ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.106 by root, Mon Nov 12 01:07:50 2007 UTC vs.
Revision 1.463 by root, Thu Jan 16 11:51:05 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
64#endif 127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
65 137
66#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
67#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
68#include <fcntl.h> 169#include <fcntl.h>
69#include <stddef.h> 170#include <stddef.h>
70 171
71#include <stdio.h> 172#include <stdio.h>
72 173
73#include <assert.h> 174#include <assert.h>
74#include <errno.h> 175#include <errno.h>
75#include <sys/types.h> 176#include <sys/types.h>
76#include <time.h> 177#include <time.h>
178#include <limits.h>
77 179
78#include <signal.h> 180#include <signal.h>
79 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
80#ifndef _WIN32 199#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 200# include <sys/time.h>
83# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
84#else 203#else
204# include <io.h>
85# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
86# include <windows.h> 207# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
89# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
90#endif 258# endif
91 259#endif
92/**/
93 260
94#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263# define EV_USE_MONOTONIC EV_FEATURE_OS
264# else
95# define EV_USE_MONOTONIC 1 265# define EV_USE_MONOTONIC 0
266# endif
267#endif
268
269#ifndef EV_USE_REALTIME
270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
271#endif
272
273#ifndef EV_USE_NANOSLEEP
274# if _POSIX_C_SOURCE >= 199309L
275# define EV_USE_NANOSLEEP EV_FEATURE_OS
276# else
277# define EV_USE_NANOSLEEP 0
278# endif
96#endif 279#endif
97 280
98#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
100# define EV_SELECT_USE_FD_SET 1
101#endif 283#endif
102 284
103#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
104# ifdef _WIN32 286# ifdef _WIN32
105# define EV_USE_POLL 0 287# define EV_USE_POLL 0
106# else 288# else
107# define EV_USE_POLL 1 289# define EV_USE_POLL EV_FEATURE_BACKENDS
108# endif 290# endif
109#endif 291#endif
110 292
111#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
296# else
112# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
298# endif
113#endif 299#endif
114 300
115#ifndef EV_USE_KQUEUE 301#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 302# define EV_USE_KQUEUE 0
117#endif 303#endif
118 304
119#ifndef EV_USE_REALTIME 305#ifndef EV_USE_PORT
120# define EV_USE_REALTIME 1 306# define EV_USE_PORT 0
307#endif
308
309#ifndef EV_USE_INOTIFY
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
311# define EV_USE_INOTIFY EV_FEATURE_OS
312# else
313# define EV_USE_INOTIFY 0
121#endif 314# endif
315#endif
122 316
123/**/ 317#ifndef EV_PID_HASHSIZE
318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
319#endif
124 320
125/* darwin simply cnanot be helped */ 321#ifndef EV_INOTIFY_HASHSIZE
126#ifdef __APPLE__ 322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
323#endif
324
325#ifndef EV_USE_EVENTFD
326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
327# define EV_USE_EVENTFD EV_FEATURE_OS
328# else
329# define EV_USE_EVENTFD 0
330# endif
331#endif
332
333#ifndef EV_USE_SIGNALFD
334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335# define EV_USE_SIGNALFD EV_FEATURE_OS
336# else
337# define EV_USE_SIGNALFD 0
338# endif
339#endif
340
341#if 0 /* debugging */
342# define EV_VERIFY 3
343# define EV_USE_4HEAP 1
344# define EV_HEAP_CACHE_AT 1
345#endif
346
347#ifndef EV_VERIFY
348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349#endif
350
351#ifndef EV_USE_4HEAP
352# define EV_USE_4HEAP EV_FEATURE_DATA
353#endif
354
355#ifndef EV_HEAP_CACHE_AT
356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
127# undef EV_USE_POLL 371# undef EV_USE_POLL
128# undef EV_USE_KQUEUE 372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
129#endif 386# endif
387#endif
388
389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
130 390
131#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 392# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 393# define EV_USE_MONOTONIC 0
134#endif 394#endif
136#ifndef CLOCK_REALTIME 396#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 397# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 398# define EV_USE_REALTIME 0
139#endif 399#endif
140 400
141#if EV_SELECT_IS_WINSOCKET 401#if !EV_STAT_ENABLE
402# undef EV_USE_INOTIFY
403# define EV_USE_INOTIFY 0
404#endif
405
406#if !EV_USE_NANOSLEEP
407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
409# include <sys/select.h>
410# endif
411#endif
412
413#if EV_USE_INOTIFY
414# include <sys/statfs.h>
415# include <sys/inotify.h>
416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417# ifndef IN_DONT_FOLLOW
418# undef EV_USE_INOTIFY
419# define EV_USE_INOTIFY 0
420# endif
421#endif
422
423#if EV_USE_EVENTFD
424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
142# include <winsock.h> 425# include <stdint.h>
426# ifndef EFD_NONBLOCK
427# define EFD_NONBLOCK O_NONBLOCK
428# endif
429# ifndef EFD_CLOEXEC
430# ifdef O_CLOEXEC
431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
143#endif 459#endif
144 460
145/**/ 461/**/
146 462
463#if EV_VERIFY >= 3
464# define EV_FREQUENT_CHECK ev_verify (EV_A)
465#else
466# define EV_FREQUENT_CHECK do { } while (0)
467#endif
468
469/*
470 * This is used to work around floating point rounding problems.
471 * This value is good at least till the year 4000.
472 */
473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
475
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
151 478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2013 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 */
512
152#ifdef EV_H 513#ifndef ECB_H
153# include EV_H 514#define ECB_H
515
516/* 16 bits major, 16 bits minor */
517#define ECB_VERSION 0x00010003
518
519#ifdef _WIN32
520 typedef signed char int8_t;
521 typedef unsigned char uint8_t;
522 typedef signed short int16_t;
523 typedef unsigned short uint16_t;
524 typedef signed int int32_t;
525 typedef unsigned int uint32_t;
526 #if __GNUC__
527 typedef signed long long int64_t;
528 typedef unsigned long long uint64_t;
529 #else /* _MSC_VER || __BORLANDC__ */
530 typedef signed __int64 int64_t;
531 typedef unsigned __int64 uint64_t;
532 #endif
533 #ifdef _WIN64
534 #define ECB_PTRSIZE 8
535 typedef uint64_t uintptr_t;
536 typedef int64_t intptr_t;
537 #else
538 #define ECB_PTRSIZE 4
539 typedef uint32_t uintptr_t;
540 typedef int32_t intptr_t;
541 #endif
154#else 542#else
155# include "ev.h" 543 #include <inttypes.h>
544 #if UINTMAX_MAX > 0xffffffffU
545 #define ECB_PTRSIZE 8
546 #else
547 #define ECB_PTRSIZE 4
156#endif 548 #endif
549#endif
157 550
158#if __GNUC__ >= 3 551/* work around x32 idiocy by defining proper macros */
159# define expect(expr,value) __builtin_expect ((expr),(value)) 552#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
160# define inline inline 553 #if _ILP32
554 #define ECB_AMD64_X32 1
555 #else
556 #define ECB_AMD64 1
557 #endif
558#endif
559
560/* many compilers define _GNUC_ to some versions but then only implement
561 * what their idiot authors think are the "more important" extensions,
562 * causing enormous grief in return for some better fake benchmark numbers.
563 * or so.
564 * we try to detect these and simply assume they are not gcc - if they have
565 * an issue with that they should have done it right in the first place.
566 */
567#ifndef ECB_GCC_VERSION
568 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
569 #define ECB_GCC_VERSION(major,minor) 0
570 #else
571 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
572 #endif
573#endif
574
575#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
576#define ECB_C99 (__STDC_VERSION__ >= 199901L)
577#define ECB_C11 (__STDC_VERSION__ >= 201112L)
578#define ECB_CPP (__cplusplus+0)
579#define ECB_CPP11 (__cplusplus >= 201103L)
580
581#if ECB_CPP
582 #define ECB_EXTERN_C extern "C"
583 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
584 #define ECB_EXTERN_C_END }
161#else 585#else
586 #define ECB_EXTERN_C extern
587 #define ECB_EXTERN_C_BEG
588 #define ECB_EXTERN_C_END
589#endif
590
591/*****************************************************************************/
592
593/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
594/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
595
596#if ECB_NO_THREADS
597 #define ECB_NO_SMP 1
598#endif
599
600#if ECB_NO_SMP
601 #define ECB_MEMORY_FENCE do { } while (0)
602#endif
603
604#ifndef ECB_MEMORY_FENCE
605 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
606 #if __i386 || __i386__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
608 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
612 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
613 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
614 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
616 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
617 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
619 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
620 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
622 #elif (__sparc || __sparc__) && !__sparcv8
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
624 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
625 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
626 #elif defined __s390__ || defined __s390x__
627 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
628 #elif defined __mips__
629 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
630 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
631 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
632 #elif defined __alpha__
633 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
634 #elif defined __hppa__
635 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
636 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
637 #elif defined __ia64__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
639 #elif defined __m68k__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
641 #elif defined __m88k__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
643 #elif defined __sh__
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
645 #endif
646 #endif
647#endif
648
649#ifndef ECB_MEMORY_FENCE
650 #if ECB_GCC_VERSION(4,7)
651 /* see comment below (stdatomic.h) about the C11 memory model. */
652 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
653
654 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
655 * without risking compile time errors with other compilers. We *could*
656 * define our own ecb_clang_has_feature, but I just can't be bothered to work
657 * around this shit time and again.
658 * #elif defined __clang && __has_feature (cxx_atomic)
659 * // see comment below (stdatomic.h) about the C11 memory model.
660 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
661 */
662
663 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
664 #define ECB_MEMORY_FENCE __sync_synchronize ()
665 #elif _MSC_VER >= 1500 /* VC++ 2008 */
666 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
667 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
668 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
669 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
670 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
671 #elif _MSC_VER >= 1400 /* VC++ 2005 */
672 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
673 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
674 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
675 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
676 #elif defined _WIN32
677 #include <WinNT.h>
678 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
679 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
680 #include <mbarrier.h>
681 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
682 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
683 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
684 #elif __xlC__
685 #define ECB_MEMORY_FENCE __sync ()
686 #endif
687#endif
688
689#ifndef ECB_MEMORY_FENCE
690 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
691 /* we assume that these memory fences work on all variables/all memory accesses, */
692 /* not just C11 atomics and atomic accesses */
693 #include <stdatomic.h>
694 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
695 /* any fence other than seq_cst, which isn't very efficient for us. */
696 /* Why that is, we don't know - either the C11 memory model is quite useless */
697 /* for most usages, or gcc and clang have a bug */
698 /* I *currently* lean towards the latter, and inefficiently implement */
699 /* all three of ecb's fences as a seq_cst fence */
700 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
701 #endif
702#endif
703
704#ifndef ECB_MEMORY_FENCE
705 #if !ECB_AVOID_PTHREADS
706 /*
707 * if you get undefined symbol references to pthread_mutex_lock,
708 * or failure to find pthread.h, then you should implement
709 * the ECB_MEMORY_FENCE operations for your cpu/compiler
710 * OR provide pthread.h and link against the posix thread library
711 * of your system.
712 */
713 #include <pthread.h>
714 #define ECB_NEEDS_PTHREADS 1
715 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
716
717 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
718 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
719 #endif
720#endif
721
722#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
723 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
724#endif
725
726#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
727 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
728#endif
729
730/*****************************************************************************/
731
732#if __cplusplus
733 #define ecb_inline static inline
734#elif ECB_GCC_VERSION(2,5)
735 #define ecb_inline static __inline__
736#elif ECB_C99
737 #define ecb_inline static inline
738#else
739 #define ecb_inline static
740#endif
741
742#if ECB_GCC_VERSION(3,3)
743 #define ecb_restrict __restrict__
744#elif ECB_C99
745 #define ecb_restrict restrict
746#else
747 #define ecb_restrict
748#endif
749
750typedef int ecb_bool;
751
752#define ECB_CONCAT_(a, b) a ## b
753#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
754#define ECB_STRINGIFY_(a) # a
755#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
756
757#define ecb_function_ ecb_inline
758
759#if ECB_GCC_VERSION(3,1)
760 #define ecb_attribute(attrlist) __attribute__(attrlist)
761 #define ecb_is_constant(expr) __builtin_constant_p (expr)
762 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
763 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
764#else
765 #define ecb_attribute(attrlist)
766 #define ecb_is_constant(expr) 0
162# define expect(expr,value) (expr) 767 #define ecb_expect(expr,value) (expr)
163# define inline static 768 #define ecb_prefetch(addr,rw,locality)
164#endif 769#endif
165 770
771/* no emulation for ecb_decltype */
772#if ECB_GCC_VERSION(4,5)
773 #define ecb_decltype(x) __decltype(x)
774#elif ECB_GCC_VERSION(3,0)
775 #define ecb_decltype(x) __typeof(x)
776#endif
777
778#define ecb_noinline ecb_attribute ((__noinline__))
779#define ecb_unused ecb_attribute ((__unused__))
780#define ecb_const ecb_attribute ((__const__))
781#define ecb_pure ecb_attribute ((__pure__))
782
783#if ECB_C11
784 #define ecb_noreturn _Noreturn
785#else
786 #define ecb_noreturn ecb_attribute ((__noreturn__))
787#endif
788
789#if ECB_GCC_VERSION(4,3)
790 #define ecb_artificial ecb_attribute ((__artificial__))
791 #define ecb_hot ecb_attribute ((__hot__))
792 #define ecb_cold ecb_attribute ((__cold__))
793#else
794 #define ecb_artificial
795 #define ecb_hot
796 #define ecb_cold
797#endif
798
799/* put around conditional expressions if you are very sure that the */
800/* expression is mostly true or mostly false. note that these return */
801/* booleans, not the expression. */
166#define expect_false(expr) expect ((expr) != 0, 0) 802#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 803#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
804/* for compatibility to the rest of the world */
805#define ecb_likely(expr) ecb_expect_true (expr)
806#define ecb_unlikely(expr) ecb_expect_false (expr)
168 807
808/* count trailing zero bits and count # of one bits */
809#if ECB_GCC_VERSION(3,4)
810 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
811 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
812 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
813 #define ecb_ctz32(x) __builtin_ctz (x)
814 #define ecb_ctz64(x) __builtin_ctzll (x)
815 #define ecb_popcount32(x) __builtin_popcount (x)
816 /* no popcountll */
817#else
818 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
819 ecb_function_ int
820 ecb_ctz32 (uint32_t x)
821 {
822 int r = 0;
823
824 x &= ~x + 1; /* this isolates the lowest bit */
825
826#if ECB_branchless_on_i386
827 r += !!(x & 0xaaaaaaaa) << 0;
828 r += !!(x & 0xcccccccc) << 1;
829 r += !!(x & 0xf0f0f0f0) << 2;
830 r += !!(x & 0xff00ff00) << 3;
831 r += !!(x & 0xffff0000) << 4;
832#else
833 if (x & 0xaaaaaaaa) r += 1;
834 if (x & 0xcccccccc) r += 2;
835 if (x & 0xf0f0f0f0) r += 4;
836 if (x & 0xff00ff00) r += 8;
837 if (x & 0xffff0000) r += 16;
838#endif
839
840 return r;
841 }
842
843 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
844 ecb_function_ int
845 ecb_ctz64 (uint64_t x)
846 {
847 int shift = x & 0xffffffffU ? 0 : 32;
848 return ecb_ctz32 (x >> shift) + shift;
849 }
850
851 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
852 ecb_function_ int
853 ecb_popcount32 (uint32_t x)
854 {
855 x -= (x >> 1) & 0x55555555;
856 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
857 x = ((x >> 4) + x) & 0x0f0f0f0f;
858 x *= 0x01010101;
859
860 return x >> 24;
861 }
862
863 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
864 ecb_function_ int ecb_ld32 (uint32_t x)
865 {
866 int r = 0;
867
868 if (x >> 16) { x >>= 16; r += 16; }
869 if (x >> 8) { x >>= 8; r += 8; }
870 if (x >> 4) { x >>= 4; r += 4; }
871 if (x >> 2) { x >>= 2; r += 2; }
872 if (x >> 1) { r += 1; }
873
874 return r;
875 }
876
877 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
878 ecb_function_ int ecb_ld64 (uint64_t x)
879 {
880 int r = 0;
881
882 if (x >> 32) { x >>= 32; r += 32; }
883
884 return r + ecb_ld32 (x);
885 }
886#endif
887
888ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
889ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
890ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
891ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
892
893ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
894ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
895{
896 return ( (x * 0x0802U & 0x22110U)
897 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
898}
899
900ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
901ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
902{
903 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
904 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
905 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
906 x = ( x >> 8 ) | ( x << 8);
907
908 return x;
909}
910
911ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
912ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
913{
914 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
915 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
916 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
917 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
918 x = ( x >> 16 ) | ( x << 16);
919
920 return x;
921}
922
923/* popcount64 is only available on 64 bit cpus as gcc builtin */
924/* so for this version we are lazy */
925ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
926ecb_function_ int
927ecb_popcount64 (uint64_t x)
928{
929 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
930}
931
932ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
933ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
934ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
935ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
936ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
937ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
938ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
939ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
940
941ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
942ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
943ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
944ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
945ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
946ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
947ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
948ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
949
950#if ECB_GCC_VERSION(4,3)
951 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
952 #define ecb_bswap32(x) __builtin_bswap32 (x)
953 #define ecb_bswap64(x) __builtin_bswap64 (x)
954#else
955 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
956 ecb_function_ uint16_t
957 ecb_bswap16 (uint16_t x)
958 {
959 return ecb_rotl16 (x, 8);
960 }
961
962 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
963 ecb_function_ uint32_t
964 ecb_bswap32 (uint32_t x)
965 {
966 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
967 }
968
969 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
970 ecb_function_ uint64_t
971 ecb_bswap64 (uint64_t x)
972 {
973 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
974 }
975#endif
976
977#if ECB_GCC_VERSION(4,5)
978 #define ecb_unreachable() __builtin_unreachable ()
979#else
980 /* this seems to work fine, but gcc always emits a warning for it :/ */
981 ecb_inline void ecb_unreachable (void) ecb_noreturn;
982 ecb_inline void ecb_unreachable (void) { }
983#endif
984
985/* try to tell the compiler that some condition is definitely true */
986#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
987
988ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
989ecb_inline unsigned char
990ecb_byteorder_helper (void)
991{
992 /* the union code still generates code under pressure in gcc, */
993 /* but less than using pointers, and always seems to */
994 /* successfully return a constant. */
995 /* the reason why we have this horrible preprocessor mess */
996 /* is to avoid it in all cases, at least on common architectures */
997 /* or when using a recent enough gcc version (>= 4.6) */
998#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
999 return 0x44;
1000#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1001 return 0x44;
1002#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1003 return 0x11;
1004#else
1005 union
1006 {
1007 uint32_t i;
1008 uint8_t c;
1009 } u = { 0x11223344 };
1010 return u.c;
1011#endif
1012}
1013
1014ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1015ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1016ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1017ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1018
1019#if ECB_GCC_VERSION(3,0) || ECB_C99
1020 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1021#else
1022 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1023#endif
1024
1025#if __cplusplus
1026 template<typename T>
1027 static inline T ecb_div_rd (T val, T div)
1028 {
1029 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1030 }
1031 template<typename T>
1032 static inline T ecb_div_ru (T val, T div)
1033 {
1034 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1035 }
1036#else
1037 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1038 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1039#endif
1040
1041#if ecb_cplusplus_does_not_suck
1042 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1043 template<typename T, int N>
1044 static inline int ecb_array_length (const T (&arr)[N])
1045 {
1046 return N;
1047 }
1048#else
1049 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1050#endif
1051
1052/*******************************************************************************/
1053/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1054
1055/* basically, everything uses "ieee pure-endian" floating point numbers */
1056/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1057#if 0 \
1058 || __i386 || __i386__ \
1059 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1060 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1061 || defined __arm__ && defined __ARM_EABI__ \
1062 || defined __s390__ || defined __s390x__ \
1063 || defined __mips__ \
1064 || defined __alpha__ \
1065 || defined __hppa__ \
1066 || defined __ia64__ \
1067 || defined __m68k__ \
1068 || defined __m88k__ \
1069 || defined __sh__ \
1070 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1071 #define ECB_STDFP 1
1072 #include <string.h> /* for memcpy */
1073#else
1074 #define ECB_STDFP 0
1075#endif
1076
1077#ifndef ECB_NO_LIBM
1078
1079 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1080
1081 /* only the oldest of old doesn't have this one. solaris. */
1082 #ifdef INFINITY
1083 #define ECB_INFINITY INFINITY
1084 #else
1085 #define ECB_INFINITY HUGE_VAL
1086 #endif
1087
1088 #ifdef NAN
1089 #define ECB_NAN NAN
1090 #else
1091 #define ECB_NAN ECB_INFINITY
1092 #endif
1093
1094 /* converts an ieee half/binary16 to a float */
1095 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1096 ecb_function_ float
1097 ecb_binary16_to_float (uint16_t x)
1098 {
1099 int e = (x >> 10) & 0x1f;
1100 int m = x & 0x3ff;
1101 float r;
1102
1103 if (!e ) r = ldexpf (m , -24);
1104 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1105 else if (m ) r = ECB_NAN;
1106 else r = ECB_INFINITY;
1107
1108 return x & 0x8000 ? -r : r;
1109 }
1110
1111 /* convert a float to ieee single/binary32 */
1112 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1113 ecb_function_ uint32_t
1114 ecb_float_to_binary32 (float x)
1115 {
1116 uint32_t r;
1117
1118 #if ECB_STDFP
1119 memcpy (&r, &x, 4);
1120 #else
1121 /* slow emulation, works for anything but -0 */
1122 uint32_t m;
1123 int e;
1124
1125 if (x == 0e0f ) return 0x00000000U;
1126 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1127 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1128 if (x != x ) return 0x7fbfffffU;
1129
1130 m = frexpf (x, &e) * 0x1000000U;
1131
1132 r = m & 0x80000000U;
1133
1134 if (r)
1135 m = -m;
1136
1137 if (e <= -126)
1138 {
1139 m &= 0xffffffU;
1140 m >>= (-125 - e);
1141 e = -126;
1142 }
1143
1144 r |= (e + 126) << 23;
1145 r |= m & 0x7fffffU;
1146 #endif
1147
1148 return r;
1149 }
1150
1151 /* converts an ieee single/binary32 to a float */
1152 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1153 ecb_function_ float
1154 ecb_binary32_to_float (uint32_t x)
1155 {
1156 float r;
1157
1158 #if ECB_STDFP
1159 memcpy (&r, &x, 4);
1160 #else
1161 /* emulation, only works for normals and subnormals and +0 */
1162 int neg = x >> 31;
1163 int e = (x >> 23) & 0xffU;
1164
1165 x &= 0x7fffffU;
1166
1167 if (e)
1168 x |= 0x800000U;
1169 else
1170 e = 1;
1171
1172 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1173 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1174
1175 r = neg ? -r : r;
1176 #endif
1177
1178 return r;
1179 }
1180
1181 /* convert a double to ieee double/binary64 */
1182 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1183 ecb_function_ uint64_t
1184 ecb_double_to_binary64 (double x)
1185 {
1186 uint64_t r;
1187
1188 #if ECB_STDFP
1189 memcpy (&r, &x, 8);
1190 #else
1191 /* slow emulation, works for anything but -0 */
1192 uint64_t m;
1193 int e;
1194
1195 if (x == 0e0 ) return 0x0000000000000000U;
1196 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1197 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1198 if (x != x ) return 0X7ff7ffffffffffffU;
1199
1200 m = frexp (x, &e) * 0x20000000000000U;
1201
1202 r = m & 0x8000000000000000;;
1203
1204 if (r)
1205 m = -m;
1206
1207 if (e <= -1022)
1208 {
1209 m &= 0x1fffffffffffffU;
1210 m >>= (-1021 - e);
1211 e = -1022;
1212 }
1213
1214 r |= ((uint64_t)(e + 1022)) << 52;
1215 r |= m & 0xfffffffffffffU;
1216 #endif
1217
1218 return r;
1219 }
1220
1221 /* converts an ieee double/binary64 to a double */
1222 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1223 ecb_function_ double
1224 ecb_binary64_to_double (uint64_t x)
1225 {
1226 double r;
1227
1228 #if ECB_STDFP
1229 memcpy (&r, &x, 8);
1230 #else
1231 /* emulation, only works for normals and subnormals and +0 */
1232 int neg = x >> 63;
1233 int e = (x >> 52) & 0x7ffU;
1234
1235 x &= 0xfffffffffffffU;
1236
1237 if (e)
1238 x |= 0x10000000000000U;
1239 else
1240 e = 1;
1241
1242 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1243 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1244
1245 r = neg ? -r : r;
1246 #endif
1247
1248 return r;
1249 }
1250
1251#endif
1252
1253#endif
1254
1255/* ECB.H END */
1256
1257#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1258/* if your architecture doesn't need memory fences, e.g. because it is
1259 * single-cpu/core, or if you use libev in a project that doesn't use libev
1260 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1261 * libev, in which cases the memory fences become nops.
1262 * alternatively, you can remove this #error and link against libpthread,
1263 * which will then provide the memory fences.
1264 */
1265# error "memory fences not defined for your architecture, please report"
1266#endif
1267
1268#ifndef ECB_MEMORY_FENCE
1269# define ECB_MEMORY_FENCE do { } while (0)
1270# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1271# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1272#endif
1273
1274#define expect_false(cond) ecb_expect_false (cond)
1275#define expect_true(cond) ecb_expect_true (cond)
1276#define noinline ecb_noinline
1277
1278#define inline_size ecb_inline
1279
1280#if EV_FEATURE_CODE
1281# define inline_speed ecb_inline
1282#else
1283# define inline_speed static noinline
1284#endif
1285
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1286#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1287
1288#if EV_MINPRI == EV_MAXPRI
1289# define ABSPRI(w) (((W)w), 0)
1290#else
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1291# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1292#endif
171 1293
172#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1294#define EMPTY /* required for microsofts broken pseudo-c compiler */
1295#define EMPTY2(a,b) /* used to suppress some warnings */
173 1296
174typedef struct ev_watcher *W; 1297typedef ev_watcher *W;
175typedef struct ev_watcher_list *WL; 1298typedef ev_watcher_list *WL;
176typedef struct ev_watcher_time *WT; 1299typedef ev_watcher_time *WT;
177 1300
1301#define ev_active(w) ((W)(w))->active
1302#define ev_at(w) ((WT)(w))->at
1303
1304#if EV_USE_REALTIME
1305/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1306/* giving it a reasonably high chance of working on typical architectures */
1307static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1308#endif
1309
1310#if EV_USE_MONOTONIC
178static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1311static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1312#endif
1313
1314#ifndef EV_FD_TO_WIN32_HANDLE
1315# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1316#endif
1317#ifndef EV_WIN32_HANDLE_TO_FD
1318# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1319#endif
1320#ifndef EV_WIN32_CLOSE_FD
1321# define EV_WIN32_CLOSE_FD(fd) close (fd)
1322#endif
179 1323
180#ifdef _WIN32 1324#ifdef _WIN32
181# include "ev_win32.c" 1325# include "ev_win32.c"
182#endif 1326#endif
183 1327
184/*****************************************************************************/ 1328/*****************************************************************************/
185 1329
1330/* define a suitable floor function (only used by periodics atm) */
1331
1332#if EV_USE_FLOOR
1333# include <math.h>
1334# define ev_floor(v) floor (v)
1335#else
1336
1337#include <float.h>
1338
1339/* a floor() replacement function, should be independent of ev_tstamp type */
1340static ev_tstamp noinline
1341ev_floor (ev_tstamp v)
1342{
1343 /* the choice of shift factor is not terribly important */
1344#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1345 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1346#else
1347 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1348#endif
1349
1350 /* argument too large for an unsigned long? */
1351 if (expect_false (v >= shift))
1352 {
1353 ev_tstamp f;
1354
1355 if (v == v - 1.)
1356 return v; /* very large number */
1357
1358 f = shift * ev_floor (v * (1. / shift));
1359 return f + ev_floor (v - f);
1360 }
1361
1362 /* special treatment for negative args? */
1363 if (expect_false (v < 0.))
1364 {
1365 ev_tstamp f = -ev_floor (-v);
1366
1367 return f - (f == v ? 0 : 1);
1368 }
1369
1370 /* fits into an unsigned long */
1371 return (unsigned long)v;
1372}
1373
1374#endif
1375
1376/*****************************************************************************/
1377
1378#ifdef __linux
1379# include <sys/utsname.h>
1380#endif
1381
1382static unsigned int noinline ecb_cold
1383ev_linux_version (void)
1384{
1385#ifdef __linux
1386 unsigned int v = 0;
1387 struct utsname buf;
1388 int i;
1389 char *p = buf.release;
1390
1391 if (uname (&buf))
1392 return 0;
1393
1394 for (i = 3+1; --i; )
1395 {
1396 unsigned int c = 0;
1397
1398 for (;;)
1399 {
1400 if (*p >= '0' && *p <= '9')
1401 c = c * 10 + *p++ - '0';
1402 else
1403 {
1404 p += *p == '.';
1405 break;
1406 }
1407 }
1408
1409 v = (v << 8) | c;
1410 }
1411
1412 return v;
1413#else
1414 return 0;
1415#endif
1416}
1417
1418/*****************************************************************************/
1419
1420#if EV_AVOID_STDIO
1421static void noinline ecb_cold
1422ev_printerr (const char *msg)
1423{
1424 write (STDERR_FILENO, msg, strlen (msg));
1425}
1426#endif
1427
186static void (*syserr_cb)(const char *msg); 1428static void (*syserr_cb)(const char *msg) EV_THROW;
187 1429
1430void ecb_cold
188void ev_set_syserr_cb (void (*cb)(const char *msg)) 1431ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
189{ 1432{
190 syserr_cb = cb; 1433 syserr_cb = cb;
191} 1434}
192 1435
193static void 1436static void noinline ecb_cold
194syserr (const char *msg) 1437ev_syserr (const char *msg)
195{ 1438{
196 if (!msg) 1439 if (!msg)
197 msg = "(libev) system error"; 1440 msg = "(libev) system error";
198 1441
199 if (syserr_cb) 1442 if (syserr_cb)
200 syserr_cb (msg); 1443 syserr_cb (msg);
201 else 1444 else
202 { 1445 {
1446#if EV_AVOID_STDIO
1447 ev_printerr (msg);
1448 ev_printerr (": ");
1449 ev_printerr (strerror (errno));
1450 ev_printerr ("\n");
1451#else
203 perror (msg); 1452 perror (msg);
1453#endif
204 abort (); 1454 abort ();
205 } 1455 }
206} 1456}
207 1457
1458static void *
1459ev_realloc_emul (void *ptr, long size) EV_THROW
1460{
1461 /* some systems, notably openbsd and darwin, fail to properly
1462 * implement realloc (x, 0) (as required by both ansi c-89 and
1463 * the single unix specification, so work around them here.
1464 * recently, also (at least) fedora and debian started breaking it,
1465 * despite documenting it otherwise.
1466 */
1467
1468 if (size)
1469 return realloc (ptr, size);
1470
1471 free (ptr);
1472 return 0;
1473}
1474
208static void *(*alloc)(void *ptr, long size); 1475static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
209 1476
1477void ecb_cold
210void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1478ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
211{ 1479{
212 alloc = cb; 1480 alloc = cb;
213} 1481}
214 1482
215static void * 1483inline_speed void *
216ev_realloc (void *ptr, long size) 1484ev_realloc (void *ptr, long size)
217{ 1485{
218 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1486 ptr = alloc (ptr, size);
219 1487
220 if (!ptr && size) 1488 if (!ptr && size)
221 { 1489 {
1490#if EV_AVOID_STDIO
1491 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1492#else
222 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1493 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1494#endif
223 abort (); 1495 abort ();
224 } 1496 }
225 1497
226 return ptr; 1498 return ptr;
227} 1499}
229#define ev_malloc(size) ev_realloc (0, (size)) 1501#define ev_malloc(size) ev_realloc (0, (size))
230#define ev_free(ptr) ev_realloc ((ptr), 0) 1502#define ev_free(ptr) ev_realloc ((ptr), 0)
231 1503
232/*****************************************************************************/ 1504/*****************************************************************************/
233 1505
1506/* set in reify when reification needed */
1507#define EV_ANFD_REIFY 1
1508
1509/* file descriptor info structure */
234typedef struct 1510typedef struct
235{ 1511{
236 WL head; 1512 WL head;
237 unsigned char events; 1513 unsigned char events; /* the events watched for */
1514 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1515 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
238 unsigned char reify; 1516 unsigned char unused;
1517#if EV_USE_EPOLL
1518 unsigned int egen; /* generation counter to counter epoll bugs */
1519#endif
239#if EV_SELECT_IS_WINSOCKET 1520#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
240 SOCKET handle; 1521 SOCKET handle;
241#endif 1522#endif
1523#if EV_USE_IOCP
1524 OVERLAPPED or, ow;
1525#endif
242} ANFD; 1526} ANFD;
243 1527
1528/* stores the pending event set for a given watcher */
244typedef struct 1529typedef struct
245{ 1530{
246 W w; 1531 W w;
247 int events; 1532 int events; /* the pending event set for the given watcher */
248} ANPENDING; 1533} ANPENDING;
1534
1535#if EV_USE_INOTIFY
1536/* hash table entry per inotify-id */
1537typedef struct
1538{
1539 WL head;
1540} ANFS;
1541#endif
1542
1543/* Heap Entry */
1544#if EV_HEAP_CACHE_AT
1545 /* a heap element */
1546 typedef struct {
1547 ev_tstamp at;
1548 WT w;
1549 } ANHE;
1550
1551 #define ANHE_w(he) (he).w /* access watcher, read-write */
1552 #define ANHE_at(he) (he).at /* access cached at, read-only */
1553 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1554#else
1555 /* a heap element */
1556 typedef WT ANHE;
1557
1558 #define ANHE_w(he) (he)
1559 #define ANHE_at(he) (he)->at
1560 #define ANHE_at_cache(he)
1561#endif
249 1562
250#if EV_MULTIPLICITY 1563#if EV_MULTIPLICITY
251 1564
252 struct ev_loop 1565 struct ev_loop
253 { 1566 {
257 #include "ev_vars.h" 1570 #include "ev_vars.h"
258 #undef VAR 1571 #undef VAR
259 }; 1572 };
260 #include "ev_wrap.h" 1573 #include "ev_wrap.h"
261 1574
262 struct ev_loop default_loop_struct; 1575 static struct ev_loop default_loop_struct;
263 static struct ev_loop *default_loop; 1576 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
264 1577
265#else 1578#else
266 1579
267 ev_tstamp ev_rt_now; 1580 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
268 #define VAR(name,decl) static decl; 1581 #define VAR(name,decl) static decl;
269 #include "ev_vars.h" 1582 #include "ev_vars.h"
270 #undef VAR 1583 #undef VAR
271 1584
272 static int default_loop; 1585 static int ev_default_loop_ptr;
273 1586
274#endif 1587#endif
1588
1589#if EV_FEATURE_API
1590# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1591# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1592# define EV_INVOKE_PENDING invoke_cb (EV_A)
1593#else
1594# define EV_RELEASE_CB (void)0
1595# define EV_ACQUIRE_CB (void)0
1596# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1597#endif
1598
1599#define EVBREAK_RECURSE 0x80
275 1600
276/*****************************************************************************/ 1601/*****************************************************************************/
277 1602
1603#ifndef EV_HAVE_EV_TIME
278ev_tstamp 1604ev_tstamp
279ev_time (void) 1605ev_time (void) EV_THROW
280{ 1606{
281#if EV_USE_REALTIME 1607#if EV_USE_REALTIME
1608 if (expect_true (have_realtime))
1609 {
282 struct timespec ts; 1610 struct timespec ts;
283 clock_gettime (CLOCK_REALTIME, &ts); 1611 clock_gettime (CLOCK_REALTIME, &ts);
284 return ts.tv_sec + ts.tv_nsec * 1e-9; 1612 return ts.tv_sec + ts.tv_nsec * 1e-9;
285#else 1613 }
1614#endif
1615
286 struct timeval tv; 1616 struct timeval tv;
287 gettimeofday (&tv, 0); 1617 gettimeofday (&tv, 0);
288 return tv.tv_sec + tv.tv_usec * 1e-6; 1618 return tv.tv_sec + tv.tv_usec * 1e-6;
289#endif
290} 1619}
1620#endif
291 1621
292inline ev_tstamp 1622inline_size ev_tstamp
293get_clock (void) 1623get_clock (void)
294{ 1624{
295#if EV_USE_MONOTONIC 1625#if EV_USE_MONOTONIC
296 if (expect_true (have_monotonic)) 1626 if (expect_true (have_monotonic))
297 { 1627 {
304 return ev_time (); 1634 return ev_time ();
305} 1635}
306 1636
307#if EV_MULTIPLICITY 1637#if EV_MULTIPLICITY
308ev_tstamp 1638ev_tstamp
309ev_now (EV_P) 1639ev_now (EV_P) EV_THROW
310{ 1640{
311 return ev_rt_now; 1641 return ev_rt_now;
312} 1642}
313#endif 1643#endif
314 1644
315#define array_roundsize(type,n) ((n) | 4 & ~3) 1645void
1646ev_sleep (ev_tstamp delay) EV_THROW
1647{
1648 if (delay > 0.)
1649 {
1650#if EV_USE_NANOSLEEP
1651 struct timespec ts;
1652
1653 EV_TS_SET (ts, delay);
1654 nanosleep (&ts, 0);
1655#elif defined _WIN32
1656 Sleep ((unsigned long)(delay * 1e3));
1657#else
1658 struct timeval tv;
1659
1660 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1661 /* something not guaranteed by newer posix versions, but guaranteed */
1662 /* by older ones */
1663 EV_TV_SET (tv, delay);
1664 select (0, 0, 0, 0, &tv);
1665#endif
1666 }
1667}
1668
1669/*****************************************************************************/
1670
1671#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1672
1673/* find a suitable new size for the given array, */
1674/* hopefully by rounding to a nice-to-malloc size */
1675inline_size int
1676array_nextsize (int elem, int cur, int cnt)
1677{
1678 int ncur = cur + 1;
1679
1680 do
1681 ncur <<= 1;
1682 while (cnt > ncur);
1683
1684 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1685 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1686 {
1687 ncur *= elem;
1688 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1689 ncur = ncur - sizeof (void *) * 4;
1690 ncur /= elem;
1691 }
1692
1693 return ncur;
1694}
1695
1696static void * noinline ecb_cold
1697array_realloc (int elem, void *base, int *cur, int cnt)
1698{
1699 *cur = array_nextsize (elem, *cur, cnt);
1700 return ev_realloc (base, elem * *cur);
1701}
1702
1703#define array_init_zero(base,count) \
1704 memset ((void *)(base), 0, sizeof (*(base)) * (count))
316 1705
317#define array_needsize(type,base,cur,cnt,init) \ 1706#define array_needsize(type,base,cur,cnt,init) \
318 if (expect_false ((cnt) > cur)) \ 1707 if (expect_false ((cnt) > (cur))) \
319 { \ 1708 { \
320 int newcnt = cur; \ 1709 int ecb_unused ocur_ = (cur); \
321 do \ 1710 (base) = (type *)array_realloc \
322 { \ 1711 (sizeof (type), (base), &(cur), (cnt)); \
323 newcnt = array_roundsize (type, newcnt << 1); \ 1712 init ((base) + (ocur_), (cur) - ocur_); \
324 } \
325 while ((cnt) > newcnt); \
326 \
327 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
328 init (base + cur, newcnt - cur); \
329 cur = newcnt; \
330 } 1713 }
331 1714
1715#if 0
332#define array_slim(type,stem) \ 1716#define array_slim(type,stem) \
333 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1717 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
334 { \ 1718 { \
335 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1719 stem ## max = array_roundsize (stem ## cnt >> 1); \
336 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1720 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
337 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1721 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
338 } 1722 }
1723#endif
339 1724
340#define array_free(stem, idx) \ 1725#define array_free(stem, idx) \
341 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1726 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
342 1727
343/*****************************************************************************/ 1728/*****************************************************************************/
344 1729
345static void 1730/* dummy callback for pending events */
346anfds_init (ANFD *base, int count) 1731static void noinline
1732pendingcb (EV_P_ ev_prepare *w, int revents)
347{ 1733{
348 while (count--)
349 {
350 base->head = 0;
351 base->events = EV_NONE;
352 base->reify = 0;
353
354 ++base;
355 }
356} 1734}
357 1735
358void 1736void noinline
359ev_feed_event (EV_P_ void *w, int revents) 1737ev_feed_event (EV_P_ void *w, int revents) EV_THROW
360{ 1738{
361 W w_ = (W)w; 1739 W w_ = (W)w;
1740 int pri = ABSPRI (w_);
362 1741
363 if (w_->pending) 1742 if (expect_false (w_->pending))
1743 pendings [pri][w_->pending - 1].events |= revents;
1744 else
364 { 1745 {
1746 w_->pending = ++pendingcnt [pri];
1747 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1748 pendings [pri][w_->pending - 1].w = w_;
365 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1749 pendings [pri][w_->pending - 1].events = revents;
366 return;
367 } 1750 }
368 1751
369 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1752 pendingpri = NUMPRI - 1;
370 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
371 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
372 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
373} 1753}
374 1754
375static void 1755inline_speed void
1756feed_reverse (EV_P_ W w)
1757{
1758 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1759 rfeeds [rfeedcnt++] = w;
1760}
1761
1762inline_size void
1763feed_reverse_done (EV_P_ int revents)
1764{
1765 do
1766 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1767 while (rfeedcnt);
1768}
1769
1770inline_speed void
376queue_events (EV_P_ W *events, int eventcnt, int type) 1771queue_events (EV_P_ W *events, int eventcnt, int type)
377{ 1772{
378 int i; 1773 int i;
379 1774
380 for (i = 0; i < eventcnt; ++i) 1775 for (i = 0; i < eventcnt; ++i)
381 ev_feed_event (EV_A_ events [i], type); 1776 ev_feed_event (EV_A_ events [i], type);
382} 1777}
383 1778
1779/*****************************************************************************/
1780
384inline void 1781inline_speed void
385fd_event (EV_P_ int fd, int revents) 1782fd_event_nocheck (EV_P_ int fd, int revents)
386{ 1783{
387 ANFD *anfd = anfds + fd; 1784 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 1785 ev_io *w;
389 1786
390 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1787 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
391 { 1788 {
392 int ev = w->events & revents; 1789 int ev = w->events & revents;
393 1790
394 if (ev) 1791 if (ev)
395 ev_feed_event (EV_A_ (W)w, ev); 1792 ev_feed_event (EV_A_ (W)w, ev);
396 } 1793 }
397} 1794}
398 1795
1796/* do not submit kernel events for fds that have reify set */
1797/* because that means they changed while we were polling for new events */
1798inline_speed void
1799fd_event (EV_P_ int fd, int revents)
1800{
1801 ANFD *anfd = anfds + fd;
1802
1803 if (expect_true (!anfd->reify))
1804 fd_event_nocheck (EV_A_ fd, revents);
1805}
1806
399void 1807void
400ev_feed_fd_event (EV_P_ int fd, int revents) 1808ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
401{ 1809{
1810 if (fd >= 0 && fd < anfdmax)
402 fd_event (EV_A_ fd, revents); 1811 fd_event_nocheck (EV_A_ fd, revents);
403} 1812}
404 1813
405/*****************************************************************************/ 1814/* make sure the external fd watch events are in-sync */
406 1815/* with the kernel/libev internal state */
407static void 1816inline_size void
408fd_reify (EV_P) 1817fd_reify (EV_P)
409{ 1818{
410 int i; 1819 int i;
411 1820
1821#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
412 for (i = 0; i < fdchangecnt; ++i) 1822 for (i = 0; i < fdchangecnt; ++i)
413 { 1823 {
414 int fd = fdchanges [i]; 1824 int fd = fdchanges [i];
415 ANFD *anfd = anfds + fd; 1825 ANFD *anfd = anfds + fd;
416 struct ev_io *w;
417 1826
418 int events = 0; 1827 if (anfd->reify & EV__IOFDSET && anfd->head)
419
420 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
421 events |= w->events;
422
423#if EV_SELECT_IS_WINSOCKET
424 if (events)
425 { 1828 {
1829 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1830
1831 if (handle != anfd->handle)
1832 {
426 unsigned long argp; 1833 unsigned long arg;
427 anfd->handle = _get_osfhandle (fd); 1834
428 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1835 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1836
1837 /* handle changed, but fd didn't - we need to do it in two steps */
1838 backend_modify (EV_A_ fd, anfd->events, 0);
1839 anfd->events = 0;
1840 anfd->handle = handle;
1841 }
429 } 1842 }
1843 }
430#endif 1844#endif
431 1845
1846 for (i = 0; i < fdchangecnt; ++i)
1847 {
1848 int fd = fdchanges [i];
1849 ANFD *anfd = anfds + fd;
1850 ev_io *w;
1851
1852 unsigned char o_events = anfd->events;
1853 unsigned char o_reify = anfd->reify;
1854
432 anfd->reify = 0; 1855 anfd->reify = 0;
433 1856
434 method_modify (EV_A_ fd, anfd->events, events); 1857 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1858 {
435 anfd->events = events; 1859 anfd->events = 0;
1860
1861 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1862 anfd->events |= (unsigned char)w->events;
1863
1864 if (o_events != anfd->events)
1865 o_reify = EV__IOFDSET; /* actually |= */
1866 }
1867
1868 if (o_reify & EV__IOFDSET)
1869 backend_modify (EV_A_ fd, o_events, anfd->events);
436 } 1870 }
437 1871
438 fdchangecnt = 0; 1872 fdchangecnt = 0;
439} 1873}
440 1874
441static void 1875/* something about the given fd changed */
1876inline_size void
442fd_change (EV_P_ int fd) 1877fd_change (EV_P_ int fd, int flags)
443{ 1878{
444 if (anfds [fd].reify) 1879 unsigned char reify = anfds [fd].reify;
445 return;
446
447 anfds [fd].reify = 1; 1880 anfds [fd].reify |= flags;
448 1881
1882 if (expect_true (!reify))
1883 {
449 ++fdchangecnt; 1884 ++fdchangecnt;
450 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1885 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
451 fdchanges [fdchangecnt - 1] = fd; 1886 fdchanges [fdchangecnt - 1] = fd;
1887 }
452} 1888}
453 1889
454static void 1890/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1891inline_speed void ecb_cold
455fd_kill (EV_P_ int fd) 1892fd_kill (EV_P_ int fd)
456{ 1893{
457 struct ev_io *w; 1894 ev_io *w;
458 1895
459 while ((w = (struct ev_io *)anfds [fd].head)) 1896 while ((w = (ev_io *)anfds [fd].head))
460 { 1897 {
461 ev_io_stop (EV_A_ w); 1898 ev_io_stop (EV_A_ w);
462 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1899 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
463 } 1900 }
464} 1901}
465 1902
466static int 1903/* check whether the given fd is actually valid, for error recovery */
1904inline_size int ecb_cold
467fd_valid (int fd) 1905fd_valid (int fd)
468{ 1906{
469#ifdef _WIN32 1907#ifdef _WIN32
470 return _get_osfhandle (fd) != -1; 1908 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
471#else 1909#else
472 return fcntl (fd, F_GETFD) != -1; 1910 return fcntl (fd, F_GETFD) != -1;
473#endif 1911#endif
474} 1912}
475 1913
476/* called on EBADF to verify fds */ 1914/* called on EBADF to verify fds */
477static void 1915static void noinline ecb_cold
478fd_ebadf (EV_P) 1916fd_ebadf (EV_P)
479{ 1917{
480 int fd; 1918 int fd;
481 1919
482 for (fd = 0; fd < anfdmax; ++fd) 1920 for (fd = 0; fd < anfdmax; ++fd)
483 if (anfds [fd].events) 1921 if (anfds [fd].events)
484 if (!fd_valid (fd) == -1 && errno == EBADF) 1922 if (!fd_valid (fd) && errno == EBADF)
485 fd_kill (EV_A_ fd); 1923 fd_kill (EV_A_ fd);
486} 1924}
487 1925
488/* called on ENOMEM in select/poll to kill some fds and retry */ 1926/* called on ENOMEM in select/poll to kill some fds and retry */
489static void 1927static void noinline ecb_cold
490fd_enomem (EV_P) 1928fd_enomem (EV_P)
491{ 1929{
492 int fd; 1930 int fd;
493 1931
494 for (fd = anfdmax; fd--; ) 1932 for (fd = anfdmax; fd--; )
495 if (anfds [fd].events) 1933 if (anfds [fd].events)
496 { 1934 {
497 fd_kill (EV_A_ fd); 1935 fd_kill (EV_A_ fd);
498 return; 1936 break;
499 } 1937 }
500} 1938}
501 1939
502/* usually called after fork if method needs to re-arm all fds from scratch */ 1940/* usually called after fork if backend needs to re-arm all fds from scratch */
503static void 1941static void noinline
504fd_rearm_all (EV_P) 1942fd_rearm_all (EV_P)
505{ 1943{
506 int fd; 1944 int fd;
507 1945
508 /* this should be highly optimised to not do anything but set a flag */
509 for (fd = 0; fd < anfdmax; ++fd) 1946 for (fd = 0; fd < anfdmax; ++fd)
510 if (anfds [fd].events) 1947 if (anfds [fd].events)
511 { 1948 {
512 anfds [fd].events = 0; 1949 anfds [fd].events = 0;
513 fd_change (EV_A_ fd); 1950 anfds [fd].emask = 0;
1951 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
514 } 1952 }
515} 1953}
516 1954
517/*****************************************************************************/ 1955/* used to prepare libev internal fd's */
518 1956/* this is not fork-safe */
519static void
520upheap (WT *heap, int k)
521{
522 WT w = heap [k];
523
524 while (k && heap [k >> 1]->at > w->at)
525 {
526 heap [k] = heap [k >> 1];
527 ((W)heap [k])->active = k + 1;
528 k >>= 1;
529 }
530
531 heap [k] = w;
532 ((W)heap [k])->active = k + 1;
533
534}
535
536static void
537downheap (WT *heap, int N, int k)
538{
539 WT w = heap [k];
540
541 while (k < (N >> 1))
542 {
543 int j = k << 1;
544
545 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
546 ++j;
547
548 if (w->at <= heap [j]->at)
549 break;
550
551 heap [k] = heap [j];
552 ((W)heap [k])->active = k + 1;
553 k = j;
554 }
555
556 heap [k] = w;
557 ((W)heap [k])->active = k + 1;
558}
559
560inline void 1957inline_speed void
561adjustheap (WT *heap, int N, int k)
562{
563 upheap (heap, k);
564 downheap (heap, N, k);
565}
566
567/*****************************************************************************/
568
569typedef struct
570{
571 WL head;
572 sig_atomic_t volatile gotsig;
573} ANSIG;
574
575static ANSIG *signals;
576static int signalmax;
577
578static int sigpipe [2];
579static sig_atomic_t volatile gotsig;
580static struct ev_io sigev;
581
582static void
583signals_init (ANSIG *base, int count)
584{
585 while (count--)
586 {
587 base->head = 0;
588 base->gotsig = 0;
589
590 ++base;
591 }
592}
593
594static void
595sighandler (int signum)
596{
597#if _WIN32
598 signal (signum, sighandler);
599#endif
600
601 signals [signum - 1].gotsig = 1;
602
603 if (!gotsig)
604 {
605 int old_errno = errno;
606 gotsig = 1;
607 write (sigpipe [1], &signum, 1);
608 errno = old_errno;
609 }
610}
611
612void
613ev_feed_signal_event (EV_P_ int signum)
614{
615 WL w;
616
617#if EV_MULTIPLICITY
618 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
619#endif
620
621 --signum;
622
623 if (signum < 0 || signum >= signalmax)
624 return;
625
626 signals [signum].gotsig = 0;
627
628 for (w = signals [signum].head; w; w = w->next)
629 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
630}
631
632static void
633sigcb (EV_P_ struct ev_io *iow, int revents)
634{
635 int signum;
636
637 read (sigpipe [0], &revents, 1);
638 gotsig = 0;
639
640 for (signum = signalmax; signum--; )
641 if (signals [signum].gotsig)
642 ev_feed_signal_event (EV_A_ signum + 1);
643}
644
645inline void
646fd_intern (int fd) 1958fd_intern (int fd)
647{ 1959{
648#ifdef _WIN32 1960#ifdef _WIN32
649 int arg = 1; 1961 unsigned long arg = 1;
650 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1962 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
651#else 1963#else
652 fcntl (fd, F_SETFD, FD_CLOEXEC); 1964 fcntl (fd, F_SETFD, FD_CLOEXEC);
653 fcntl (fd, F_SETFL, O_NONBLOCK); 1965 fcntl (fd, F_SETFL, O_NONBLOCK);
654#endif 1966#endif
655} 1967}
656 1968
1969/*****************************************************************************/
1970
1971/*
1972 * the heap functions want a real array index. array index 0 is guaranteed to not
1973 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1974 * the branching factor of the d-tree.
1975 */
1976
1977/*
1978 * at the moment we allow libev the luxury of two heaps,
1979 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1980 * which is more cache-efficient.
1981 * the difference is about 5% with 50000+ watchers.
1982 */
1983#if EV_USE_4HEAP
1984
1985#define DHEAP 4
1986#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1987#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1988#define UPHEAP_DONE(p,k) ((p) == (k))
1989
1990/* away from the root */
1991inline_speed void
1992downheap (ANHE *heap, int N, int k)
1993{
1994 ANHE he = heap [k];
1995 ANHE *E = heap + N + HEAP0;
1996
1997 for (;;)
1998 {
1999 ev_tstamp minat;
2000 ANHE *minpos;
2001 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2002
2003 /* find minimum child */
2004 if (expect_true (pos + DHEAP - 1 < E))
2005 {
2006 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2007 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2008 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2009 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2010 }
2011 else if (pos < E)
2012 {
2013 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2014 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2015 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2016 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2017 }
2018 else
2019 break;
2020
2021 if (ANHE_at (he) <= minat)
2022 break;
2023
2024 heap [k] = *minpos;
2025 ev_active (ANHE_w (*minpos)) = k;
2026
2027 k = minpos - heap;
2028 }
2029
2030 heap [k] = he;
2031 ev_active (ANHE_w (he)) = k;
2032}
2033
2034#else /* 4HEAP */
2035
2036#define HEAP0 1
2037#define HPARENT(k) ((k) >> 1)
2038#define UPHEAP_DONE(p,k) (!(p))
2039
2040/* away from the root */
2041inline_speed void
2042downheap (ANHE *heap, int N, int k)
2043{
2044 ANHE he = heap [k];
2045
2046 for (;;)
2047 {
2048 int c = k << 1;
2049
2050 if (c >= N + HEAP0)
2051 break;
2052
2053 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2054 ? 1 : 0;
2055
2056 if (ANHE_at (he) <= ANHE_at (heap [c]))
2057 break;
2058
2059 heap [k] = heap [c];
2060 ev_active (ANHE_w (heap [k])) = k;
2061
2062 k = c;
2063 }
2064
2065 heap [k] = he;
2066 ev_active (ANHE_w (he)) = k;
2067}
2068#endif
2069
2070/* towards the root */
2071inline_speed void
2072upheap (ANHE *heap, int k)
2073{
2074 ANHE he = heap [k];
2075
2076 for (;;)
2077 {
2078 int p = HPARENT (k);
2079
2080 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2081 break;
2082
2083 heap [k] = heap [p];
2084 ev_active (ANHE_w (heap [k])) = k;
2085 k = p;
2086 }
2087
2088 heap [k] = he;
2089 ev_active (ANHE_w (he)) = k;
2090}
2091
2092/* move an element suitably so it is in a correct place */
2093inline_size void
2094adjustheap (ANHE *heap, int N, int k)
2095{
2096 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2097 upheap (heap, k);
2098 else
2099 downheap (heap, N, k);
2100}
2101
2102/* rebuild the heap: this function is used only once and executed rarely */
2103inline_size void
2104reheap (ANHE *heap, int N)
2105{
2106 int i;
2107
2108 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2109 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2110 for (i = 0; i < N; ++i)
2111 upheap (heap, i + HEAP0);
2112}
2113
2114/*****************************************************************************/
2115
2116/* associate signal watchers to a signal signal */
2117typedef struct
2118{
2119 EV_ATOMIC_T pending;
2120#if EV_MULTIPLICITY
2121 EV_P;
2122#endif
2123 WL head;
2124} ANSIG;
2125
2126static ANSIG signals [EV_NSIG - 1];
2127
2128/*****************************************************************************/
2129
2130#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2131
2132static void noinline ecb_cold
2133evpipe_init (EV_P)
2134{
2135 if (!ev_is_active (&pipe_w))
2136 {
2137 int fds [2];
2138
2139# if EV_USE_EVENTFD
2140 fds [0] = -1;
2141 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2142 if (fds [1] < 0 && errno == EINVAL)
2143 fds [1] = eventfd (0, 0);
2144
2145 if (fds [1] < 0)
2146# endif
2147 {
2148 while (pipe (fds))
2149 ev_syserr ("(libev) error creating signal/async pipe");
2150
2151 fd_intern (fds [0]);
2152 }
2153
2154 evpipe [0] = fds [0];
2155
2156 if (evpipe [1] < 0)
2157 evpipe [1] = fds [1]; /* first call, set write fd */
2158 else
2159 {
2160 /* on subsequent calls, do not change evpipe [1] */
2161 /* so that evpipe_write can always rely on its value. */
2162 /* this branch does not do anything sensible on windows, */
2163 /* so must not be executed on windows */
2164
2165 dup2 (fds [1], evpipe [1]);
2166 close (fds [1]);
2167 }
2168
2169 fd_intern (evpipe [1]);
2170
2171 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2172 ev_io_start (EV_A_ &pipe_w);
2173 ev_unref (EV_A); /* watcher should not keep loop alive */
2174 }
2175}
2176
2177inline_speed void
2178evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2179{
2180 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2181
2182 if (expect_true (*flag))
2183 return;
2184
2185 *flag = 1;
2186 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2187
2188 pipe_write_skipped = 1;
2189
2190 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2191
2192 if (pipe_write_wanted)
2193 {
2194 int old_errno;
2195
2196 pipe_write_skipped = 0;
2197 ECB_MEMORY_FENCE_RELEASE;
2198
2199 old_errno = errno; /* save errno because write will clobber it */
2200
2201#if EV_USE_EVENTFD
2202 if (evpipe [0] < 0)
2203 {
2204 uint64_t counter = 1;
2205 write (evpipe [1], &counter, sizeof (uint64_t));
2206 }
2207 else
2208#endif
2209 {
2210#ifdef _WIN32
2211 WSABUF buf;
2212 DWORD sent;
2213 buf.buf = &buf;
2214 buf.len = 1;
2215 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2216#else
2217 write (evpipe [1], &(evpipe [1]), 1);
2218#endif
2219 }
2220
2221 errno = old_errno;
2222 }
2223}
2224
2225/* called whenever the libev signal pipe */
2226/* got some events (signal, async) */
657static void 2227static void
658siginit (EV_P) 2228pipecb (EV_P_ ev_io *iow, int revents)
659{ 2229{
660 fd_intern (sigpipe [0]); 2230 int i;
661 fd_intern (sigpipe [1]);
662 2231
663 ev_io_set (&sigev, sigpipe [0], EV_READ); 2232 if (revents & EV_READ)
664 ev_io_start (EV_A_ &sigev); 2233 {
665 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2234#if EV_USE_EVENTFD
2235 if (evpipe [0] < 0)
2236 {
2237 uint64_t counter;
2238 read (evpipe [1], &counter, sizeof (uint64_t));
2239 }
2240 else
2241#endif
2242 {
2243 char dummy[4];
2244#ifdef _WIN32
2245 WSABUF buf;
2246 DWORD recvd;
2247 DWORD flags = 0;
2248 buf.buf = dummy;
2249 buf.len = sizeof (dummy);
2250 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2251#else
2252 read (evpipe [0], &dummy, sizeof (dummy));
2253#endif
2254 }
2255 }
2256
2257 pipe_write_skipped = 0;
2258
2259 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2260
2261#if EV_SIGNAL_ENABLE
2262 if (sig_pending)
2263 {
2264 sig_pending = 0;
2265
2266 ECB_MEMORY_FENCE;
2267
2268 for (i = EV_NSIG - 1; i--; )
2269 if (expect_false (signals [i].pending))
2270 ev_feed_signal_event (EV_A_ i + 1);
2271 }
2272#endif
2273
2274#if EV_ASYNC_ENABLE
2275 if (async_pending)
2276 {
2277 async_pending = 0;
2278
2279 ECB_MEMORY_FENCE;
2280
2281 for (i = asynccnt; i--; )
2282 if (asyncs [i]->sent)
2283 {
2284 asyncs [i]->sent = 0;
2285 ECB_MEMORY_FENCE_RELEASE;
2286 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2287 }
2288 }
2289#endif
666} 2290}
667 2291
668/*****************************************************************************/ 2292/*****************************************************************************/
669 2293
670static struct ev_child *childs [PID_HASHSIZE]; 2294void
2295ev_feed_signal (int signum) EV_THROW
2296{
2297#if EV_MULTIPLICITY
2298 EV_P;
2299 ECB_MEMORY_FENCE_ACQUIRE;
2300 EV_A = signals [signum - 1].loop;
671 2301
2302 if (!EV_A)
2303 return;
2304#endif
2305
2306 signals [signum - 1].pending = 1;
2307 evpipe_write (EV_A_ &sig_pending);
2308}
2309
2310static void
2311ev_sighandler (int signum)
2312{
672#ifndef _WIN32 2313#ifdef _WIN32
2314 signal (signum, ev_sighandler);
2315#endif
673 2316
2317 ev_feed_signal (signum);
2318}
2319
2320void noinline
2321ev_feed_signal_event (EV_P_ int signum) EV_THROW
2322{
2323 WL w;
2324
2325 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2326 return;
2327
2328 --signum;
2329
2330#if EV_MULTIPLICITY
2331 /* it is permissible to try to feed a signal to the wrong loop */
2332 /* or, likely more useful, feeding a signal nobody is waiting for */
2333
2334 if (expect_false (signals [signum].loop != EV_A))
2335 return;
2336#endif
2337
2338 signals [signum].pending = 0;
2339 ECB_MEMORY_FENCE_RELEASE;
2340
2341 for (w = signals [signum].head; w; w = w->next)
2342 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2343}
2344
2345#if EV_USE_SIGNALFD
2346static void
2347sigfdcb (EV_P_ ev_io *iow, int revents)
2348{
2349 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2350
2351 for (;;)
2352 {
2353 ssize_t res = read (sigfd, si, sizeof (si));
2354
2355 /* not ISO-C, as res might be -1, but works with SuS */
2356 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2357 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2358
2359 if (res < (ssize_t)sizeof (si))
2360 break;
2361 }
2362}
2363#endif
2364
2365#endif
2366
2367/*****************************************************************************/
2368
2369#if EV_CHILD_ENABLE
2370static WL childs [EV_PID_HASHSIZE];
2371
674static struct ev_signal childev; 2372static ev_signal childev;
2373
2374#ifndef WIFCONTINUED
2375# define WIFCONTINUED(status) 0
2376#endif
2377
2378/* handle a single child status event */
2379inline_speed void
2380child_reap (EV_P_ int chain, int pid, int status)
2381{
2382 ev_child *w;
2383 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2384
2385 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2386 {
2387 if ((w->pid == pid || !w->pid)
2388 && (!traced || (w->flags & 1)))
2389 {
2390 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2391 w->rpid = pid;
2392 w->rstatus = status;
2393 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2394 }
2395 }
2396}
675 2397
676#ifndef WCONTINUED 2398#ifndef WCONTINUED
677# define WCONTINUED 0 2399# define WCONTINUED 0
678#endif 2400#endif
679 2401
2402/* called on sigchld etc., calls waitpid */
680static void 2403static void
681child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
682{
683 struct ev_child *w;
684
685 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
686 if (w->pid == pid || !w->pid)
687 {
688 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
689 w->rpid = pid;
690 w->rstatus = status;
691 ev_feed_event (EV_A_ (W)w, EV_CHILD);
692 }
693}
694
695static void
696childcb (EV_P_ struct ev_signal *sw, int revents) 2404childcb (EV_P_ ev_signal *sw, int revents)
697{ 2405{
698 int pid, status; 2406 int pid, status;
699 2407
2408 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
700 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2409 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
701 { 2410 if (!WCONTINUED
2411 || errno != EINVAL
2412 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2413 return;
2414
702 /* make sure we are called again until all childs have been reaped */ 2415 /* make sure we are called again until all children have been reaped */
2416 /* we need to do it this way so that the callback gets called before we continue */
703 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2417 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
704 2418
705 child_reap (EV_A_ sw, pid, pid, status); 2419 child_reap (EV_A_ pid, pid, status);
2420 if ((EV_PID_HASHSIZE) > 1)
706 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2421 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
707 }
708} 2422}
709 2423
710#endif 2424#endif
711 2425
712/*****************************************************************************/ 2426/*****************************************************************************/
713 2427
2428#if EV_USE_IOCP
2429# include "ev_iocp.c"
2430#endif
2431#if EV_USE_PORT
2432# include "ev_port.c"
2433#endif
714#if EV_USE_KQUEUE 2434#if EV_USE_KQUEUE
715# include "ev_kqueue.c" 2435# include "ev_kqueue.c"
716#endif 2436#endif
717#if EV_USE_EPOLL 2437#if EV_USE_EPOLL
718# include "ev_epoll.c" 2438# include "ev_epoll.c"
722#endif 2442#endif
723#if EV_USE_SELECT 2443#if EV_USE_SELECT
724# include "ev_select.c" 2444# include "ev_select.c"
725#endif 2445#endif
726 2446
727int 2447int ecb_cold
728ev_version_major (void) 2448ev_version_major (void) EV_THROW
729{ 2449{
730 return EV_VERSION_MAJOR; 2450 return EV_VERSION_MAJOR;
731} 2451}
732 2452
733int 2453int ecb_cold
734ev_version_minor (void) 2454ev_version_minor (void) EV_THROW
735{ 2455{
736 return EV_VERSION_MINOR; 2456 return EV_VERSION_MINOR;
737} 2457}
738 2458
739/* return true if we are running with elevated privileges and should ignore env variables */ 2459/* return true if we are running with elevated privileges and should ignore env variables */
740static int 2460int inline_size ecb_cold
741enable_secure (void) 2461enable_secure (void)
742{ 2462{
743#ifdef _WIN32 2463#ifdef _WIN32
744 return 0; 2464 return 0;
745#else 2465#else
746 return getuid () != geteuid () 2466 return getuid () != geteuid ()
747 || getgid () != getegid (); 2467 || getgid () != getegid ();
748#endif 2468#endif
749} 2469}
750 2470
751int 2471unsigned int ecb_cold
752ev_method (EV_P) 2472ev_supported_backends (void) EV_THROW
753{ 2473{
754 return method; 2474 unsigned int flags = 0;
755}
756 2475
757static void 2476 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
758loop_init (EV_P_ int methods) 2477 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2478 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2479 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2480 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2481
2482 return flags;
2483}
2484
2485unsigned int ecb_cold
2486ev_recommended_backends (void) EV_THROW
759{ 2487{
760 if (!method) 2488 unsigned int flags = ev_supported_backends ();
2489
2490#ifndef __NetBSD__
2491 /* kqueue is borked on everything but netbsd apparently */
2492 /* it usually doesn't work correctly on anything but sockets and pipes */
2493 flags &= ~EVBACKEND_KQUEUE;
2494#endif
2495#ifdef __APPLE__
2496 /* only select works correctly on that "unix-certified" platform */
2497 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2498 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2499#endif
2500#ifdef __FreeBSD__
2501 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2502#endif
2503
2504 return flags;
2505}
2506
2507unsigned int ecb_cold
2508ev_embeddable_backends (void) EV_THROW
2509{
2510 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2511
2512 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2513 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2514 flags &= ~EVBACKEND_EPOLL;
2515
2516 return flags;
2517}
2518
2519unsigned int
2520ev_backend (EV_P) EV_THROW
2521{
2522 return backend;
2523}
2524
2525#if EV_FEATURE_API
2526unsigned int
2527ev_iteration (EV_P) EV_THROW
2528{
2529 return loop_count;
2530}
2531
2532unsigned int
2533ev_depth (EV_P) EV_THROW
2534{
2535 return loop_depth;
2536}
2537
2538void
2539ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2540{
2541 io_blocktime = interval;
2542}
2543
2544void
2545ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2546{
2547 timeout_blocktime = interval;
2548}
2549
2550void
2551ev_set_userdata (EV_P_ void *data) EV_THROW
2552{
2553 userdata = data;
2554}
2555
2556void *
2557ev_userdata (EV_P) EV_THROW
2558{
2559 return userdata;
2560}
2561
2562void
2563ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2564{
2565 invoke_cb = invoke_pending_cb;
2566}
2567
2568void
2569ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2570{
2571 release_cb = release;
2572 acquire_cb = acquire;
2573}
2574#endif
2575
2576/* initialise a loop structure, must be zero-initialised */
2577static void noinline ecb_cold
2578loop_init (EV_P_ unsigned int flags) EV_THROW
2579{
2580 if (!backend)
761 { 2581 {
2582 origflags = flags;
2583
2584#if EV_USE_REALTIME
2585 if (!have_realtime)
2586 {
2587 struct timespec ts;
2588
2589 if (!clock_gettime (CLOCK_REALTIME, &ts))
2590 have_realtime = 1;
2591 }
2592#endif
2593
762#if EV_USE_MONOTONIC 2594#if EV_USE_MONOTONIC
2595 if (!have_monotonic)
763 { 2596 {
764 struct timespec ts; 2597 struct timespec ts;
2598
765 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2599 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
766 have_monotonic = 1; 2600 have_monotonic = 1;
767 } 2601 }
768#endif 2602#endif
769 2603
2604 /* pid check not overridable via env */
2605#ifndef _WIN32
2606 if (flags & EVFLAG_FORKCHECK)
2607 curpid = getpid ();
2608#endif
2609
2610 if (!(flags & EVFLAG_NOENV)
2611 && !enable_secure ()
2612 && getenv ("LIBEV_FLAGS"))
2613 flags = atoi (getenv ("LIBEV_FLAGS"));
2614
770 ev_rt_now = ev_time (); 2615 ev_rt_now = ev_time ();
771 mn_now = get_clock (); 2616 mn_now = get_clock ();
772 now_floor = mn_now; 2617 now_floor = mn_now;
773 rtmn_diff = ev_rt_now - mn_now; 2618 rtmn_diff = ev_rt_now - mn_now;
2619#if EV_FEATURE_API
2620 invoke_cb = ev_invoke_pending;
2621#endif
774 2622
775 if (methods == EVMETHOD_AUTO) 2623 io_blocktime = 0.;
776 if (!enable_secure () && getenv ("LIBEV_METHODS")) 2624 timeout_blocktime = 0.;
777 methods = atoi (getenv ("LIBEV_METHODS")); 2625 backend = 0;
778 else 2626 backend_fd = -1;
779 methods = EVMETHOD_ANY; 2627 sig_pending = 0;
2628#if EV_ASYNC_ENABLE
2629 async_pending = 0;
2630#endif
2631 pipe_write_skipped = 0;
2632 pipe_write_wanted = 0;
2633 evpipe [0] = -1;
2634 evpipe [1] = -1;
2635#if EV_USE_INOTIFY
2636 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2637#endif
2638#if EV_USE_SIGNALFD
2639 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2640#endif
780 2641
781 method = 0; 2642 if (!(flags & EVBACKEND_MASK))
2643 flags |= ev_recommended_backends ();
2644
2645#if EV_USE_IOCP
2646 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2647#endif
2648#if EV_USE_PORT
2649 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2650#endif
782#if EV_USE_KQUEUE 2651#if EV_USE_KQUEUE
783 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 2652 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
784#endif 2653#endif
785#if EV_USE_EPOLL 2654#if EV_USE_EPOLL
786 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 2655 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
787#endif 2656#endif
788#if EV_USE_POLL 2657#if EV_USE_POLL
789 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 2658 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
790#endif 2659#endif
791#if EV_USE_SELECT 2660#if EV_USE_SELECT
792 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 2661 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
793#endif 2662#endif
794 2663
2664 ev_prepare_init (&pending_w, pendingcb);
2665
2666#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
795 ev_init (&sigev, sigcb); 2667 ev_init (&pipe_w, pipecb);
796 ev_set_priority (&sigev, EV_MAXPRI); 2668 ev_set_priority (&pipe_w, EV_MAXPRI);
2669#endif
797 } 2670 }
798} 2671}
799 2672
800void 2673/* free up a loop structure */
2674void ecb_cold
801loop_destroy (EV_P) 2675ev_loop_destroy (EV_P)
802{ 2676{
803 int i; 2677 int i;
804 2678
2679#if EV_MULTIPLICITY
2680 /* mimic free (0) */
2681 if (!EV_A)
2682 return;
2683#endif
2684
2685#if EV_CLEANUP_ENABLE
2686 /* queue cleanup watchers (and execute them) */
2687 if (expect_false (cleanupcnt))
2688 {
2689 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2690 EV_INVOKE_PENDING;
2691 }
2692#endif
2693
2694#if EV_CHILD_ENABLE
2695 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2696 {
2697 ev_ref (EV_A); /* child watcher */
2698 ev_signal_stop (EV_A_ &childev);
2699 }
2700#endif
2701
2702 if (ev_is_active (&pipe_w))
2703 {
2704 /*ev_ref (EV_A);*/
2705 /*ev_io_stop (EV_A_ &pipe_w);*/
2706
2707 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2708 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2709 }
2710
2711#if EV_USE_SIGNALFD
2712 if (ev_is_active (&sigfd_w))
2713 close (sigfd);
2714#endif
2715
2716#if EV_USE_INOTIFY
2717 if (fs_fd >= 0)
2718 close (fs_fd);
2719#endif
2720
2721 if (backend_fd >= 0)
2722 close (backend_fd);
2723
2724#if EV_USE_IOCP
2725 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2726#endif
2727#if EV_USE_PORT
2728 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2729#endif
805#if EV_USE_KQUEUE 2730#if EV_USE_KQUEUE
806 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 2731 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
807#endif 2732#endif
808#if EV_USE_EPOLL 2733#if EV_USE_EPOLL
809 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 2734 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
810#endif 2735#endif
811#if EV_USE_POLL 2736#if EV_USE_POLL
812 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 2737 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
813#endif 2738#endif
814#if EV_USE_SELECT 2739#if EV_USE_SELECT
815 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 2740 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
816#endif 2741#endif
817 2742
818 for (i = NUMPRI; i--; ) 2743 for (i = NUMPRI; i--; )
2744 {
819 array_free (pending, [i]); 2745 array_free (pending, [i]);
2746#if EV_IDLE_ENABLE
2747 array_free (idle, [i]);
2748#endif
2749 }
2750
2751 ev_free (anfds); anfds = 0; anfdmax = 0;
820 2752
821 /* have to use the microsoft-never-gets-it-right macro */ 2753 /* have to use the microsoft-never-gets-it-right macro */
2754 array_free (rfeed, EMPTY);
822 array_free (fdchange, EMPTY); 2755 array_free (fdchange, EMPTY);
823 array_free (timer, EMPTY); 2756 array_free (timer, EMPTY);
824#if EV_PERIODICS 2757#if EV_PERIODIC_ENABLE
825 array_free (periodic, EMPTY); 2758 array_free (periodic, EMPTY);
826#endif 2759#endif
2760#if EV_FORK_ENABLE
2761 array_free (fork, EMPTY);
2762#endif
2763#if EV_CLEANUP_ENABLE
827 array_free (idle, EMPTY); 2764 array_free (cleanup, EMPTY);
2765#endif
828 array_free (prepare, EMPTY); 2766 array_free (prepare, EMPTY);
829 array_free (check, EMPTY); 2767 array_free (check, EMPTY);
2768#if EV_ASYNC_ENABLE
2769 array_free (async, EMPTY);
2770#endif
830 2771
831 method = 0; 2772 backend = 0;
832}
833 2773
834static void 2774#if EV_MULTIPLICITY
2775 if (ev_is_default_loop (EV_A))
2776#endif
2777 ev_default_loop_ptr = 0;
2778#if EV_MULTIPLICITY
2779 else
2780 ev_free (EV_A);
2781#endif
2782}
2783
2784#if EV_USE_INOTIFY
2785inline_size void infy_fork (EV_P);
2786#endif
2787
2788inline_size void
835loop_fork (EV_P) 2789loop_fork (EV_P)
836{ 2790{
2791#if EV_USE_PORT
2792 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2793#endif
2794#if EV_USE_KQUEUE
2795 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2796#endif
837#if EV_USE_EPOLL 2797#if EV_USE_EPOLL
838 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2798 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
839#endif 2799#endif
840#if EV_USE_KQUEUE 2800#if EV_USE_INOTIFY
841 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 2801 infy_fork (EV_A);
842#endif 2802#endif
843 2803
2804#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
844 if (ev_is_active (&sigev)) 2805 if (ev_is_active (&pipe_w))
845 { 2806 {
846 /* default loop */ 2807 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
847 2808
848 ev_ref (EV_A); 2809 ev_ref (EV_A);
849 ev_io_stop (EV_A_ &sigev); 2810 ev_io_stop (EV_A_ &pipe_w);
850 close (sigpipe [0]);
851 close (sigpipe [1]);
852 2811
853 while (pipe (sigpipe)) 2812 if (evpipe [0] >= 0)
854 syserr ("(libev) error creating pipe"); 2813 EV_WIN32_CLOSE_FD (evpipe [0]);
855 2814
856 siginit (EV_A); 2815 evpipe_init (EV_A);
2816 /* iterate over everything, in case we missed something before */
2817 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
857 } 2818 }
2819#endif
858 2820
859 postfork = 0; 2821 postfork = 0;
860} 2822}
861 2823
862#if EV_MULTIPLICITY 2824#if EV_MULTIPLICITY
2825
863struct ev_loop * 2826struct ev_loop * ecb_cold
864ev_loop_new (int methods) 2827ev_loop_new (unsigned int flags) EV_THROW
865{ 2828{
866 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2829 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
867 2830
868 memset (loop, 0, sizeof (struct ev_loop)); 2831 memset (EV_A, 0, sizeof (struct ev_loop));
869
870 loop_init (EV_A_ methods); 2832 loop_init (EV_A_ flags);
871 2833
872 if (ev_method (EV_A)) 2834 if (ev_backend (EV_A))
873 return loop; 2835 return EV_A;
874 2836
2837 ev_free (EV_A);
875 return 0; 2838 return 0;
876} 2839}
877 2840
878void 2841#endif /* multiplicity */
879ev_loop_destroy (EV_P)
880{
881 loop_destroy (EV_A);
882 ev_free (loop);
883}
884 2842
885void 2843#if EV_VERIFY
886ev_loop_fork (EV_P) 2844static void noinline ecb_cold
2845verify_watcher (EV_P_ W w)
887{ 2846{
888 postfork = 1; 2847 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
889}
890 2848
2849 if (w->pending)
2850 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2851}
2852
2853static void noinline ecb_cold
2854verify_heap (EV_P_ ANHE *heap, int N)
2855{
2856 int i;
2857
2858 for (i = HEAP0; i < N + HEAP0; ++i)
2859 {
2860 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2861 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2862 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2863
2864 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2865 }
2866}
2867
2868static void noinline ecb_cold
2869array_verify (EV_P_ W *ws, int cnt)
2870{
2871 while (cnt--)
2872 {
2873 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2874 verify_watcher (EV_A_ ws [cnt]);
2875 }
2876}
2877#endif
2878
2879#if EV_FEATURE_API
2880void ecb_cold
2881ev_verify (EV_P) EV_THROW
2882{
2883#if EV_VERIFY
2884 int i;
2885 WL w, w2;
2886
2887 assert (activecnt >= -1);
2888
2889 assert (fdchangemax >= fdchangecnt);
2890 for (i = 0; i < fdchangecnt; ++i)
2891 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2892
2893 assert (anfdmax >= 0);
2894 for (i = 0; i < anfdmax; ++i)
2895 {
2896 int j = 0;
2897
2898 for (w = w2 = anfds [i].head; w; w = w->next)
2899 {
2900 verify_watcher (EV_A_ (W)w);
2901
2902 if (j++ & 1)
2903 {
2904 assert (("libev: io watcher list contains a loop", w != w2));
2905 w2 = w2->next;
2906 }
2907
2908 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2909 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2910 }
2911 }
2912
2913 assert (timermax >= timercnt);
2914 verify_heap (EV_A_ timers, timercnt);
2915
2916#if EV_PERIODIC_ENABLE
2917 assert (periodicmax >= periodiccnt);
2918 verify_heap (EV_A_ periodics, periodiccnt);
2919#endif
2920
2921 for (i = NUMPRI; i--; )
2922 {
2923 assert (pendingmax [i] >= pendingcnt [i]);
2924#if EV_IDLE_ENABLE
2925 assert (idleall >= 0);
2926 assert (idlemax [i] >= idlecnt [i]);
2927 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2928#endif
2929 }
2930
2931#if EV_FORK_ENABLE
2932 assert (forkmax >= forkcnt);
2933 array_verify (EV_A_ (W *)forks, forkcnt);
2934#endif
2935
2936#if EV_CLEANUP_ENABLE
2937 assert (cleanupmax >= cleanupcnt);
2938 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2939#endif
2940
2941#if EV_ASYNC_ENABLE
2942 assert (asyncmax >= asynccnt);
2943 array_verify (EV_A_ (W *)asyncs, asynccnt);
2944#endif
2945
2946#if EV_PREPARE_ENABLE
2947 assert (preparemax >= preparecnt);
2948 array_verify (EV_A_ (W *)prepares, preparecnt);
2949#endif
2950
2951#if EV_CHECK_ENABLE
2952 assert (checkmax >= checkcnt);
2953 array_verify (EV_A_ (W *)checks, checkcnt);
2954#endif
2955
2956# if 0
2957#if EV_CHILD_ENABLE
2958 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2959 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2960#endif
2961# endif
2962#endif
2963}
891#endif 2964#endif
892 2965
893#if EV_MULTIPLICITY 2966#if EV_MULTIPLICITY
894struct ev_loop * 2967struct ev_loop * ecb_cold
895#else 2968#else
896int 2969int
897#endif 2970#endif
898ev_default_loop (int methods) 2971ev_default_loop (unsigned int flags) EV_THROW
899{ 2972{
900 if (sigpipe [0] == sigpipe [1])
901 if (pipe (sigpipe))
902 return 0;
903
904 if (!default_loop) 2973 if (!ev_default_loop_ptr)
905 { 2974 {
906#if EV_MULTIPLICITY 2975#if EV_MULTIPLICITY
907 struct ev_loop *loop = default_loop = &default_loop_struct; 2976 EV_P = ev_default_loop_ptr = &default_loop_struct;
908#else 2977#else
909 default_loop = 1; 2978 ev_default_loop_ptr = 1;
910#endif 2979#endif
911 2980
912 loop_init (EV_A_ methods); 2981 loop_init (EV_A_ flags);
913 2982
914 if (ev_method (EV_A)) 2983 if (ev_backend (EV_A))
915 { 2984 {
916 siginit (EV_A); 2985#if EV_CHILD_ENABLE
917
918#ifndef _WIN32
919 ev_signal_init (&childev, childcb, SIGCHLD); 2986 ev_signal_init (&childev, childcb, SIGCHLD);
920 ev_set_priority (&childev, EV_MAXPRI); 2987 ev_set_priority (&childev, EV_MAXPRI);
921 ev_signal_start (EV_A_ &childev); 2988 ev_signal_start (EV_A_ &childev);
922 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2989 ev_unref (EV_A); /* child watcher should not keep loop alive */
923#endif 2990#endif
924 } 2991 }
925 else 2992 else
926 default_loop = 0; 2993 ev_default_loop_ptr = 0;
927 } 2994 }
928 2995
929 return default_loop; 2996 return ev_default_loop_ptr;
930} 2997}
931 2998
932void 2999void
933ev_default_destroy (void) 3000ev_loop_fork (EV_P) EV_THROW
934{ 3001{
935#if EV_MULTIPLICITY 3002 postfork = 1;
936 struct ev_loop *loop = default_loop;
937#endif
938
939#ifndef _WIN32
940 ev_ref (EV_A); /* child watcher */
941 ev_signal_stop (EV_A_ &childev);
942#endif
943
944 ev_ref (EV_A); /* signal watcher */
945 ev_io_stop (EV_A_ &sigev);
946
947 close (sigpipe [0]); sigpipe [0] = 0;
948 close (sigpipe [1]); sigpipe [1] = 0;
949
950 loop_destroy (EV_A);
951} 3003}
3004
3005/*****************************************************************************/
952 3006
953void 3007void
954ev_default_fork (void) 3008ev_invoke (EV_P_ void *w, int revents)
955{ 3009{
956#if EV_MULTIPLICITY 3010 EV_CB_INVOKE ((W)w, revents);
957 struct ev_loop *loop = default_loop;
958#endif
959
960 if (method)
961 postfork = 1;
962} 3011}
963 3012
964/*****************************************************************************/ 3013unsigned int
965 3014ev_pending_count (EV_P) EV_THROW
966static int
967any_pending (EV_P)
968{ 3015{
969 int pri; 3016 int pri;
3017 unsigned int count = 0;
970 3018
971 for (pri = NUMPRI; pri--; ) 3019 for (pri = NUMPRI; pri--; )
972 if (pendingcnt [pri]) 3020 count += pendingcnt [pri];
973 return 1;
974 3021
975 return 0; 3022 return count;
976} 3023}
977 3024
978static void 3025void noinline
979call_pending (EV_P) 3026ev_invoke_pending (EV_P)
980{ 3027{
981 int pri; 3028 pendingpri = NUMPRI;
982 3029
983 for (pri = NUMPRI; pri--; ) 3030 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3031 {
3032 --pendingpri;
3033
984 while (pendingcnt [pri]) 3034 while (pendingcnt [pendingpri])
985 {
986 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
987
988 if (p->w)
989 { 3035 {
3036 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3037
990 p->w->pending = 0; 3038 p->w->pending = 0;
991 EV_CB_INVOKE (p->w, p->events); 3039 EV_CB_INVOKE (p->w, p->events);
3040 EV_FREQUENT_CHECK;
3041 }
3042 }
3043}
3044
3045#if EV_IDLE_ENABLE
3046/* make idle watchers pending. this handles the "call-idle */
3047/* only when higher priorities are idle" logic */
3048inline_size void
3049idle_reify (EV_P)
3050{
3051 if (expect_false (idleall))
3052 {
3053 int pri;
3054
3055 for (pri = NUMPRI; pri--; )
3056 {
3057 if (pendingcnt [pri])
3058 break;
3059
3060 if (idlecnt [pri])
3061 {
3062 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3063 break;
992 } 3064 }
993 } 3065 }
3066 }
994} 3067}
3068#endif
995 3069
996static void 3070/* make timers pending */
3071inline_size void
997timers_reify (EV_P) 3072timers_reify (EV_P)
998{ 3073{
3074 EV_FREQUENT_CHECK;
3075
999 while (timercnt && ((WT)timers [0])->at <= mn_now) 3076 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1000 { 3077 {
1001 struct ev_timer *w = timers [0]; 3078 do
1002
1003 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1004
1005 /* first reschedule or stop timer */
1006 if (w->repeat)
1007 { 3079 {
3080 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3081
3082 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3083
3084 /* first reschedule or stop timer */
3085 if (w->repeat)
3086 {
3087 ev_at (w) += w->repeat;
3088 if (ev_at (w) < mn_now)
3089 ev_at (w) = mn_now;
3090
1008 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3091 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1009 3092
1010 ((WT)w)->at += w->repeat; 3093 ANHE_at_cache (timers [HEAP0]);
1011 if (((WT)w)->at < mn_now)
1012 ((WT)w)->at = mn_now;
1013
1014 downheap ((WT *)timers, timercnt, 0); 3094 downheap (timers, timercnt, HEAP0);
3095 }
3096 else
3097 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3098
3099 EV_FREQUENT_CHECK;
3100 feed_reverse (EV_A_ (W)w);
1015 } 3101 }
1016 else 3102 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1017 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1018 3103
1019 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3104 feed_reverse_done (EV_A_ EV_TIMER);
3105 }
3106}
3107
3108#if EV_PERIODIC_ENABLE
3109
3110static void noinline
3111periodic_recalc (EV_P_ ev_periodic *w)
3112{
3113 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3114 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3115
3116 /* the above almost always errs on the low side */
3117 while (at <= ev_rt_now)
1020 } 3118 {
1021} 3119 ev_tstamp nat = at + w->interval;
1022 3120
1023#if EV_PERIODICS 3121 /* when resolution fails us, we use ev_rt_now */
1024static void 3122 if (expect_false (nat == at))
3123 {
3124 at = ev_rt_now;
3125 break;
3126 }
3127
3128 at = nat;
3129 }
3130
3131 ev_at (w) = at;
3132}
3133
3134/* make periodics pending */
3135inline_size void
1025periodics_reify (EV_P) 3136periodics_reify (EV_P)
1026{ 3137{
3138 EV_FREQUENT_CHECK;
3139
1027 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 3140 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1028 { 3141 {
1029 struct ev_periodic *w = periodics [0]; 3142 do
3143 {
3144 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1030 3145
1031 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 3146 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1032 3147
1033 /* first reschedule or stop timer */ 3148 /* first reschedule or stop timer */
3149 if (w->reschedule_cb)
3150 {
3151 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3152
3153 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3154
3155 ANHE_at_cache (periodics [HEAP0]);
3156 downheap (periodics, periodiccnt, HEAP0);
3157 }
3158 else if (w->interval)
3159 {
3160 periodic_recalc (EV_A_ w);
3161 ANHE_at_cache (periodics [HEAP0]);
3162 downheap (periodics, periodiccnt, HEAP0);
3163 }
3164 else
3165 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3166
3167 EV_FREQUENT_CHECK;
3168 feed_reverse (EV_A_ (W)w);
3169 }
3170 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3171
3172 feed_reverse_done (EV_A_ EV_PERIODIC);
3173 }
3174}
3175
3176/* simply recalculate all periodics */
3177/* TODO: maybe ensure that at least one event happens when jumping forward? */
3178static void noinline ecb_cold
3179periodics_reschedule (EV_P)
3180{
3181 int i;
3182
3183 /* adjust periodics after time jump */
3184 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3185 {
3186 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3187
1034 if (w->reschedule_cb) 3188 if (w->reschedule_cb)
3189 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3190 else if (w->interval)
3191 periodic_recalc (EV_A_ w);
3192
3193 ANHE_at_cache (periodics [i]);
3194 }
3195
3196 reheap (periodics, periodiccnt);
3197}
3198#endif
3199
3200/* adjust all timers by a given offset */
3201static void noinline ecb_cold
3202timers_reschedule (EV_P_ ev_tstamp adjust)
3203{
3204 int i;
3205
3206 for (i = 0; i < timercnt; ++i)
3207 {
3208 ANHE *he = timers + i + HEAP0;
3209 ANHE_w (*he)->at += adjust;
3210 ANHE_at_cache (*he);
3211 }
3212}
3213
3214/* fetch new monotonic and realtime times from the kernel */
3215/* also detect if there was a timejump, and act accordingly */
3216inline_speed void
3217time_update (EV_P_ ev_tstamp max_block)
3218{
3219#if EV_USE_MONOTONIC
3220 if (expect_true (have_monotonic))
3221 {
3222 int i;
3223 ev_tstamp odiff = rtmn_diff;
3224
3225 mn_now = get_clock ();
3226
3227 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3228 /* interpolate in the meantime */
3229 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1035 { 3230 {
1036 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 3231 ev_rt_now = rtmn_diff + mn_now;
1037 3232 return;
1038 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0);
1040 } 3233 }
1041 else if (w->interval)
1042 {
1043 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1044 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1045 downheap ((WT *)periodics, periodiccnt, 0);
1046 }
1047 else
1048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1049 3234
1050 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1051 }
1052}
1053
1054static void
1055periodics_reschedule (EV_P)
1056{
1057 int i;
1058
1059 /* adjust periodics after time jump */
1060 for (i = 0; i < periodiccnt; ++i)
1061 {
1062 struct ev_periodic *w = periodics [i];
1063
1064 if (w->reschedule_cb)
1065 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1066 else if (w->interval)
1067 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1068 }
1069
1070 /* now rebuild the heap */
1071 for (i = periodiccnt >> 1; i--; )
1072 downheap ((WT *)periodics, periodiccnt, i);
1073}
1074#endif
1075
1076inline int
1077time_update_monotonic (EV_P)
1078{
1079 mn_now = get_clock ();
1080
1081 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1082 {
1083 ev_rt_now = rtmn_diff + mn_now;
1084 return 0;
1085 }
1086 else
1087 {
1088 now_floor = mn_now; 3235 now_floor = mn_now;
1089 ev_rt_now = ev_time (); 3236 ev_rt_now = ev_time ();
1090 return 1;
1091 }
1092}
1093 3237
1094static void 3238 /* loop a few times, before making important decisions.
1095time_update (EV_P) 3239 * on the choice of "4": one iteration isn't enough,
1096{ 3240 * in case we get preempted during the calls to
1097 int i; 3241 * ev_time and get_clock. a second call is almost guaranteed
1098 3242 * to succeed in that case, though. and looping a few more times
1099#if EV_USE_MONOTONIC 3243 * doesn't hurt either as we only do this on time-jumps or
1100 if (expect_true (have_monotonic)) 3244 * in the unlikely event of having been preempted here.
1101 { 3245 */
1102 if (time_update_monotonic (EV_A)) 3246 for (i = 4; --i; )
1103 { 3247 {
1104 ev_tstamp odiff = rtmn_diff; 3248 ev_tstamp diff;
1105
1106 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1107 {
1108 rtmn_diff = ev_rt_now - mn_now; 3249 rtmn_diff = ev_rt_now - mn_now;
1109 3250
1110 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3251 diff = odiff - rtmn_diff;
3252
3253 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1111 return; /* all is well */ 3254 return; /* all is well */
1112 3255
1113 ev_rt_now = ev_time (); 3256 ev_rt_now = ev_time ();
1114 mn_now = get_clock (); 3257 mn_now = get_clock ();
1115 now_floor = mn_now; 3258 now_floor = mn_now;
1116 } 3259 }
1117 3260
3261 /* no timer adjustment, as the monotonic clock doesn't jump */
3262 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1118# if EV_PERIODICS 3263# if EV_PERIODIC_ENABLE
3264 periodics_reschedule (EV_A);
3265# endif
3266 }
3267 else
3268#endif
3269 {
3270 ev_rt_now = ev_time ();
3271
3272 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3273 {
3274 /* adjust timers. this is easy, as the offset is the same for all of them */
3275 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3276#if EV_PERIODIC_ENABLE
1119 periodics_reschedule (EV_A); 3277 periodics_reschedule (EV_A);
1120# endif 3278#endif
1121 /* no timer adjustment, as the monotonic clock doesn't jump */
1122 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1123 } 3279 }
1124 }
1125 else
1126#endif
1127 {
1128 ev_rt_now = ev_time ();
1129
1130 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1131 {
1132#if EV_PERIODICS
1133 periodics_reschedule (EV_A);
1134#endif
1135
1136 /* adjust timers. this is easy, as the offset is the same for all */
1137 for (i = 0; i < timercnt; ++i)
1138 ((WT)timers [i])->at += ev_rt_now - mn_now;
1139 }
1140 3280
1141 mn_now = ev_rt_now; 3281 mn_now = ev_rt_now;
1142 } 3282 }
1143} 3283}
1144 3284
1145void 3285int
1146ev_ref (EV_P)
1147{
1148 ++activecnt;
1149}
1150
1151void
1152ev_unref (EV_P)
1153{
1154 --activecnt;
1155}
1156
1157static int loop_done;
1158
1159void
1160ev_loop (EV_P_ int flags) 3286ev_run (EV_P_ int flags)
1161{ 3287{
1162 double block; 3288#if EV_FEATURE_API
1163 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3289 ++loop_depth;
3290#endif
3291
3292 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3293
3294 loop_done = EVBREAK_CANCEL;
3295
3296 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1164 3297
1165 do 3298 do
1166 { 3299 {
3300#if EV_VERIFY >= 2
3301 ev_verify (EV_A);
3302#endif
3303
3304#ifndef _WIN32
3305 if (expect_false (curpid)) /* penalise the forking check even more */
3306 if (expect_false (getpid () != curpid))
3307 {
3308 curpid = getpid ();
3309 postfork = 1;
3310 }
3311#endif
3312
3313#if EV_FORK_ENABLE
3314 /* we might have forked, so queue fork handlers */
3315 if (expect_false (postfork))
3316 if (forkcnt)
3317 {
3318 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3319 EV_INVOKE_PENDING;
3320 }
3321#endif
3322
3323#if EV_PREPARE_ENABLE
1167 /* queue check watchers (and execute them) */ 3324 /* queue prepare watchers (and execute them) */
1168 if (expect_false (preparecnt)) 3325 if (expect_false (preparecnt))
1169 { 3326 {
1170 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3327 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1171 call_pending (EV_A); 3328 EV_INVOKE_PENDING;
1172 } 3329 }
3330#endif
3331
3332 if (expect_false (loop_done))
3333 break;
1173 3334
1174 /* we might have forked, so reify kernel state if necessary */ 3335 /* we might have forked, so reify kernel state if necessary */
1175 if (expect_false (postfork)) 3336 if (expect_false (postfork))
1176 loop_fork (EV_A); 3337 loop_fork (EV_A);
1177 3338
1178 /* update fd-related kernel structures */ 3339 /* update fd-related kernel structures */
1179 fd_reify (EV_A); 3340 fd_reify (EV_A);
1180 3341
1181 /* calculate blocking time */ 3342 /* calculate blocking time */
3343 {
3344 ev_tstamp waittime = 0.;
3345 ev_tstamp sleeptime = 0.;
1182 3346
1183 /* we only need this for !monotonic clock or timers, but as we basically 3347 /* remember old timestamp for io_blocktime calculation */
1184 always have timers, we just calculate it always */ 3348 ev_tstamp prev_mn_now = mn_now;
1185#if EV_USE_MONOTONIC 3349
1186 if (expect_true (have_monotonic)) 3350 /* update time to cancel out callback processing overhead */
1187 time_update_monotonic (EV_A); 3351 time_update (EV_A_ 1e100);
1188 else 3352
1189#endif 3353 /* from now on, we want a pipe-wake-up */
3354 pipe_write_wanted = 1;
3355
3356 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3357
3358 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1190 { 3359 {
1191 ev_rt_now = ev_time ();
1192 mn_now = ev_rt_now;
1193 }
1194
1195 if (flags & EVLOOP_NONBLOCK || idlecnt)
1196 block = 0.;
1197 else
1198 {
1199 block = MAX_BLOCKTIME; 3360 waittime = MAX_BLOCKTIME;
1200 3361
1201 if (timercnt) 3362 if (timercnt)
1202 { 3363 {
1203 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3364 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1204 if (block > to) block = to; 3365 if (waittime > to) waittime = to;
1205 } 3366 }
1206 3367
1207#if EV_PERIODICS 3368#if EV_PERIODIC_ENABLE
1208 if (periodiccnt) 3369 if (periodiccnt)
1209 { 3370 {
1210 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3371 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1211 if (block > to) block = to; 3372 if (waittime > to) waittime = to;
1212 } 3373 }
1213#endif 3374#endif
1214 3375
1215 if (block < 0.) block = 0.; 3376 /* don't let timeouts decrease the waittime below timeout_blocktime */
3377 if (expect_false (waittime < timeout_blocktime))
3378 waittime = timeout_blocktime;
3379
3380 /* at this point, we NEED to wait, so we have to ensure */
3381 /* to pass a minimum nonzero value to the backend */
3382 if (expect_false (waittime < backend_mintime))
3383 waittime = backend_mintime;
3384
3385 /* extra check because io_blocktime is commonly 0 */
3386 if (expect_false (io_blocktime))
3387 {
3388 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3389
3390 if (sleeptime > waittime - backend_mintime)
3391 sleeptime = waittime - backend_mintime;
3392
3393 if (expect_true (sleeptime > 0.))
3394 {
3395 ev_sleep (sleeptime);
3396 waittime -= sleeptime;
3397 }
3398 }
1216 } 3399 }
1217 3400
1218 method_poll (EV_A_ block); 3401#if EV_FEATURE_API
3402 ++loop_count;
3403#endif
3404 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3405 backend_poll (EV_A_ waittime);
3406 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1219 3407
3408 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3409
3410 ECB_MEMORY_FENCE_ACQUIRE;
3411 if (pipe_write_skipped)
3412 {
3413 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3414 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3415 }
3416
3417
1220 /* update ev_rt_now, do magic */ 3418 /* update ev_rt_now, do magic */
1221 time_update (EV_A); 3419 time_update (EV_A_ waittime + sleeptime);
3420 }
1222 3421
1223 /* queue pending timers and reschedule them */ 3422 /* queue pending timers and reschedule them */
1224 timers_reify (EV_A); /* relative timers called last */ 3423 timers_reify (EV_A); /* relative timers called last */
1225#if EV_PERIODICS 3424#if EV_PERIODIC_ENABLE
1226 periodics_reify (EV_A); /* absolute timers called first */ 3425 periodics_reify (EV_A); /* absolute timers called first */
1227#endif 3426#endif
1228 3427
3428#if EV_IDLE_ENABLE
1229 /* queue idle watchers unless io or timers are pending */ 3429 /* queue idle watchers unless other events are pending */
1230 if (idlecnt && !any_pending (EV_A)) 3430 idle_reify (EV_A);
1231 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3431#endif
1232 3432
3433#if EV_CHECK_ENABLE
1233 /* queue check watchers, to be executed first */ 3434 /* queue check watchers, to be executed first */
1234 if (checkcnt) 3435 if (expect_false (checkcnt))
1235 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3436 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3437#endif
1236 3438
1237 call_pending (EV_A); 3439 EV_INVOKE_PENDING;
1238 } 3440 }
1239 while (activecnt && !loop_done); 3441 while (expect_true (
3442 activecnt
3443 && !loop_done
3444 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3445 ));
1240 3446
1241 if (loop_done != 2) 3447 if (loop_done == EVBREAK_ONE)
1242 loop_done = 0; 3448 loop_done = EVBREAK_CANCEL;
3449
3450#if EV_FEATURE_API
3451 --loop_depth;
3452#endif
3453
3454 return activecnt;
1243} 3455}
1244 3456
1245void 3457void
1246ev_unloop (EV_P_ int how) 3458ev_break (EV_P_ int how) EV_THROW
1247{ 3459{
1248 loop_done = how; 3460 loop_done = how;
1249} 3461}
1250 3462
3463void
3464ev_ref (EV_P) EV_THROW
3465{
3466 ++activecnt;
3467}
3468
3469void
3470ev_unref (EV_P) EV_THROW
3471{
3472 --activecnt;
3473}
3474
3475void
3476ev_now_update (EV_P) EV_THROW
3477{
3478 time_update (EV_A_ 1e100);
3479}
3480
3481void
3482ev_suspend (EV_P) EV_THROW
3483{
3484 ev_now_update (EV_A);
3485}
3486
3487void
3488ev_resume (EV_P) EV_THROW
3489{
3490 ev_tstamp mn_prev = mn_now;
3491
3492 ev_now_update (EV_A);
3493 timers_reschedule (EV_A_ mn_now - mn_prev);
3494#if EV_PERIODIC_ENABLE
3495 /* TODO: really do this? */
3496 periodics_reschedule (EV_A);
3497#endif
3498}
3499
1251/*****************************************************************************/ 3500/*****************************************************************************/
3501/* singly-linked list management, used when the expected list length is short */
1252 3502
1253inline void 3503inline_size void
1254wlist_add (WL *head, WL elem) 3504wlist_add (WL *head, WL elem)
1255{ 3505{
1256 elem->next = *head; 3506 elem->next = *head;
1257 *head = elem; 3507 *head = elem;
1258} 3508}
1259 3509
1260inline void 3510inline_size void
1261wlist_del (WL *head, WL elem) 3511wlist_del (WL *head, WL elem)
1262{ 3512{
1263 while (*head) 3513 while (*head)
1264 { 3514 {
1265 if (*head == elem) 3515 if (expect_true (*head == elem))
1266 { 3516 {
1267 *head = elem->next; 3517 *head = elem->next;
1268 return; 3518 break;
1269 } 3519 }
1270 3520
1271 head = &(*head)->next; 3521 head = &(*head)->next;
1272 } 3522 }
1273} 3523}
1274 3524
3525/* internal, faster, version of ev_clear_pending */
1275inline void 3526inline_speed void
1276ev_clear_pending (EV_P_ W w) 3527clear_pending (EV_P_ W w)
1277{ 3528{
1278 if (w->pending) 3529 if (w->pending)
1279 { 3530 {
1280 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3531 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1281 w->pending = 0; 3532 w->pending = 0;
1282 } 3533 }
1283} 3534}
1284 3535
3536int
3537ev_clear_pending (EV_P_ void *w) EV_THROW
3538{
3539 W w_ = (W)w;
3540 int pending = w_->pending;
3541
3542 if (expect_true (pending))
3543 {
3544 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3545 p->w = (W)&pending_w;
3546 w_->pending = 0;
3547 return p->events;
3548 }
3549 else
3550 return 0;
3551}
3552
1285inline void 3553inline_size void
3554pri_adjust (EV_P_ W w)
3555{
3556 int pri = ev_priority (w);
3557 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3558 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3559 ev_set_priority (w, pri);
3560}
3561
3562inline_speed void
1286ev_start (EV_P_ W w, int active) 3563ev_start (EV_P_ W w, int active)
1287{ 3564{
1288 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3565 pri_adjust (EV_A_ w);
1289 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1290
1291 w->active = active; 3566 w->active = active;
1292 ev_ref (EV_A); 3567 ev_ref (EV_A);
1293} 3568}
1294 3569
1295inline void 3570inline_size void
1296ev_stop (EV_P_ W w) 3571ev_stop (EV_P_ W w)
1297{ 3572{
1298 ev_unref (EV_A); 3573 ev_unref (EV_A);
1299 w->active = 0; 3574 w->active = 0;
1300} 3575}
1301 3576
1302/*****************************************************************************/ 3577/*****************************************************************************/
1303 3578
1304void 3579void noinline
1305ev_io_start (EV_P_ struct ev_io *w) 3580ev_io_start (EV_P_ ev_io *w) EV_THROW
1306{ 3581{
1307 int fd = w->fd; 3582 int fd = w->fd;
1308 3583
1309 if (ev_is_active (w)) 3584 if (expect_false (ev_is_active (w)))
1310 return; 3585 return;
1311 3586
1312 assert (("ev_io_start called with negative fd", fd >= 0)); 3587 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3588 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3589
3590 EV_FREQUENT_CHECK;
1313 3591
1314 ev_start (EV_A_ (W)w, 1); 3592 ev_start (EV_A_ (W)w, 1);
1315 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3593 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1316 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3594 wlist_add (&anfds[fd].head, (WL)w);
1317 3595
1318 fd_change (EV_A_ fd); 3596 /* common bug, apparently */
1319} 3597 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1320 3598
1321void 3599 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3600 w->events &= ~EV__IOFDSET;
3601
3602 EV_FREQUENT_CHECK;
3603}
3604
3605void noinline
1322ev_io_stop (EV_P_ struct ev_io *w) 3606ev_io_stop (EV_P_ ev_io *w) EV_THROW
1323{ 3607{
1324 ev_clear_pending (EV_A_ (W)w); 3608 clear_pending (EV_A_ (W)w);
1325 if (!ev_is_active (w)) 3609 if (expect_false (!ev_is_active (w)))
1326 return; 3610 return;
1327 3611
1328 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3612 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1329 3613
3614 EV_FREQUENT_CHECK;
3615
1330 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3616 wlist_del (&anfds[w->fd].head, (WL)w);
1331 ev_stop (EV_A_ (W)w); 3617 ev_stop (EV_A_ (W)w);
1332 3618
1333 fd_change (EV_A_ w->fd); 3619 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1334}
1335 3620
1336void 3621 EV_FREQUENT_CHECK;
3622}
3623
3624void noinline
1337ev_timer_start (EV_P_ struct ev_timer *w) 3625ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1338{ 3626{
1339 if (ev_is_active (w)) 3627 if (expect_false (ev_is_active (w)))
1340 return; 3628 return;
1341 3629
1342 ((WT)w)->at += mn_now; 3630 ev_at (w) += mn_now;
1343 3631
1344 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3632 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1345 3633
3634 EV_FREQUENT_CHECK;
3635
3636 ++timercnt;
1346 ev_start (EV_A_ (W)w, ++timercnt); 3637 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1347 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 3638 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1348 timers [timercnt - 1] = w; 3639 ANHE_w (timers [ev_active (w)]) = (WT)w;
1349 upheap ((WT *)timers, timercnt - 1); 3640 ANHE_at_cache (timers [ev_active (w)]);
3641 upheap (timers, ev_active (w));
1350 3642
3643 EV_FREQUENT_CHECK;
3644
1351 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3645 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1352} 3646}
1353 3647
1354void 3648void noinline
1355ev_timer_stop (EV_P_ struct ev_timer *w) 3649ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1356{ 3650{
1357 ev_clear_pending (EV_A_ (W)w); 3651 clear_pending (EV_A_ (W)w);
1358 if (!ev_is_active (w)) 3652 if (expect_false (!ev_is_active (w)))
1359 return; 3653 return;
1360 3654
3655 EV_FREQUENT_CHECK;
3656
3657 {
3658 int active = ev_active (w);
3659
1361 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3660 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1362 3661
1363 if (((W)w)->active < timercnt--) 3662 --timercnt;
3663
3664 if (expect_true (active < timercnt + HEAP0))
1364 { 3665 {
1365 timers [((W)w)->active - 1] = timers [timercnt]; 3666 timers [active] = timers [timercnt + HEAP0];
1366 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3667 adjustheap (timers, timercnt, active);
1367 } 3668 }
3669 }
1368 3670
1369 ((WT)w)->at -= mn_now; 3671 ev_at (w) -= mn_now;
1370 3672
1371 ev_stop (EV_A_ (W)w); 3673 ev_stop (EV_A_ (W)w);
1372}
1373 3674
1374void 3675 EV_FREQUENT_CHECK;
3676}
3677
3678void noinline
1375ev_timer_again (EV_P_ struct ev_timer *w) 3679ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1376{ 3680{
3681 EV_FREQUENT_CHECK;
3682
3683 clear_pending (EV_A_ (W)w);
3684
1377 if (ev_is_active (w)) 3685 if (ev_is_active (w))
1378 { 3686 {
1379 if (w->repeat) 3687 if (w->repeat)
1380 { 3688 {
1381 ((WT)w)->at = mn_now + w->repeat; 3689 ev_at (w) = mn_now + w->repeat;
3690 ANHE_at_cache (timers [ev_active (w)]);
1382 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3691 adjustheap (timers, timercnt, ev_active (w));
1383 } 3692 }
1384 else 3693 else
1385 ev_timer_stop (EV_A_ w); 3694 ev_timer_stop (EV_A_ w);
1386 } 3695 }
1387 else if (w->repeat) 3696 else if (w->repeat)
3697 {
3698 ev_at (w) = w->repeat;
1388 ev_timer_start (EV_A_ w); 3699 ev_timer_start (EV_A_ w);
1389} 3700 }
1390 3701
3702 EV_FREQUENT_CHECK;
3703}
3704
3705ev_tstamp
3706ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3707{
3708 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3709}
3710
1391#if EV_PERIODICS 3711#if EV_PERIODIC_ENABLE
1392void 3712void noinline
1393ev_periodic_start (EV_P_ struct ev_periodic *w) 3713ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1394{ 3714{
1395 if (ev_is_active (w)) 3715 if (expect_false (ev_is_active (w)))
1396 return; 3716 return;
1397 3717
1398 if (w->reschedule_cb) 3718 if (w->reschedule_cb)
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3719 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1400 else if (w->interval) 3720 else if (w->interval)
1401 { 3721 {
1402 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3722 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1403 /* this formula differs from the one in periodic_reify because we do not always round up */ 3723 periodic_recalc (EV_A_ w);
1404 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1405 } 3724 }
3725 else
3726 ev_at (w) = w->offset;
1406 3727
3728 EV_FREQUENT_CHECK;
3729
3730 ++periodiccnt;
1407 ev_start (EV_A_ (W)w, ++periodiccnt); 3731 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1408 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 3732 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1409 periodics [periodiccnt - 1] = w; 3733 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1410 upheap ((WT *)periodics, periodiccnt - 1); 3734 ANHE_at_cache (periodics [ev_active (w)]);
3735 upheap (periodics, ev_active (w));
1411 3736
3737 EV_FREQUENT_CHECK;
3738
1412 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3739 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1413} 3740}
1414 3741
1415void 3742void noinline
1416ev_periodic_stop (EV_P_ struct ev_periodic *w) 3743ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1417{ 3744{
1418 ev_clear_pending (EV_A_ (W)w); 3745 clear_pending (EV_A_ (W)w);
1419 if (!ev_is_active (w)) 3746 if (expect_false (!ev_is_active (w)))
1420 return; 3747 return;
1421 3748
3749 EV_FREQUENT_CHECK;
3750
3751 {
3752 int active = ev_active (w);
3753
1422 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3754 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1423 3755
1424 if (((W)w)->active < periodiccnt--) 3756 --periodiccnt;
3757
3758 if (expect_true (active < periodiccnt + HEAP0))
1425 { 3759 {
1426 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3760 periodics [active] = periodics [periodiccnt + HEAP0];
1427 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3761 adjustheap (periodics, periodiccnt, active);
1428 } 3762 }
3763 }
1429 3764
1430 ev_stop (EV_A_ (W)w); 3765 ev_stop (EV_A_ (W)w);
1431}
1432 3766
1433void 3767 EV_FREQUENT_CHECK;
3768}
3769
3770void noinline
1434ev_periodic_again (EV_P_ struct ev_periodic *w) 3771ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1435{ 3772{
1436 /* TODO: use adjustheap and recalculation */ 3773 /* TODO: use adjustheap and recalculation */
1437 ev_periodic_stop (EV_A_ w); 3774 ev_periodic_stop (EV_A_ w);
1438 ev_periodic_start (EV_A_ w); 3775 ev_periodic_start (EV_A_ w);
1439} 3776}
1440#endif 3777#endif
1441 3778
1442void
1443ev_idle_start (EV_P_ struct ev_idle *w)
1444{
1445 if (ev_is_active (w))
1446 return;
1447
1448 ev_start (EV_A_ (W)w, ++idlecnt);
1449 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1450 idles [idlecnt - 1] = w;
1451}
1452
1453void
1454ev_idle_stop (EV_P_ struct ev_idle *w)
1455{
1456 ev_clear_pending (EV_A_ (W)w);
1457 if (!ev_is_active (w))
1458 return;
1459
1460 idles [((W)w)->active - 1] = idles [--idlecnt];
1461 ev_stop (EV_A_ (W)w);
1462}
1463
1464void
1465ev_prepare_start (EV_P_ struct ev_prepare *w)
1466{
1467 if (ev_is_active (w))
1468 return;
1469
1470 ev_start (EV_A_ (W)w, ++preparecnt);
1471 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1472 prepares [preparecnt - 1] = w;
1473}
1474
1475void
1476ev_prepare_stop (EV_P_ struct ev_prepare *w)
1477{
1478 ev_clear_pending (EV_A_ (W)w);
1479 if (!ev_is_active (w))
1480 return;
1481
1482 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1483 ev_stop (EV_A_ (W)w);
1484}
1485
1486void
1487ev_check_start (EV_P_ struct ev_check *w)
1488{
1489 if (ev_is_active (w))
1490 return;
1491
1492 ev_start (EV_A_ (W)w, ++checkcnt);
1493 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1494 checks [checkcnt - 1] = w;
1495}
1496
1497void
1498ev_check_stop (EV_P_ struct ev_check *w)
1499{
1500 ev_clear_pending (EV_A_ (W)w);
1501 if (!ev_is_active (w))
1502 return;
1503
1504 checks [((W)w)->active - 1] = checks [--checkcnt];
1505 ev_stop (EV_A_ (W)w);
1506}
1507
1508#ifndef SA_RESTART 3779#ifndef SA_RESTART
1509# define SA_RESTART 0 3780# define SA_RESTART 0
1510#endif 3781#endif
1511 3782
3783#if EV_SIGNAL_ENABLE
3784
3785void noinline
3786ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3787{
3788 if (expect_false (ev_is_active (w)))
3789 return;
3790
3791 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3792
3793#if EV_MULTIPLICITY
3794 assert (("libev: a signal must not be attached to two different loops",
3795 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3796
3797 signals [w->signum - 1].loop = EV_A;
3798 ECB_MEMORY_FENCE_RELEASE;
3799#endif
3800
3801 EV_FREQUENT_CHECK;
3802
3803#if EV_USE_SIGNALFD
3804 if (sigfd == -2)
3805 {
3806 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3807 if (sigfd < 0 && errno == EINVAL)
3808 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3809
3810 if (sigfd >= 0)
3811 {
3812 fd_intern (sigfd); /* doing it twice will not hurt */
3813
3814 sigemptyset (&sigfd_set);
3815
3816 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3817 ev_set_priority (&sigfd_w, EV_MAXPRI);
3818 ev_io_start (EV_A_ &sigfd_w);
3819 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3820 }
3821 }
3822
3823 if (sigfd >= 0)
3824 {
3825 /* TODO: check .head */
3826 sigaddset (&sigfd_set, w->signum);
3827 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3828
3829 signalfd (sigfd, &sigfd_set, 0);
3830 }
3831#endif
3832
3833 ev_start (EV_A_ (W)w, 1);
3834 wlist_add (&signals [w->signum - 1].head, (WL)w);
3835
3836 if (!((WL)w)->next)
3837# if EV_USE_SIGNALFD
3838 if (sigfd < 0) /*TODO*/
3839# endif
3840 {
3841# ifdef _WIN32
3842 evpipe_init (EV_A);
3843
3844 signal (w->signum, ev_sighandler);
3845# else
3846 struct sigaction sa;
3847
3848 evpipe_init (EV_A);
3849
3850 sa.sa_handler = ev_sighandler;
3851 sigfillset (&sa.sa_mask);
3852 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3853 sigaction (w->signum, &sa, 0);
3854
3855 if (origflags & EVFLAG_NOSIGMASK)
3856 {
3857 sigemptyset (&sa.sa_mask);
3858 sigaddset (&sa.sa_mask, w->signum);
3859 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3860 }
3861#endif
3862 }
3863
3864 EV_FREQUENT_CHECK;
3865}
3866
3867void noinline
3868ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3869{
3870 clear_pending (EV_A_ (W)w);
3871 if (expect_false (!ev_is_active (w)))
3872 return;
3873
3874 EV_FREQUENT_CHECK;
3875
3876 wlist_del (&signals [w->signum - 1].head, (WL)w);
3877 ev_stop (EV_A_ (W)w);
3878
3879 if (!signals [w->signum - 1].head)
3880 {
3881#if EV_MULTIPLICITY
3882 signals [w->signum - 1].loop = 0; /* unattach from signal */
3883#endif
3884#if EV_USE_SIGNALFD
3885 if (sigfd >= 0)
3886 {
3887 sigset_t ss;
3888
3889 sigemptyset (&ss);
3890 sigaddset (&ss, w->signum);
3891 sigdelset (&sigfd_set, w->signum);
3892
3893 signalfd (sigfd, &sigfd_set, 0);
3894 sigprocmask (SIG_UNBLOCK, &ss, 0);
3895 }
3896 else
3897#endif
3898 signal (w->signum, SIG_DFL);
3899 }
3900
3901 EV_FREQUENT_CHECK;
3902}
3903
3904#endif
3905
3906#if EV_CHILD_ENABLE
3907
1512void 3908void
1513ev_signal_start (EV_P_ struct ev_signal *w) 3909ev_child_start (EV_P_ ev_child *w) EV_THROW
1514{ 3910{
1515#if EV_MULTIPLICITY 3911#if EV_MULTIPLICITY
1516 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3912 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1517#endif 3913#endif
1518 if (ev_is_active (w)) 3914 if (expect_false (ev_is_active (w)))
1519 return; 3915 return;
1520 3916
1521 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3917 EV_FREQUENT_CHECK;
1522 3918
1523 ev_start (EV_A_ (W)w, 1); 3919 ev_start (EV_A_ (W)w, 1);
1524 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3920 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1525 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1526 3921
1527 if (!((WL)w)->next) 3922 EV_FREQUENT_CHECK;
3923}
3924
3925void
3926ev_child_stop (EV_P_ ev_child *w) EV_THROW
3927{
3928 clear_pending (EV_A_ (W)w);
3929 if (expect_false (!ev_is_active (w)))
3930 return;
3931
3932 EV_FREQUENT_CHECK;
3933
3934 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3935 ev_stop (EV_A_ (W)w);
3936
3937 EV_FREQUENT_CHECK;
3938}
3939
3940#endif
3941
3942#if EV_STAT_ENABLE
3943
3944# ifdef _WIN32
3945# undef lstat
3946# define lstat(a,b) _stati64 (a,b)
3947# endif
3948
3949#define DEF_STAT_INTERVAL 5.0074891
3950#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3951#define MIN_STAT_INTERVAL 0.1074891
3952
3953static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3954
3955#if EV_USE_INOTIFY
3956
3957/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3958# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3959
3960static void noinline
3961infy_add (EV_P_ ev_stat *w)
3962{
3963 w->wd = inotify_add_watch (fs_fd, w->path,
3964 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3965 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3966 | IN_DONT_FOLLOW | IN_MASK_ADD);
3967
3968 if (w->wd >= 0)
3969 {
3970 struct statfs sfs;
3971
3972 /* now local changes will be tracked by inotify, but remote changes won't */
3973 /* unless the filesystem is known to be local, we therefore still poll */
3974 /* also do poll on <2.6.25, but with normal frequency */
3975
3976 if (!fs_2625)
3977 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3978 else if (!statfs (w->path, &sfs)
3979 && (sfs.f_type == 0x1373 /* devfs */
3980 || sfs.f_type == 0x4006 /* fat */
3981 || sfs.f_type == 0x4d44 /* msdos */
3982 || sfs.f_type == 0xEF53 /* ext2/3 */
3983 || sfs.f_type == 0x72b6 /* jffs2 */
3984 || sfs.f_type == 0x858458f6 /* ramfs */
3985 || sfs.f_type == 0x5346544e /* ntfs */
3986 || sfs.f_type == 0x3153464a /* jfs */
3987 || sfs.f_type == 0x9123683e /* btrfs */
3988 || sfs.f_type == 0x52654973 /* reiser3 */
3989 || sfs.f_type == 0x01021994 /* tmpfs */
3990 || sfs.f_type == 0x58465342 /* xfs */))
3991 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3992 else
3993 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1528 { 3994 }
3995 else
3996 {
3997 /* can't use inotify, continue to stat */
3998 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3999
4000 /* if path is not there, monitor some parent directory for speedup hints */
4001 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4002 /* but an efficiency issue only */
4003 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4004 {
4005 char path [4096];
4006 strcpy (path, w->path);
4007
4008 do
4009 {
4010 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4011 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4012
4013 char *pend = strrchr (path, '/');
4014
4015 if (!pend || pend == path)
4016 break;
4017
4018 *pend = 0;
4019 w->wd = inotify_add_watch (fs_fd, path, mask);
4020 }
4021 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4022 }
4023 }
4024
4025 if (w->wd >= 0)
4026 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4027
4028 /* now re-arm timer, if required */
4029 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4030 ev_timer_again (EV_A_ &w->timer);
4031 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4032}
4033
4034static void noinline
4035infy_del (EV_P_ ev_stat *w)
4036{
4037 int slot;
4038 int wd = w->wd;
4039
4040 if (wd < 0)
4041 return;
4042
4043 w->wd = -2;
4044 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4045 wlist_del (&fs_hash [slot].head, (WL)w);
4046
4047 /* remove this watcher, if others are watching it, they will rearm */
4048 inotify_rm_watch (fs_fd, wd);
4049}
4050
4051static void noinline
4052infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4053{
4054 if (slot < 0)
4055 /* overflow, need to check for all hash slots */
4056 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4057 infy_wd (EV_A_ slot, wd, ev);
4058 else
4059 {
4060 WL w_;
4061
4062 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4063 {
4064 ev_stat *w = (ev_stat *)w_;
4065 w_ = w_->next; /* lets us remove this watcher and all before it */
4066
4067 if (w->wd == wd || wd == -1)
4068 {
4069 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4070 {
4071 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4072 w->wd = -1;
4073 infy_add (EV_A_ w); /* re-add, no matter what */
4074 }
4075
4076 stat_timer_cb (EV_A_ &w->timer, 0);
4077 }
4078 }
4079 }
4080}
4081
4082static void
4083infy_cb (EV_P_ ev_io *w, int revents)
4084{
4085 char buf [EV_INOTIFY_BUFSIZE];
4086 int ofs;
4087 int len = read (fs_fd, buf, sizeof (buf));
4088
4089 for (ofs = 0; ofs < len; )
4090 {
4091 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4092 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4093 ofs += sizeof (struct inotify_event) + ev->len;
4094 }
4095}
4096
4097inline_size void ecb_cold
4098ev_check_2625 (EV_P)
4099{
4100 /* kernels < 2.6.25 are borked
4101 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4102 */
4103 if (ev_linux_version () < 0x020619)
4104 return;
4105
4106 fs_2625 = 1;
4107}
4108
4109inline_size int
4110infy_newfd (void)
4111{
4112#if defined IN_CLOEXEC && defined IN_NONBLOCK
4113 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4114 if (fd >= 0)
4115 return fd;
4116#endif
4117 return inotify_init ();
4118}
4119
4120inline_size void
4121infy_init (EV_P)
4122{
4123 if (fs_fd != -2)
4124 return;
4125
4126 fs_fd = -1;
4127
4128 ev_check_2625 (EV_A);
4129
4130 fs_fd = infy_newfd ();
4131
4132 if (fs_fd >= 0)
4133 {
4134 fd_intern (fs_fd);
4135 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4136 ev_set_priority (&fs_w, EV_MAXPRI);
4137 ev_io_start (EV_A_ &fs_w);
4138 ev_unref (EV_A);
4139 }
4140}
4141
4142inline_size void
4143infy_fork (EV_P)
4144{
4145 int slot;
4146
4147 if (fs_fd < 0)
4148 return;
4149
4150 ev_ref (EV_A);
4151 ev_io_stop (EV_A_ &fs_w);
4152 close (fs_fd);
4153 fs_fd = infy_newfd ();
4154
4155 if (fs_fd >= 0)
4156 {
4157 fd_intern (fs_fd);
4158 ev_io_set (&fs_w, fs_fd, EV_READ);
4159 ev_io_start (EV_A_ &fs_w);
4160 ev_unref (EV_A);
4161 }
4162
4163 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4164 {
4165 WL w_ = fs_hash [slot].head;
4166 fs_hash [slot].head = 0;
4167
4168 while (w_)
4169 {
4170 ev_stat *w = (ev_stat *)w_;
4171 w_ = w_->next; /* lets us add this watcher */
4172
4173 w->wd = -1;
4174
4175 if (fs_fd >= 0)
4176 infy_add (EV_A_ w); /* re-add, no matter what */
4177 else
4178 {
4179 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4180 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4181 ev_timer_again (EV_A_ &w->timer);
4182 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4183 }
4184 }
4185 }
4186}
4187
4188#endif
4189
1529#if _WIN32 4190#ifdef _WIN32
1530 signal (w->signum, sighandler); 4191# define EV_LSTAT(p,b) _stati64 (p, b)
1531#else 4192#else
1532 struct sigaction sa; 4193# define EV_LSTAT(p,b) lstat (p, b)
1533 sa.sa_handler = sighandler;
1534 sigfillset (&sa.sa_mask);
1535 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1536 sigaction (w->signum, &sa, 0);
1537#endif 4194#endif
1538 }
1539}
1540 4195
1541void 4196void
1542ev_signal_stop (EV_P_ struct ev_signal *w) 4197ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1543{ 4198{
1544 ev_clear_pending (EV_A_ (W)w); 4199 if (lstat (w->path, &w->attr) < 0)
1545 if (!ev_is_active (w)) 4200 w->attr.st_nlink = 0;
4201 else if (!w->attr.st_nlink)
4202 w->attr.st_nlink = 1;
4203}
4204
4205static void noinline
4206stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4207{
4208 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4209
4210 ev_statdata prev = w->attr;
4211 ev_stat_stat (EV_A_ w);
4212
4213 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4214 if (
4215 prev.st_dev != w->attr.st_dev
4216 || prev.st_ino != w->attr.st_ino
4217 || prev.st_mode != w->attr.st_mode
4218 || prev.st_nlink != w->attr.st_nlink
4219 || prev.st_uid != w->attr.st_uid
4220 || prev.st_gid != w->attr.st_gid
4221 || prev.st_rdev != w->attr.st_rdev
4222 || prev.st_size != w->attr.st_size
4223 || prev.st_atime != w->attr.st_atime
4224 || prev.st_mtime != w->attr.st_mtime
4225 || prev.st_ctime != w->attr.st_ctime
4226 ) {
4227 /* we only update w->prev on actual differences */
4228 /* in case we test more often than invoke the callback, */
4229 /* to ensure that prev is always different to attr */
4230 w->prev = prev;
4231
4232 #if EV_USE_INOTIFY
4233 if (fs_fd >= 0)
4234 {
4235 infy_del (EV_A_ w);
4236 infy_add (EV_A_ w);
4237 ev_stat_stat (EV_A_ w); /* avoid race... */
4238 }
4239 #endif
4240
4241 ev_feed_event (EV_A_ w, EV_STAT);
4242 }
4243}
4244
4245void
4246ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4247{
4248 if (expect_false (ev_is_active (w)))
1546 return; 4249 return;
1547 4250
1548 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4251 ev_stat_stat (EV_A_ w);
4252
4253 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4254 w->interval = MIN_STAT_INTERVAL;
4255
4256 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4257 ev_set_priority (&w->timer, ev_priority (w));
4258
4259#if EV_USE_INOTIFY
4260 infy_init (EV_A);
4261
4262 if (fs_fd >= 0)
4263 infy_add (EV_A_ w);
4264 else
4265#endif
4266 {
4267 ev_timer_again (EV_A_ &w->timer);
4268 ev_unref (EV_A);
4269 }
4270
4271 ev_start (EV_A_ (W)w, 1);
4272
4273 EV_FREQUENT_CHECK;
4274}
4275
4276void
4277ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4278{
4279 clear_pending (EV_A_ (W)w);
4280 if (expect_false (!ev_is_active (w)))
4281 return;
4282
4283 EV_FREQUENT_CHECK;
4284
4285#if EV_USE_INOTIFY
4286 infy_del (EV_A_ w);
4287#endif
4288
4289 if (ev_is_active (&w->timer))
4290 {
4291 ev_ref (EV_A);
4292 ev_timer_stop (EV_A_ &w->timer);
4293 }
4294
1549 ev_stop (EV_A_ (W)w); 4295 ev_stop (EV_A_ (W)w);
1550 4296
1551 if (!signals [w->signum - 1].head) 4297 EV_FREQUENT_CHECK;
1552 signal (w->signum, SIG_DFL);
1553} 4298}
4299#endif
1554 4300
4301#if EV_IDLE_ENABLE
1555void 4302void
1556ev_child_start (EV_P_ struct ev_child *w) 4303ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1557{ 4304{
1558#if EV_MULTIPLICITY
1559 assert (("child watchers are only supported in the default loop", loop == default_loop));
1560#endif
1561 if (ev_is_active (w)) 4305 if (expect_false (ev_is_active (w)))
1562 return; 4306 return;
1563 4307
4308 pri_adjust (EV_A_ (W)w);
4309
4310 EV_FREQUENT_CHECK;
4311
4312 {
4313 int active = ++idlecnt [ABSPRI (w)];
4314
4315 ++idleall;
4316 ev_start (EV_A_ (W)w, active);
4317
4318 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4319 idles [ABSPRI (w)][active - 1] = w;
4320 }
4321
4322 EV_FREQUENT_CHECK;
4323}
4324
4325void
4326ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4327{
4328 clear_pending (EV_A_ (W)w);
4329 if (expect_false (!ev_is_active (w)))
4330 return;
4331
4332 EV_FREQUENT_CHECK;
4333
4334 {
4335 int active = ev_active (w);
4336
4337 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4338 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4339
4340 ev_stop (EV_A_ (W)w);
4341 --idleall;
4342 }
4343
4344 EV_FREQUENT_CHECK;
4345}
4346#endif
4347
4348#if EV_PREPARE_ENABLE
4349void
4350ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4351{
4352 if (expect_false (ev_is_active (w)))
4353 return;
4354
4355 EV_FREQUENT_CHECK;
4356
4357 ev_start (EV_A_ (W)w, ++preparecnt);
4358 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4359 prepares [preparecnt - 1] = w;
4360
4361 EV_FREQUENT_CHECK;
4362}
4363
4364void
4365ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4366{
4367 clear_pending (EV_A_ (W)w);
4368 if (expect_false (!ev_is_active (w)))
4369 return;
4370
4371 EV_FREQUENT_CHECK;
4372
4373 {
4374 int active = ev_active (w);
4375
4376 prepares [active - 1] = prepares [--preparecnt];
4377 ev_active (prepares [active - 1]) = active;
4378 }
4379
4380 ev_stop (EV_A_ (W)w);
4381
4382 EV_FREQUENT_CHECK;
4383}
4384#endif
4385
4386#if EV_CHECK_ENABLE
4387void
4388ev_check_start (EV_P_ ev_check *w) EV_THROW
4389{
4390 if (expect_false (ev_is_active (w)))
4391 return;
4392
4393 EV_FREQUENT_CHECK;
4394
4395 ev_start (EV_A_ (W)w, ++checkcnt);
4396 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4397 checks [checkcnt - 1] = w;
4398
4399 EV_FREQUENT_CHECK;
4400}
4401
4402void
4403ev_check_stop (EV_P_ ev_check *w) EV_THROW
4404{
4405 clear_pending (EV_A_ (W)w);
4406 if (expect_false (!ev_is_active (w)))
4407 return;
4408
4409 EV_FREQUENT_CHECK;
4410
4411 {
4412 int active = ev_active (w);
4413
4414 checks [active - 1] = checks [--checkcnt];
4415 ev_active (checks [active - 1]) = active;
4416 }
4417
4418 ev_stop (EV_A_ (W)w);
4419
4420 EV_FREQUENT_CHECK;
4421}
4422#endif
4423
4424#if EV_EMBED_ENABLE
4425void noinline
4426ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4427{
4428 ev_run (w->other, EVRUN_NOWAIT);
4429}
4430
4431static void
4432embed_io_cb (EV_P_ ev_io *io, int revents)
4433{
4434 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4435
4436 if (ev_cb (w))
4437 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4438 else
4439 ev_run (w->other, EVRUN_NOWAIT);
4440}
4441
4442static void
4443embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4444{
4445 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4446
4447 {
4448 EV_P = w->other;
4449
4450 while (fdchangecnt)
4451 {
4452 fd_reify (EV_A);
4453 ev_run (EV_A_ EVRUN_NOWAIT);
4454 }
4455 }
4456}
4457
4458static void
4459embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4460{
4461 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4462
4463 ev_embed_stop (EV_A_ w);
4464
4465 {
4466 EV_P = w->other;
4467
4468 ev_loop_fork (EV_A);
4469 ev_run (EV_A_ EVRUN_NOWAIT);
4470 }
4471
4472 ev_embed_start (EV_A_ w);
4473}
4474
4475#if 0
4476static void
4477embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4478{
4479 ev_idle_stop (EV_A_ idle);
4480}
4481#endif
4482
4483void
4484ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4485{
4486 if (expect_false (ev_is_active (w)))
4487 return;
4488
4489 {
4490 EV_P = w->other;
4491 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4492 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4493 }
4494
4495 EV_FREQUENT_CHECK;
4496
4497 ev_set_priority (&w->io, ev_priority (w));
4498 ev_io_start (EV_A_ &w->io);
4499
4500 ev_prepare_init (&w->prepare, embed_prepare_cb);
4501 ev_set_priority (&w->prepare, EV_MINPRI);
4502 ev_prepare_start (EV_A_ &w->prepare);
4503
4504 ev_fork_init (&w->fork, embed_fork_cb);
4505 ev_fork_start (EV_A_ &w->fork);
4506
4507 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4508
1564 ev_start (EV_A_ (W)w, 1); 4509 ev_start (EV_A_ (W)w, 1);
1565 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4510
4511 EV_FREQUENT_CHECK;
1566} 4512}
1567 4513
1568void 4514void
1569ev_child_stop (EV_P_ struct ev_child *w) 4515ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
1570{ 4516{
1571 ev_clear_pending (EV_A_ (W)w); 4517 clear_pending (EV_A_ (W)w);
1572 if (!ev_is_active (w)) 4518 if (expect_false (!ev_is_active (w)))
1573 return; 4519 return;
1574 4520
1575 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4521 EV_FREQUENT_CHECK;
4522
4523 ev_io_stop (EV_A_ &w->io);
4524 ev_prepare_stop (EV_A_ &w->prepare);
4525 ev_fork_stop (EV_A_ &w->fork);
4526
1576 ev_stop (EV_A_ (W)w); 4527 ev_stop (EV_A_ (W)w);
4528
4529 EV_FREQUENT_CHECK;
1577} 4530}
4531#endif
4532
4533#if EV_FORK_ENABLE
4534void
4535ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4536{
4537 if (expect_false (ev_is_active (w)))
4538 return;
4539
4540 EV_FREQUENT_CHECK;
4541
4542 ev_start (EV_A_ (W)w, ++forkcnt);
4543 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4544 forks [forkcnt - 1] = w;
4545
4546 EV_FREQUENT_CHECK;
4547}
4548
4549void
4550ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4551{
4552 clear_pending (EV_A_ (W)w);
4553 if (expect_false (!ev_is_active (w)))
4554 return;
4555
4556 EV_FREQUENT_CHECK;
4557
4558 {
4559 int active = ev_active (w);
4560
4561 forks [active - 1] = forks [--forkcnt];
4562 ev_active (forks [active - 1]) = active;
4563 }
4564
4565 ev_stop (EV_A_ (W)w);
4566
4567 EV_FREQUENT_CHECK;
4568}
4569#endif
4570
4571#if EV_CLEANUP_ENABLE
4572void
4573ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4574{
4575 if (expect_false (ev_is_active (w)))
4576 return;
4577
4578 EV_FREQUENT_CHECK;
4579
4580 ev_start (EV_A_ (W)w, ++cleanupcnt);
4581 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4582 cleanups [cleanupcnt - 1] = w;
4583
4584 /* cleanup watchers should never keep a refcount on the loop */
4585 ev_unref (EV_A);
4586 EV_FREQUENT_CHECK;
4587}
4588
4589void
4590ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4591{
4592 clear_pending (EV_A_ (W)w);
4593 if (expect_false (!ev_is_active (w)))
4594 return;
4595
4596 EV_FREQUENT_CHECK;
4597 ev_ref (EV_A);
4598
4599 {
4600 int active = ev_active (w);
4601
4602 cleanups [active - 1] = cleanups [--cleanupcnt];
4603 ev_active (cleanups [active - 1]) = active;
4604 }
4605
4606 ev_stop (EV_A_ (W)w);
4607
4608 EV_FREQUENT_CHECK;
4609}
4610#endif
4611
4612#if EV_ASYNC_ENABLE
4613void
4614ev_async_start (EV_P_ ev_async *w) EV_THROW
4615{
4616 if (expect_false (ev_is_active (w)))
4617 return;
4618
4619 w->sent = 0;
4620
4621 evpipe_init (EV_A);
4622
4623 EV_FREQUENT_CHECK;
4624
4625 ev_start (EV_A_ (W)w, ++asynccnt);
4626 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4627 asyncs [asynccnt - 1] = w;
4628
4629 EV_FREQUENT_CHECK;
4630}
4631
4632void
4633ev_async_stop (EV_P_ ev_async *w) EV_THROW
4634{
4635 clear_pending (EV_A_ (W)w);
4636 if (expect_false (!ev_is_active (w)))
4637 return;
4638
4639 EV_FREQUENT_CHECK;
4640
4641 {
4642 int active = ev_active (w);
4643
4644 asyncs [active - 1] = asyncs [--asynccnt];
4645 ev_active (asyncs [active - 1]) = active;
4646 }
4647
4648 ev_stop (EV_A_ (W)w);
4649
4650 EV_FREQUENT_CHECK;
4651}
4652
4653void
4654ev_async_send (EV_P_ ev_async *w) EV_THROW
4655{
4656 w->sent = 1;
4657 evpipe_write (EV_A_ &async_pending);
4658}
4659#endif
1578 4660
1579/*****************************************************************************/ 4661/*****************************************************************************/
1580 4662
1581struct ev_once 4663struct ev_once
1582{ 4664{
1583 struct ev_io io; 4665 ev_io io;
1584 struct ev_timer to; 4666 ev_timer to;
1585 void (*cb)(int revents, void *arg); 4667 void (*cb)(int revents, void *arg);
1586 void *arg; 4668 void *arg;
1587}; 4669};
1588 4670
1589static void 4671static void
1590once_cb (EV_P_ struct ev_once *once, int revents) 4672once_cb (EV_P_ struct ev_once *once, int revents)
1591{ 4673{
1592 void (*cb)(int revents, void *arg) = once->cb; 4674 void (*cb)(int revents, void *arg) = once->cb;
1593 void *arg = once->arg; 4675 void *arg = once->arg;
1594 4676
1595 ev_io_stop (EV_A_ &once->io); 4677 ev_io_stop (EV_A_ &once->io);
1596 ev_timer_stop (EV_A_ &once->to); 4678 ev_timer_stop (EV_A_ &once->to);
1597 ev_free (once); 4679 ev_free (once);
1598 4680
1599 cb (revents, arg); 4681 cb (revents, arg);
1600} 4682}
1601 4683
1602static void 4684static void
1603once_cb_io (EV_P_ struct ev_io *w, int revents) 4685once_cb_io (EV_P_ ev_io *w, int revents)
1604{ 4686{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4687 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4688
4689 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1606} 4690}
1607 4691
1608static void 4692static void
1609once_cb_to (EV_P_ struct ev_timer *w, int revents) 4693once_cb_to (EV_P_ ev_timer *w, int revents)
1610{ 4694{
1611 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4695 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4696
4697 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1612} 4698}
1613 4699
1614void 4700void
1615ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4701ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1616{ 4702{
1617 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4703 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1618 4704
1619 if (!once) 4705 if (expect_false (!once))
4706 {
1620 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4707 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1621 else 4708 return;
1622 { 4709 }
4710
1623 once->cb = cb; 4711 once->cb = cb;
1624 once->arg = arg; 4712 once->arg = arg;
1625 4713
1626 ev_init (&once->io, once_cb_io); 4714 ev_init (&once->io, once_cb_io);
1627 if (fd >= 0) 4715 if (fd >= 0)
4716 {
4717 ev_io_set (&once->io, fd, events);
4718 ev_io_start (EV_A_ &once->io);
4719 }
4720
4721 ev_init (&once->to, once_cb_to);
4722 if (timeout >= 0.)
4723 {
4724 ev_timer_set (&once->to, timeout, 0.);
4725 ev_timer_start (EV_A_ &once->to);
4726 }
4727}
4728
4729/*****************************************************************************/
4730
4731#if EV_WALK_ENABLE
4732void ecb_cold
4733ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4734{
4735 int i, j;
4736 ev_watcher_list *wl, *wn;
4737
4738 if (types & (EV_IO | EV_EMBED))
4739 for (i = 0; i < anfdmax; ++i)
4740 for (wl = anfds [i].head; wl; )
1628 { 4741 {
1629 ev_io_set (&once->io, fd, events); 4742 wn = wl->next;
1630 ev_io_start (EV_A_ &once->io); 4743
4744#if EV_EMBED_ENABLE
4745 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4746 {
4747 if (types & EV_EMBED)
4748 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4749 }
4750 else
4751#endif
4752#if EV_USE_INOTIFY
4753 if (ev_cb ((ev_io *)wl) == infy_cb)
4754 ;
4755 else
4756#endif
4757 if ((ev_io *)wl != &pipe_w)
4758 if (types & EV_IO)
4759 cb (EV_A_ EV_IO, wl);
4760
4761 wl = wn;
1631 } 4762 }
1632 4763
1633 ev_init (&once->to, once_cb_to); 4764 if (types & (EV_TIMER | EV_STAT))
1634 if (timeout >= 0.) 4765 for (i = timercnt + HEAP0; i-- > HEAP0; )
4766#if EV_STAT_ENABLE
4767 /*TODO: timer is not always active*/
4768 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1635 { 4769 {
1636 ev_timer_set (&once->to, timeout, 0.); 4770 if (types & EV_STAT)
1637 ev_timer_start (EV_A_ &once->to); 4771 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1638 } 4772 }
1639 } 4773 else
1640} 4774#endif
4775 if (types & EV_TIMER)
4776 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1641 4777
1642#ifdef __cplusplus 4778#if EV_PERIODIC_ENABLE
1643} 4779 if (types & EV_PERIODIC)
4780 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4781 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4782#endif
4783
4784#if EV_IDLE_ENABLE
4785 if (types & EV_IDLE)
4786 for (j = NUMPRI; j--; )
4787 for (i = idlecnt [j]; i--; )
4788 cb (EV_A_ EV_IDLE, idles [j][i]);
4789#endif
4790
4791#if EV_FORK_ENABLE
4792 if (types & EV_FORK)
4793 for (i = forkcnt; i--; )
4794 if (ev_cb (forks [i]) != embed_fork_cb)
4795 cb (EV_A_ EV_FORK, forks [i]);
4796#endif
4797
4798#if EV_ASYNC_ENABLE
4799 if (types & EV_ASYNC)
4800 for (i = asynccnt; i--; )
4801 cb (EV_A_ EV_ASYNC, asyncs [i]);
4802#endif
4803
4804#if EV_PREPARE_ENABLE
4805 if (types & EV_PREPARE)
4806 for (i = preparecnt; i--; )
4807# if EV_EMBED_ENABLE
4808 if (ev_cb (prepares [i]) != embed_prepare_cb)
1644#endif 4809# endif
4810 cb (EV_A_ EV_PREPARE, prepares [i]);
4811#endif
1645 4812
4813#if EV_CHECK_ENABLE
4814 if (types & EV_CHECK)
4815 for (i = checkcnt; i--; )
4816 cb (EV_A_ EV_CHECK, checks [i]);
4817#endif
4818
4819#if EV_SIGNAL_ENABLE
4820 if (types & EV_SIGNAL)
4821 for (i = 0; i < EV_NSIG - 1; ++i)
4822 for (wl = signals [i].head; wl; )
4823 {
4824 wn = wl->next;
4825 cb (EV_A_ EV_SIGNAL, wl);
4826 wl = wn;
4827 }
4828#endif
4829
4830#if EV_CHILD_ENABLE
4831 if (types & EV_CHILD)
4832 for (i = (EV_PID_HASHSIZE); i--; )
4833 for (wl = childs [i]; wl; )
4834 {
4835 wn = wl->next;
4836 cb (EV_A_ EV_CHILD, wl);
4837 wl = wn;
4838 }
4839#endif
4840/* EV_STAT 0x00001000 /* stat data changed */
4841/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4842}
4843#endif
4844
4845#if EV_MULTIPLICITY
4846 #include "ev_wrap.h"
4847#endif
4848

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines