ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.105 by root, Mon Nov 12 01:02:09 2007 UTC vs.
Revision 1.304 by root, Sun Jul 19 03:12:28 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
45# endif 79# endif
46# endif 80# endif
47 81
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
50# endif 88# endif
51 89
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) && !defined (__APPLE__) 90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
54# endif 96# endif
55 97
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
58# endif 104# endif
59 105
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) && !defined (__APPLE__) 106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
62# endif 112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
63 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
64#endif 154#endif
65 155
66#include <math.h> 156#include <math.h>
67#include <stdlib.h> 157#include <stdlib.h>
68#include <fcntl.h> 158#include <fcntl.h>
75#include <sys/types.h> 165#include <sys/types.h>
76#include <time.h> 166#include <time.h>
77 167
78#include <signal.h> 168#include <signal.h>
79 169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
175
80#ifndef _WIN32 176#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 177# include <sys/time.h>
83# include <sys/wait.h> 178# include <sys/wait.h>
179# include <unistd.h>
84#else 180#else
181# include <io.h>
85# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 183# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
89# endif 186# endif
90#endif 187#endif
91 188
92/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191#ifndef EV_USE_CLOCK_SYSCALL
192# if __linux && __GLIBC__ >= 2
193# define EV_USE_CLOCK_SYSCALL 1
194# else
195# define EV_USE_CLOCK_SYSCALL 0
196# endif
197#endif
93 198
94#ifndef EV_USE_MONOTONIC 199#ifndef EV_USE_MONOTONIC
200# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
95# define EV_USE_MONOTONIC 1 201# define EV_USE_MONOTONIC 1
202# else
203# define EV_USE_MONOTONIC 0
204# endif
205#endif
206
207#ifndef EV_USE_REALTIME
208# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
209#endif
210
211#ifndef EV_USE_NANOSLEEP
212# if _POSIX_C_SOURCE >= 199309L
213# define EV_USE_NANOSLEEP 1
214# else
215# define EV_USE_NANOSLEEP 0
216# endif
96#endif 217#endif
97 218
98#ifndef EV_USE_SELECT 219#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 220# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 221#endif
102 222
103#ifndef EV_USE_POLL 223#ifndef EV_USE_POLL
104# ifdef _WIN32 224# ifdef _WIN32
105# define EV_USE_POLL 0 225# define EV_USE_POLL 0
107# define EV_USE_POLL 1 227# define EV_USE_POLL 1
108# endif 228# endif
109#endif 229#endif
110 230
111#ifndef EV_USE_EPOLL 231#ifndef EV_USE_EPOLL
232# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
233# define EV_USE_EPOLL 1
234# else
112# define EV_USE_EPOLL 0 235# define EV_USE_EPOLL 0
236# endif
113#endif 237#endif
114 238
115#ifndef EV_USE_KQUEUE 239#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 240# define EV_USE_KQUEUE 0
117#endif 241#endif
118 242
119#ifndef EV_USE_REALTIME 243#ifndef EV_USE_PORT
244# define EV_USE_PORT 0
245#endif
246
247#ifndef EV_USE_INOTIFY
248# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
120# define EV_USE_REALTIME 1 249# define EV_USE_INOTIFY 1
250# else
251# define EV_USE_INOTIFY 0
121#endif 252# endif
253#endif
122 254
123/**/ 255#ifndef EV_PID_HASHSIZE
256# if EV_MINIMAL
257# define EV_PID_HASHSIZE 1
258# else
259# define EV_PID_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_INOTIFY_HASHSIZE
264# if EV_MINIMAL
265# define EV_INOTIFY_HASHSIZE 1
266# else
267# define EV_INOTIFY_HASHSIZE 16
268# endif
269#endif
270
271#ifndef EV_USE_EVENTFD
272# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
273# define EV_USE_EVENTFD 1
274# else
275# define EV_USE_EVENTFD 0
276# endif
277#endif
278
279#ifndef EV_USE_SIGNALFD
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
281# define EV_USE_SIGNALFD 1
282# else
283# define EV_USE_SIGNALFD 0
284# endif
285#endif
286
287#if 0 /* debugging */
288# define EV_VERIFY 3
289# define EV_USE_4HEAP 1
290# define EV_HEAP_CACHE_AT 1
291#endif
292
293#ifndef EV_VERIFY
294# define EV_VERIFY !EV_MINIMAL
295#endif
296
297#ifndef EV_USE_4HEAP
298# define EV_USE_4HEAP !EV_MINIMAL
299#endif
300
301#ifndef EV_HEAP_CACHE_AT
302# define EV_HEAP_CACHE_AT !EV_MINIMAL
303#endif
304
305/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
306/* which makes programs even slower. might work on other unices, too. */
307#if EV_USE_CLOCK_SYSCALL
308# include <syscall.h>
309# ifdef SYS_clock_gettime
310# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
311# undef EV_USE_MONOTONIC
312# define EV_USE_MONOTONIC 1
313# else
314# undef EV_USE_CLOCK_SYSCALL
315# define EV_USE_CLOCK_SYSCALL 0
316# endif
317#endif
318
319/* this block fixes any misconfiguration where we know we run into trouble otherwise */
124 320
125#ifndef CLOCK_MONOTONIC 321#ifndef CLOCK_MONOTONIC
126# undef EV_USE_MONOTONIC 322# undef EV_USE_MONOTONIC
127# define EV_USE_MONOTONIC 0 323# define EV_USE_MONOTONIC 0
128#endif 324#endif
130#ifndef CLOCK_REALTIME 326#ifndef CLOCK_REALTIME
131# undef EV_USE_REALTIME 327# undef EV_USE_REALTIME
132# define EV_USE_REALTIME 0 328# define EV_USE_REALTIME 0
133#endif 329#endif
134 330
331#if !EV_STAT_ENABLE
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334#endif
335
336#if !EV_USE_NANOSLEEP
337# ifndef _WIN32
338# include <sys/select.h>
339# endif
340#endif
341
342#if EV_USE_INOTIFY
343# include <sys/utsname.h>
344# include <sys/statfs.h>
345# include <sys/inotify.h>
346/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
347# ifndef IN_DONT_FOLLOW
348# undef EV_USE_INOTIFY
349# define EV_USE_INOTIFY 0
350# endif
351#endif
352
135#if EV_SELECT_IS_WINSOCKET 353#if EV_SELECT_IS_WINSOCKET
136# include <winsock.h> 354# include <winsock.h>
137#endif 355#endif
138 356
357#if EV_USE_EVENTFD
358/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
359# include <stdint.h>
360# ifndef EFD_NONBLOCK
361# define EFD_NONBLOCK O_NONBLOCK
362# endif
363# ifndef EFD_CLOEXEC
364# define EFD_CLOEXEC O_CLOEXEC
365# endif
366# ifdef __cplusplus
367extern "C" {
368# endif
369int eventfd (unsigned int initval, int flags);
370# ifdef __cplusplus
371}
372# endif
373#endif
374
375#if EV_USE_SIGNALFD
376# include <sys/signalfd.h>
377#endif
378
139/**/ 379/**/
140 380
381#if EV_VERIFY >= 3
382# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
383#else
384# define EV_FREQUENT_CHECK do { } while (0)
385#endif
386
387/*
388 * This is used to avoid floating point rounding problems.
389 * It is added to ev_rt_now when scheduling periodics
390 * to ensure progress, time-wise, even when rounding
391 * errors are against us.
392 * This value is good at least till the year 4000.
393 * Better solutions welcome.
394 */
395#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
396
141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 397#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 398#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 399/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
145 400
146#ifdef EV_H
147# include EV_H
148#else
149# include "ev.h"
150#endif
151
152#if __GNUC__ >= 3 401#if __GNUC__ >= 4
153# define expect(expr,value) __builtin_expect ((expr),(value)) 402# define expect(expr,value) __builtin_expect ((expr),(value))
154# define inline inline 403# define noinline __attribute__ ((noinline))
155#else 404#else
156# define expect(expr,value) (expr) 405# define expect(expr,value) (expr)
157# define inline static 406# define noinline
407# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
408# define inline
409# endif
158#endif 410#endif
159 411
160#define expect_false(expr) expect ((expr) != 0, 0) 412#define expect_false(expr) expect ((expr) != 0, 0)
161#define expect_true(expr) expect ((expr) != 0, 1) 413#define expect_true(expr) expect ((expr) != 0, 1)
414#define inline_size static inline
162 415
416#if EV_MINIMAL
417# define inline_speed static noinline
418#else
419# define inline_speed static inline
420#endif
421
163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 422#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
423
424#if EV_MINPRI == EV_MAXPRI
425# define ABSPRI(w) (((W)w), 0)
426#else
164#define ABSPRI(w) ((w)->priority - EV_MINPRI) 427# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
428#endif
165 429
166#define EMPTY /* required for microsofts broken pseudo-c compiler */ 430#define EMPTY /* required for microsofts broken pseudo-c compiler */
431#define EMPTY2(a,b) /* used to suppress some warnings */
167 432
168typedef struct ev_watcher *W; 433typedef ev_watcher *W;
169typedef struct ev_watcher_list *WL; 434typedef ev_watcher_list *WL;
170typedef struct ev_watcher_time *WT; 435typedef ev_watcher_time *WT;
171 436
437#define ev_active(w) ((W)(w))->active
438#define ev_at(w) ((WT)(w))->at
439
440#if EV_USE_REALTIME
441/* sig_atomic_t is used to avoid per-thread variables or locking but still */
442/* giving it a reasonably high chance of working on typical architetcures */
443static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
444#endif
445
446#if EV_USE_MONOTONIC
172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 447static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
448#endif
173 449
174#ifdef _WIN32 450#ifdef _WIN32
175# include "ev_win32.c" 451# include "ev_win32.c"
176#endif 452#endif
177 453
178/*****************************************************************************/ 454/*****************************************************************************/
179 455
180static void (*syserr_cb)(const char *msg); 456static void (*syserr_cb)(const char *msg);
181 457
458void
182void ev_set_syserr_cb (void (*cb)(const char *msg)) 459ev_set_syserr_cb (void (*cb)(const char *msg))
183{ 460{
184 syserr_cb = cb; 461 syserr_cb = cb;
185} 462}
186 463
187static void 464static void noinline
188syserr (const char *msg) 465ev_syserr (const char *msg)
189{ 466{
190 if (!msg) 467 if (!msg)
191 msg = "(libev) system error"; 468 msg = "(libev) system error";
192 469
193 if (syserr_cb) 470 if (syserr_cb)
197 perror (msg); 474 perror (msg);
198 abort (); 475 abort ();
199 } 476 }
200} 477}
201 478
479static void *
480ev_realloc_emul (void *ptr, long size)
481{
482 /* some systems, notably openbsd and darwin, fail to properly
483 * implement realloc (x, 0) (as required by both ansi c-98 and
484 * the single unix specification, so work around them here.
485 */
486
487 if (size)
488 return realloc (ptr, size);
489
490 free (ptr);
491 return 0;
492}
493
202static void *(*alloc)(void *ptr, long size); 494static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
203 495
496void
204void ev_set_allocator (void *(*cb)(void *ptr, long size)) 497ev_set_allocator (void *(*cb)(void *ptr, long size))
205{ 498{
206 alloc = cb; 499 alloc = cb;
207} 500}
208 501
209static void * 502inline_speed void *
210ev_realloc (void *ptr, long size) 503ev_realloc (void *ptr, long size)
211{ 504{
212 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 505 ptr = alloc (ptr, size);
213 506
214 if (!ptr && size) 507 if (!ptr && size)
215 { 508 {
216 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 509 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
217 abort (); 510 abort ();
223#define ev_malloc(size) ev_realloc (0, (size)) 516#define ev_malloc(size) ev_realloc (0, (size))
224#define ev_free(ptr) ev_realloc ((ptr), 0) 517#define ev_free(ptr) ev_realloc ((ptr), 0)
225 518
226/*****************************************************************************/ 519/*****************************************************************************/
227 520
521/* set in reify when reification needed */
522#define EV_ANFD_REIFY 1
523
524/* file descriptor info structure */
228typedef struct 525typedef struct
229{ 526{
230 WL head; 527 WL head;
231 unsigned char events; 528 unsigned char events; /* the events watched for */
529 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
530 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
232 unsigned char reify; 531 unsigned char unused;
532#if EV_USE_EPOLL
533 unsigned int egen; /* generation counter to counter epoll bugs */
534#endif
233#if EV_SELECT_IS_WINSOCKET 535#if EV_SELECT_IS_WINSOCKET
234 SOCKET handle; 536 SOCKET handle;
235#endif 537#endif
236} ANFD; 538} ANFD;
237 539
540/* stores the pending event set for a given watcher */
238typedef struct 541typedef struct
239{ 542{
240 W w; 543 W w;
241 int events; 544 int events; /* the pending event set for the given watcher */
242} ANPENDING; 545} ANPENDING;
546
547#if EV_USE_INOTIFY
548/* hash table entry per inotify-id */
549typedef struct
550{
551 WL head;
552} ANFS;
553#endif
554
555/* Heap Entry */
556#if EV_HEAP_CACHE_AT
557 /* a heap element */
558 typedef struct {
559 ev_tstamp at;
560 WT w;
561 } ANHE;
562
563 #define ANHE_w(he) (he).w /* access watcher, read-write */
564 #define ANHE_at(he) (he).at /* access cached at, read-only */
565 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
566#else
567 /* a heap element */
568 typedef WT ANHE;
569
570 #define ANHE_w(he) (he)
571 #define ANHE_at(he) (he)->at
572 #define ANHE_at_cache(he)
573#endif
243 574
244#if EV_MULTIPLICITY 575#if EV_MULTIPLICITY
245 576
246 struct ev_loop 577 struct ev_loop
247 { 578 {
251 #include "ev_vars.h" 582 #include "ev_vars.h"
252 #undef VAR 583 #undef VAR
253 }; 584 };
254 #include "ev_wrap.h" 585 #include "ev_wrap.h"
255 586
256 struct ev_loop default_loop_struct; 587 static struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop; 588 struct ev_loop *ev_default_loop_ptr;
258 589
259#else 590#else
260 591
261 ev_tstamp ev_rt_now; 592 ev_tstamp ev_rt_now;
262 #define VAR(name,decl) static decl; 593 #define VAR(name,decl) static decl;
263 #include "ev_vars.h" 594 #include "ev_vars.h"
264 #undef VAR 595 #undef VAR
265 596
266 static int default_loop; 597 static int ev_default_loop_ptr;
267 598
268#endif 599#endif
600
601#if EV_MINIMAL < 2
602# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
603# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
604# define EV_INVOKE_PENDING invoke_cb (EV_A)
605#else
606# define EV_RELEASE_CB (void)0
607# define EV_ACQUIRE_CB (void)0
608# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
609#endif
610
611#define EVUNLOOP_RECURSE 0x80
269 612
270/*****************************************************************************/ 613/*****************************************************************************/
271 614
615#ifndef EV_HAVE_EV_TIME
272ev_tstamp 616ev_tstamp
273ev_time (void) 617ev_time (void)
274{ 618{
275#if EV_USE_REALTIME 619#if EV_USE_REALTIME
620 if (expect_true (have_realtime))
621 {
276 struct timespec ts; 622 struct timespec ts;
277 clock_gettime (CLOCK_REALTIME, &ts); 623 clock_gettime (CLOCK_REALTIME, &ts);
278 return ts.tv_sec + ts.tv_nsec * 1e-9; 624 return ts.tv_sec + ts.tv_nsec * 1e-9;
279#else 625 }
626#endif
627
280 struct timeval tv; 628 struct timeval tv;
281 gettimeofday (&tv, 0); 629 gettimeofday (&tv, 0);
282 return tv.tv_sec + tv.tv_usec * 1e-6; 630 return tv.tv_sec + tv.tv_usec * 1e-6;
283#endif
284} 631}
632#endif
285 633
286inline ev_tstamp 634inline_size ev_tstamp
287get_clock (void) 635get_clock (void)
288{ 636{
289#if EV_USE_MONOTONIC 637#if EV_USE_MONOTONIC
290 if (expect_true (have_monotonic)) 638 if (expect_true (have_monotonic))
291 { 639 {
304{ 652{
305 return ev_rt_now; 653 return ev_rt_now;
306} 654}
307#endif 655#endif
308 656
309#define array_roundsize(type,n) ((n) | 4 & ~3) 657void
658ev_sleep (ev_tstamp delay)
659{
660 if (delay > 0.)
661 {
662#if EV_USE_NANOSLEEP
663 struct timespec ts;
664
665 ts.tv_sec = (time_t)delay;
666 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
667
668 nanosleep (&ts, 0);
669#elif defined(_WIN32)
670 Sleep ((unsigned long)(delay * 1e3));
671#else
672 struct timeval tv;
673
674 tv.tv_sec = (time_t)delay;
675 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
676
677 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
678 /* something not guaranteed by newer posix versions, but guaranteed */
679 /* by older ones */
680 select (0, 0, 0, 0, &tv);
681#endif
682 }
683}
684
685/*****************************************************************************/
686
687#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
688
689/* find a suitable new size for the given array, */
690/* hopefully by rounding to a ncie-to-malloc size */
691inline_size int
692array_nextsize (int elem, int cur, int cnt)
693{
694 int ncur = cur + 1;
695
696 do
697 ncur <<= 1;
698 while (cnt > ncur);
699
700 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
701 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
702 {
703 ncur *= elem;
704 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
705 ncur = ncur - sizeof (void *) * 4;
706 ncur /= elem;
707 }
708
709 return ncur;
710}
711
712static noinline void *
713array_realloc (int elem, void *base, int *cur, int cnt)
714{
715 *cur = array_nextsize (elem, *cur, cnt);
716 return ev_realloc (base, elem * *cur);
717}
718
719#define array_init_zero(base,count) \
720 memset ((void *)(base), 0, sizeof (*(base)) * (count))
310 721
311#define array_needsize(type,base,cur,cnt,init) \ 722#define array_needsize(type,base,cur,cnt,init) \
312 if (expect_false ((cnt) > cur)) \ 723 if (expect_false ((cnt) > (cur))) \
313 { \ 724 { \
314 int newcnt = cur; \ 725 int ocur_ = (cur); \
315 do \ 726 (base) = (type *)array_realloc \
316 { \ 727 (sizeof (type), (base), &(cur), (cnt)); \
317 newcnt = array_roundsize (type, newcnt << 1); \ 728 init ((base) + (ocur_), (cur) - ocur_); \
318 } \
319 while ((cnt) > newcnt); \
320 \
321 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
322 init (base + cur, newcnt - cur); \
323 cur = newcnt; \
324 } 729 }
325 730
731#if 0
326#define array_slim(type,stem) \ 732#define array_slim(type,stem) \
327 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 733 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
328 { \ 734 { \
329 stem ## max = array_roundsize (stem ## cnt >> 1); \ 735 stem ## max = array_roundsize (stem ## cnt >> 1); \
330 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 736 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
331 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 737 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
332 } 738 }
739#endif
333 740
334#define array_free(stem, idx) \ 741#define array_free(stem, idx) \
335 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 742 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
336 743
337/*****************************************************************************/ 744/*****************************************************************************/
338 745
339static void 746/* dummy callback for pending events */
340anfds_init (ANFD *base, int count) 747static void noinline
748pendingcb (EV_P_ ev_prepare *w, int revents)
341{ 749{
342 while (count--)
343 {
344 base->head = 0;
345 base->events = EV_NONE;
346 base->reify = 0;
347
348 ++base;
349 }
350} 750}
351 751
352void 752void noinline
353ev_feed_event (EV_P_ void *w, int revents) 753ev_feed_event (EV_P_ void *w, int revents)
354{ 754{
355 W w_ = (W)w; 755 W w_ = (W)w;
756 int pri = ABSPRI (w_);
356 757
357 if (w_->pending) 758 if (expect_false (w_->pending))
759 pendings [pri][w_->pending - 1].events |= revents;
760 else
358 { 761 {
762 w_->pending = ++pendingcnt [pri];
763 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
764 pendings [pri][w_->pending - 1].w = w_;
359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 765 pendings [pri][w_->pending - 1].events = revents;
360 return;
361 } 766 }
362
363 w_->pending = ++pendingcnt [ABSPRI (w_)];
364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
367} 767}
368 768
369static void 769inline_speed void
770feed_reverse (EV_P_ W w)
771{
772 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
773 rfeeds [rfeedcnt++] = w;
774}
775
776inline_size void
777feed_reverse_done (EV_P_ int revents)
778{
779 do
780 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
781 while (rfeedcnt);
782}
783
784inline_speed void
370queue_events (EV_P_ W *events, int eventcnt, int type) 785queue_events (EV_P_ W *events, int eventcnt, int type)
371{ 786{
372 int i; 787 int i;
373 788
374 for (i = 0; i < eventcnt; ++i) 789 for (i = 0; i < eventcnt; ++i)
375 ev_feed_event (EV_A_ events [i], type); 790 ev_feed_event (EV_A_ events [i], type);
376} 791}
377 792
793/*****************************************************************************/
794
378inline void 795inline_speed void
379fd_event (EV_P_ int fd, int revents) 796fd_event_nc (EV_P_ int fd, int revents)
380{ 797{
381 ANFD *anfd = anfds + fd; 798 ANFD *anfd = anfds + fd;
382 struct ev_io *w; 799 ev_io *w;
383 800
384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 801 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
385 { 802 {
386 int ev = w->events & revents; 803 int ev = w->events & revents;
387 804
388 if (ev) 805 if (ev)
389 ev_feed_event (EV_A_ (W)w, ev); 806 ev_feed_event (EV_A_ (W)w, ev);
390 } 807 }
391} 808}
392 809
810/* do not submit kernel events for fds that have reify set */
811/* because that means they changed while we were polling for new events */
812inline_speed void
813fd_event (EV_P_ int fd, int revents)
814{
815 ANFD *anfd = anfds + fd;
816
817 if (expect_true (!anfd->reify))
818 fd_event_nc (EV_A_ fd, revents);
819}
820
393void 821void
394ev_feed_fd_event (EV_P_ int fd, int revents) 822ev_feed_fd_event (EV_P_ int fd, int revents)
395{ 823{
824 if (fd >= 0 && fd < anfdmax)
396 fd_event (EV_A_ fd, revents); 825 fd_event_nc (EV_A_ fd, revents);
397} 826}
398 827
399/*****************************************************************************/ 828/* make sure the external fd watch events are in-sync */
400 829/* with the kernel/libev internal state */
401static void 830inline_size void
402fd_reify (EV_P) 831fd_reify (EV_P)
403{ 832{
404 int i; 833 int i;
405 834
406 for (i = 0; i < fdchangecnt; ++i) 835 for (i = 0; i < fdchangecnt; ++i)
407 { 836 {
408 int fd = fdchanges [i]; 837 int fd = fdchanges [i];
409 ANFD *anfd = anfds + fd; 838 ANFD *anfd = anfds + fd;
410 struct ev_io *w; 839 ev_io *w;
411 840
412 int events = 0; 841 unsigned char events = 0;
413 842
414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 843 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
415 events |= w->events; 844 events |= (unsigned char)w->events;
416 845
417#if EV_SELECT_IS_WINSOCKET 846#if EV_SELECT_IS_WINSOCKET
418 if (events) 847 if (events)
419 { 848 {
420 unsigned long argp; 849 unsigned long arg;
850 #ifdef EV_FD_TO_WIN32_HANDLE
851 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
852 #else
421 anfd->handle = _get_osfhandle (fd); 853 anfd->handle = _get_osfhandle (fd);
854 #endif
422 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 855 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
423 } 856 }
424#endif 857#endif
425 858
859 {
860 unsigned char o_events = anfd->events;
861 unsigned char o_reify = anfd->reify;
862
426 anfd->reify = 0; 863 anfd->reify = 0;
427
428 method_modify (EV_A_ fd, anfd->events, events);
429 anfd->events = events; 864 anfd->events = events;
865
866 if (o_events != events || o_reify & EV__IOFDSET)
867 backend_modify (EV_A_ fd, o_events, events);
868 }
430 } 869 }
431 870
432 fdchangecnt = 0; 871 fdchangecnt = 0;
433} 872}
434 873
435static void 874/* something about the given fd changed */
875inline_size void
436fd_change (EV_P_ int fd) 876fd_change (EV_P_ int fd, int flags)
437{ 877{
438 if (anfds [fd].reify) 878 unsigned char reify = anfds [fd].reify;
439 return;
440
441 anfds [fd].reify = 1; 879 anfds [fd].reify |= flags;
442 880
881 if (expect_true (!reify))
882 {
443 ++fdchangecnt; 883 ++fdchangecnt;
444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 884 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
445 fdchanges [fdchangecnt - 1] = fd; 885 fdchanges [fdchangecnt - 1] = fd;
886 }
446} 887}
447 888
448static void 889/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
890inline_speed void
449fd_kill (EV_P_ int fd) 891fd_kill (EV_P_ int fd)
450{ 892{
451 struct ev_io *w; 893 ev_io *w;
452 894
453 while ((w = (struct ev_io *)anfds [fd].head)) 895 while ((w = (ev_io *)anfds [fd].head))
454 { 896 {
455 ev_io_stop (EV_A_ w); 897 ev_io_stop (EV_A_ w);
456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 898 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
457 } 899 }
458} 900}
459 901
460static int 902/* check whether the given fd is atcually valid, for error recovery */
903inline_size int
461fd_valid (int fd) 904fd_valid (int fd)
462{ 905{
463#ifdef _WIN32 906#ifdef _WIN32
464 return _get_osfhandle (fd) != -1; 907 return _get_osfhandle (fd) != -1;
465#else 908#else
466 return fcntl (fd, F_GETFD) != -1; 909 return fcntl (fd, F_GETFD) != -1;
467#endif 910#endif
468} 911}
469 912
470/* called on EBADF to verify fds */ 913/* called on EBADF to verify fds */
471static void 914static void noinline
472fd_ebadf (EV_P) 915fd_ebadf (EV_P)
473{ 916{
474 int fd; 917 int fd;
475 918
476 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
477 if (anfds [fd].events) 920 if (anfds [fd].events)
478 if (!fd_valid (fd) == -1 && errno == EBADF) 921 if (!fd_valid (fd) && errno == EBADF)
479 fd_kill (EV_A_ fd); 922 fd_kill (EV_A_ fd);
480} 923}
481 924
482/* called on ENOMEM in select/poll to kill some fds and retry */ 925/* called on ENOMEM in select/poll to kill some fds and retry */
483static void 926static void noinline
484fd_enomem (EV_P) 927fd_enomem (EV_P)
485{ 928{
486 int fd; 929 int fd;
487 930
488 for (fd = anfdmax; fd--; ) 931 for (fd = anfdmax; fd--; )
491 fd_kill (EV_A_ fd); 934 fd_kill (EV_A_ fd);
492 return; 935 return;
493 } 936 }
494} 937}
495 938
496/* usually called after fork if method needs to re-arm all fds from scratch */ 939/* usually called after fork if backend needs to re-arm all fds from scratch */
497static void 940static void noinline
498fd_rearm_all (EV_P) 941fd_rearm_all (EV_P)
499{ 942{
500 int fd; 943 int fd;
501 944
502 /* this should be highly optimised to not do anything but set a flag */
503 for (fd = 0; fd < anfdmax; ++fd) 945 for (fd = 0; fd < anfdmax; ++fd)
504 if (anfds [fd].events) 946 if (anfds [fd].events)
505 { 947 {
506 anfds [fd].events = 0; 948 anfds [fd].events = 0;
507 fd_change (EV_A_ fd); 949 anfds [fd].emask = 0;
950 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
508 } 951 }
509} 952}
510 953
511/*****************************************************************************/ 954/*****************************************************************************/
512 955
513static void 956/*
514upheap (WT *heap, int k) 957 * the heap functions want a real array index. array index 0 uis guaranteed to not
515{ 958 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
516 WT w = heap [k]; 959 * the branching factor of the d-tree.
960 */
517 961
518 while (k && heap [k >> 1]->at > w->at) 962/*
519 { 963 * at the moment we allow libev the luxury of two heaps,
520 heap [k] = heap [k >> 1]; 964 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
521 ((W)heap [k])->active = k + 1; 965 * which is more cache-efficient.
522 k >>= 1; 966 * the difference is about 5% with 50000+ watchers.
523 } 967 */
968#if EV_USE_4HEAP
524 969
525 heap [k] = w; 970#define DHEAP 4
526 ((W)heap [k])->active = k + 1; 971#define HEAP0 (DHEAP - 1) /* index of first element in heap */
972#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
973#define UPHEAP_DONE(p,k) ((p) == (k))
527 974
528} 975/* away from the root */
529 976inline_speed void
530static void
531downheap (WT *heap, int N, int k) 977downheap (ANHE *heap, int N, int k)
532{ 978{
533 WT w = heap [k]; 979 ANHE he = heap [k];
980 ANHE *E = heap + N + HEAP0;
534 981
535 while (k < (N >> 1)) 982 for (;;)
536 { 983 {
537 int j = k << 1; 984 ev_tstamp minat;
985 ANHE *minpos;
986 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
538 987
539 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 988 /* find minimum child */
989 if (expect_true (pos + DHEAP - 1 < E))
540 ++j; 990 {
541 991 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
542 if (w->at <= heap [j]->at) 992 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
993 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
994 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
995 }
996 else if (pos < E)
997 {
998 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
999 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1000 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1001 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1002 }
1003 else
543 break; 1004 break;
544 1005
1006 if (ANHE_at (he) <= minat)
1007 break;
1008
1009 heap [k] = *minpos;
1010 ev_active (ANHE_w (*minpos)) = k;
1011
1012 k = minpos - heap;
1013 }
1014
1015 heap [k] = he;
1016 ev_active (ANHE_w (he)) = k;
1017}
1018
1019#else /* 4HEAP */
1020
1021#define HEAP0 1
1022#define HPARENT(k) ((k) >> 1)
1023#define UPHEAP_DONE(p,k) (!(p))
1024
1025/* away from the root */
1026inline_speed void
1027downheap (ANHE *heap, int N, int k)
1028{
1029 ANHE he = heap [k];
1030
1031 for (;;)
1032 {
1033 int c = k << 1;
1034
1035 if (c > N + HEAP0 - 1)
1036 break;
1037
1038 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1039 ? 1 : 0;
1040
1041 if (ANHE_at (he) <= ANHE_at (heap [c]))
1042 break;
1043
545 heap [k] = heap [j]; 1044 heap [k] = heap [c];
546 ((W)heap [k])->active = k + 1; 1045 ev_active (ANHE_w (heap [k])) = k;
1046
547 k = j; 1047 k = c;
548 } 1048 }
549 1049
550 heap [k] = w; 1050 heap [k] = he;
551 ((W)heap [k])->active = k + 1; 1051 ev_active (ANHE_w (he)) = k;
552} 1052}
1053#endif
553 1054
1055/* towards the root */
1056inline_speed void
1057upheap (ANHE *heap, int k)
1058{
1059 ANHE he = heap [k];
1060
1061 for (;;)
1062 {
1063 int p = HPARENT (k);
1064
1065 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1066 break;
1067
1068 heap [k] = heap [p];
1069 ev_active (ANHE_w (heap [k])) = k;
1070 k = p;
1071 }
1072
1073 heap [k] = he;
1074 ev_active (ANHE_w (he)) = k;
1075}
1076
1077/* move an element suitably so it is in a correct place */
554inline void 1078inline_size void
555adjustheap (WT *heap, int N, int k) 1079adjustheap (ANHE *heap, int N, int k)
556{ 1080{
1081 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
557 upheap (heap, k); 1082 upheap (heap, k);
1083 else
558 downheap (heap, N, k); 1084 downheap (heap, N, k);
1085}
1086
1087/* rebuild the heap: this function is used only once and executed rarely */
1088inline_size void
1089reheap (ANHE *heap, int N)
1090{
1091 int i;
1092
1093 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1094 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1095 for (i = 0; i < N; ++i)
1096 upheap (heap, i + HEAP0);
559} 1097}
560 1098
561/*****************************************************************************/ 1099/*****************************************************************************/
562 1100
1101/* associate signal watchers to a signal signal */
563typedef struct 1102typedef struct
564{ 1103{
565 WL head; 1104 WL head;
566 sig_atomic_t volatile gotsig; 1105 EV_ATOMIC_T gotsig;
567} ANSIG; 1106} ANSIG;
568 1107
569static ANSIG *signals; 1108static ANSIG *signals;
570static int signalmax; 1109static int signalmax;
571 1110
572static int sigpipe [2]; 1111static EV_ATOMIC_T gotsig;
573static sig_atomic_t volatile gotsig;
574static struct ev_io sigev;
575 1112
576static void 1113/*****************************************************************************/
577signals_init (ANSIG *base, int count)
578{
579 while (count--)
580 {
581 base->head = 0;
582 base->gotsig = 0;
583 1114
584 ++base; 1115/* used to prepare libev internal fd's */
585 } 1116/* this is not fork-safe */
586}
587
588static void
589sighandler (int signum)
590{
591#if _WIN32
592 signal (signum, sighandler);
593#endif
594
595 signals [signum - 1].gotsig = 1;
596
597 if (!gotsig)
598 {
599 int old_errno = errno;
600 gotsig = 1;
601 write (sigpipe [1], &signum, 1);
602 errno = old_errno;
603 }
604}
605
606void
607ev_feed_signal_event (EV_P_ int signum)
608{
609 WL w;
610
611#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
613#endif
614
615 --signum;
616
617 if (signum < 0 || signum >= signalmax)
618 return;
619
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624}
625
626static void
627sigcb (EV_P_ struct ev_io *iow, int revents)
628{
629 int signum;
630
631 read (sigpipe [0], &revents, 1);
632 gotsig = 0;
633
634 for (signum = signalmax; signum--; )
635 if (signals [signum].gotsig)
636 ev_feed_signal_event (EV_A_ signum + 1);
637}
638
639inline void 1117inline_speed void
640fd_intern (int fd) 1118fd_intern (int fd)
641{ 1119{
642#ifdef _WIN32 1120#ifdef _WIN32
643 int arg = 1; 1121 unsigned long arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1122 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
645#else 1123#else
646 fcntl (fd, F_SETFD, FD_CLOEXEC); 1124 fcntl (fd, F_SETFD, FD_CLOEXEC);
647 fcntl (fd, F_SETFL, O_NONBLOCK); 1125 fcntl (fd, F_SETFL, O_NONBLOCK);
648#endif 1126#endif
649} 1127}
650 1128
1129static void noinline
1130evpipe_init (EV_P)
1131{
1132 if (!ev_is_active (&pipe_w))
1133 {
1134#if EV_USE_EVENTFD
1135 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1136 if (evfd < 0 && errno == EINVAL)
1137 evfd = eventfd (0, 0);
1138
1139 if (evfd >= 0)
1140 {
1141 evpipe [0] = -1;
1142 fd_intern (evfd); /* doing it twice doesn't hurt */
1143 ev_io_set (&pipe_w, evfd, EV_READ);
1144 }
1145 else
1146#endif
1147 {
1148 while (pipe (evpipe))
1149 ev_syserr ("(libev) error creating signal/async pipe");
1150
1151 fd_intern (evpipe [0]);
1152 fd_intern (evpipe [1]);
1153 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1154 }
1155
1156 ev_io_start (EV_A_ &pipe_w);
1157 ev_unref (EV_A); /* watcher should not keep loop alive */
1158 }
1159}
1160
1161inline_size void
1162evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1163{
1164 if (!*flag)
1165 {
1166 int old_errno = errno; /* save errno because write might clobber it */
1167
1168 *flag = 1;
1169
1170#if EV_USE_EVENTFD
1171 if (evfd >= 0)
1172 {
1173 uint64_t counter = 1;
1174 write (evfd, &counter, sizeof (uint64_t));
1175 }
1176 else
1177#endif
1178 write (evpipe [1], &old_errno, 1);
1179
1180 errno = old_errno;
1181 }
1182}
1183
1184/* called whenever the libev signal pipe */
1185/* got some events (signal, async) */
651static void 1186static void
652siginit (EV_P) 1187pipecb (EV_P_ ev_io *iow, int revents)
653{ 1188{
654 fd_intern (sigpipe [0]); 1189#if EV_USE_EVENTFD
655 fd_intern (sigpipe [1]); 1190 if (evfd >= 0)
1191 {
1192 uint64_t counter;
1193 read (evfd, &counter, sizeof (uint64_t));
1194 }
1195 else
1196#endif
1197 {
1198 char dummy;
1199 read (evpipe [0], &dummy, 1);
1200 }
656 1201
657 ev_io_set (&sigev, sigpipe [0], EV_READ); 1202 if (gotsig && ev_is_default_loop (EV_A))
658 ev_io_start (EV_A_ &sigev); 1203 {
659 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1204 int signum;
1205 gotsig = 0;
1206
1207 for (signum = signalmax; signum--; )
1208 if (signals [signum].gotsig)
1209 ev_feed_signal_event (EV_A_ signum + 1);
1210 }
1211
1212#if EV_ASYNC_ENABLE
1213 if (gotasync)
1214 {
1215 int i;
1216 gotasync = 0;
1217
1218 for (i = asynccnt; i--; )
1219 if (asyncs [i]->sent)
1220 {
1221 asyncs [i]->sent = 0;
1222 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1223 }
1224 }
1225#endif
660} 1226}
661 1227
662/*****************************************************************************/ 1228/*****************************************************************************/
663 1229
664static struct ev_child *childs [PID_HASHSIZE]; 1230static void
1231ev_sighandler (int signum)
1232{
1233#if EV_MULTIPLICITY
1234 struct ev_loop *loop = &default_loop_struct;
1235#endif
1236
1237#if _WIN32
1238 signal (signum, ev_sighandler);
1239#endif
1240
1241 signals [signum - 1].gotsig = 1;
1242 evpipe_write (EV_A_ &gotsig);
1243}
1244
1245void noinline
1246ev_feed_signal_event (EV_P_ int signum)
1247{
1248 WL w;
1249
1250#if EV_MULTIPLICITY
1251 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1252#endif
1253
1254 --signum;
1255
1256 if (signum < 0 || signum >= signalmax)
1257 return;
1258
1259 signals [signum].gotsig = 0;
1260
1261 for (w = signals [signum].head; w; w = w->next)
1262 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1263}
1264
1265#if EV_USE_SIGNALFD
1266static void
1267sigfdcb (EV_P_ ev_io *iow, int revents)
1268{
1269 struct signalfd_siginfo si[4], *sip;
1270
1271 for (;;)
1272 {
1273 ssize_t res = read (sigfd, si, sizeof (si));
1274
1275 /* not ISO-C, as res might be -1, but works with SuS */
1276 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1277 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1278
1279 if (res < (ssize_t)sizeof (si))
1280 break;
1281 }
1282}
1283#endif
1284
1285/*****************************************************************************/
1286
1287static WL childs [EV_PID_HASHSIZE];
665 1288
666#ifndef _WIN32 1289#ifndef _WIN32
667 1290
668static struct ev_signal childev; 1291static ev_signal childev;
1292
1293#ifndef WIFCONTINUED
1294# define WIFCONTINUED(status) 0
1295#endif
1296
1297/* handle a single child status event */
1298inline_speed void
1299child_reap (EV_P_ int chain, int pid, int status)
1300{
1301 ev_child *w;
1302 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1303
1304 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1305 {
1306 if ((w->pid == pid || !w->pid)
1307 && (!traced || (w->flags & 1)))
1308 {
1309 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1310 w->rpid = pid;
1311 w->rstatus = status;
1312 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1313 }
1314 }
1315}
669 1316
670#ifndef WCONTINUED 1317#ifndef WCONTINUED
671# define WCONTINUED 0 1318# define WCONTINUED 0
672#endif 1319#endif
673 1320
1321/* called on sigchld etc., calls waitpid */
674static void 1322static void
675child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
676{
677 struct ev_child *w;
678
679 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
680 if (w->pid == pid || !w->pid)
681 {
682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
683 w->rpid = pid;
684 w->rstatus = status;
685 ev_feed_event (EV_A_ (W)w, EV_CHILD);
686 }
687}
688
689static void
690childcb (EV_P_ struct ev_signal *sw, int revents) 1323childcb (EV_P_ ev_signal *sw, int revents)
691{ 1324{
692 int pid, status; 1325 int pid, status;
693 1326
1327 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1328 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
695 { 1329 if (!WCONTINUED
1330 || errno != EINVAL
1331 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1332 return;
1333
696 /* make sure we are called again until all childs have been reaped */ 1334 /* make sure we are called again until all children have been reaped */
1335 /* we need to do it this way so that the callback gets called before we continue */
697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1336 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
698 1337
699 child_reap (EV_A_ sw, pid, pid, status); 1338 child_reap (EV_A_ pid, pid, status);
1339 if (EV_PID_HASHSIZE > 1)
700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1340 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
701 }
702} 1341}
703 1342
704#endif 1343#endif
705 1344
706/*****************************************************************************/ 1345/*****************************************************************************/
707 1346
1347#if EV_USE_PORT
1348# include "ev_port.c"
1349#endif
708#if EV_USE_KQUEUE 1350#if EV_USE_KQUEUE
709# include "ev_kqueue.c" 1351# include "ev_kqueue.c"
710#endif 1352#endif
711#if EV_USE_EPOLL 1353#if EV_USE_EPOLL
712# include "ev_epoll.c" 1354# include "ev_epoll.c"
729{ 1371{
730 return EV_VERSION_MINOR; 1372 return EV_VERSION_MINOR;
731} 1373}
732 1374
733/* return true if we are running with elevated privileges and should ignore env variables */ 1375/* return true if we are running with elevated privileges and should ignore env variables */
734static int 1376int inline_size
735enable_secure (void) 1377enable_secure (void)
736{ 1378{
737#ifdef _WIN32 1379#ifdef _WIN32
738 return 0; 1380 return 0;
739#else 1381#else
740 return getuid () != geteuid () 1382 return getuid () != geteuid ()
741 || getgid () != getegid (); 1383 || getgid () != getegid ();
742#endif 1384#endif
743} 1385}
744 1386
745int 1387unsigned int
746ev_method (EV_P) 1388ev_supported_backends (void)
747{ 1389{
748 return method; 1390 unsigned int flags = 0;
749}
750 1391
751static void 1392 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
752loop_init (EV_P_ int methods) 1393 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1394 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1395 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1396 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1397
1398 return flags;
1399}
1400
1401unsigned int
1402ev_recommended_backends (void)
753{ 1403{
754 if (!method) 1404 unsigned int flags = ev_supported_backends ();
1405
1406#ifndef __NetBSD__
1407 /* kqueue is borked on everything but netbsd apparently */
1408 /* it usually doesn't work correctly on anything but sockets and pipes */
1409 flags &= ~EVBACKEND_KQUEUE;
1410#endif
1411#ifdef __APPLE__
1412 /* only select works correctly on that "unix-certified" platform */
1413 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1414 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1415#endif
1416
1417 return flags;
1418}
1419
1420unsigned int
1421ev_embeddable_backends (void)
1422{
1423 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1424
1425 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1426 /* please fix it and tell me how to detect the fix */
1427 flags &= ~EVBACKEND_EPOLL;
1428
1429 return flags;
1430}
1431
1432unsigned int
1433ev_backend (EV_P)
1434{
1435 return backend;
1436}
1437
1438#if EV_MINIMAL < 2
1439unsigned int
1440ev_loop_count (EV_P)
1441{
1442 return loop_count;
1443}
1444
1445unsigned int
1446ev_loop_depth (EV_P)
1447{
1448 return loop_depth;
1449}
1450
1451void
1452ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1453{
1454 io_blocktime = interval;
1455}
1456
1457void
1458ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1459{
1460 timeout_blocktime = interval;
1461}
1462
1463void
1464ev_set_userdata (EV_P_ void *data)
1465{
1466 userdata = data;
1467}
1468
1469void *
1470ev_userdata (EV_P)
1471{
1472 return userdata;
1473}
1474
1475void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1476{
1477 invoke_cb = invoke_pending_cb;
1478}
1479
1480void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1481{
1482 release_cb = release;
1483 acquire_cb = acquire;
1484}
1485#endif
1486
1487/* initialise a loop structure, must be zero-initialised */
1488static void noinline
1489loop_init (EV_P_ unsigned int flags)
1490{
1491 if (!backend)
755 { 1492 {
1493#if EV_USE_REALTIME
1494 if (!have_realtime)
1495 {
1496 struct timespec ts;
1497
1498 if (!clock_gettime (CLOCK_REALTIME, &ts))
1499 have_realtime = 1;
1500 }
1501#endif
1502
756#if EV_USE_MONOTONIC 1503#if EV_USE_MONOTONIC
1504 if (!have_monotonic)
757 { 1505 {
758 struct timespec ts; 1506 struct timespec ts;
1507
759 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1508 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
760 have_monotonic = 1; 1509 have_monotonic = 1;
761 } 1510 }
762#endif 1511#endif
763 1512
764 ev_rt_now = ev_time (); 1513 ev_rt_now = ev_time ();
765 mn_now = get_clock (); 1514 mn_now = get_clock ();
766 now_floor = mn_now; 1515 now_floor = mn_now;
767 rtmn_diff = ev_rt_now - mn_now; 1516 rtmn_diff = ev_rt_now - mn_now;
1517#if EV_MINIMAL < 2
1518 invoke_cb = ev_invoke_pending;
1519#endif
768 1520
769 if (methods == EVMETHOD_AUTO) 1521 io_blocktime = 0.;
770 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1522 timeout_blocktime = 0.;
1523 backend = 0;
1524 backend_fd = -1;
1525 gotasync = 0;
1526#if EV_USE_INOTIFY
1527 fs_fd = -2;
1528#endif
1529#if EV_USE_SIGNALFD
1530 sigfd = -2;
1531#endif
1532
1533 /* pid check not overridable via env */
1534#ifndef _WIN32
1535 if (flags & EVFLAG_FORKCHECK)
1536 curpid = getpid ();
1537#endif
1538
1539 if (!(flags & EVFLAG_NOENV)
1540 && !enable_secure ()
1541 && getenv ("LIBEV_FLAGS"))
771 methods = atoi (getenv ("LIBEV_METHODS")); 1542 flags = atoi (getenv ("LIBEV_FLAGS"));
772 else
773 methods = EVMETHOD_ANY;
774 1543
775 method = 0; 1544 if (!(flags & 0x0000ffffU))
1545 flags |= ev_recommended_backends ();
1546
1547#if EV_USE_PORT
1548 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1549#endif
776#if EV_USE_KQUEUE 1550#if EV_USE_KQUEUE
777 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1551 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
778#endif 1552#endif
779#if EV_USE_EPOLL 1553#if EV_USE_EPOLL
780 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1554 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
781#endif 1555#endif
782#if EV_USE_POLL 1556#if EV_USE_POLL
783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1557 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
784#endif 1558#endif
785#if EV_USE_SELECT 1559#if EV_USE_SELECT
786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1560 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
787#endif 1561#endif
788 1562
1563 ev_prepare_init (&pending_w, pendingcb);
1564
789 ev_init (&sigev, sigcb); 1565 ev_init (&pipe_w, pipecb);
790 ev_set_priority (&sigev, EV_MAXPRI); 1566 ev_set_priority (&pipe_w, EV_MAXPRI);
791 } 1567 }
792} 1568}
793 1569
794void 1570/* free up a loop structure */
1571static void noinline
795loop_destroy (EV_P) 1572loop_destroy (EV_P)
796{ 1573{
797 int i; 1574 int i;
798 1575
1576 if (ev_is_active (&pipe_w))
1577 {
1578 /*ev_ref (EV_A);*/
1579 /*ev_io_stop (EV_A_ &pipe_w);*/
1580
1581#if EV_USE_EVENTFD
1582 if (evfd >= 0)
1583 close (evfd);
1584#endif
1585
1586 if (evpipe [0] >= 0)
1587 {
1588 close (evpipe [0]);
1589 close (evpipe [1]);
1590 }
1591 }
1592
1593#if EV_USE_SIGNALFD
1594 if (ev_is_active (&sigfd_w))
1595 {
1596 /*ev_ref (EV_A);*/
1597 /*ev_io_stop (EV_A_ &sigfd_w);*/
1598
1599 close (sigfd);
1600 }
1601#endif
1602
1603#if EV_USE_INOTIFY
1604 if (fs_fd >= 0)
1605 close (fs_fd);
1606#endif
1607
1608 if (backend_fd >= 0)
1609 close (backend_fd);
1610
1611#if EV_USE_PORT
1612 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1613#endif
799#if EV_USE_KQUEUE 1614#if EV_USE_KQUEUE
800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1615 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
801#endif 1616#endif
802#if EV_USE_EPOLL 1617#if EV_USE_EPOLL
803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1618 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
804#endif 1619#endif
805#if EV_USE_POLL 1620#if EV_USE_POLL
806 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1621 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
807#endif 1622#endif
808#if EV_USE_SELECT 1623#if EV_USE_SELECT
809 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1624 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
810#endif 1625#endif
811 1626
812 for (i = NUMPRI; i--; ) 1627 for (i = NUMPRI; i--; )
1628 {
813 array_free (pending, [i]); 1629 array_free (pending, [i]);
1630#if EV_IDLE_ENABLE
1631 array_free (idle, [i]);
1632#endif
1633 }
1634
1635 ev_free (anfds); anfdmax = 0;
814 1636
815 /* have to use the microsoft-never-gets-it-right macro */ 1637 /* have to use the microsoft-never-gets-it-right macro */
1638 array_free (rfeed, EMPTY);
816 array_free (fdchange, EMPTY); 1639 array_free (fdchange, EMPTY);
817 array_free (timer, EMPTY); 1640 array_free (timer, EMPTY);
818#if EV_PERIODICS 1641#if EV_PERIODIC_ENABLE
819 array_free (periodic, EMPTY); 1642 array_free (periodic, EMPTY);
820#endif 1643#endif
1644#if EV_FORK_ENABLE
821 array_free (idle, EMPTY); 1645 array_free (fork, EMPTY);
1646#endif
822 array_free (prepare, EMPTY); 1647 array_free (prepare, EMPTY);
823 array_free (check, EMPTY); 1648 array_free (check, EMPTY);
1649#if EV_ASYNC_ENABLE
1650 array_free (async, EMPTY);
1651#endif
824 1652
825 method = 0; 1653 backend = 0;
826} 1654}
827 1655
828static void 1656#if EV_USE_INOTIFY
1657inline_size void infy_fork (EV_P);
1658#endif
1659
1660inline_size void
829loop_fork (EV_P) 1661loop_fork (EV_P)
830{ 1662{
1663#if EV_USE_PORT
1664 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1665#endif
1666#if EV_USE_KQUEUE
1667 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1668#endif
831#if EV_USE_EPOLL 1669#if EV_USE_EPOLL
832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1670 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
833#endif 1671#endif
834#if EV_USE_KQUEUE 1672#if EV_USE_INOTIFY
835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1673 infy_fork (EV_A);
836#endif 1674#endif
837 1675
838 if (ev_is_active (&sigev)) 1676 if (ev_is_active (&pipe_w))
839 { 1677 {
840 /* default loop */ 1678 /* this "locks" the handlers against writing to the pipe */
1679 /* while we modify the fd vars */
1680 gotsig = 1;
1681#if EV_ASYNC_ENABLE
1682 gotasync = 1;
1683#endif
841 1684
842 ev_ref (EV_A); 1685 ev_ref (EV_A);
843 ev_io_stop (EV_A_ &sigev); 1686 ev_io_stop (EV_A_ &pipe_w);
1687
1688#if EV_USE_EVENTFD
1689 if (evfd >= 0)
1690 close (evfd);
1691#endif
1692
1693 if (evpipe [0] >= 0)
1694 {
844 close (sigpipe [0]); 1695 close (evpipe [0]);
845 close (sigpipe [1]); 1696 close (evpipe [1]);
1697 }
846 1698
847 while (pipe (sigpipe))
848 syserr ("(libev) error creating pipe");
849
850 siginit (EV_A); 1699 evpipe_init (EV_A);
1700 /* now iterate over everything, in case we missed something */
1701 pipecb (EV_A_ &pipe_w, EV_READ);
851 } 1702 }
852 1703
853 postfork = 0; 1704 postfork = 0;
854} 1705}
1706
1707#if EV_MULTIPLICITY
1708
1709struct ev_loop *
1710ev_loop_new (unsigned int flags)
1711{
1712 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1713
1714 memset (loop, 0, sizeof (struct ev_loop));
1715 loop_init (EV_A_ flags);
1716
1717 if (ev_backend (EV_A))
1718 return loop;
1719
1720 return 0;
1721}
1722
1723void
1724ev_loop_destroy (EV_P)
1725{
1726 loop_destroy (EV_A);
1727 ev_free (loop);
1728}
1729
1730void
1731ev_loop_fork (EV_P)
1732{
1733 postfork = 1; /* must be in line with ev_default_fork */
1734}
1735#endif /* multiplicity */
1736
1737#if EV_VERIFY
1738static void noinline
1739verify_watcher (EV_P_ W w)
1740{
1741 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1742
1743 if (w->pending)
1744 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1745}
1746
1747static void noinline
1748verify_heap (EV_P_ ANHE *heap, int N)
1749{
1750 int i;
1751
1752 for (i = HEAP0; i < N + HEAP0; ++i)
1753 {
1754 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1755 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1756 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1757
1758 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1759 }
1760}
1761
1762static void noinline
1763array_verify (EV_P_ W *ws, int cnt)
1764{
1765 while (cnt--)
1766 {
1767 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1768 verify_watcher (EV_A_ ws [cnt]);
1769 }
1770}
1771#endif
1772
1773#if EV_MINIMAL < 2
1774void
1775ev_loop_verify (EV_P)
1776{
1777#if EV_VERIFY
1778 int i;
1779 WL w;
1780
1781 assert (activecnt >= -1);
1782
1783 assert (fdchangemax >= fdchangecnt);
1784 for (i = 0; i < fdchangecnt; ++i)
1785 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1786
1787 assert (anfdmax >= 0);
1788 for (i = 0; i < anfdmax; ++i)
1789 for (w = anfds [i].head; w; w = w->next)
1790 {
1791 verify_watcher (EV_A_ (W)w);
1792 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1793 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1794 }
1795
1796 assert (timermax >= timercnt);
1797 verify_heap (EV_A_ timers, timercnt);
1798
1799#if EV_PERIODIC_ENABLE
1800 assert (periodicmax >= periodiccnt);
1801 verify_heap (EV_A_ periodics, periodiccnt);
1802#endif
1803
1804 for (i = NUMPRI; i--; )
1805 {
1806 assert (pendingmax [i] >= pendingcnt [i]);
1807#if EV_IDLE_ENABLE
1808 assert (idleall >= 0);
1809 assert (idlemax [i] >= idlecnt [i]);
1810 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1811#endif
1812 }
1813
1814#if EV_FORK_ENABLE
1815 assert (forkmax >= forkcnt);
1816 array_verify (EV_A_ (W *)forks, forkcnt);
1817#endif
1818
1819#if EV_ASYNC_ENABLE
1820 assert (asyncmax >= asynccnt);
1821 array_verify (EV_A_ (W *)asyncs, asynccnt);
1822#endif
1823
1824 assert (preparemax >= preparecnt);
1825 array_verify (EV_A_ (W *)prepares, preparecnt);
1826
1827 assert (checkmax >= checkcnt);
1828 array_verify (EV_A_ (W *)checks, checkcnt);
1829
1830# if 0
1831 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1832 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1833# endif
1834#endif
1835}
1836#endif
855 1837
856#if EV_MULTIPLICITY 1838#if EV_MULTIPLICITY
857struct ev_loop * 1839struct ev_loop *
858ev_loop_new (int methods) 1840ev_default_loop_init (unsigned int flags)
859{
860 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
861
862 memset (loop, 0, sizeof (struct ev_loop));
863
864 loop_init (EV_A_ methods);
865
866 if (ev_method (EV_A))
867 return loop;
868
869 return 0;
870}
871
872void
873ev_loop_destroy (EV_P)
874{
875 loop_destroy (EV_A);
876 ev_free (loop);
877}
878
879void
880ev_loop_fork (EV_P)
881{
882 postfork = 1;
883}
884
885#endif
886
887#if EV_MULTIPLICITY
888struct ev_loop *
889#else 1841#else
890int 1842int
1843ev_default_loop (unsigned int flags)
891#endif 1844#endif
892ev_default_loop (int methods)
893{ 1845{
894 if (sigpipe [0] == sigpipe [1])
895 if (pipe (sigpipe))
896 return 0;
897
898 if (!default_loop) 1846 if (!ev_default_loop_ptr)
899 { 1847 {
900#if EV_MULTIPLICITY 1848#if EV_MULTIPLICITY
901 struct ev_loop *loop = default_loop = &default_loop_struct; 1849 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
902#else 1850#else
903 default_loop = 1; 1851 ev_default_loop_ptr = 1;
904#endif 1852#endif
905 1853
906 loop_init (EV_A_ methods); 1854 loop_init (EV_A_ flags);
907 1855
908 if (ev_method (EV_A)) 1856 if (ev_backend (EV_A))
909 { 1857 {
910 siginit (EV_A);
911
912#ifndef _WIN32 1858#ifndef _WIN32
913 ev_signal_init (&childev, childcb, SIGCHLD); 1859 ev_signal_init (&childev, childcb, SIGCHLD);
914 ev_set_priority (&childev, EV_MAXPRI); 1860 ev_set_priority (&childev, EV_MAXPRI);
915 ev_signal_start (EV_A_ &childev); 1861 ev_signal_start (EV_A_ &childev);
916 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1862 ev_unref (EV_A); /* child watcher should not keep loop alive */
917#endif 1863#endif
918 } 1864 }
919 else 1865 else
920 default_loop = 0; 1866 ev_default_loop_ptr = 0;
921 } 1867 }
922 1868
923 return default_loop; 1869 return ev_default_loop_ptr;
924} 1870}
925 1871
926void 1872void
927ev_default_destroy (void) 1873ev_default_destroy (void)
928{ 1874{
929#if EV_MULTIPLICITY 1875#if EV_MULTIPLICITY
930 struct ev_loop *loop = default_loop; 1876 struct ev_loop *loop = ev_default_loop_ptr;
931#endif 1877#endif
1878
1879 ev_default_loop_ptr = 0;
932 1880
933#ifndef _WIN32 1881#ifndef _WIN32
934 ev_ref (EV_A); /* child watcher */ 1882 ev_ref (EV_A); /* child watcher */
935 ev_signal_stop (EV_A_ &childev); 1883 ev_signal_stop (EV_A_ &childev);
936#endif 1884#endif
937 1885
938 ev_ref (EV_A); /* signal watcher */
939 ev_io_stop (EV_A_ &sigev);
940
941 close (sigpipe [0]); sigpipe [0] = 0;
942 close (sigpipe [1]); sigpipe [1] = 0;
943
944 loop_destroy (EV_A); 1886 loop_destroy (EV_A);
945} 1887}
946 1888
947void 1889void
948ev_default_fork (void) 1890ev_default_fork (void)
949{ 1891{
950#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
951 struct ev_loop *loop = default_loop; 1893 struct ev_loop *loop = ev_default_loop_ptr;
952#endif 1894#endif
953 1895
954 if (method) 1896 postfork = 1; /* must be in line with ev_loop_fork */
955 postfork = 1;
956} 1897}
957 1898
958/*****************************************************************************/ 1899/*****************************************************************************/
959 1900
960static int 1901void
961any_pending (EV_P) 1902ev_invoke (EV_P_ void *w, int revents)
1903{
1904 EV_CB_INVOKE ((W)w, revents);
1905}
1906
1907unsigned int
1908ev_pending_count (EV_P)
962{ 1909{
963 int pri; 1910 int pri;
1911 unsigned int count = 0;
964 1912
965 for (pri = NUMPRI; pri--; ) 1913 for (pri = NUMPRI; pri--; )
966 if (pendingcnt [pri]) 1914 count += pendingcnt [pri];
967 return 1;
968 1915
969 return 0; 1916 return count;
970} 1917}
971 1918
972static void 1919void noinline
973call_pending (EV_P) 1920ev_invoke_pending (EV_P)
974{ 1921{
975 int pri; 1922 int pri;
976 1923
977 for (pri = NUMPRI; pri--; ) 1924 for (pri = NUMPRI; pri--; )
978 while (pendingcnt [pri]) 1925 while (pendingcnt [pri])
979 { 1926 {
980 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1927 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
981 1928
982 if (p->w) 1929 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
983 { 1930 /* ^ this is no longer true, as pending_w could be here */
1931
984 p->w->pending = 0; 1932 p->w->pending = 0;
985 EV_CB_INVOKE (p->w, p->events); 1933 EV_CB_INVOKE (p->w, p->events);
986 } 1934 EV_FREQUENT_CHECK;
987 } 1935 }
988} 1936}
989 1937
990static void 1938#if EV_IDLE_ENABLE
1939/* make idle watchers pending. this handles the "call-idle */
1940/* only when higher priorities are idle" logic */
1941inline_size void
1942idle_reify (EV_P)
1943{
1944 if (expect_false (idleall))
1945 {
1946 int pri;
1947
1948 for (pri = NUMPRI; pri--; )
1949 {
1950 if (pendingcnt [pri])
1951 break;
1952
1953 if (idlecnt [pri])
1954 {
1955 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1956 break;
1957 }
1958 }
1959 }
1960}
1961#endif
1962
1963/* make timers pending */
1964inline_size void
991timers_reify (EV_P) 1965timers_reify (EV_P)
992{ 1966{
1967 EV_FREQUENT_CHECK;
1968
993 while (timercnt && ((WT)timers [0])->at <= mn_now) 1969 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
994 { 1970 {
995 struct ev_timer *w = timers [0]; 1971 do
996
997 assert (("inactive timer on timer heap detected", ev_is_active (w)));
998
999 /* first reschedule or stop timer */
1000 if (w->repeat)
1001 { 1972 {
1973 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1974
1975 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1976
1977 /* first reschedule or stop timer */
1978 if (w->repeat)
1979 {
1980 ev_at (w) += w->repeat;
1981 if (ev_at (w) < mn_now)
1982 ev_at (w) = mn_now;
1983
1002 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1984 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1003 1985
1004 ((WT)w)->at += w->repeat; 1986 ANHE_at_cache (timers [HEAP0]);
1005 if (((WT)w)->at < mn_now)
1006 ((WT)w)->at = mn_now;
1007
1008 downheap ((WT *)timers, timercnt, 0); 1987 downheap (timers, timercnt, HEAP0);
1988 }
1989 else
1990 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1991
1992 EV_FREQUENT_CHECK;
1993 feed_reverse (EV_A_ (W)w);
1009 } 1994 }
1010 else 1995 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1011 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1012 1996
1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1997 feed_reverse_done (EV_A_ EV_TIMEOUT);
1014 } 1998 }
1015} 1999}
1016 2000
1017#if EV_PERIODICS 2001#if EV_PERIODIC_ENABLE
1018static void 2002/* make periodics pending */
2003inline_size void
1019periodics_reify (EV_P) 2004periodics_reify (EV_P)
1020{ 2005{
2006 EV_FREQUENT_CHECK;
2007
1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2008 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1022 { 2009 {
1023 struct ev_periodic *w = periodics [0]; 2010 int feed_count = 0;
1024 2011
2012 do
2013 {
2014 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2015
1025 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2016 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1026 2017
1027 /* first reschedule or stop timer */ 2018 /* first reschedule or stop timer */
2019 if (w->reschedule_cb)
2020 {
2021 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2022
2023 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2024
2025 ANHE_at_cache (periodics [HEAP0]);
2026 downheap (periodics, periodiccnt, HEAP0);
2027 }
2028 else if (w->interval)
2029 {
2030 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2031 /* if next trigger time is not sufficiently in the future, put it there */
2032 /* this might happen because of floating point inexactness */
2033 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2034 {
2035 ev_at (w) += w->interval;
2036
2037 /* if interval is unreasonably low we might still have a time in the past */
2038 /* so correct this. this will make the periodic very inexact, but the user */
2039 /* has effectively asked to get triggered more often than possible */
2040 if (ev_at (w) < ev_rt_now)
2041 ev_at (w) = ev_rt_now;
2042 }
2043
2044 ANHE_at_cache (periodics [HEAP0]);
2045 downheap (periodics, periodiccnt, HEAP0);
2046 }
2047 else
2048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2049
2050 EV_FREQUENT_CHECK;
2051 feed_reverse (EV_A_ (W)w);
2052 }
2053 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2054
2055 feed_reverse_done (EV_A_ EV_PERIODIC);
2056 }
2057}
2058
2059/* simply recalculate all periodics */
2060/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2061static void noinline
2062periodics_reschedule (EV_P)
2063{
2064 int i;
2065
2066 /* adjust periodics after time jump */
2067 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2068 {
2069 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2070
1028 if (w->reschedule_cb) 2071 if (w->reschedule_cb)
2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2073 else if (w->interval)
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075
2076 ANHE_at_cache (periodics [i]);
2077 }
2078
2079 reheap (periodics, periodiccnt);
2080}
2081#endif
2082
2083/* adjust all timers by a given offset */
2084static void noinline
2085timers_reschedule (EV_P_ ev_tstamp adjust)
2086{
2087 int i;
2088
2089 for (i = 0; i < timercnt; ++i)
2090 {
2091 ANHE *he = timers + i + HEAP0;
2092 ANHE_w (*he)->at += adjust;
2093 ANHE_at_cache (*he);
2094 }
2095}
2096
2097/* fetch new monotonic and realtime times from the kernel */
2098/* also detetc if there was a timejump, and act accordingly */
2099inline_speed void
2100time_update (EV_P_ ev_tstamp max_block)
2101{
2102#if EV_USE_MONOTONIC
2103 if (expect_true (have_monotonic))
2104 {
2105 int i;
2106 ev_tstamp odiff = rtmn_diff;
2107
2108 mn_now = get_clock ();
2109
2110 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2111 /* interpolate in the meantime */
2112 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1029 { 2113 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2114 ev_rt_now = rtmn_diff + mn_now;
1031 2115 return;
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1033 downheap ((WT *)periodics, periodiccnt, 0);
1034 } 2116 }
1035 else if (w->interval)
1036 {
1037 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1038 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0);
1040 }
1041 else
1042 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1043 2117
1044 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1045 }
1046}
1047
1048static void
1049periodics_reschedule (EV_P)
1050{
1051 int i;
1052
1053 /* adjust periodics after time jump */
1054 for (i = 0; i < periodiccnt; ++i)
1055 {
1056 struct ev_periodic *w = periodics [i];
1057
1058 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1060 else if (w->interval)
1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1062 }
1063
1064 /* now rebuild the heap */
1065 for (i = periodiccnt >> 1; i--; )
1066 downheap ((WT *)periodics, periodiccnt, i);
1067}
1068#endif
1069
1070inline int
1071time_update_monotonic (EV_P)
1072{
1073 mn_now = get_clock ();
1074
1075 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1076 {
1077 ev_rt_now = rtmn_diff + mn_now;
1078 return 0;
1079 }
1080 else
1081 {
1082 now_floor = mn_now; 2118 now_floor = mn_now;
1083 ev_rt_now = ev_time (); 2119 ev_rt_now = ev_time ();
1084 return 1;
1085 }
1086}
1087 2120
1088static void 2121 /* loop a few times, before making important decisions.
1089time_update (EV_P) 2122 * on the choice of "4": one iteration isn't enough,
1090{ 2123 * in case we get preempted during the calls to
1091 int i; 2124 * ev_time and get_clock. a second call is almost guaranteed
1092 2125 * to succeed in that case, though. and looping a few more times
1093#if EV_USE_MONOTONIC 2126 * doesn't hurt either as we only do this on time-jumps or
1094 if (expect_true (have_monotonic)) 2127 * in the unlikely event of having been preempted here.
1095 { 2128 */
1096 if (time_update_monotonic (EV_A)) 2129 for (i = 4; --i; )
1097 { 2130 {
1098 ev_tstamp odiff = rtmn_diff;
1099
1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1101 {
1102 rtmn_diff = ev_rt_now - mn_now; 2131 rtmn_diff = ev_rt_now - mn_now;
1103 2132
1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2133 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1105 return; /* all is well */ 2134 return; /* all is well */
1106 2135
1107 ev_rt_now = ev_time (); 2136 ev_rt_now = ev_time ();
1108 mn_now = get_clock (); 2137 mn_now = get_clock ();
1109 now_floor = mn_now; 2138 now_floor = mn_now;
1110 } 2139 }
1111 2140
2141 /* no timer adjustment, as the monotonic clock doesn't jump */
2142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1112# if EV_PERIODICS 2143# if EV_PERIODIC_ENABLE
2144 periodics_reschedule (EV_A);
2145# endif
2146 }
2147 else
2148#endif
2149 {
2150 ev_rt_now = ev_time ();
2151
2152 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2153 {
2154 /* adjust timers. this is easy, as the offset is the same for all of them */
2155 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2156#if EV_PERIODIC_ENABLE
1113 periodics_reschedule (EV_A); 2157 periodics_reschedule (EV_A);
1114# endif 2158#endif
1115 /* no timer adjustment, as the monotonic clock doesn't jump */
1116 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1117 } 2159 }
1118 }
1119 else
1120#endif
1121 {
1122 ev_rt_now = ev_time ();
1123
1124 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1125 {
1126#if EV_PERIODICS
1127 periodics_reschedule (EV_A);
1128#endif
1129
1130 /* adjust timers. this is easy, as the offset is the same for all */
1131 for (i = 0; i < timercnt; ++i)
1132 ((WT)timers [i])->at += ev_rt_now - mn_now;
1133 }
1134 2160
1135 mn_now = ev_rt_now; 2161 mn_now = ev_rt_now;
1136 } 2162 }
1137} 2163}
1138 2164
1139void 2165void
1140ev_ref (EV_P)
1141{
1142 ++activecnt;
1143}
1144
1145void
1146ev_unref (EV_P)
1147{
1148 --activecnt;
1149}
1150
1151static int loop_done;
1152
1153void
1154ev_loop (EV_P_ int flags) 2166ev_loop (EV_P_ int flags)
1155{ 2167{
1156 double block; 2168#if EV_MINIMAL < 2
1157 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2169 ++loop_depth;
2170#endif
2171
2172 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2173
2174 loop_done = EVUNLOOP_CANCEL;
2175
2176 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1158 2177
1159 do 2178 do
1160 { 2179 {
2180#if EV_VERIFY >= 2
2181 ev_loop_verify (EV_A);
2182#endif
2183
2184#ifndef _WIN32
2185 if (expect_false (curpid)) /* penalise the forking check even more */
2186 if (expect_false (getpid () != curpid))
2187 {
2188 curpid = getpid ();
2189 postfork = 1;
2190 }
2191#endif
2192
2193#if EV_FORK_ENABLE
2194 /* we might have forked, so queue fork handlers */
2195 if (expect_false (postfork))
2196 if (forkcnt)
2197 {
2198 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2199 EV_INVOKE_PENDING;
2200 }
2201#endif
2202
1161 /* queue check watchers (and execute them) */ 2203 /* queue prepare watchers (and execute them) */
1162 if (expect_false (preparecnt)) 2204 if (expect_false (preparecnt))
1163 { 2205 {
1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2206 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1165 call_pending (EV_A); 2207 EV_INVOKE_PENDING;
1166 } 2208 }
2209
2210 if (expect_false (loop_done))
2211 break;
1167 2212
1168 /* we might have forked, so reify kernel state if necessary */ 2213 /* we might have forked, so reify kernel state if necessary */
1169 if (expect_false (postfork)) 2214 if (expect_false (postfork))
1170 loop_fork (EV_A); 2215 loop_fork (EV_A);
1171 2216
1172 /* update fd-related kernel structures */ 2217 /* update fd-related kernel structures */
1173 fd_reify (EV_A); 2218 fd_reify (EV_A);
1174 2219
1175 /* calculate blocking time */ 2220 /* calculate blocking time */
2221 {
2222 ev_tstamp waittime = 0.;
2223 ev_tstamp sleeptime = 0.;
1176 2224
1177 /* we only need this for !monotonic clock or timers, but as we basically 2225 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1178 always have timers, we just calculate it always */
1179#if EV_USE_MONOTONIC
1180 if (expect_true (have_monotonic))
1181 time_update_monotonic (EV_A);
1182 else
1183#endif
1184 { 2226 {
1185 ev_rt_now = ev_time (); 2227 /* remember old timestamp for io_blocktime calculation */
1186 mn_now = ev_rt_now; 2228 ev_tstamp prev_mn_now = mn_now;
1187 }
1188 2229
1189 if (flags & EVLOOP_NONBLOCK || idlecnt) 2230 /* update time to cancel out callback processing overhead */
1190 block = 0.; 2231 time_update (EV_A_ 1e100);
1191 else 2232
1192 {
1193 block = MAX_BLOCKTIME; 2233 waittime = MAX_BLOCKTIME;
1194 2234
1195 if (timercnt) 2235 if (timercnt)
1196 { 2236 {
1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2237 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1198 if (block > to) block = to; 2238 if (waittime > to) waittime = to;
1199 } 2239 }
1200 2240
1201#if EV_PERIODICS 2241#if EV_PERIODIC_ENABLE
1202 if (periodiccnt) 2242 if (periodiccnt)
1203 { 2243 {
1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2244 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1205 if (block > to) block = to; 2245 if (waittime > to) waittime = to;
1206 } 2246 }
1207#endif 2247#endif
1208 2248
1209 if (block < 0.) block = 0.; 2249 /* don't let timeouts decrease the waittime below timeout_blocktime */
2250 if (expect_false (waittime < timeout_blocktime))
2251 waittime = timeout_blocktime;
2252
2253 /* extra check because io_blocktime is commonly 0 */
2254 if (expect_false (io_blocktime))
2255 {
2256 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2257
2258 if (sleeptime > waittime - backend_fudge)
2259 sleeptime = waittime - backend_fudge;
2260
2261 if (expect_true (sleeptime > 0.))
2262 {
2263 ev_sleep (sleeptime);
2264 waittime -= sleeptime;
2265 }
2266 }
1210 } 2267 }
1211 2268
1212 method_poll (EV_A_ block); 2269#if EV_MINIMAL < 2
2270 ++loop_count;
2271#endif
2272 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2273 backend_poll (EV_A_ waittime);
2274 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1213 2275
1214 /* update ev_rt_now, do magic */ 2276 /* update ev_rt_now, do magic */
1215 time_update (EV_A); 2277 time_update (EV_A_ waittime + sleeptime);
2278 }
1216 2279
1217 /* queue pending timers and reschedule them */ 2280 /* queue pending timers and reschedule them */
1218 timers_reify (EV_A); /* relative timers called last */ 2281 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS 2282#if EV_PERIODIC_ENABLE
1220 periodics_reify (EV_A); /* absolute timers called first */ 2283 periodics_reify (EV_A); /* absolute timers called first */
1221#endif 2284#endif
1222 2285
2286#if EV_IDLE_ENABLE
1223 /* queue idle watchers unless io or timers are pending */ 2287 /* queue idle watchers unless other events are pending */
1224 if (idlecnt && !any_pending (EV_A)) 2288 idle_reify (EV_A);
1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2289#endif
1226 2290
1227 /* queue check watchers, to be executed first */ 2291 /* queue check watchers, to be executed first */
1228 if (checkcnt) 2292 if (expect_false (checkcnt))
1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2293 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1230 2294
1231 call_pending (EV_A); 2295 EV_INVOKE_PENDING;
1232 } 2296 }
1233 while (activecnt && !loop_done); 2297 while (expect_true (
2298 activecnt
2299 && !loop_done
2300 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2301 ));
1234 2302
1235 if (loop_done != 2) 2303 if (loop_done == EVUNLOOP_ONE)
1236 loop_done = 0; 2304 loop_done = EVUNLOOP_CANCEL;
2305
2306#if EV_MINIMAL < 2
2307 --loop_depth;
2308#endif
1237} 2309}
1238 2310
1239void 2311void
1240ev_unloop (EV_P_ int how) 2312ev_unloop (EV_P_ int how)
1241{ 2313{
1242 loop_done = how; 2314 loop_done = how;
1243} 2315}
1244 2316
2317void
2318ev_ref (EV_P)
2319{
2320 ++activecnt;
2321}
2322
2323void
2324ev_unref (EV_P)
2325{
2326 --activecnt;
2327}
2328
2329void
2330ev_now_update (EV_P)
2331{
2332 time_update (EV_A_ 1e100);
2333}
2334
2335void
2336ev_suspend (EV_P)
2337{
2338 ev_now_update (EV_A);
2339}
2340
2341void
2342ev_resume (EV_P)
2343{
2344 ev_tstamp mn_prev = mn_now;
2345
2346 ev_now_update (EV_A);
2347 timers_reschedule (EV_A_ mn_now - mn_prev);
2348#if EV_PERIODIC_ENABLE
2349 /* TODO: really do this? */
2350 periodics_reschedule (EV_A);
2351#endif
2352}
2353
1245/*****************************************************************************/ 2354/*****************************************************************************/
2355/* singly-linked list management, used when the expected list length is short */
1246 2356
1247inline void 2357inline_size void
1248wlist_add (WL *head, WL elem) 2358wlist_add (WL *head, WL elem)
1249{ 2359{
1250 elem->next = *head; 2360 elem->next = *head;
1251 *head = elem; 2361 *head = elem;
1252} 2362}
1253 2363
1254inline void 2364inline_size void
1255wlist_del (WL *head, WL elem) 2365wlist_del (WL *head, WL elem)
1256{ 2366{
1257 while (*head) 2367 while (*head)
1258 { 2368 {
1259 if (*head == elem) 2369 if (*head == elem)
1264 2374
1265 head = &(*head)->next; 2375 head = &(*head)->next;
1266 } 2376 }
1267} 2377}
1268 2378
2379/* internal, faster, version of ev_clear_pending */
1269inline void 2380inline_speed void
1270ev_clear_pending (EV_P_ W w) 2381clear_pending (EV_P_ W w)
1271{ 2382{
1272 if (w->pending) 2383 if (w->pending)
1273 { 2384 {
1274 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2385 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1275 w->pending = 0; 2386 w->pending = 0;
1276 } 2387 }
1277} 2388}
1278 2389
2390int
2391ev_clear_pending (EV_P_ void *w)
2392{
2393 W w_ = (W)w;
2394 int pending = w_->pending;
2395
2396 if (expect_true (pending))
2397 {
2398 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2399 p->w = (W)&pending_w;
2400 w_->pending = 0;
2401 return p->events;
2402 }
2403 else
2404 return 0;
2405}
2406
1279inline void 2407inline_size void
2408pri_adjust (EV_P_ W w)
2409{
2410 int pri = ev_priority (w);
2411 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2412 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2413 ev_set_priority (w, pri);
2414}
2415
2416inline_speed void
1280ev_start (EV_P_ W w, int active) 2417ev_start (EV_P_ W w, int active)
1281{ 2418{
1282 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2419 pri_adjust (EV_A_ w);
1283 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1284
1285 w->active = active; 2420 w->active = active;
1286 ev_ref (EV_A); 2421 ev_ref (EV_A);
1287} 2422}
1288 2423
1289inline void 2424inline_size void
1290ev_stop (EV_P_ W w) 2425ev_stop (EV_P_ W w)
1291{ 2426{
1292 ev_unref (EV_A); 2427 ev_unref (EV_A);
1293 w->active = 0; 2428 w->active = 0;
1294} 2429}
1295 2430
1296/*****************************************************************************/ 2431/*****************************************************************************/
1297 2432
1298void 2433void noinline
1299ev_io_start (EV_P_ struct ev_io *w) 2434ev_io_start (EV_P_ ev_io *w)
1300{ 2435{
1301 int fd = w->fd; 2436 int fd = w->fd;
1302 2437
1303 if (ev_is_active (w)) 2438 if (expect_false (ev_is_active (w)))
1304 return; 2439 return;
1305 2440
1306 assert (("ev_io_start called with negative fd", fd >= 0)); 2441 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2442 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2443
2444 EV_FREQUENT_CHECK;
1307 2445
1308 ev_start (EV_A_ (W)w, 1); 2446 ev_start (EV_A_ (W)w, 1);
1309 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2447 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1310 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2448 wlist_add (&anfds[fd].head, (WL)w);
1311 2449
1312 fd_change (EV_A_ fd); 2450 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1313} 2451 w->events &= ~EV__IOFDSET;
1314 2452
1315void 2453 EV_FREQUENT_CHECK;
2454}
2455
2456void noinline
1316ev_io_stop (EV_P_ struct ev_io *w) 2457ev_io_stop (EV_P_ ev_io *w)
1317{ 2458{
1318 ev_clear_pending (EV_A_ (W)w); 2459 clear_pending (EV_A_ (W)w);
1319 if (!ev_is_active (w)) 2460 if (expect_false (!ev_is_active (w)))
1320 return; 2461 return;
1321 2462
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2463 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323 2464
2465 EV_FREQUENT_CHECK;
2466
1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2467 wlist_del (&anfds[w->fd].head, (WL)w);
1325 ev_stop (EV_A_ (W)w); 2468 ev_stop (EV_A_ (W)w);
1326 2469
1327 fd_change (EV_A_ w->fd); 2470 fd_change (EV_A_ w->fd, 1);
1328}
1329 2471
1330void 2472 EV_FREQUENT_CHECK;
2473}
2474
2475void noinline
1331ev_timer_start (EV_P_ struct ev_timer *w) 2476ev_timer_start (EV_P_ ev_timer *w)
1332{ 2477{
1333 if (ev_is_active (w)) 2478 if (expect_false (ev_is_active (w)))
1334 return; 2479 return;
1335 2480
1336 ((WT)w)->at += mn_now; 2481 ev_at (w) += mn_now;
1337 2482
1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2483 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1339 2484
2485 EV_FREQUENT_CHECK;
2486
2487 ++timercnt;
1340 ev_start (EV_A_ (W)w, ++timercnt); 2488 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2489 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1342 timers [timercnt - 1] = w; 2490 ANHE_w (timers [ev_active (w)]) = (WT)w;
1343 upheap ((WT *)timers, timercnt - 1); 2491 ANHE_at_cache (timers [ev_active (w)]);
2492 upheap (timers, ev_active (w));
1344 2493
2494 EV_FREQUENT_CHECK;
2495
1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2496 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1346} 2497}
1347 2498
1348void 2499void noinline
1349ev_timer_stop (EV_P_ struct ev_timer *w) 2500ev_timer_stop (EV_P_ ev_timer *w)
1350{ 2501{
1351 ev_clear_pending (EV_A_ (W)w); 2502 clear_pending (EV_A_ (W)w);
1352 if (!ev_is_active (w)) 2503 if (expect_false (!ev_is_active (w)))
1353 return; 2504 return;
1354 2505
2506 EV_FREQUENT_CHECK;
2507
2508 {
2509 int active = ev_active (w);
2510
1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2511 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1356 2512
1357 if (((W)w)->active < timercnt--) 2513 --timercnt;
2514
2515 if (expect_true (active < timercnt + HEAP0))
1358 { 2516 {
1359 timers [((W)w)->active - 1] = timers [timercnt]; 2517 timers [active] = timers [timercnt + HEAP0];
1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2518 adjustheap (timers, timercnt, active);
1361 } 2519 }
2520 }
1362 2521
1363 ((WT)w)->at -= mn_now; 2522 EV_FREQUENT_CHECK;
2523
2524 ev_at (w) -= mn_now;
1364 2525
1365 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
1366} 2527}
1367 2528
1368void 2529void noinline
1369ev_timer_again (EV_P_ struct ev_timer *w) 2530ev_timer_again (EV_P_ ev_timer *w)
1370{ 2531{
2532 EV_FREQUENT_CHECK;
2533
1371 if (ev_is_active (w)) 2534 if (ev_is_active (w))
1372 { 2535 {
1373 if (w->repeat) 2536 if (w->repeat)
1374 { 2537 {
1375 ((WT)w)->at = mn_now + w->repeat; 2538 ev_at (w) = mn_now + w->repeat;
2539 ANHE_at_cache (timers [ev_active (w)]);
1376 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2540 adjustheap (timers, timercnt, ev_active (w));
1377 } 2541 }
1378 else 2542 else
1379 ev_timer_stop (EV_A_ w); 2543 ev_timer_stop (EV_A_ w);
1380 } 2544 }
1381 else if (w->repeat) 2545 else if (w->repeat)
2546 {
2547 ev_at (w) = w->repeat;
1382 ev_timer_start (EV_A_ w); 2548 ev_timer_start (EV_A_ w);
1383} 2549 }
1384 2550
2551 EV_FREQUENT_CHECK;
2552}
2553
2554ev_tstamp
2555ev_timer_remaining (EV_P_ ev_timer *w)
2556{
2557 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2558}
2559
1385#if EV_PERIODICS 2560#if EV_PERIODIC_ENABLE
1386void 2561void noinline
1387ev_periodic_start (EV_P_ struct ev_periodic *w) 2562ev_periodic_start (EV_P_ ev_periodic *w)
1388{ 2563{
1389 if (ev_is_active (w)) 2564 if (expect_false (ev_is_active (w)))
1390 return; 2565 return;
1391 2566
1392 if (w->reschedule_cb) 2567 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2568 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval) 2569 else if (w->interval)
1395 { 2570 {
1396 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2571 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1397 /* this formula differs from the one in periodic_reify because we do not always round up */ 2572 /* this formula differs from the one in periodic_reify because we do not always round up */
1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2573 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1399 } 2574 }
2575 else
2576 ev_at (w) = w->offset;
1400 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++periodiccnt;
1401 ev_start (EV_A_ (W)w, ++periodiccnt); 2581 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2582 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1403 periodics [periodiccnt - 1] = w; 2583 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1404 upheap ((WT *)periodics, periodiccnt - 1); 2584 ANHE_at_cache (periodics [ev_active (w)]);
2585 upheap (periodics, ev_active (w));
1405 2586
2587 EV_FREQUENT_CHECK;
2588
1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2589 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1407} 2590}
1408 2591
1409void 2592void noinline
1410ev_periodic_stop (EV_P_ struct ev_periodic *w) 2593ev_periodic_stop (EV_P_ ev_periodic *w)
1411{ 2594{
1412 ev_clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1413 if (!ev_is_active (w)) 2596 if (expect_false (!ev_is_active (w)))
1414 return; 2597 return;
1415 2598
2599 EV_FREQUENT_CHECK;
2600
2601 {
2602 int active = ev_active (w);
2603
1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2604 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1417 2605
1418 if (((W)w)->active < periodiccnt--) 2606 --periodiccnt;
2607
2608 if (expect_true (active < periodiccnt + HEAP0))
1419 { 2609 {
1420 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2610 periodics [active] = periodics [periodiccnt + HEAP0];
1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2611 adjustheap (periodics, periodiccnt, active);
1422 } 2612 }
2613 }
2614
2615 EV_FREQUENT_CHECK;
1423 2616
1424 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
1425} 2618}
1426 2619
1427void 2620void noinline
1428ev_periodic_again (EV_P_ struct ev_periodic *w) 2621ev_periodic_again (EV_P_ ev_periodic *w)
1429{ 2622{
1430 /* TODO: use adjustheap and recalculation */ 2623 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w); 2624 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w); 2625 ev_periodic_start (EV_A_ w);
1433} 2626}
1434#endif 2627#endif
1435 2628
1436void
1437ev_idle_start (EV_P_ struct ev_idle *w)
1438{
1439 if (ev_is_active (w))
1440 return;
1441
1442 ev_start (EV_A_ (W)w, ++idlecnt);
1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1444 idles [idlecnt - 1] = w;
1445}
1446
1447void
1448ev_idle_stop (EV_P_ struct ev_idle *w)
1449{
1450 ev_clear_pending (EV_A_ (W)w);
1451 if (!ev_is_active (w))
1452 return;
1453
1454 idles [((W)w)->active - 1] = idles [--idlecnt];
1455 ev_stop (EV_A_ (W)w);
1456}
1457
1458void
1459ev_prepare_start (EV_P_ struct ev_prepare *w)
1460{
1461 if (ev_is_active (w))
1462 return;
1463
1464 ev_start (EV_A_ (W)w, ++preparecnt);
1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1466 prepares [preparecnt - 1] = w;
1467}
1468
1469void
1470ev_prepare_stop (EV_P_ struct ev_prepare *w)
1471{
1472 ev_clear_pending (EV_A_ (W)w);
1473 if (!ev_is_active (w))
1474 return;
1475
1476 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1477 ev_stop (EV_A_ (W)w);
1478}
1479
1480void
1481ev_check_start (EV_P_ struct ev_check *w)
1482{
1483 if (ev_is_active (w))
1484 return;
1485
1486 ev_start (EV_A_ (W)w, ++checkcnt);
1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1488 checks [checkcnt - 1] = w;
1489}
1490
1491void
1492ev_check_stop (EV_P_ struct ev_check *w)
1493{
1494 ev_clear_pending (EV_A_ (W)w);
1495 if (!ev_is_active (w))
1496 return;
1497
1498 checks [((W)w)->active - 1] = checks [--checkcnt];
1499 ev_stop (EV_A_ (W)w);
1500}
1501
1502#ifndef SA_RESTART 2629#ifndef SA_RESTART
1503# define SA_RESTART 0 2630# define SA_RESTART 0
1504#endif 2631#endif
1505 2632
1506void 2633void noinline
1507ev_signal_start (EV_P_ struct ev_signal *w) 2634ev_signal_start (EV_P_ ev_signal *w)
1508{ 2635{
1509#if EV_MULTIPLICITY 2636#if EV_MULTIPLICITY
1510 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2637 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1511#endif 2638#endif
1512 if (ev_is_active (w)) 2639 if (expect_false (ev_is_active (w)))
1513 return; 2640 return;
1514 2641
1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2642 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2643
2644 EV_FREQUENT_CHECK;
2645
2646#if EV_USE_SIGNALFD
2647 if (sigfd == -2)
2648 {
2649 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2650 if (sigfd < 0 && errno == EINVAL)
2651 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2652
2653 if (sigfd >= 0)
2654 {
2655 fd_intern (sigfd); /* doing it twice will not hurt */
2656
2657 sigemptyset (&sigfd_set);
2658
2659 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2660 ev_set_priority (&sigfd_w, EV_MAXPRI);
2661 ev_io_start (EV_A_ &sigfd_w);
2662 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2663 }
2664 }
2665
2666 if (sigfd >= 0)
2667 {
2668 /* TODO: check .head */
2669 sigaddset (&sigfd_set, w->signum);
2670 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2671
2672 signalfd (sigfd, &sigfd_set, 0);
2673 }
2674 else
2675#endif
2676 evpipe_init (EV_A);
2677
2678 {
2679#ifndef _WIN32
2680 sigset_t full, prev;
2681 sigfillset (&full);
2682 sigprocmask (SIG_SETMASK, &full, &prev);
2683#endif
2684
2685 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2686
2687#ifndef _WIN32
2688# if EV_USE_SIGNALFD
2689 if (sigfd < 0)/*TODO*/
2690# endif
2691 sigdelset (&prev, w->signum);
2692 sigprocmask (SIG_SETMASK, &prev, 0);
2693#endif
2694 }
1516 2695
1517 ev_start (EV_A_ (W)w, 1); 2696 ev_start (EV_A_ (W)w, 1);
1518 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1519 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2697 wlist_add (&signals [w->signum - 1].head, (WL)w);
1520 2698
1521 if (!((WL)w)->next) 2699 if (!((WL)w)->next)
1522 { 2700 {
1523#if _WIN32 2701#if _WIN32
1524 signal (w->signum, sighandler); 2702 signal (w->signum, ev_sighandler);
1525#else 2703#else
2704# if EV_USE_SIGNALFD
2705 if (sigfd < 0) /*TODO*/
2706# endif
2707 {
1526 struct sigaction sa; 2708 struct sigaction sa = { };
1527 sa.sa_handler = sighandler; 2709 sa.sa_handler = ev_sighandler;
1528 sigfillset (&sa.sa_mask); 2710 sigfillset (&sa.sa_mask);
1529 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2711 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1530 sigaction (w->signum, &sa, 0); 2712 sigaction (w->signum, &sa, 0);
2713 }
1531#endif 2714#endif
1532 } 2715 }
1533}
1534 2716
1535void 2717 EV_FREQUENT_CHECK;
2718}
2719
2720void noinline
1536ev_signal_stop (EV_P_ struct ev_signal *w) 2721ev_signal_stop (EV_P_ ev_signal *w)
1537{ 2722{
1538 ev_clear_pending (EV_A_ (W)w); 2723 clear_pending (EV_A_ (W)w);
1539 if (!ev_is_active (w)) 2724 if (expect_false (!ev_is_active (w)))
1540 return; 2725 return;
1541 2726
2727 EV_FREQUENT_CHECK;
2728
1542 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2729 wlist_del (&signals [w->signum - 1].head, (WL)w);
1543 ev_stop (EV_A_ (W)w); 2730 ev_stop (EV_A_ (W)w);
1544 2731
1545 if (!signals [w->signum - 1].head) 2732 if (!signals [w->signum - 1].head)
2733#if EV_USE_SIGNALFD
2734 if (sigfd >= 0)
2735 {
2736 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2737 sigdelset (&sigfd_set, w->signum);
2738 signalfd (sigfd, &sigfd_set, 0);
2739 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2740 /*TODO: maybe unblock signal? */
2741 }
2742 else
2743#endif
1546 signal (w->signum, SIG_DFL); 2744 signal (w->signum, SIG_DFL);
1547}
1548 2745
2746 EV_FREQUENT_CHECK;
2747}
2748
1549void 2749void
1550ev_child_start (EV_P_ struct ev_child *w) 2750ev_child_start (EV_P_ ev_child *w)
1551{ 2751{
1552#if EV_MULTIPLICITY 2752#if EV_MULTIPLICITY
1553 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2753 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1554#endif 2754#endif
1555 if (ev_is_active (w)) 2755 if (expect_false (ev_is_active (w)))
1556 return; 2756 return;
1557 2757
2758 EV_FREQUENT_CHECK;
2759
1558 ev_start (EV_A_ (W)w, 1); 2760 ev_start (EV_A_ (W)w, 1);
1559 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2761 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1560}
1561 2762
2763 EV_FREQUENT_CHECK;
2764}
2765
1562void 2766void
1563ev_child_stop (EV_P_ struct ev_child *w) 2767ev_child_stop (EV_P_ ev_child *w)
1564{ 2768{
1565 ev_clear_pending (EV_A_ (W)w); 2769 clear_pending (EV_A_ (W)w);
1566 if (!ev_is_active (w)) 2770 if (expect_false (!ev_is_active (w)))
1567 return; 2771 return;
1568 2772
2773 EV_FREQUENT_CHECK;
2774
1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2775 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1570 ev_stop (EV_A_ (W)w); 2776 ev_stop (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
1571} 2779}
2780
2781#if EV_STAT_ENABLE
2782
2783# ifdef _WIN32
2784# undef lstat
2785# define lstat(a,b) _stati64 (a,b)
2786# endif
2787
2788#define DEF_STAT_INTERVAL 5.0074891
2789#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2790#define MIN_STAT_INTERVAL 0.1074891
2791
2792static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2793
2794#if EV_USE_INOTIFY
2795# define EV_INOTIFY_BUFSIZE 8192
2796
2797static void noinline
2798infy_add (EV_P_ ev_stat *w)
2799{
2800 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2801
2802 if (w->wd < 0)
2803 {
2804 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2805 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2806
2807 /* monitor some parent directory for speedup hints */
2808 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2809 /* but an efficiency issue only */
2810 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2811 {
2812 char path [4096];
2813 strcpy (path, w->path);
2814
2815 do
2816 {
2817 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2818 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2819
2820 char *pend = strrchr (path, '/');
2821
2822 if (!pend || pend == path)
2823 break;
2824
2825 *pend = 0;
2826 w->wd = inotify_add_watch (fs_fd, path, mask);
2827 }
2828 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2829 }
2830 }
2831
2832 if (w->wd >= 0)
2833 {
2834 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2835
2836 /* now local changes will be tracked by inotify, but remote changes won't */
2837 /* unless the filesystem it known to be local, we therefore still poll */
2838 /* also do poll on <2.6.25, but with normal frequency */
2839 struct statfs sfs;
2840
2841 if (fs_2625 && !statfs (w->path, &sfs))
2842 if (sfs.f_type == 0x1373 /* devfs */
2843 || sfs.f_type == 0xEF53 /* ext2/3 */
2844 || sfs.f_type == 0x3153464a /* jfs */
2845 || sfs.f_type == 0x52654973 /* reiser3 */
2846 || sfs.f_type == 0x01021994 /* tempfs */
2847 || sfs.f_type == 0x58465342 /* xfs */)
2848 return;
2849
2850 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2851 ev_timer_again (EV_A_ &w->timer);
2852 }
2853}
2854
2855static void noinline
2856infy_del (EV_P_ ev_stat *w)
2857{
2858 int slot;
2859 int wd = w->wd;
2860
2861 if (wd < 0)
2862 return;
2863
2864 w->wd = -2;
2865 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2866 wlist_del (&fs_hash [slot].head, (WL)w);
2867
2868 /* remove this watcher, if others are watching it, they will rearm */
2869 inotify_rm_watch (fs_fd, wd);
2870}
2871
2872static void noinline
2873infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2874{
2875 if (slot < 0)
2876 /* overflow, need to check for all hash slots */
2877 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2878 infy_wd (EV_A_ slot, wd, ev);
2879 else
2880 {
2881 WL w_;
2882
2883 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2884 {
2885 ev_stat *w = (ev_stat *)w_;
2886 w_ = w_->next; /* lets us remove this watcher and all before it */
2887
2888 if (w->wd == wd || wd == -1)
2889 {
2890 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2891 {
2892 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2893 w->wd = -1;
2894 infy_add (EV_A_ w); /* re-add, no matter what */
2895 }
2896
2897 stat_timer_cb (EV_A_ &w->timer, 0);
2898 }
2899 }
2900 }
2901}
2902
2903static void
2904infy_cb (EV_P_ ev_io *w, int revents)
2905{
2906 char buf [EV_INOTIFY_BUFSIZE];
2907 struct inotify_event *ev = (struct inotify_event *)buf;
2908 int ofs;
2909 int len = read (fs_fd, buf, sizeof (buf));
2910
2911 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2912 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2913}
2914
2915inline_size void
2916check_2625 (EV_P)
2917{
2918 /* kernels < 2.6.25 are borked
2919 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2920 */
2921 struct utsname buf;
2922 int major, minor, micro;
2923
2924 if (uname (&buf))
2925 return;
2926
2927 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2928 return;
2929
2930 if (major < 2
2931 || (major == 2 && minor < 6)
2932 || (major == 2 && minor == 6 && micro < 25))
2933 return;
2934
2935 fs_2625 = 1;
2936}
2937
2938inline_size void
2939infy_init (EV_P)
2940{
2941 if (fs_fd != -2)
2942 return;
2943
2944 fs_fd = -1;
2945
2946 check_2625 (EV_A);
2947
2948 fs_fd = inotify_init ();
2949
2950 if (fs_fd >= 0)
2951 {
2952 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2953 ev_set_priority (&fs_w, EV_MAXPRI);
2954 ev_io_start (EV_A_ &fs_w);
2955 }
2956}
2957
2958inline_size void
2959infy_fork (EV_P)
2960{
2961 int slot;
2962
2963 if (fs_fd < 0)
2964 return;
2965
2966 close (fs_fd);
2967 fs_fd = inotify_init ();
2968
2969 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2970 {
2971 WL w_ = fs_hash [slot].head;
2972 fs_hash [slot].head = 0;
2973
2974 while (w_)
2975 {
2976 ev_stat *w = (ev_stat *)w_;
2977 w_ = w_->next; /* lets us add this watcher */
2978
2979 w->wd = -1;
2980
2981 if (fs_fd >= 0)
2982 infy_add (EV_A_ w); /* re-add, no matter what */
2983 else
2984 ev_timer_again (EV_A_ &w->timer);
2985 }
2986 }
2987}
2988
2989#endif
2990
2991#ifdef _WIN32
2992# define EV_LSTAT(p,b) _stati64 (p, b)
2993#else
2994# define EV_LSTAT(p,b) lstat (p, b)
2995#endif
2996
2997void
2998ev_stat_stat (EV_P_ ev_stat *w)
2999{
3000 if (lstat (w->path, &w->attr) < 0)
3001 w->attr.st_nlink = 0;
3002 else if (!w->attr.st_nlink)
3003 w->attr.st_nlink = 1;
3004}
3005
3006static void noinline
3007stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3008{
3009 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3010
3011 /* we copy this here each the time so that */
3012 /* prev has the old value when the callback gets invoked */
3013 w->prev = w->attr;
3014 ev_stat_stat (EV_A_ w);
3015
3016 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3017 if (
3018 w->prev.st_dev != w->attr.st_dev
3019 || w->prev.st_ino != w->attr.st_ino
3020 || w->prev.st_mode != w->attr.st_mode
3021 || w->prev.st_nlink != w->attr.st_nlink
3022 || w->prev.st_uid != w->attr.st_uid
3023 || w->prev.st_gid != w->attr.st_gid
3024 || w->prev.st_rdev != w->attr.st_rdev
3025 || w->prev.st_size != w->attr.st_size
3026 || w->prev.st_atime != w->attr.st_atime
3027 || w->prev.st_mtime != w->attr.st_mtime
3028 || w->prev.st_ctime != w->attr.st_ctime
3029 ) {
3030 #if EV_USE_INOTIFY
3031 if (fs_fd >= 0)
3032 {
3033 infy_del (EV_A_ w);
3034 infy_add (EV_A_ w);
3035 ev_stat_stat (EV_A_ w); /* avoid race... */
3036 }
3037 #endif
3038
3039 ev_feed_event (EV_A_ w, EV_STAT);
3040 }
3041}
3042
3043void
3044ev_stat_start (EV_P_ ev_stat *w)
3045{
3046 if (expect_false (ev_is_active (w)))
3047 return;
3048
3049 ev_stat_stat (EV_A_ w);
3050
3051 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3052 w->interval = MIN_STAT_INTERVAL;
3053
3054 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3055 ev_set_priority (&w->timer, ev_priority (w));
3056
3057#if EV_USE_INOTIFY
3058 infy_init (EV_A);
3059
3060 if (fs_fd >= 0)
3061 infy_add (EV_A_ w);
3062 else
3063#endif
3064 ev_timer_again (EV_A_ &w->timer);
3065
3066 ev_start (EV_A_ (W)w, 1);
3067
3068 EV_FREQUENT_CHECK;
3069}
3070
3071void
3072ev_stat_stop (EV_P_ ev_stat *w)
3073{
3074 clear_pending (EV_A_ (W)w);
3075 if (expect_false (!ev_is_active (w)))
3076 return;
3077
3078 EV_FREQUENT_CHECK;
3079
3080#if EV_USE_INOTIFY
3081 infy_del (EV_A_ w);
3082#endif
3083 ev_timer_stop (EV_A_ &w->timer);
3084
3085 ev_stop (EV_A_ (W)w);
3086
3087 EV_FREQUENT_CHECK;
3088}
3089#endif
3090
3091#if EV_IDLE_ENABLE
3092void
3093ev_idle_start (EV_P_ ev_idle *w)
3094{
3095 if (expect_false (ev_is_active (w)))
3096 return;
3097
3098 pri_adjust (EV_A_ (W)w);
3099
3100 EV_FREQUENT_CHECK;
3101
3102 {
3103 int active = ++idlecnt [ABSPRI (w)];
3104
3105 ++idleall;
3106 ev_start (EV_A_ (W)w, active);
3107
3108 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3109 idles [ABSPRI (w)][active - 1] = w;
3110 }
3111
3112 EV_FREQUENT_CHECK;
3113}
3114
3115void
3116ev_idle_stop (EV_P_ ev_idle *w)
3117{
3118 clear_pending (EV_A_ (W)w);
3119 if (expect_false (!ev_is_active (w)))
3120 return;
3121
3122 EV_FREQUENT_CHECK;
3123
3124 {
3125 int active = ev_active (w);
3126
3127 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3128 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3129
3130 ev_stop (EV_A_ (W)w);
3131 --idleall;
3132 }
3133
3134 EV_FREQUENT_CHECK;
3135}
3136#endif
3137
3138void
3139ev_prepare_start (EV_P_ ev_prepare *w)
3140{
3141 if (expect_false (ev_is_active (w)))
3142 return;
3143
3144 EV_FREQUENT_CHECK;
3145
3146 ev_start (EV_A_ (W)w, ++preparecnt);
3147 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3148 prepares [preparecnt - 1] = w;
3149
3150 EV_FREQUENT_CHECK;
3151}
3152
3153void
3154ev_prepare_stop (EV_P_ ev_prepare *w)
3155{
3156 clear_pending (EV_A_ (W)w);
3157 if (expect_false (!ev_is_active (w)))
3158 return;
3159
3160 EV_FREQUENT_CHECK;
3161
3162 {
3163 int active = ev_active (w);
3164
3165 prepares [active - 1] = prepares [--preparecnt];
3166 ev_active (prepares [active - 1]) = active;
3167 }
3168
3169 ev_stop (EV_A_ (W)w);
3170
3171 EV_FREQUENT_CHECK;
3172}
3173
3174void
3175ev_check_start (EV_P_ ev_check *w)
3176{
3177 if (expect_false (ev_is_active (w)))
3178 return;
3179
3180 EV_FREQUENT_CHECK;
3181
3182 ev_start (EV_A_ (W)w, ++checkcnt);
3183 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3184 checks [checkcnt - 1] = w;
3185
3186 EV_FREQUENT_CHECK;
3187}
3188
3189void
3190ev_check_stop (EV_P_ ev_check *w)
3191{
3192 clear_pending (EV_A_ (W)w);
3193 if (expect_false (!ev_is_active (w)))
3194 return;
3195
3196 EV_FREQUENT_CHECK;
3197
3198 {
3199 int active = ev_active (w);
3200
3201 checks [active - 1] = checks [--checkcnt];
3202 ev_active (checks [active - 1]) = active;
3203 }
3204
3205 ev_stop (EV_A_ (W)w);
3206
3207 EV_FREQUENT_CHECK;
3208}
3209
3210#if EV_EMBED_ENABLE
3211void noinline
3212ev_embed_sweep (EV_P_ ev_embed *w)
3213{
3214 ev_loop (w->other, EVLOOP_NONBLOCK);
3215}
3216
3217static void
3218embed_io_cb (EV_P_ ev_io *io, int revents)
3219{
3220 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3221
3222 if (ev_cb (w))
3223 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3224 else
3225 ev_loop (w->other, EVLOOP_NONBLOCK);
3226}
3227
3228static void
3229embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3230{
3231 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3232
3233 {
3234 struct ev_loop *loop = w->other;
3235
3236 while (fdchangecnt)
3237 {
3238 fd_reify (EV_A);
3239 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3240 }
3241 }
3242}
3243
3244static void
3245embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3246{
3247 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3248
3249 ev_embed_stop (EV_A_ w);
3250
3251 {
3252 struct ev_loop *loop = w->other;
3253
3254 ev_loop_fork (EV_A);
3255 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3256 }
3257
3258 ev_embed_start (EV_A_ w);
3259}
3260
3261#if 0
3262static void
3263embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3264{
3265 ev_idle_stop (EV_A_ idle);
3266}
3267#endif
3268
3269void
3270ev_embed_start (EV_P_ ev_embed *w)
3271{
3272 if (expect_false (ev_is_active (w)))
3273 return;
3274
3275 {
3276 struct ev_loop *loop = w->other;
3277 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3278 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3279 }
3280
3281 EV_FREQUENT_CHECK;
3282
3283 ev_set_priority (&w->io, ev_priority (w));
3284 ev_io_start (EV_A_ &w->io);
3285
3286 ev_prepare_init (&w->prepare, embed_prepare_cb);
3287 ev_set_priority (&w->prepare, EV_MINPRI);
3288 ev_prepare_start (EV_A_ &w->prepare);
3289
3290 ev_fork_init (&w->fork, embed_fork_cb);
3291 ev_fork_start (EV_A_ &w->fork);
3292
3293 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3294
3295 ev_start (EV_A_ (W)w, 1);
3296
3297 EV_FREQUENT_CHECK;
3298}
3299
3300void
3301ev_embed_stop (EV_P_ ev_embed *w)
3302{
3303 clear_pending (EV_A_ (W)w);
3304 if (expect_false (!ev_is_active (w)))
3305 return;
3306
3307 EV_FREQUENT_CHECK;
3308
3309 ev_io_stop (EV_A_ &w->io);
3310 ev_prepare_stop (EV_A_ &w->prepare);
3311 ev_fork_stop (EV_A_ &w->fork);
3312
3313 EV_FREQUENT_CHECK;
3314}
3315#endif
3316
3317#if EV_FORK_ENABLE
3318void
3319ev_fork_start (EV_P_ ev_fork *w)
3320{
3321 if (expect_false (ev_is_active (w)))
3322 return;
3323
3324 EV_FREQUENT_CHECK;
3325
3326 ev_start (EV_A_ (W)w, ++forkcnt);
3327 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3328 forks [forkcnt - 1] = w;
3329
3330 EV_FREQUENT_CHECK;
3331}
3332
3333void
3334ev_fork_stop (EV_P_ ev_fork *w)
3335{
3336 clear_pending (EV_A_ (W)w);
3337 if (expect_false (!ev_is_active (w)))
3338 return;
3339
3340 EV_FREQUENT_CHECK;
3341
3342 {
3343 int active = ev_active (w);
3344
3345 forks [active - 1] = forks [--forkcnt];
3346 ev_active (forks [active - 1]) = active;
3347 }
3348
3349 ev_stop (EV_A_ (W)w);
3350
3351 EV_FREQUENT_CHECK;
3352}
3353#endif
3354
3355#if EV_ASYNC_ENABLE
3356void
3357ev_async_start (EV_P_ ev_async *w)
3358{
3359 if (expect_false (ev_is_active (w)))
3360 return;
3361
3362 evpipe_init (EV_A);
3363
3364 EV_FREQUENT_CHECK;
3365
3366 ev_start (EV_A_ (W)w, ++asynccnt);
3367 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3368 asyncs [asynccnt - 1] = w;
3369
3370 EV_FREQUENT_CHECK;
3371}
3372
3373void
3374ev_async_stop (EV_P_ ev_async *w)
3375{
3376 clear_pending (EV_A_ (W)w);
3377 if (expect_false (!ev_is_active (w)))
3378 return;
3379
3380 EV_FREQUENT_CHECK;
3381
3382 {
3383 int active = ev_active (w);
3384
3385 asyncs [active - 1] = asyncs [--asynccnt];
3386 ev_active (asyncs [active - 1]) = active;
3387 }
3388
3389 ev_stop (EV_A_ (W)w);
3390
3391 EV_FREQUENT_CHECK;
3392}
3393
3394void
3395ev_async_send (EV_P_ ev_async *w)
3396{
3397 w->sent = 1;
3398 evpipe_write (EV_A_ &gotasync);
3399}
3400#endif
1572 3401
1573/*****************************************************************************/ 3402/*****************************************************************************/
1574 3403
1575struct ev_once 3404struct ev_once
1576{ 3405{
1577 struct ev_io io; 3406 ev_io io;
1578 struct ev_timer to; 3407 ev_timer to;
1579 void (*cb)(int revents, void *arg); 3408 void (*cb)(int revents, void *arg);
1580 void *arg; 3409 void *arg;
1581}; 3410};
1582 3411
1583static void 3412static void
1584once_cb (EV_P_ struct ev_once *once, int revents) 3413once_cb (EV_P_ struct ev_once *once, int revents)
1585{ 3414{
1586 void (*cb)(int revents, void *arg) = once->cb; 3415 void (*cb)(int revents, void *arg) = once->cb;
1587 void *arg = once->arg; 3416 void *arg = once->arg;
1588 3417
1589 ev_io_stop (EV_A_ &once->io); 3418 ev_io_stop (EV_A_ &once->io);
1590 ev_timer_stop (EV_A_ &once->to); 3419 ev_timer_stop (EV_A_ &once->to);
1591 ev_free (once); 3420 ev_free (once);
1592 3421
1593 cb (revents, arg); 3422 cb (revents, arg);
1594} 3423}
1595 3424
1596static void 3425static void
1597once_cb_io (EV_P_ struct ev_io *w, int revents) 3426once_cb_io (EV_P_ ev_io *w, int revents)
1598{ 3427{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3428 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3429
3430 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1600} 3431}
1601 3432
1602static void 3433static void
1603once_cb_to (EV_P_ struct ev_timer *w, int revents) 3434once_cb_to (EV_P_ ev_timer *w, int revents)
1604{ 3435{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3436 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3437
3438 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1606} 3439}
1607 3440
1608void 3441void
1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3442ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1610{ 3443{
1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3444 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1612 3445
1613 if (!once) 3446 if (expect_false (!once))
3447 {
1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3448 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1615 else 3449 return;
1616 { 3450 }
3451
1617 once->cb = cb; 3452 once->cb = cb;
1618 once->arg = arg; 3453 once->arg = arg;
1619 3454
1620 ev_init (&once->io, once_cb_io); 3455 ev_init (&once->io, once_cb_io);
1621 if (fd >= 0) 3456 if (fd >= 0)
3457 {
3458 ev_io_set (&once->io, fd, events);
3459 ev_io_start (EV_A_ &once->io);
3460 }
3461
3462 ev_init (&once->to, once_cb_to);
3463 if (timeout >= 0.)
3464 {
3465 ev_timer_set (&once->to, timeout, 0.);
3466 ev_timer_start (EV_A_ &once->to);
3467 }
3468}
3469
3470/*****************************************************************************/
3471
3472#if EV_WALK_ENABLE
3473void
3474ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3475{
3476 int i, j;
3477 ev_watcher_list *wl, *wn;
3478
3479 if (types & (EV_IO | EV_EMBED))
3480 for (i = 0; i < anfdmax; ++i)
3481 for (wl = anfds [i].head; wl; )
1622 { 3482 {
1623 ev_io_set (&once->io, fd, events); 3483 wn = wl->next;
1624 ev_io_start (EV_A_ &once->io); 3484
3485#if EV_EMBED_ENABLE
3486 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3487 {
3488 if (types & EV_EMBED)
3489 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3490 }
3491 else
3492#endif
3493#if EV_USE_INOTIFY
3494 if (ev_cb ((ev_io *)wl) == infy_cb)
3495 ;
3496 else
3497#endif
3498 if ((ev_io *)wl != &pipe_w)
3499 if (types & EV_IO)
3500 cb (EV_A_ EV_IO, wl);
3501
3502 wl = wn;
1625 } 3503 }
1626 3504
1627 ev_init (&once->to, once_cb_to); 3505 if (types & (EV_TIMER | EV_STAT))
1628 if (timeout >= 0.) 3506 for (i = timercnt + HEAP0; i-- > HEAP0; )
3507#if EV_STAT_ENABLE
3508 /*TODO: timer is not always active*/
3509 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1629 { 3510 {
1630 ev_timer_set (&once->to, timeout, 0.); 3511 if (types & EV_STAT)
1631 ev_timer_start (EV_A_ &once->to); 3512 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1632 } 3513 }
1633 } 3514 else
3515#endif
3516 if (types & EV_TIMER)
3517 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3518
3519#if EV_PERIODIC_ENABLE
3520 if (types & EV_PERIODIC)
3521 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3522 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3523#endif
3524
3525#if EV_IDLE_ENABLE
3526 if (types & EV_IDLE)
3527 for (j = NUMPRI; i--; )
3528 for (i = idlecnt [j]; i--; )
3529 cb (EV_A_ EV_IDLE, idles [j][i]);
3530#endif
3531
3532#if EV_FORK_ENABLE
3533 if (types & EV_FORK)
3534 for (i = forkcnt; i--; )
3535 if (ev_cb (forks [i]) != embed_fork_cb)
3536 cb (EV_A_ EV_FORK, forks [i]);
3537#endif
3538
3539#if EV_ASYNC_ENABLE
3540 if (types & EV_ASYNC)
3541 for (i = asynccnt; i--; )
3542 cb (EV_A_ EV_ASYNC, asyncs [i]);
3543#endif
3544
3545 if (types & EV_PREPARE)
3546 for (i = preparecnt; i--; )
3547#if EV_EMBED_ENABLE
3548 if (ev_cb (prepares [i]) != embed_prepare_cb)
3549#endif
3550 cb (EV_A_ EV_PREPARE, prepares [i]);
3551
3552 if (types & EV_CHECK)
3553 for (i = checkcnt; i--; )
3554 cb (EV_A_ EV_CHECK, checks [i]);
3555
3556 if (types & EV_SIGNAL)
3557 for (i = 0; i < signalmax; ++i)
3558 for (wl = signals [i].head; wl; )
3559 {
3560 wn = wl->next;
3561 cb (EV_A_ EV_SIGNAL, wl);
3562 wl = wn;
3563 }
3564
3565 if (types & EV_CHILD)
3566 for (i = EV_PID_HASHSIZE; i--; )
3567 for (wl = childs [i]; wl; )
3568 {
3569 wn = wl->next;
3570 cb (EV_A_ EV_CHILD, wl);
3571 wl = wn;
3572 }
3573/* EV_STAT 0x00001000 /* stat data changed */
3574/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1634} 3575}
3576#endif
3577
3578#if EV_MULTIPLICITY
3579 #include "ev_wrap.h"
3580#endif
1635 3581
1636#ifdef __cplusplus 3582#ifdef __cplusplus
1637} 3583}
1638#endif 3584#endif
1639 3585

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines