleeptime);
1740 }
1216 1741
1217 /* queue pending timers and reschedule them */ 1742 /* queue pending timers and reschedule them */
1218 timers_reify (EV_A); /* relative timers called last */ 1743 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS 1744#if EV_PERIODIC_ENABLE
1220 periodics_reify (EV_A); /* absolute timers called first */ 1745 periodics_reify (EV_A); /* absolute timers called first */
1221#endif 1746#endif
1222 1747
1748#if EV_IDLE_ENABLE
1223 /* queue idle watchers unless io or timers are pending */ 1749 /* queue idle watchers unless other events are pending */
1224 if (idlecnt && !any_pending (EV_A)) 1750 idle_reify (EV_A);
1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1751#endif
1226 1752
1227 /* queue check watchers, to be executed first */ 1753 /* queue check watchers, to be executed first */
1228 if (checkcnt) 1754 if (expect_false (checkcnt))
1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1755 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1230 1756
1231 call_pending (EV_A); 1757 call_pending (EV_A);
1232 } 1758 }
1233 while (activecnt && !loop_done); 1759 while (expect_true (
1760 activecnt
1761 && !loop_done
1762 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1763 ));
1234 1764
1235 if (loop_done != 2) 1765 if (loop_done == EVUNLOOP_ONE)
1236 loop_done = 0; 1766 loop_done = EVUNLOOP_CANCEL;
1237} 1767}
1238 1768
1239void 1769void
1240ev_unloop (EV_P_ int how) 1770ev_unloop (EV_P_ int how)
1241{ 1771{
1242 loop_done = how; 1772 loop_done = how;
1243} 1773}
1244 1774
1245/*****************************************************************************/ 1775/*****************************************************************************/
1246 1776
1247inline void 1777void inline_size
1248wlist_add (WL *head, WL elem) 1778wlist_add (WL *head, WL elem)
1249{ 1779{
1250 elem->next = *head; 1780 elem->next = *head;
1251 *head = elem; 1781 *head = elem;
1252} 1782}
1253 1783
1254inline void 1784void inline_size
1255wlist_del (WL *head, WL elem) 1785wlist_del (WL *head, WL elem)
1256{ 1786{
1257 while (*head) 1787 while (*head)
1258 { 1788 {
1259 if (*head == elem) 1789 if (*head == elem)
1264 1794
1265 head = &(*head)->next; 1795 head = &(*head)->next;
1266 } 1796 }
1267} 1797}
1268 1798
1269inline void 1799void inline_speed
1270ev_clear_pending (EV_P_ W w) 1800clear_pending (EV_P_ W w)
1271{ 1801{
1272 if (w->pending) 1802 if (w->pending)
1273 { 1803 {
1274 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1804 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1275 w->pending = 0; 1805 w->pending = 0;
1276 } 1806 }
1277} 1807}
1278 1808
1279inline void 1809int
1810ev_clear_pending (EV_P_ void *w)
1811{
1812 W w_ = (W)w;
1813 int pending = w_->pending;
1814
1815 if (expect_true (pending))
1816 {
1817 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1818 w_->pending = 0;
1819 p->w = 0;
1820 return p->events;
1821 }
1822 else
1823 return 0;
1824}
1825
1826void inline_size
1827pri_adjust (EV_P_ W w)
1828{
1829 int pri = w->priority;
1830 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1831 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1832 w->priority = pri;
1833}
1834
1835void inline_speed
1280ev_start (EV_P_ W w, int active) 1836ev_start (EV_P_ W w, int active)
1281{ 1837{
1282 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1838 pri_adjust (EV_A_ w);
1283 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1284
1285 w->active = active; 1839 w->active = active;
1286 ev_ref (EV_A); 1840 ev_ref (EV_A);
1287} 1841}
1288 1842
1289inline void 1843void inline_size
1290ev_stop (EV_P_ W w) 1844ev_stop (EV_P_ W w)
1291{ 1845{
1292 ev_unref (EV_A); 1846 ev_unref (EV_A);
1293 w->active = 0; 1847 w->active = 0;
1294} 1848}
1295 1849
1296/*****************************************************************************/ 1850/*****************************************************************************/
1297 1851
1298void 1852void noinline
1299ev_io_start (EV_P_ struct ev_io *w) 1853ev_io_start (EV_P_ ev_io *w)
1300{ 1854{
1301 int fd = w->fd; 1855 int fd = w->fd;
1302 1856
1303 if (ev_is_active (w)) 1857 if (expect_false (ev_is_active (w)))
1304 return; 1858 return;
1305 1859
1306 assert (("ev_io_start called with negative fd", fd >= 0)); 1860 assert (("ev_io_start called with negative fd", fd >= 0));
1307 1861
1308 ev_start (EV_A_ (W)w, 1); 1862 ev_start (EV_A_ (W)w, 1);
1309 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1310 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1864 wlist_add (&anfds[fd].head, (WL)w);
1311 1865
1312 fd_change (EV_A_ fd); 1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1867 w->events &= ~EV_IOFDSET;
1313} 1868}
1314 1869
1315void 1870void noinline
1316ev_io_stop (EV_P_ struct ev_io *w) 1871ev_io_stop (EV_P_ ev_io *w)
1317{ 1872{
1318 ev_clear_pending (EV_A_ (W)w); 1873 clear_pending (EV_A_ (W)w);
1319 if (!ev_is_active (w)) 1874 if (expect_false (!ev_is_active (w)))
1320 return; 1875 return;
1321 1876
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323 1878
1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1879 wlist_del (&anfds[w->fd].head, (WL)w);
1325 ev_stop (EV_A_ (W)w); 1880 ev_stop (EV_A_ (W)w);
1326 1881
1327 fd_change (EV_A_ w->fd); 1882 fd_change (EV_A_ w->fd, 1);
1328} 1883}
1329 1884
1330void 1885void noinline
1331ev_timer_start (EV_P_ struct ev_timer *w) 1886ev_timer_start (EV_P_ ev_timer *w)
1332{ 1887{
1333 if (ev_is_active (w)) 1888 if (expect_false (ev_is_active (w)))
1334 return; 1889 return;
1335 1890
1336 ((WT)w)->at += mn_now; 1891 ev_at (w) += mn_now;
1337 1892
1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1339 1894
1340 ev_start (EV_A_ (W)w, ++timercnt); 1895 ev_start (EV_A_ (W)w, ++timercnt);
1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1342 timers [timercnt - 1] = w; 1897 timers [timercnt] = (WT)w;
1343 upheap ((WT *)timers, timercnt - 1); 1898 upheap (timers, timercnt);
1344 1899
1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1900 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1346} 1901}
1347 1902
1348void 1903void noinline
1349ev_timer_stop (EV_P_ struct ev_timer *w) 1904ev_timer_stop (EV_P_ ev_timer *w)
1350{ 1905{
1351 ev_clear_pending (EV_A_ (W)w); 1906 clear_pending (EV_A_ (W)w);
1352 if (!ev_is_active (w)) 1907 if (expect_false (!ev_is_active (w)))
1353 return; 1908 return;
1354 1909
1910 {
1911 int active = ev_active (w);
1912
1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1913 assert (("internal timer heap corruption", timers [active] == (WT)w));
1356 1914
1357 if (((W)w)->active < timercnt--) 1915 if (expect_true (active < timercnt))
1358 { 1916 {
1359 timers [((W)w)->active - 1] = timers [timercnt]; 1917 timers [active] = timers [timercnt];
1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1918 adjustheap (timers, timercnt, active);
1361 } 1919 }
1362 1920
1363 ((WT)w)->at -= mn_now; 1921 --timercnt;
1922 }
1923
1924 ev_at (w) -= mn_now;
1364 1925
1365 ev_stop (EV_A_ (W)w); 1926 ev_stop (EV_A_ (W)w);
1366} 1927}
1367 1928
1368void 1929void noinline
1369ev_timer_again (EV_P_ struct ev_timer *w) 1930ev_timer_again (EV_P_ ev_timer *w)
1370{ 1931{
1371 if (ev_is_active (w)) 1932 if (ev_is_active (w))
1372 { 1933 {
1373 if (w->repeat) 1934 if (w->repeat)
1374 { 1935 {
1375 ((WT)w)->at = mn_now + w->repeat; 1936 ev_at (w) = mn_now + w->repeat;
1376 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1937 adjustheap (timers, timercnt, ev_active (w));
1377 } 1938 }
1378 else 1939 else
1379 ev_timer_stop (EV_A_ w); 1940 ev_timer_stop (EV_A_ w);
1380 } 1941 }
1381 else if (w->repeat) 1942 else if (w->repeat)
1943 {
1944 ev_at (w) = w->repeat;
1382 ev_timer_start (EV_A_ w); 1945 ev_timer_start (EV_A_ w);
1946 }
1383} 1947}
1384 1948
1385#if EV_PERIODICS 1949#if EV_PERIODIC_ENABLE
1386void 1950void noinline
1387ev_periodic_start (EV_P_ struct ev_periodic *w) 1951ev_periodic_start (EV_P_ ev_periodic *w)
1388{ 1952{
1389 if (ev_is_active (w)) 1953 if (expect_false (ev_is_active (w)))
1390 return; 1954 return;
1391 1955
1392 if (w->reschedule_cb) 1956 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1957 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval) 1958 else if (w->interval)
1395 { 1959 {
1396 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1960 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1397 /* this formula differs from the one in periodic_reify because we do not always round up */ 1961 /* this formula differs from the one in periodic_reify because we do not always round up */
1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1399 } 1963 }
1964 else
1965 ev_at (w) = w->offset;
1400 1966
1401 ev_start (EV_A_ (W)w, ++periodiccnt); 1967 ev_start (EV_A_ (W)w, ++periodiccnt);
1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1403 periodics [periodiccnt - 1] = w; 1969 periodics [periodiccnt] = (WT)w;
1404 upheap ((WT *)periodics, periodiccnt - 1); 1970 upheap (periodics, periodiccnt);
1405 1971
1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1972 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1407} 1973}
1408 1974
1409void 1975void noinline
1410ev_periodic_stop (EV_P_ struct ev_periodic *w) 1976ev_periodic_stop (EV_P_ ev_periodic *w)
1411{ 1977{
1412 ev_clear_pending (EV_A_ (W)w); 1978 clear_pending (EV_A_ (W)w);
1413 if (!ev_is_active (w)) 1979 if (expect_false (!ev_is_active (w)))
1414 return; 1980 return;
1415 1981
1982 {
1983 int active = ev_active (w);
1984
1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1985 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1417 1986
1418 if (((W)w)->active < periodiccnt--) 1987 if (expect_true (active < periodiccnt))
1419 { 1988 {
1420 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1989 periodics [active] = periodics [periodiccnt];
1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1990 adjustheap (periodics, periodiccnt, active);
1422 } 1991 }
1992
1993 --periodiccnt;
1994 }
1423 1995
1424 ev_stop (EV_A_ (W)w); 1996 ev_stop (EV_A_ (W)w);
1425} 1997}
1426 1998
1427void 1999void noinline
1428ev_periodic_again (EV_P_ struct ev_periodic *w) 2000ev_periodic_again (EV_P_ ev_periodic *w)
1429{ 2001{
1430 /* TODO: use adjustheap and recalculation */ 2002 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w); 2003 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w); 2004 ev_periodic_start (EV_A_ w);
1433} 2005}
1434#endif 2006#endif
1435 2007
1436void
1437ev_idle_start (EV_P_ struct ev_idle *w)
1438{
1439 if (ev_is_active (w))
1440 return;
1441
1442 ev_start (EV_A_ (W)w, ++idlecnt);
1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1444 idles [idlecnt - 1] = w;
1445}
1446
1447void
1448ev_idle_stop (EV_P_ struct ev_idle *w)
1449{
1450 ev_clear_pending (EV_A_ (W)w);
1451 if (!ev_is_active (w))
1452 return;
1453
1454 idles [((W)w)->active - 1] = idles [--idlecnt];
1455 ev_stop (EV_A_ (W)w);
1456}
1457
1458void
1459ev_prepare_start (EV_P_ struct ev_prepare *w)
1460{
1461 if (ev_is_active (w))
1462 return;
1463
1464 ev_start (EV_A_ (W)w, ++preparecnt);
1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1466 prepares [preparecnt - 1] = w;
1467}
1468
1469void
1470ev_prepare_stop (EV_P_ struct ev_prepare *w)
1471{
1472 ev_clear_pending (EV_A_ (W)w);
1473 if (!ev_is_active (w))
1474 return;
1475
1476 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1477 ev_stop (EV_A_ (W)w);
1478}
1479
1480void
1481ev_check_start (EV_P_ struct ev_check *w)
1482{
1483 if (ev_is_active (w))
1484 return;
1485
1486 ev_start (EV_A_ (W)w, ++checkcnt);
1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1488 checks [checkcnt - 1] = w;
1489}
1490
1491void
1492ev_check_stop (EV_P_ struct ev_check *w)
1493{
1494 ev_clear_pending (EV_A_ (W)w);
1495 if (!ev_is_active (w))
1496 return;
1497
1498 checks [((W)w)->active - 1] = checks [--checkcnt];
1499 ev_stop (EV_A_ (W)w);
1500}
1501
1502#ifndef SA_RESTART 2008#ifndef SA_RESTART
1503# define SA_RESTART 0 2009# define SA_RESTART 0
1504#endif 2010#endif
1505 2011
1506void 2012void noinline
1507ev_signal_start (EV_P_ struct ev_signal *w) 2013ev_signal_start (EV_P_ ev_signal *w)
1508{ 2014{
1509#if EV_MULTIPLICITY 2015#if EV_MULTIPLICITY
1510 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2016 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1511#endif 2017#endif
1512 if (ev_is_active (w)) 2018 if (expect_false (ev_is_active (w)))
1513 return; 2019 return;
1514 2020
1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1516 2022
2023 evpipe_init (EV_A);
2024
2025 {
2026#ifndef _WIN32
2027 sigset_t full, prev;
2028 sigfillset (&full);
2029 sigprocmask (SIG_SETMASK, &full, &prev);
2030#endif
2031
2032 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2033
2034#ifndef _WIN32
2035 sigprocmask (SIG_SETMASK, &prev, 0);
2036#endif
2037 }
2038
1517 ev_start (EV_A_ (W)w, 1); 2039 ev_start (EV_A_ (W)w, 1);
1518 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1519 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2040 wlist_add (&signals [w->signum - 1].head, (WL)w);
1520 2041
1521 if (!((WL)w)->next) 2042 if (!((WL)w)->next)
1522 { 2043 {
1523#if _WIN32 2044#if _WIN32
1524 signal (w->signum, sighandler); 2045 signal (w->signum, ev_sighandler);
1525#else 2046#else
1526 struct sigaction sa; 2047 struct sigaction sa;
1527 sa.sa_handler = sighandler; 2048 sa.sa_handler = ev_sighandler;
1528 sigfillset (&sa.sa_mask); 2049 sigfillset (&sa.sa_mask);
1529 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1530 sigaction (w->signum, &sa, 0); 2051 sigaction (w->signum, &sa, 0);
1531#endif 2052#endif
1532 } 2053 }
1533} 2054}
1534 2055
1535void 2056void noinline
1536ev_signal_stop (EV_P_ struct ev_signal *w) 2057ev_signal_stop (EV_P_ ev_signal *w)
1537{ 2058{
1538 ev_clear_pending (EV_A_ (W)w); 2059 clear_pending (EV_A_ (W)w);
1539 if (!ev_is_active (w)) 2060 if (expect_false (!ev_is_active (w)))
1540 return; 2061 return;
1541 2062
1542 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2063 wlist_del (&signals [w->signum - 1].head, (WL)w);
1543 ev_stop (EV_A_ (W)w); 2064 ev_stop (EV_A_ (W)w);
1544 2065
1545 if (!signals [w->signum - 1].head) 2066 if (!signals [w->signum - 1].head)
1546 signal (w->signum, SIG_DFL); 2067 signal (w->signum, SIG_DFL);
1547} 2068}
1548 2069
1549void 2070void
1550ev_child_start (EV_P_ struct ev_child *w) 2071ev_child_start (EV_P_ ev_child *w)
1551{ 2072{
1552#if EV_MULTIPLICITY 2073#if EV_MULTIPLICITY
1553 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2074 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1554#endif 2075#endif
1555 if (ev_is_active (w)) 2076 if (expect_false (ev_is_active (w)))
1556 return; 2077 return;
1557 2078
1558 ev_start (EV_A_ (W)w, 1); 2079 ev_start (EV_A_ (W)w, 1);
1559 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1560} 2081}
1561 2082
1562void 2083void
1563ev_child_stop (EV_P_ struct ev_child *w) 2084ev_child_stop (EV_P_ ev_child *w)
1564{ 2085{
1565 ev_clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1566 if (!ev_is_active (w)) 2087 if (expect_false (!ev_is_active (w)))
1567 return; 2088 return;
1568 2089
1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1570 ev_stop (EV_A_ (W)w); 2091 ev_stop (EV_A_ (W)w);
1571} 2092}
1572 2093
2094#if EV_STAT_ENABLE
2095
2096# ifdef _WIN32
2097# undef lstat
2098# define lstat(a,b) _stati64 (a,b)
2099# endif
2100
2101#define DEF_STAT_INTERVAL 5.0074891
2102#define MIN_STAT_INTERVAL 0.1074891
2103
2104static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2105
2106#if EV_USE_INOTIFY
2107# define EV_INOTIFY_BUFSIZE 8192
2108
2109static void noinline
2110infy_add (EV_P_ ev_stat *w)
2111{
2112 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2113
2114 if (w->wd < 0)
2115 {
2116 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2117
2118 /* monitor some parent directory for speedup hints */
2119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2120 {
2121 char path [4096];
2122 strcpy (path, w->path);
2123
2124 do
2125 {
2126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2128
2129 char *pend = strrchr (path, '/');
2130
2131 if (!pend)
2132 break; /* whoops, no '/', complain to your admin */
2133
2134 *pend = 0;
2135 w->wd = inotify_add_watch (fs_fd, path, mask);
2136 }
2137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2138 }
2139 }
2140 else
2141 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2142
2143 if (w->wd >= 0)
2144 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2145}
2146
2147static void noinline
2148infy_del (EV_P_ ev_stat *w)
2149{
2150 int slot;
2151 int wd = w->wd;
2152
2153 if (wd < 0)
2154 return;
2155
2156 w->wd = -2;
2157 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2158 wlist_del (&fs_hash [slot].head, (WL)w);
2159
2160 /* remove this watcher, if others are watching it, they will rearm */
2161 inotify_rm_watch (fs_fd, wd);
2162}
2163
2164static void noinline
2165infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2166{
2167 if (slot < 0)
2168 /* overflow, need to check for all hahs slots */
2169 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2170 infy_wd (EV_A_ slot, wd, ev);
2171 else
2172 {
2173 WL w_;
2174
2175 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2176 {
2177 ev_stat *w = (ev_stat *)w_;
2178 w_ = w_->next; /* lets us remove this watcher and all before it */
2179
2180 if (w->wd == wd || wd == -1)
2181 {
2182 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2183 {
2184 w->wd = -1;
2185 infy_add (EV_A_ w); /* re-add, no matter what */
2186 }
2187
2188 stat_timer_cb (EV_A_ &w->timer, 0);
2189 }
2190 }
2191 }
2192}
2193
2194static void
2195infy_cb (EV_P_ ev_io *w, int revents)
2196{
2197 char buf [EV_INOTIFY_BUFSIZE];
2198 struct inotify_event *ev = (struct inotify_event *)buf;
2199 int ofs;
2200 int len = read (fs_fd, buf, sizeof (buf));
2201
2202 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2203 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2204}
2205
2206void inline_size
2207infy_init (EV_P)
2208{
2209 if (fs_fd != -2)
2210 return;
2211
2212 fs_fd = inotify_init ();
2213
2214 if (fs_fd >= 0)
2215 {
2216 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2217 ev_set_priority (&fs_w, EV_MAXPRI);
2218 ev_io_start (EV_A_ &fs_w);
2219 }
2220}
2221
2222void inline_size
2223infy_fork (EV_P)
2224{
2225 int slot;
2226
2227 if (fs_fd < 0)
2228 return;
2229
2230 close (fs_fd);
2231 fs_fd = inotify_init ();
2232
2233 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2234 {
2235 WL w_ = fs_hash [slot].head;
2236 fs_hash [slot].head = 0;
2237
2238 while (w_)
2239 {
2240 ev_stat *w = (ev_stat *)w_;
2241 w_ = w_->next; /* lets us add this watcher */
2242
2243 w->wd = -1;
2244
2245 if (fs_fd >= 0)
2246 infy_add (EV_A_ w); /* re-add, no matter what */
2247 else
2248 ev_timer_start (EV_A_ &w->timer);
2249 }
2250
2251 }
2252}
2253
2254#endif
2255
2256void
2257ev_stat_stat (EV_P_ ev_stat *w)
2258{
2259 if (lstat (w->path, &w->attr) < 0)
2260 w->attr.st_nlink = 0;
2261 else if (!w->attr.st_nlink)
2262 w->attr.st_nlink = 1;
2263}
2264
2265static void noinline
2266stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2267{
2268 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2269
2270 /* we copy this here each the time so that */
2271 /* prev has the old value when the callback gets invoked */
2272 w->prev = w->attr;
2273 ev_stat_stat (EV_A_ w);
2274
2275 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2276 if (
2277 w->prev.st_dev != w->attr.st_dev
2278 || w->prev.st_ino != w->attr.st_ino
2279 || w->prev.st_mode != w->attr.st_mode
2280 || w->prev.st_nlink != w->attr.st_nlink
2281 || w->prev.st_uid != w->attr.st_uid
2282 || w->prev.st_gid != w->attr.st_gid
2283 || w->prev.st_rdev != w->attr.st_rdev
2284 || w->prev.st_size != w->attr.st_size
2285 || w->prev.st_atime != w->attr.st_atime
2286 || w->prev.st_mtime != w->attr.st_mtime
2287 || w->prev.st_ctime != w->attr.st_ctime
2288 ) {
2289 #if EV_USE_INOTIFY
2290 infy_del (EV_A_ w);
2291 infy_add (EV_A_ w);
2292 ev_stat_stat (EV_A_ w); /* avoid race... */
2293 #endif
2294
2295 ev_feed_event (EV_A_ w, EV_STAT);
2296 }
2297}
2298
2299void
2300ev_stat_start (EV_P_ ev_stat *w)
2301{
2302 if (expect_false (ev_is_active (w)))
2303 return;
2304
2305 /* since we use memcmp, we need to clear any padding data etc. */
2306 memset (&w->prev, 0, sizeof (ev_statdata));
2307 memset (&w->attr, 0, sizeof (ev_statdata));
2308
2309 ev_stat_stat (EV_A_ w);
2310
2311 if (w->interval < MIN_STAT_INTERVAL)
2312 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2313
2314 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2315 ev_set_priority (&w->timer, ev_priority (w));
2316
2317#if EV_USE_INOTIFY
2318 infy_init (EV_A);
2319
2320 if (fs_fd >= 0)
2321 infy_add (EV_A_ w);
2322 else
2323#endif
2324 ev_timer_start (EV_A_ &w->timer);
2325
2326 ev_start (EV_A_ (W)w, 1);
2327}
2328
2329void
2330ev_stat_stop (EV_P_ ev_stat *w)
2331{
2332 clear_pending (EV_A_ (W)w);
2333 if (expect_false (!ev_is_active (w)))
2334 return;
2335
2336#if EV_USE_INOTIFY
2337 infy_del (EV_A_ w);
2338#endif
2339 ev_timer_stop (EV_A_ &w->timer);
2340
2341 ev_stop (EV_A_ (W)w);
2342}
2343#endif
2344
2345#if EV_IDLE_ENABLE
2346void
2347ev_idle_start (EV_P_ ev_idle *w)
2348{
2349 if (expect_false (ev_is_active (w)))
2350 return;
2351
2352 pri_adjust (EV_A_ (W)w);
2353
2354 {
2355 int active = ++idlecnt [ABSPRI (w)];
2356
2357 ++idleall;
2358 ev_start (EV_A_ (W)w, active);
2359
2360 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2361 idles [ABSPRI (w)][active - 1] = w;
2362 }
2363}
2364
2365void
2366ev_idle_stop (EV_P_ ev_idle *w)
2367{
2368 clear_pending (EV_A_ (W)w);
2369 if (expect_false (!ev_is_active (w)))
2370 return;
2371
2372 {
2373 int active = ev_active (w);
2374
2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2376 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2377
2378 ev_stop (EV_A_ (W)w);
2379 --idleall;
2380 }
2381}
2382#endif
2383
2384void
2385ev_prepare_start (EV_P_ ev_prepare *w)
2386{
2387 if (expect_false (ev_is_active (w)))
2388 return;
2389
2390 ev_start (EV_A_ (W)w, ++preparecnt);
2391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2392 prepares [preparecnt - 1] = w;
2393}
2394
2395void
2396ev_prepare_stop (EV_P_ ev_prepare *w)
2397{
2398 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w)))
2400 return;
2401
2402 {
2403 int active = ev_active (w);
2404
2405 prepares [active - 1] = prepares [--preparecnt];
2406 ev_active (prepares [active - 1]) = active;
2407 }
2408
2409 ev_stop (EV_A_ (W)w);
2410}
2411
2412void
2413ev_check_start (EV_P_ ev_check *w)
2414{
2415 if (expect_false (ev_is_active (w)))
2416 return;
2417
2418 ev_start (EV_A_ (W)w, ++checkcnt);
2419 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2420 checks [checkcnt - 1] = w;
2421}
2422
2423void
2424ev_check_stop (EV_P_ ev_check *w)
2425{
2426 clear_pending (EV_A_ (W)w);
2427 if (expect_false (!ev_is_active (w)))
2428 return;
2429
2430 {
2431 int active = ev_active (w);
2432
2433 checks [active - 1] = checks [--checkcnt];
2434 ev_active (checks [active - 1]) = active;
2435 }
2436
2437 ev_stop (EV_A_ (W)w);
2438}
2439
2440#if EV_EMBED_ENABLE
2441void noinline
2442ev_embed_sweep (EV_P_ ev_embed *w)
2443{
2444 ev_loop (w->other, EVLOOP_NONBLOCK);
2445}
2446
2447static void
2448embed_io_cb (EV_P_ ev_io *io, int revents)
2449{
2450 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2451
2452 if (ev_cb (w))
2453 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2454 else
2455 ev_loop (w->other, EVLOOP_NONBLOCK);
2456}
2457
2458static void
2459embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2460{
2461 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2462
2463 {
2464 struct ev_loop *loop = w->other;
2465
2466 while (fdchangecnt)
2467 {
2468 fd_reify (EV_A);
2469 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2470 }
2471 }
2472}
2473
2474#if 0
2475static void
2476embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2477{
2478 ev_idle_stop (EV_A_ idle);
2479}
2480#endif
2481
2482void
2483ev_embed_start (EV_P_ ev_embed *w)
2484{
2485 if (expect_false (ev_is_active (w)))
2486 return;
2487
2488 {
2489 struct ev_loop *loop = w->other;
2490 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2491 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2492 }
2493
2494 ev_set_priority (&w->io, ev_priority (w));
2495 ev_io_start (EV_A_ &w->io);
2496
2497 ev_prepare_init (&w->prepare, embed_prepare_cb);
2498 ev_set_priority (&w->prepare, EV_MINPRI);
2499 ev_prepare_start (EV_A_ &w->prepare);
2500
2501 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2502
2503 ev_start (EV_A_ (W)w, 1);
2504}
2505
2506void
2507ev_embed_stop (EV_P_ ev_embed *w)
2508{
2509 clear_pending (EV_A_ (W)w);
2510 if (expect_false (!ev_is_active (w)))
2511 return;
2512
2513 ev_io_stop (EV_A_ &w->io);
2514 ev_prepare_stop (EV_A_ &w->prepare);
2515
2516 ev_stop (EV_A_ (W)w);
2517}
2518#endif
2519
2520#if EV_FORK_ENABLE
2521void
2522ev_fork_start (EV_P_ ev_fork *w)
2523{
2524 if (expect_false (ev_is_active (w)))
2525 return;
2526
2527 ev_start (EV_A_ (W)w, ++forkcnt);
2528 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2529 forks [forkcnt - 1] = w;
2530}
2531
2532void
2533ev_fork_stop (EV_P_ ev_fork *w)
2534{
2535 clear_pending (EV_A_ (W)w);
2536 if (expect_false (!ev_is_active (w)))
2537 return;
2538
2539 {
2540 int active = ev_active (w);
2541
2542 forks [active - 1] = forks [--forkcnt];
2543 ev_active (forks [active - 1]) = active;
2544 }
2545
2546 ev_stop (EV_A_ (W)w);
2547}
2548#endif
2549
2550#if EV_ASYNC_ENABLE
2551void
2552ev_async_start (EV_P_ ev_async *w)
2553{
2554 if (expect_false (ev_is_active (w)))
2555 return;
2556
2557 evpipe_init (EV_A);
2558
2559 ev_start (EV_A_ (W)w, ++asynccnt);
2560 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2561 asyncs [asynccnt - 1] = w;
2562}
2563
2564void
2565ev_async_stop (EV_P_ ev_async *w)
2566{
2567 clear_pending (EV_A_ (W)w);
2568 if (expect_false (!ev_is_active (w)))
2569 return;
2570
2571 {
2572 int active = ev_active (w);
2573
2574 asyncs [active - 1] = asyncs [--asynccnt];
2575 ev_active (asyncs [active - 1]) = active;
2576 }
2577
2578 ev_stop (EV_A_ (W)w);
2579}
2580
2581void
2582ev_async_send (EV_P_ ev_async *w)
2583{
2584 w->sent = 1;
2585 evpipe_write (EV_A_ &gotasync);
2586}
2587#endif
2588
1573/*****************************************************************************/ 2589/*****************************************************************************/
1574 2590
1575struct ev_once 2591struct ev_once
1576{ 2592{
1577 struct ev_io io; 2593 ev_io io;
1578 struct ev_timer to; 2594 ev_timer to;
1579 void (*cb)(int revents, void *arg); 2595 void (*cb)(int revents, void *arg);
1580 void *arg; 2596 void *arg;
1581}; 2597};
1582 2598
1583static void 2599static void
1592 2608
1593 cb (revents, arg); 2609 cb (revents, arg);
1594} 2610}
1595 2611
1596static void 2612static void
1597once_cb_io (EV_P_ struct ev_io *w, int revents) 2613once_cb_io (EV_P_ ev_io *w, int revents)
1598{ 2614{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2615 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1600} 2616}
1601 2617
1602static void 2618static void
1603once_cb_to (EV_P_ struct ev_timer *w, int revents) 2619once_cb_to (EV_P_ ev_timer *w, int revents)
1604{ 2620{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2621 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1606} 2622}
1607 2623
1608void 2624void
1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2625ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1610{ 2626{
1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2627 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1612 2628
1613 if (!once) 2629 if (expect_false (!once))
2630 {
1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2631 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1615 else 2632 return;
1616 { 2633 }
2634
1617 once->cb = cb; 2635 once->cb = cb;
1618 once->arg = arg; 2636 once->arg = arg;
1619 2637
1620 ev_init (&once->io, once_cb_io); 2638 ev_init (&once->io, once_cb_io);
1621 if (fd >= 0) 2639 if (fd >= 0)
1622 { 2640 {
1623 ev_io_set (&once->io, fd, events); 2641 ev_io_set (&once->io, fd, events);
1624 ev_io_start (EV_A_ &once->io); 2642 ev_io_start (EV_A_ &once->io);
1625 } 2643 }
1626 2644
1627 ev_init (&once->to, once_cb_to); 2645 ev_init (&once->to, once_cb_to);
1628 if (timeout >= 0.) 2646 if (timeout >= 0.)
1629 { 2647 {
1630 ev_timer_set (&once->to, timeout, 0.); 2648 ev_timer_set (&once->to, timeout, 0.);
1631 ev_timer_start (EV_A_ &once->to); 2649 ev_timer_start (EV_A_ &once->to);
1632 }
1633 } 2650 }
1634} 2651}
2652
2653#if EV_MULTIPLICITY
2654 #include "ev_wrap.h"
2655#endif
1635 2656
1636#ifdef __cplusplus 2657#ifdef __cplusplus
1637} 2658}
1638#endif 2659#endif
1639 2660

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines