ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.107 by root, Mon Nov 12 01:20:25 2007 UTC vs.
Revision 1.198 by root, Sun Dec 23 04:45:51 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
43# ifndef EV_USE_REALTIME 47# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
45# endif 49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
46# endif 57# endif
47 58
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
64# endif
50# endif 65# endif
51 66
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 67# ifndef EV_USE_SELECT
68# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif
54# endif 73# endif
55 74
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 77# define EV_USE_POLL 1
78# else
79# define EV_USE_POLL 0
80# endif
58# endif 81# endif
59 82
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1
86# else
87# define EV_USE_EPOLL 0
88# endif
89# endif
90
91# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif
97# endif
98
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1
102# else
103# define EV_USE_PORT 0
104# endif
105# endif
106
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1
110# else
111# define EV_USE_INOTIFY 0
112# endif
62# endif 113# endif
63 114
64#endif 115#endif
65 116
66#include <math.h> 117#include <math.h>
75#include <sys/types.h> 126#include <sys/types.h>
76#include <time.h> 127#include <time.h>
77 128
78#include <signal.h> 129#include <signal.h>
79 130
131#ifdef EV_H
132# include EV_H
133#else
134# include "ev.h"
135#endif
136
80#ifndef _WIN32 137#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 138# include <sys/time.h>
83# include <sys/wait.h> 139# include <sys/wait.h>
140# include <unistd.h>
84#else 141#else
85# define WIN32_LEAN_AND_MEAN 142# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 143# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 144# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 145# define EV_SELECT_IS_WINSOCKET 1
90#endif 147#endif
91 148
92/**/ 149/**/
93 150
94#ifndef EV_USE_MONOTONIC 151#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 152# define EV_USE_MONOTONIC 0
153#endif
154
155#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0
157#endif
158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
96#endif 161#endif
97 162
98#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 165#endif
102 166
103#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
104# ifdef _WIN32 168# ifdef _WIN32
105# define EV_USE_POLL 0 169# define EV_USE_POLL 0
114 178
115#ifndef EV_USE_KQUEUE 179#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 180# define EV_USE_KQUEUE 0
117#endif 181#endif
118 182
119#ifndef EV_USE_REALTIME 183#ifndef EV_USE_PORT
120# define EV_USE_REALTIME 1 184# define EV_USE_PORT 0
185#endif
186
187#ifndef EV_USE_INOTIFY
188# define EV_USE_INOTIFY 0
189#endif
190
191#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1
194# else
195# define EV_PID_HASHSIZE 16
196# endif
197#endif
198
199#ifndef EV_INOTIFY_HASHSIZE
200# if EV_MINIMAL
201# define EV_INOTIFY_HASHSIZE 1
202# else
203# define EV_INOTIFY_HASHSIZE 16
204# endif
121#endif 205#endif
122 206
123/**/ 207/**/
124
125/* darwin simply cannot be helped */
126#ifdef __APPLE__
127# undef EV_USE_POLL
128# undef EV_USE_KQUEUE
129#endif
130 208
131#ifndef CLOCK_MONOTONIC 209#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 210# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 211# define EV_USE_MONOTONIC 0
134#endif 212#endif
136#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
139#endif 217#endif
140 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
141#if EV_SELECT_IS_WINSOCKET 234#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h> 235# include <winsock.h>
143#endif 236#endif
144 237
145/**/ 238/**/
146 239
240/*
241 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
151 253
152#ifdef EV_H
153# include EV_H
154#else
155# include "ev.h"
156#endif
157
158#if __GNUC__ >= 3 254#if __GNUC__ >= 4
159# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
160# define inline inline 256# define noinline __attribute__ ((noinline))
161#else 257#else
162# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
163# define inline static 259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif
164#endif 263#endif
165 264
166#define expect_false(expr) expect ((expr) != 0, 0) 265#define expect_false(expr) expect ((expr) != 0, 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 266#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline
268
269#if EV_MINIMAL
270# define inline_speed static noinline
271#else
272# define inline_speed static inline
273#endif
168 274
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
171 277
172#define EMPTY /* required for microsofts broken pseudo-c compiler */ 278#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */
173 280
174typedef struct ev_watcher *W; 281typedef ev_watcher *W;
175typedef struct ev_watcher_list *WL; 282typedef ev_watcher_list *WL;
176typedef struct ev_watcher_time *WT; 283typedef ev_watcher_time *WT;
177 284
285#if EV_USE_MONOTONIC
286/* sig_atomic_t is used to avoid per-thread variables or locking but still */
287/* giving it a reasonably high chance of working on typical architetcures */
178static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 288static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
289#endif
179 290
180#ifdef _WIN32 291#ifdef _WIN32
181# include "ev_win32.c" 292# include "ev_win32.c"
182#endif 293#endif
183 294
184/*****************************************************************************/ 295/*****************************************************************************/
185 296
186static void (*syserr_cb)(const char *msg); 297static void (*syserr_cb)(const char *msg);
187 298
299void
188void ev_set_syserr_cb (void (*cb)(const char *msg)) 300ev_set_syserr_cb (void (*cb)(const char *msg))
189{ 301{
190 syserr_cb = cb; 302 syserr_cb = cb;
191} 303}
192 304
193static void 305static void noinline
194syserr (const char *msg) 306syserr (const char *msg)
195{ 307{
196 if (!msg) 308 if (!msg)
197 msg = "(libev) system error"; 309 msg = "(libev) system error";
198 310
205 } 317 }
206} 318}
207 319
208static void *(*alloc)(void *ptr, long size); 320static void *(*alloc)(void *ptr, long size);
209 321
322void
210void ev_set_allocator (void *(*cb)(void *ptr, long size)) 323ev_set_allocator (void *(*cb)(void *ptr, long size))
211{ 324{
212 alloc = cb; 325 alloc = cb;
213} 326}
214 327
215static void * 328inline_speed void *
216ev_realloc (void *ptr, long size) 329ev_realloc (void *ptr, long size)
217{ 330{
218 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 331 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
219 332
220 if (!ptr && size) 333 if (!ptr && size)
244typedef struct 357typedef struct
245{ 358{
246 W w; 359 W w;
247 int events; 360 int events;
248} ANPENDING; 361} ANPENDING;
362
363#if EV_USE_INOTIFY
364typedef struct
365{
366 WL head;
367} ANFS;
368#endif
249 369
250#if EV_MULTIPLICITY 370#if EV_MULTIPLICITY
251 371
252 struct ev_loop 372 struct ev_loop
253 { 373 {
257 #include "ev_vars.h" 377 #include "ev_vars.h"
258 #undef VAR 378 #undef VAR
259 }; 379 };
260 #include "ev_wrap.h" 380 #include "ev_wrap.h"
261 381
262 struct ev_loop default_loop_struct; 382 static struct ev_loop default_loop_struct;
263 static struct ev_loop *default_loop; 383 struct ev_loop *ev_default_loop_ptr;
264 384
265#else 385#else
266 386
267 ev_tstamp ev_rt_now; 387 ev_tstamp ev_rt_now;
268 #define VAR(name,decl) static decl; 388 #define VAR(name,decl) static decl;
269 #include "ev_vars.h" 389 #include "ev_vars.h"
270 #undef VAR 390 #undef VAR
271 391
272 static int default_loop; 392 static int ev_default_loop_ptr;
273 393
274#endif 394#endif
275 395
276/*****************************************************************************/ 396/*****************************************************************************/
277 397
287 gettimeofday (&tv, 0); 407 gettimeofday (&tv, 0);
288 return tv.tv_sec + tv.tv_usec * 1e-6; 408 return tv.tv_sec + tv.tv_usec * 1e-6;
289#endif 409#endif
290} 410}
291 411
292inline ev_tstamp 412ev_tstamp inline_size
293get_clock (void) 413get_clock (void)
294{ 414{
295#if EV_USE_MONOTONIC 415#if EV_USE_MONOTONIC
296 if (expect_true (have_monotonic)) 416 if (expect_true (have_monotonic))
297 { 417 {
310{ 430{
311 return ev_rt_now; 431 return ev_rt_now;
312} 432}
313#endif 433#endif
314 434
315#define array_roundsize(type,n) ((n) | 4 & ~3) 435void
436ev_sleep (ev_tstamp delay)
437{
438 if (delay > 0.)
439 {
440#if EV_USE_NANOSLEEP
441 struct timespec ts;
442
443 ts.tv_sec = (time_t)delay;
444 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
445
446 nanosleep (&ts, 0);
447#elif defined(_WIN32)
448 Sleep (delay * 1e3);
449#else
450 struct timeval tv;
451
452 tv.tv_sec = (time_t)delay;
453 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
454
455 select (0, 0, 0, 0, &tv);
456#endif
457 }
458}
459
460/*****************************************************************************/
461
462int inline_size
463array_nextsize (int elem, int cur, int cnt)
464{
465 int ncur = cur + 1;
466
467 do
468 ncur <<= 1;
469 while (cnt > ncur);
470
471 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
472 if (elem * ncur > 4096)
473 {
474 ncur *= elem;
475 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
476 ncur = ncur - sizeof (void *) * 4;
477 ncur /= elem;
478 }
479
480 return ncur;
481}
482
483static noinline void *
484array_realloc (int elem, void *base, int *cur, int cnt)
485{
486 *cur = array_nextsize (elem, *cur, cnt);
487 return ev_realloc (base, elem * *cur);
488}
316 489
317#define array_needsize(type,base,cur,cnt,init) \ 490#define array_needsize(type,base,cur,cnt,init) \
318 if (expect_false ((cnt) > cur)) \ 491 if (expect_false ((cnt) > (cur))) \
319 { \ 492 { \
320 int newcnt = cur; \ 493 int ocur_ = (cur); \
321 do \ 494 (base) = (type *)array_realloc \
322 { \ 495 (sizeof (type), (base), &(cur), (cnt)); \
323 newcnt = array_roundsize (type, newcnt << 1); \ 496 init ((base) + (ocur_), (cur) - ocur_); \
324 } \
325 while ((cnt) > newcnt); \
326 \
327 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
328 init (base + cur, newcnt - cur); \
329 cur = newcnt; \
330 } 497 }
331 498
499#if 0
332#define array_slim(type,stem) \ 500#define array_slim(type,stem) \
333 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 501 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
334 { \ 502 { \
335 stem ## max = array_roundsize (stem ## cnt >> 1); \ 503 stem ## max = array_roundsize (stem ## cnt >> 1); \
336 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 504 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
337 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 505 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
338 } 506 }
507#endif
339 508
340#define array_free(stem, idx) \ 509#define array_free(stem, idx) \
341 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 510 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
342 511
343/*****************************************************************************/ 512/*****************************************************************************/
344 513
345static void 514void noinline
515ev_feed_event (EV_P_ void *w, int revents)
516{
517 W w_ = (W)w;
518 int pri = ABSPRI (w_);
519
520 if (expect_false (w_->pending))
521 pendings [pri][w_->pending - 1].events |= revents;
522 else
523 {
524 w_->pending = ++pendingcnt [pri];
525 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
526 pendings [pri][w_->pending - 1].w = w_;
527 pendings [pri][w_->pending - 1].events = revents;
528 }
529}
530
531void inline_speed
532queue_events (EV_P_ W *events, int eventcnt, int type)
533{
534 int i;
535
536 for (i = 0; i < eventcnt; ++i)
537 ev_feed_event (EV_A_ events [i], type);
538}
539
540/*****************************************************************************/
541
542void inline_size
346anfds_init (ANFD *base, int count) 543anfds_init (ANFD *base, int count)
347{ 544{
348 while (count--) 545 while (count--)
349 { 546 {
350 base->head = 0; 547 base->head = 0;
353 550
354 ++base; 551 ++base;
355 } 552 }
356} 553}
357 554
358void 555void inline_speed
359ev_feed_event (EV_P_ void *w, int revents)
360{
361 W w_ = (W)w;
362
363 if (w_->pending)
364 {
365 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
366 return;
367 }
368
369 w_->pending = ++pendingcnt [ABSPRI (w_)];
370 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
371 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
372 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
373}
374
375static void
376queue_events (EV_P_ W *events, int eventcnt, int type)
377{
378 int i;
379
380 for (i = 0; i < eventcnt; ++i)
381 ev_feed_event (EV_A_ events [i], type);
382}
383
384inline void
385fd_event (EV_P_ int fd, int revents) 556fd_event (EV_P_ int fd, int revents)
386{ 557{
387 ANFD *anfd = anfds + fd; 558 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 559 ev_io *w;
389 560
390 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 561 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
391 { 562 {
392 int ev = w->events & revents; 563 int ev = w->events & revents;
393 564
394 if (ev) 565 if (ev)
395 ev_feed_event (EV_A_ (W)w, ev); 566 ev_feed_event (EV_A_ (W)w, ev);
397} 568}
398 569
399void 570void
400ev_feed_fd_event (EV_P_ int fd, int revents) 571ev_feed_fd_event (EV_P_ int fd, int revents)
401{ 572{
573 if (fd >= 0 && fd < anfdmax)
402 fd_event (EV_A_ fd, revents); 574 fd_event (EV_A_ fd, revents);
403} 575}
404 576
405/*****************************************************************************/ 577void inline_size
406
407static void
408fd_reify (EV_P) 578fd_reify (EV_P)
409{ 579{
410 int i; 580 int i;
411 581
412 for (i = 0; i < fdchangecnt; ++i) 582 for (i = 0; i < fdchangecnt; ++i)
413 { 583 {
414 int fd = fdchanges [i]; 584 int fd = fdchanges [i];
415 ANFD *anfd = anfds + fd; 585 ANFD *anfd = anfds + fd;
416 struct ev_io *w; 586 ev_io *w;
417 587
418 int events = 0; 588 unsigned char events = 0;
419 589
420 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 590 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
421 events |= w->events; 591 events |= (unsigned char)w->events;
422 592
423#if EV_SELECT_IS_WINSOCKET 593#if EV_SELECT_IS_WINSOCKET
424 if (events) 594 if (events)
425 { 595 {
426 unsigned long argp; 596 unsigned long argp;
427 anfd->handle = _get_osfhandle (fd); 597 anfd->handle = _get_osfhandle (fd);
428 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 598 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
429 } 599 }
430#endif 600#endif
431 601
602 {
603 unsigned char o_events = anfd->events;
604 unsigned char o_reify = anfd->reify;
605
432 anfd->reify = 0; 606 anfd->reify = 0;
433
434 method_modify (EV_A_ fd, anfd->events, events);
435 anfd->events = events; 607 anfd->events = events;
608
609 if (o_events != events || o_reify & EV_IOFDSET)
610 backend_modify (EV_A_ fd, o_events, events);
611 }
436 } 612 }
437 613
438 fdchangecnt = 0; 614 fdchangecnt = 0;
439} 615}
440 616
441static void 617void inline_size
442fd_change (EV_P_ int fd) 618fd_change (EV_P_ int fd, int flags)
443{ 619{
444 if (anfds [fd].reify) 620 unsigned char reify = anfds [fd].reify;
445 return;
446
447 anfds [fd].reify = 1; 621 anfds [fd].reify |= flags;
448 622
623 if (expect_true (!reify))
624 {
449 ++fdchangecnt; 625 ++fdchangecnt;
450 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 626 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
451 fdchanges [fdchangecnt - 1] = fd; 627 fdchanges [fdchangecnt - 1] = fd;
628 }
452} 629}
453 630
454static void 631void inline_speed
455fd_kill (EV_P_ int fd) 632fd_kill (EV_P_ int fd)
456{ 633{
457 struct ev_io *w; 634 ev_io *w;
458 635
459 while ((w = (struct ev_io *)anfds [fd].head)) 636 while ((w = (ev_io *)anfds [fd].head))
460 { 637 {
461 ev_io_stop (EV_A_ w); 638 ev_io_stop (EV_A_ w);
462 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 639 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
463 } 640 }
464} 641}
465 642
466static int 643int inline_size
467fd_valid (int fd) 644fd_valid (int fd)
468{ 645{
469#ifdef _WIN32 646#ifdef _WIN32
470 return _get_osfhandle (fd) != -1; 647 return _get_osfhandle (fd) != -1;
471#else 648#else
472 return fcntl (fd, F_GETFD) != -1; 649 return fcntl (fd, F_GETFD) != -1;
473#endif 650#endif
474} 651}
475 652
476/* called on EBADF to verify fds */ 653/* called on EBADF to verify fds */
477static void 654static void noinline
478fd_ebadf (EV_P) 655fd_ebadf (EV_P)
479{ 656{
480 int fd; 657 int fd;
481 658
482 for (fd = 0; fd < anfdmax; ++fd) 659 for (fd = 0; fd < anfdmax; ++fd)
484 if (!fd_valid (fd) == -1 && errno == EBADF) 661 if (!fd_valid (fd) == -1 && errno == EBADF)
485 fd_kill (EV_A_ fd); 662 fd_kill (EV_A_ fd);
486} 663}
487 664
488/* called on ENOMEM in select/poll to kill some fds and retry */ 665/* called on ENOMEM in select/poll to kill some fds and retry */
489static void 666static void noinline
490fd_enomem (EV_P) 667fd_enomem (EV_P)
491{ 668{
492 int fd; 669 int fd;
493 670
494 for (fd = anfdmax; fd--; ) 671 for (fd = anfdmax; fd--; )
497 fd_kill (EV_A_ fd); 674 fd_kill (EV_A_ fd);
498 return; 675 return;
499 } 676 }
500} 677}
501 678
502/* usually called after fork if method needs to re-arm all fds from scratch */ 679/* usually called after fork if backend needs to re-arm all fds from scratch */
503static void 680static void noinline
504fd_rearm_all (EV_P) 681fd_rearm_all (EV_P)
505{ 682{
506 int fd; 683 int fd;
507 684
508 /* this should be highly optimised to not do anything but set a flag */
509 for (fd = 0; fd < anfdmax; ++fd) 685 for (fd = 0; fd < anfdmax; ++fd)
510 if (anfds [fd].events) 686 if (anfds [fd].events)
511 { 687 {
512 anfds [fd].events = 0; 688 anfds [fd].events = 0;
513 fd_change (EV_A_ fd); 689 fd_change (EV_A_ fd, EV_IOFDSET | 1);
514 } 690 }
515} 691}
516 692
517/*****************************************************************************/ 693/*****************************************************************************/
518 694
519static void 695void inline_speed
520upheap (WT *heap, int k) 696upheap (WT *heap, int k)
521{ 697{
522 WT w = heap [k]; 698 WT w = heap [k];
523 699
524 while (k && heap [k >> 1]->at > w->at) 700 while (k)
525 { 701 {
702 int p = (k - 1) >> 1;
703
704 if (heap [p]->at <= w->at)
705 break;
706
526 heap [k] = heap [k >> 1]; 707 heap [k] = heap [p];
527 ((W)heap [k])->active = k + 1; 708 ((W)heap [k])->active = k + 1;
528 k >>= 1; 709 k = p;
529 } 710 }
530 711
531 heap [k] = w; 712 heap [k] = w;
532 ((W)heap [k])->active = k + 1; 713 ((W)heap [k])->active = k + 1;
533
534} 714}
535 715
536static void 716void inline_speed
537downheap (WT *heap, int N, int k) 717downheap (WT *heap, int N, int k)
538{ 718{
539 WT w = heap [k]; 719 WT w = heap [k];
540 720
541 while (k < (N >> 1)) 721 for (;;)
542 { 722 {
543 int j = k << 1; 723 int c = (k << 1) + 1;
544 724
545 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 725 if (c >= N)
546 ++j;
547
548 if (w->at <= heap [j]->at)
549 break; 726 break;
550 727
728 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
729 ? 1 : 0;
730
731 if (w->at <= heap [c]->at)
732 break;
733
551 heap [k] = heap [j]; 734 heap [k] = heap [c];
552 ((W)heap [k])->active = k + 1; 735 ((W)heap [k])->active = k + 1;
736
553 k = j; 737 k = c;
554 } 738 }
555 739
556 heap [k] = w; 740 heap [k] = w;
557 ((W)heap [k])->active = k + 1; 741 ((W)heap [k])->active = k + 1;
558} 742}
559 743
560inline void 744void inline_size
561adjustheap (WT *heap, int N, int k) 745adjustheap (WT *heap, int N, int k)
562{ 746{
563 upheap (heap, k); 747 upheap (heap, k);
564 downheap (heap, N, k); 748 downheap (heap, N, k);
565} 749}
575static ANSIG *signals; 759static ANSIG *signals;
576static int signalmax; 760static int signalmax;
577 761
578static int sigpipe [2]; 762static int sigpipe [2];
579static sig_atomic_t volatile gotsig; 763static sig_atomic_t volatile gotsig;
580static struct ev_io sigev; 764static ev_io sigev;
581 765
582static void 766void inline_size
583signals_init (ANSIG *base, int count) 767signals_init (ANSIG *base, int count)
584{ 768{
585 while (count--) 769 while (count--)
586 { 770 {
587 base->head = 0; 771 base->head = 0;
607 write (sigpipe [1], &signum, 1); 791 write (sigpipe [1], &signum, 1);
608 errno = old_errno; 792 errno = old_errno;
609 } 793 }
610} 794}
611 795
612void 796void noinline
613ev_feed_signal_event (EV_P_ int signum) 797ev_feed_signal_event (EV_P_ int signum)
614{ 798{
615 WL w; 799 WL w;
616 800
617#if EV_MULTIPLICITY 801#if EV_MULTIPLICITY
618 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 802 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
619#endif 803#endif
620 804
621 --signum; 805 --signum;
622 806
623 if (signum < 0 || signum >= signalmax) 807 if (signum < 0 || signum >= signalmax)
628 for (w = signals [signum].head; w; w = w->next) 812 for (w = signals [signum].head; w; w = w->next)
629 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
630} 814}
631 815
632static void 816static void
633sigcb (EV_P_ struct ev_io *iow, int revents) 817sigcb (EV_P_ ev_io *iow, int revents)
634{ 818{
635 int signum; 819 int signum;
636 820
637 read (sigpipe [0], &revents, 1); 821 read (sigpipe [0], &revents, 1);
638 gotsig = 0; 822 gotsig = 0;
640 for (signum = signalmax; signum--; ) 824 for (signum = signalmax; signum--; )
641 if (signals [signum].gotsig) 825 if (signals [signum].gotsig)
642 ev_feed_signal_event (EV_A_ signum + 1); 826 ev_feed_signal_event (EV_A_ signum + 1);
643} 827}
644 828
645inline void 829void inline_speed
646fd_intern (int fd) 830fd_intern (int fd)
647{ 831{
648#ifdef _WIN32 832#ifdef _WIN32
649 int arg = 1; 833 int arg = 1;
650 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 834 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
652 fcntl (fd, F_SETFD, FD_CLOEXEC); 836 fcntl (fd, F_SETFD, FD_CLOEXEC);
653 fcntl (fd, F_SETFL, O_NONBLOCK); 837 fcntl (fd, F_SETFL, O_NONBLOCK);
654#endif 838#endif
655} 839}
656 840
657static void 841static void noinline
658siginit (EV_P) 842siginit (EV_P)
659{ 843{
660 fd_intern (sigpipe [0]); 844 fd_intern (sigpipe [0]);
661 fd_intern (sigpipe [1]); 845 fd_intern (sigpipe [1]);
662 846
665 ev_unref (EV_A); /* child watcher should not keep loop alive */ 849 ev_unref (EV_A); /* child watcher should not keep loop alive */
666} 850}
667 851
668/*****************************************************************************/ 852/*****************************************************************************/
669 853
670static struct ev_child *childs [PID_HASHSIZE]; 854static WL childs [EV_PID_HASHSIZE];
671 855
672#ifndef _WIN32 856#ifndef _WIN32
673 857
674static struct ev_signal childev; 858static ev_signal childev;
859
860void inline_speed
861child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
862{
863 ev_child *w;
864
865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
866 if (w->pid == pid || !w->pid)
867 {
868 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
869 w->rpid = pid;
870 w->rstatus = status;
871 ev_feed_event (EV_A_ (W)w, EV_CHILD);
872 }
873}
675 874
676#ifndef WCONTINUED 875#ifndef WCONTINUED
677# define WCONTINUED 0 876# define WCONTINUED 0
678#endif 877#endif
679 878
680static void 879static void
681child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
682{
683 struct ev_child *w;
684
685 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
686 if (w->pid == pid || !w->pid)
687 {
688 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
689 w->rpid = pid;
690 w->rstatus = status;
691 ev_feed_event (EV_A_ (W)w, EV_CHILD);
692 }
693}
694
695static void
696childcb (EV_P_ struct ev_signal *sw, int revents) 880childcb (EV_P_ ev_signal *sw, int revents)
697{ 881{
698 int pid, status; 882 int pid, status;
699 883
884 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
700 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 885 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
701 { 886 if (!WCONTINUED
887 || errno != EINVAL
888 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
889 return;
890
702 /* make sure we are called again until all childs have been reaped */ 891 /* make sure we are called again until all childs have been reaped */
892 /* we need to do it this way so that the callback gets called before we continue */
703 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 893 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
704 894
705 child_reap (EV_A_ sw, pid, pid, status); 895 child_reap (EV_A_ sw, pid, pid, status);
896 if (EV_PID_HASHSIZE > 1)
706 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 897 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
707 }
708} 898}
709 899
710#endif 900#endif
711 901
712/*****************************************************************************/ 902/*****************************************************************************/
713 903
904#if EV_USE_PORT
905# include "ev_port.c"
906#endif
714#if EV_USE_KQUEUE 907#if EV_USE_KQUEUE
715# include "ev_kqueue.c" 908# include "ev_kqueue.c"
716#endif 909#endif
717#if EV_USE_EPOLL 910#if EV_USE_EPOLL
718# include "ev_epoll.c" 911# include "ev_epoll.c"
735{ 928{
736 return EV_VERSION_MINOR; 929 return EV_VERSION_MINOR;
737} 930}
738 931
739/* return true if we are running with elevated privileges and should ignore env variables */ 932/* return true if we are running with elevated privileges and should ignore env variables */
740static int 933int inline_size
741enable_secure (void) 934enable_secure (void)
742{ 935{
743#ifdef _WIN32 936#ifdef _WIN32
744 return 0; 937 return 0;
745#else 938#else
746 return getuid () != geteuid () 939 return getuid () != geteuid ()
747 || getgid () != getegid (); 940 || getgid () != getegid ();
748#endif 941#endif
749} 942}
750 943
751int 944unsigned int
752ev_method (EV_P) 945ev_supported_backends (void)
753{ 946{
754 return method; 947 unsigned int flags = 0;
755}
756 948
757static void 949 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
758loop_init (EV_P_ int methods) 950 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
951 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
952 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
953 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
954
955 return flags;
956}
957
958unsigned int
959ev_recommended_backends (void)
759{ 960{
760 if (!method) 961 unsigned int flags = ev_supported_backends ();
962
963#ifndef __NetBSD__
964 /* kqueue is borked on everything but netbsd apparently */
965 /* it usually doesn't work correctly on anything but sockets and pipes */
966 flags &= ~EVBACKEND_KQUEUE;
967#endif
968#ifdef __APPLE__
969 // flags &= ~EVBACKEND_KQUEUE; for documentation
970 flags &= ~EVBACKEND_POLL;
971#endif
972
973 return flags;
974}
975
976unsigned int
977ev_embeddable_backends (void)
978{
979 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
980
981 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
982 /* please fix it and tell me how to detect the fix */
983 flags &= ~EVBACKEND_EPOLL;
984
985 return flags;
986}
987
988unsigned int
989ev_backend (EV_P)
990{
991 return backend;
992}
993
994unsigned int
995ev_loop_count (EV_P)
996{
997 return loop_count;
998}
999
1000void
1001ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1002{
1003 io_blocktime = interval;
1004}
1005
1006void
1007ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1008{
1009 timeout_blocktime = interval;
1010}
1011
1012static void noinline
1013loop_init (EV_P_ unsigned int flags)
1014{
1015 if (!backend)
761 { 1016 {
762#if EV_USE_MONOTONIC 1017#if EV_USE_MONOTONIC
763 { 1018 {
764 struct timespec ts; 1019 struct timespec ts;
765 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1020 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
770 ev_rt_now = ev_time (); 1025 ev_rt_now = ev_time ();
771 mn_now = get_clock (); 1026 mn_now = get_clock ();
772 now_floor = mn_now; 1027 now_floor = mn_now;
773 rtmn_diff = ev_rt_now - mn_now; 1028 rtmn_diff = ev_rt_now - mn_now;
774 1029
775 if (methods == EVMETHOD_AUTO) 1030 io_blocktime = 0.;
776 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1031 timeout_blocktime = 0.;
1032
1033 /* pid check not overridable via env */
1034#ifndef _WIN32
1035 if (flags & EVFLAG_FORKCHECK)
1036 curpid = getpid ();
1037#endif
1038
1039 if (!(flags & EVFLAG_NOENV)
1040 && !enable_secure ()
1041 && getenv ("LIBEV_FLAGS"))
777 methods = atoi (getenv ("LIBEV_METHODS")); 1042 flags = atoi (getenv ("LIBEV_FLAGS"));
778 else
779 methods = EVMETHOD_ANY;
780 1043
781 method = 0; 1044 if (!(flags & 0x0000ffffUL))
1045 flags |= ev_recommended_backends ();
1046
1047 backend = 0;
1048 backend_fd = -1;
1049#if EV_USE_INOTIFY
1050 fs_fd = -2;
1051#endif
1052
1053#if EV_USE_PORT
1054 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1055#endif
782#if EV_USE_KQUEUE 1056#if EV_USE_KQUEUE
783 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1057 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
784#endif 1058#endif
785#if EV_USE_EPOLL 1059#if EV_USE_EPOLL
786 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1060 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
787#endif 1061#endif
788#if EV_USE_POLL 1062#if EV_USE_POLL
789 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1063 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
790#endif 1064#endif
791#if EV_USE_SELECT 1065#if EV_USE_SELECT
792 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1066 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
793#endif 1067#endif
794 1068
795 ev_init (&sigev, sigcb); 1069 ev_init (&sigev, sigcb);
796 ev_set_priority (&sigev, EV_MAXPRI); 1070 ev_set_priority (&sigev, EV_MAXPRI);
797 } 1071 }
798} 1072}
799 1073
800void 1074static void noinline
801loop_destroy (EV_P) 1075loop_destroy (EV_P)
802{ 1076{
803 int i; 1077 int i;
804 1078
1079#if EV_USE_INOTIFY
1080 if (fs_fd >= 0)
1081 close (fs_fd);
1082#endif
1083
1084 if (backend_fd >= 0)
1085 close (backend_fd);
1086
1087#if EV_USE_PORT
1088 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1089#endif
805#if EV_USE_KQUEUE 1090#if EV_USE_KQUEUE
806 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1091 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
807#endif 1092#endif
808#if EV_USE_EPOLL 1093#if EV_USE_EPOLL
809 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1094 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
810#endif 1095#endif
811#if EV_USE_POLL 1096#if EV_USE_POLL
812 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1097 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
813#endif 1098#endif
814#if EV_USE_SELECT 1099#if EV_USE_SELECT
815 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1100 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
816#endif 1101#endif
817 1102
818 for (i = NUMPRI; i--; ) 1103 for (i = NUMPRI; i--; )
1104 {
819 array_free (pending, [i]); 1105 array_free (pending, [i]);
1106#if EV_IDLE_ENABLE
1107 array_free (idle, [i]);
1108#endif
1109 }
1110
1111 ev_free (anfds); anfdmax = 0;
820 1112
821 /* have to use the microsoft-never-gets-it-right macro */ 1113 /* have to use the microsoft-never-gets-it-right macro */
822 array_free (fdchange, EMPTY); 1114 array_free (fdchange, EMPTY);
823 array_free (timer, EMPTY); 1115 array_free (timer, EMPTY);
824#if EV_PERIODICS 1116#if EV_PERIODIC_ENABLE
825 array_free (periodic, EMPTY); 1117 array_free (periodic, EMPTY);
826#endif 1118#endif
1119#if EV_FORK_ENABLE
827 array_free (idle, EMPTY); 1120 array_free (fork, EMPTY);
1121#endif
828 array_free (prepare, EMPTY); 1122 array_free (prepare, EMPTY);
829 array_free (check, EMPTY); 1123 array_free (check, EMPTY);
830 1124
831 method = 0; 1125 backend = 0;
832} 1126}
833 1127
834static void 1128void inline_size infy_fork (EV_P);
1129
1130void inline_size
835loop_fork (EV_P) 1131loop_fork (EV_P)
836{ 1132{
1133#if EV_USE_PORT
1134 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1135#endif
1136#if EV_USE_KQUEUE
1137 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1138#endif
837#if EV_USE_EPOLL 1139#if EV_USE_EPOLL
838 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1140 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
839#endif 1141#endif
840#if EV_USE_KQUEUE 1142#if EV_USE_INOTIFY
841 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1143 infy_fork (EV_A);
842#endif 1144#endif
843 1145
844 if (ev_is_active (&sigev)) 1146 if (ev_is_active (&sigev))
845 { 1147 {
846 /* default loop */ 1148 /* default loop */
859 postfork = 0; 1161 postfork = 0;
860} 1162}
861 1163
862#if EV_MULTIPLICITY 1164#if EV_MULTIPLICITY
863struct ev_loop * 1165struct ev_loop *
864ev_loop_new (int methods) 1166ev_loop_new (unsigned int flags)
865{ 1167{
866 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1168 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
867 1169
868 memset (loop, 0, sizeof (struct ev_loop)); 1170 memset (loop, 0, sizeof (struct ev_loop));
869 1171
870 loop_init (EV_A_ methods); 1172 loop_init (EV_A_ flags);
871 1173
872 if (ev_method (EV_A)) 1174 if (ev_backend (EV_A))
873 return loop; 1175 return loop;
874 1176
875 return 0; 1177 return 0;
876} 1178}
877 1179
890 1192
891#endif 1193#endif
892 1194
893#if EV_MULTIPLICITY 1195#if EV_MULTIPLICITY
894struct ev_loop * 1196struct ev_loop *
1197ev_default_loop_init (unsigned int flags)
895#else 1198#else
896int 1199int
1200ev_default_loop (unsigned int flags)
897#endif 1201#endif
898ev_default_loop (int methods)
899{ 1202{
900 if (sigpipe [0] == sigpipe [1]) 1203 if (sigpipe [0] == sigpipe [1])
901 if (pipe (sigpipe)) 1204 if (pipe (sigpipe))
902 return 0; 1205 return 0;
903 1206
904 if (!default_loop) 1207 if (!ev_default_loop_ptr)
905 { 1208 {
906#if EV_MULTIPLICITY 1209#if EV_MULTIPLICITY
907 struct ev_loop *loop = default_loop = &default_loop_struct; 1210 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
908#else 1211#else
909 default_loop = 1; 1212 ev_default_loop_ptr = 1;
910#endif 1213#endif
911 1214
912 loop_init (EV_A_ methods); 1215 loop_init (EV_A_ flags);
913 1216
914 if (ev_method (EV_A)) 1217 if (ev_backend (EV_A))
915 { 1218 {
916 siginit (EV_A); 1219 siginit (EV_A);
917 1220
918#ifndef _WIN32 1221#ifndef _WIN32
919 ev_signal_init (&childev, childcb, SIGCHLD); 1222 ev_signal_init (&childev, childcb, SIGCHLD);
921 ev_signal_start (EV_A_ &childev); 1224 ev_signal_start (EV_A_ &childev);
922 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1225 ev_unref (EV_A); /* child watcher should not keep loop alive */
923#endif 1226#endif
924 } 1227 }
925 else 1228 else
926 default_loop = 0; 1229 ev_default_loop_ptr = 0;
927 } 1230 }
928 1231
929 return default_loop; 1232 return ev_default_loop_ptr;
930} 1233}
931 1234
932void 1235void
933ev_default_destroy (void) 1236ev_default_destroy (void)
934{ 1237{
935#if EV_MULTIPLICITY 1238#if EV_MULTIPLICITY
936 struct ev_loop *loop = default_loop; 1239 struct ev_loop *loop = ev_default_loop_ptr;
937#endif 1240#endif
938 1241
939#ifndef _WIN32 1242#ifndef _WIN32
940 ev_ref (EV_A); /* child watcher */ 1243 ev_ref (EV_A); /* child watcher */
941 ev_signal_stop (EV_A_ &childev); 1244 ev_signal_stop (EV_A_ &childev);
952 1255
953void 1256void
954ev_default_fork (void) 1257ev_default_fork (void)
955{ 1258{
956#if EV_MULTIPLICITY 1259#if EV_MULTIPLICITY
957 struct ev_loop *loop = default_loop; 1260 struct ev_loop *loop = ev_default_loop_ptr;
958#endif 1261#endif
959 1262
960 if (method) 1263 if (backend)
961 postfork = 1; 1264 postfork = 1;
962} 1265}
963 1266
964/*****************************************************************************/ 1267/*****************************************************************************/
965 1268
966static int 1269void
967any_pending (EV_P) 1270ev_invoke (EV_P_ void *w, int revents)
968{ 1271{
969 int pri; 1272 EV_CB_INVOKE ((W)w, revents);
970
971 for (pri = NUMPRI; pri--; )
972 if (pendingcnt [pri])
973 return 1;
974
975 return 0;
976} 1273}
977 1274
978static void 1275void inline_speed
979call_pending (EV_P) 1276call_pending (EV_P)
980{ 1277{
981 int pri; 1278 int pri;
982 1279
983 for (pri = NUMPRI; pri--; ) 1280 for (pri = NUMPRI; pri--; )
984 while (pendingcnt [pri]) 1281 while (pendingcnt [pri])
985 { 1282 {
986 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1283 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
987 1284
988 if (p->w) 1285 if (expect_true (p->w))
989 { 1286 {
1287 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1288
990 p->w->pending = 0; 1289 p->w->pending = 0;
991 EV_CB_INVOKE (p->w, p->events); 1290 EV_CB_INVOKE (p->w, p->events);
992 } 1291 }
993 } 1292 }
994} 1293}
995 1294
996static void 1295void inline_size
997timers_reify (EV_P) 1296timers_reify (EV_P)
998{ 1297{
999 while (timercnt && ((WT)timers [0])->at <= mn_now) 1298 while (timercnt && ((WT)timers [0])->at <= mn_now)
1000 { 1299 {
1001 struct ev_timer *w = timers [0]; 1300 ev_timer *w = (ev_timer *)timers [0];
1002 1301
1003 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1302 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1004 1303
1005 /* first reschedule or stop timer */ 1304 /* first reschedule or stop timer */
1006 if (w->repeat) 1305 if (w->repeat)
1007 { 1306 {
1008 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1307 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1009 1308
1010 ((WT)w)->at += w->repeat; 1309 ((WT)w)->at += w->repeat;
1011 if (((WT)w)->at < mn_now) 1310 if (((WT)w)->at < mn_now)
1012 ((WT)w)->at = mn_now; 1311 ((WT)w)->at = mn_now;
1013 1312
1014 downheap ((WT *)timers, timercnt, 0); 1313 downheap (timers, timercnt, 0);
1015 } 1314 }
1016 else 1315 else
1017 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1316 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1018 1317
1019 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1318 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1020 } 1319 }
1021} 1320}
1022 1321
1023#if EV_PERIODICS 1322#if EV_PERIODIC_ENABLE
1024static void 1323void inline_size
1025periodics_reify (EV_P) 1324periodics_reify (EV_P)
1026{ 1325{
1027 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1326 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1028 { 1327 {
1029 struct ev_periodic *w = periodics [0]; 1328 ev_periodic *w = (ev_periodic *)periodics [0];
1030 1329
1031 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1330 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1032 1331
1033 /* first reschedule or stop timer */ 1332 /* first reschedule or stop timer */
1034 if (w->reschedule_cb) 1333 if (w->reschedule_cb)
1035 { 1334 {
1036 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1335 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1037
1038 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1336 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0); 1337 downheap (periodics, periodiccnt, 0);
1040 } 1338 }
1041 else if (w->interval) 1339 else if (w->interval)
1042 { 1340 {
1043 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1341 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1342 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1044 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1343 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1045 downheap ((WT *)periodics, periodiccnt, 0); 1344 downheap (periodics, periodiccnt, 0);
1046 } 1345 }
1047 else 1346 else
1048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1347 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1049 1348
1050 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1349 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1051 } 1350 }
1052} 1351}
1053 1352
1054static void 1353static void noinline
1055periodics_reschedule (EV_P) 1354periodics_reschedule (EV_P)
1056{ 1355{
1057 int i; 1356 int i;
1058 1357
1059 /* adjust periodics after time jump */ 1358 /* adjust periodics after time jump */
1060 for (i = 0; i < periodiccnt; ++i) 1359 for (i = 0; i < periodiccnt; ++i)
1061 { 1360 {
1062 struct ev_periodic *w = periodics [i]; 1361 ev_periodic *w = (ev_periodic *)periodics [i];
1063 1362
1064 if (w->reschedule_cb) 1363 if (w->reschedule_cb)
1065 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1364 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1066 else if (w->interval) 1365 else if (w->interval)
1067 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1366 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1068 } 1367 }
1069 1368
1070 /* now rebuild the heap */ 1369 /* now rebuild the heap */
1071 for (i = periodiccnt >> 1; i--; ) 1370 for (i = periodiccnt >> 1; i--; )
1072 downheap ((WT *)periodics, periodiccnt, i); 1371 downheap (periodics, periodiccnt, i);
1073} 1372}
1074#endif 1373#endif
1075 1374
1076inline int 1375#if EV_IDLE_ENABLE
1077time_update_monotonic (EV_P) 1376void inline_size
1377idle_reify (EV_P)
1078{ 1378{
1379 if (expect_false (idleall))
1380 {
1381 int pri;
1382
1383 for (pri = NUMPRI; pri--; )
1384 {
1385 if (pendingcnt [pri])
1386 break;
1387
1388 if (idlecnt [pri])
1389 {
1390 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1391 break;
1392 }
1393 }
1394 }
1395}
1396#endif
1397
1398void inline_speed
1399time_update (EV_P_ ev_tstamp max_block)
1400{
1401 int i;
1402
1403#if EV_USE_MONOTONIC
1404 if (expect_true (have_monotonic))
1405 {
1406 ev_tstamp odiff = rtmn_diff;
1407
1079 mn_now = get_clock (); 1408 mn_now = get_clock ();
1080 1409
1410 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1411 /* interpolate in the meantime */
1081 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1412 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1082 { 1413 {
1083 ev_rt_now = rtmn_diff + mn_now; 1414 ev_rt_now = rtmn_diff + mn_now;
1084 return 0; 1415 return;
1085 } 1416 }
1086 else 1417
1087 {
1088 now_floor = mn_now; 1418 now_floor = mn_now;
1089 ev_rt_now = ev_time (); 1419 ev_rt_now = ev_time ();
1090 return 1;
1091 }
1092}
1093 1420
1094static void 1421 /* loop a few times, before making important decisions.
1095time_update (EV_P) 1422 * on the choice of "4": one iteration isn't enough,
1096{ 1423 * in case we get preempted during the calls to
1097 int i; 1424 * ev_time and get_clock. a second call is almost guaranteed
1098 1425 * to succeed in that case, though. and looping a few more times
1099#if EV_USE_MONOTONIC 1426 * doesn't hurt either as we only do this on time-jumps or
1100 if (expect_true (have_monotonic)) 1427 * in the unlikely event of having been preempted here.
1101 { 1428 */
1102 if (time_update_monotonic (EV_A)) 1429 for (i = 4; --i; )
1103 { 1430 {
1104 ev_tstamp odiff = rtmn_diff;
1105
1106 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1107 {
1108 rtmn_diff = ev_rt_now - mn_now; 1431 rtmn_diff = ev_rt_now - mn_now;
1109 1432
1110 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1433 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1111 return; /* all is well */ 1434 return; /* all is well */
1112 1435
1113 ev_rt_now = ev_time (); 1436 ev_rt_now = ev_time ();
1114 mn_now = get_clock (); 1437 mn_now = get_clock ();
1115 now_floor = mn_now; 1438 now_floor = mn_now;
1116 } 1439 }
1117 1440
1118# if EV_PERIODICS 1441# if EV_PERIODIC_ENABLE
1442 periodics_reschedule (EV_A);
1443# endif
1444 /* no timer adjustment, as the monotonic clock doesn't jump */
1445 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1446 }
1447 else
1448#endif
1449 {
1450 ev_rt_now = ev_time ();
1451
1452 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1453 {
1454#if EV_PERIODIC_ENABLE
1119 periodics_reschedule (EV_A); 1455 periodics_reschedule (EV_A);
1120# endif 1456#endif
1121 /* no timer adjustment, as the monotonic clock doesn't jump */
1122 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1123 }
1124 }
1125 else
1126#endif
1127 {
1128 ev_rt_now = ev_time ();
1129
1130 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1131 {
1132#if EV_PERIODICS
1133 periodics_reschedule (EV_A);
1134#endif
1135
1136 /* adjust timers. this is easy, as the offset is the same for all */ 1457 /* adjust timers. this is easy, as the offset is the same for all of them */
1137 for (i = 0; i < timercnt; ++i) 1458 for (i = 0; i < timercnt; ++i)
1138 ((WT)timers [i])->at += ev_rt_now - mn_now; 1459 ((WT)timers [i])->at += ev_rt_now - mn_now;
1139 } 1460 }
1140 1461
1141 mn_now = ev_rt_now; 1462 mn_now = ev_rt_now;
1157static int loop_done; 1478static int loop_done;
1158 1479
1159void 1480void
1160ev_loop (EV_P_ int flags) 1481ev_loop (EV_P_ int flags)
1161{ 1482{
1162 double block;
1163 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1483 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1484 ? EVUNLOOP_ONE
1485 : EVUNLOOP_CANCEL;
1486
1487 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1164 1488
1165 do 1489 do
1166 { 1490 {
1491#ifndef _WIN32
1492 if (expect_false (curpid)) /* penalise the forking check even more */
1493 if (expect_false (getpid () != curpid))
1494 {
1495 curpid = getpid ();
1496 postfork = 1;
1497 }
1498#endif
1499
1500#if EV_FORK_ENABLE
1501 /* we might have forked, so queue fork handlers */
1502 if (expect_false (postfork))
1503 if (forkcnt)
1504 {
1505 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1506 call_pending (EV_A);
1507 }
1508#endif
1509
1167 /* queue check watchers (and execute them) */ 1510 /* queue prepare watchers (and execute them) */
1168 if (expect_false (preparecnt)) 1511 if (expect_false (preparecnt))
1169 { 1512 {
1170 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1513 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1171 call_pending (EV_A); 1514 call_pending (EV_A);
1172 } 1515 }
1173 1516
1517 if (expect_false (!activecnt))
1518 break;
1519
1174 /* we might have forked, so reify kernel state if necessary */ 1520 /* we might have forked, so reify kernel state if necessary */
1175 if (expect_false (postfork)) 1521 if (expect_false (postfork))
1176 loop_fork (EV_A); 1522 loop_fork (EV_A);
1177 1523
1178 /* update fd-related kernel structures */ 1524 /* update fd-related kernel structures */
1179 fd_reify (EV_A); 1525 fd_reify (EV_A);
1180 1526
1181 /* calculate blocking time */ 1527 /* calculate blocking time */
1528 {
1529 ev_tstamp waittime = 0.;
1530 ev_tstamp sleeptime = 0.;
1182 1531
1183 /* we only need this for !monotonic clock or timers, but as we basically 1532 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1184 always have timers, we just calculate it always */
1185#if EV_USE_MONOTONIC
1186 if (expect_true (have_monotonic))
1187 time_update_monotonic (EV_A);
1188 else
1189#endif
1190 { 1533 {
1191 ev_rt_now = ev_time (); 1534 /* update time to cancel out callback processing overhead */
1192 mn_now = ev_rt_now; 1535 time_update (EV_A_ 1e100);
1193 }
1194 1536
1195 if (flags & EVLOOP_NONBLOCK || idlecnt)
1196 block = 0.;
1197 else
1198 {
1199 block = MAX_BLOCKTIME; 1537 waittime = MAX_BLOCKTIME;
1200 1538
1201 if (timercnt) 1539 if (timercnt)
1202 { 1540 {
1203 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1541 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1204 if (block > to) block = to; 1542 if (waittime > to) waittime = to;
1205 } 1543 }
1206 1544
1207#if EV_PERIODICS 1545#if EV_PERIODIC_ENABLE
1208 if (periodiccnt) 1546 if (periodiccnt)
1209 { 1547 {
1210 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1548 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1211 if (block > to) block = to; 1549 if (waittime > to) waittime = to;
1212 } 1550 }
1213#endif 1551#endif
1214 1552
1215 if (block < 0.) block = 0.; 1553 if (expect_false (waittime < timeout_blocktime))
1554 waittime = timeout_blocktime;
1555
1556 sleeptime = waittime - backend_fudge;
1557
1558 if (expect_true (sleeptime > io_blocktime))
1559 sleeptime = io_blocktime;
1560
1561 if (sleeptime)
1562 {
1563 ev_sleep (sleeptime);
1564 waittime -= sleeptime;
1565 }
1216 } 1566 }
1217 1567
1218 method_poll (EV_A_ block); 1568 ++loop_count;
1569 backend_poll (EV_A_ waittime);
1219 1570
1220 /* update ev_rt_now, do magic */ 1571 /* update ev_rt_now, do magic */
1221 time_update (EV_A); 1572 time_update (EV_A_ waittime + sleeptime);
1573 }
1222 1574
1223 /* queue pending timers and reschedule them */ 1575 /* queue pending timers and reschedule them */
1224 timers_reify (EV_A); /* relative timers called last */ 1576 timers_reify (EV_A); /* relative timers called last */
1225#if EV_PERIODICS 1577#if EV_PERIODIC_ENABLE
1226 periodics_reify (EV_A); /* absolute timers called first */ 1578 periodics_reify (EV_A); /* absolute timers called first */
1227#endif 1579#endif
1228 1580
1581#if EV_IDLE_ENABLE
1229 /* queue idle watchers unless io or timers are pending */ 1582 /* queue idle watchers unless other events are pending */
1230 if (idlecnt && !any_pending (EV_A)) 1583 idle_reify (EV_A);
1231 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1584#endif
1232 1585
1233 /* queue check watchers, to be executed first */ 1586 /* queue check watchers, to be executed first */
1234 if (checkcnt) 1587 if (expect_false (checkcnt))
1235 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1588 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1236 1589
1237 call_pending (EV_A); 1590 call_pending (EV_A);
1591
1238 } 1592 }
1239 while (activecnt && !loop_done); 1593 while (expect_true (activecnt && !loop_done));
1240 1594
1241 if (loop_done != 2) 1595 if (loop_done == EVUNLOOP_ONE)
1242 loop_done = 0; 1596 loop_done = EVUNLOOP_CANCEL;
1243} 1597}
1244 1598
1245void 1599void
1246ev_unloop (EV_P_ int how) 1600ev_unloop (EV_P_ int how)
1247{ 1601{
1248 loop_done = how; 1602 loop_done = how;
1249} 1603}
1250 1604
1251/*****************************************************************************/ 1605/*****************************************************************************/
1252 1606
1253inline void 1607void inline_size
1254wlist_add (WL *head, WL elem) 1608wlist_add (WL *head, WL elem)
1255{ 1609{
1256 elem->next = *head; 1610 elem->next = *head;
1257 *head = elem; 1611 *head = elem;
1258} 1612}
1259 1613
1260inline void 1614void inline_size
1261wlist_del (WL *head, WL elem) 1615wlist_del (WL *head, WL elem)
1262{ 1616{
1263 while (*head) 1617 while (*head)
1264 { 1618 {
1265 if (*head == elem) 1619 if (*head == elem)
1270 1624
1271 head = &(*head)->next; 1625 head = &(*head)->next;
1272 } 1626 }
1273} 1627}
1274 1628
1275inline void 1629void inline_speed
1276ev_clear_pending (EV_P_ W w) 1630clear_pending (EV_P_ W w)
1277{ 1631{
1278 if (w->pending) 1632 if (w->pending)
1279 { 1633 {
1280 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1634 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1281 w->pending = 0; 1635 w->pending = 0;
1282 } 1636 }
1283} 1637}
1284 1638
1285inline void 1639int
1640ev_clear_pending (EV_P_ void *w)
1641{
1642 W w_ = (W)w;
1643 int pending = w_->pending;
1644
1645 if (expect_true (pending))
1646 {
1647 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1648 w_->pending = 0;
1649 p->w = 0;
1650 return p->events;
1651 }
1652 else
1653 return 0;
1654}
1655
1656void inline_size
1657pri_adjust (EV_P_ W w)
1658{
1659 int pri = w->priority;
1660 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1661 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1662 w->priority = pri;
1663}
1664
1665void inline_speed
1286ev_start (EV_P_ W w, int active) 1666ev_start (EV_P_ W w, int active)
1287{ 1667{
1288 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1668 pri_adjust (EV_A_ w);
1289 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1290
1291 w->active = active; 1669 w->active = active;
1292 ev_ref (EV_A); 1670 ev_ref (EV_A);
1293} 1671}
1294 1672
1295inline void 1673void inline_size
1296ev_stop (EV_P_ W w) 1674ev_stop (EV_P_ W w)
1297{ 1675{
1298 ev_unref (EV_A); 1676 ev_unref (EV_A);
1299 w->active = 0; 1677 w->active = 0;
1300} 1678}
1301 1679
1302/*****************************************************************************/ 1680/*****************************************************************************/
1303 1681
1304void 1682void noinline
1305ev_io_start (EV_P_ struct ev_io *w) 1683ev_io_start (EV_P_ ev_io *w)
1306{ 1684{
1307 int fd = w->fd; 1685 int fd = w->fd;
1308 1686
1309 if (ev_is_active (w)) 1687 if (expect_false (ev_is_active (w)))
1310 return; 1688 return;
1311 1689
1312 assert (("ev_io_start called with negative fd", fd >= 0)); 1690 assert (("ev_io_start called with negative fd", fd >= 0));
1313 1691
1314 ev_start (EV_A_ (W)w, 1); 1692 ev_start (EV_A_ (W)w, 1);
1315 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1693 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1316 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1694 wlist_add (&anfds[fd].head, (WL)w);
1317 1695
1318 fd_change (EV_A_ fd); 1696 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1697 w->events &= ~EV_IOFDSET;
1319} 1698}
1320 1699
1321void 1700void noinline
1322ev_io_stop (EV_P_ struct ev_io *w) 1701ev_io_stop (EV_P_ ev_io *w)
1323{ 1702{
1324 ev_clear_pending (EV_A_ (W)w); 1703 clear_pending (EV_A_ (W)w);
1325 if (!ev_is_active (w)) 1704 if (expect_false (!ev_is_active (w)))
1326 return; 1705 return;
1327 1706
1328 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1707 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1329 1708
1330 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1709 wlist_del (&anfds[w->fd].head, (WL)w);
1331 ev_stop (EV_A_ (W)w); 1710 ev_stop (EV_A_ (W)w);
1332 1711
1333 fd_change (EV_A_ w->fd); 1712 fd_change (EV_A_ w->fd, 1);
1334} 1713}
1335 1714
1336void 1715void noinline
1337ev_timer_start (EV_P_ struct ev_timer *w) 1716ev_timer_start (EV_P_ ev_timer *w)
1338{ 1717{
1339 if (ev_is_active (w)) 1718 if (expect_false (ev_is_active (w)))
1340 return; 1719 return;
1341 1720
1342 ((WT)w)->at += mn_now; 1721 ((WT)w)->at += mn_now;
1343 1722
1344 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1723 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1345 1724
1346 ev_start (EV_A_ (W)w, ++timercnt); 1725 ev_start (EV_A_ (W)w, ++timercnt);
1347 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1726 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1348 timers [timercnt - 1] = w; 1727 timers [timercnt - 1] = (WT)w;
1349 upheap ((WT *)timers, timercnt - 1); 1728 upheap (timers, timercnt - 1);
1350 1729
1351 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1730 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1352} 1731}
1353 1732
1354void 1733void noinline
1355ev_timer_stop (EV_P_ struct ev_timer *w) 1734ev_timer_stop (EV_P_ ev_timer *w)
1356{ 1735{
1357 ev_clear_pending (EV_A_ (W)w); 1736 clear_pending (EV_A_ (W)w);
1358 if (!ev_is_active (w)) 1737 if (expect_false (!ev_is_active (w)))
1359 return; 1738 return;
1360 1739
1361 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1740 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1362 1741
1363 if (((W)w)->active < timercnt--) 1742 {
1743 int active = ((W)w)->active;
1744
1745 if (expect_true (--active < --timercnt))
1364 { 1746 {
1365 timers [((W)w)->active - 1] = timers [timercnt]; 1747 timers [active] = timers [timercnt];
1366 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1748 adjustheap (timers, timercnt, active);
1367 } 1749 }
1750 }
1368 1751
1369 ((WT)w)->at -= mn_now; 1752 ((WT)w)->at -= mn_now;
1370 1753
1371 ev_stop (EV_A_ (W)w); 1754 ev_stop (EV_A_ (W)w);
1372} 1755}
1373 1756
1374void 1757void noinline
1375ev_timer_again (EV_P_ struct ev_timer *w) 1758ev_timer_again (EV_P_ ev_timer *w)
1376{ 1759{
1377 if (ev_is_active (w)) 1760 if (ev_is_active (w))
1378 { 1761 {
1379 if (w->repeat) 1762 if (w->repeat)
1380 { 1763 {
1381 ((WT)w)->at = mn_now + w->repeat; 1764 ((WT)w)->at = mn_now + w->repeat;
1382 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1765 adjustheap (timers, timercnt, ((W)w)->active - 1);
1383 } 1766 }
1384 else 1767 else
1385 ev_timer_stop (EV_A_ w); 1768 ev_timer_stop (EV_A_ w);
1386 } 1769 }
1387 else if (w->repeat) 1770 else if (w->repeat)
1771 {
1772 w->at = w->repeat;
1388 ev_timer_start (EV_A_ w); 1773 ev_timer_start (EV_A_ w);
1774 }
1389} 1775}
1390 1776
1391#if EV_PERIODICS 1777#if EV_PERIODIC_ENABLE
1392void 1778void noinline
1393ev_periodic_start (EV_P_ struct ev_periodic *w) 1779ev_periodic_start (EV_P_ ev_periodic *w)
1394{ 1780{
1395 if (ev_is_active (w)) 1781 if (expect_false (ev_is_active (w)))
1396 return; 1782 return;
1397 1783
1398 if (w->reschedule_cb) 1784 if (w->reschedule_cb)
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1785 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1400 else if (w->interval) 1786 else if (w->interval)
1401 { 1787 {
1402 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1788 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1403 /* this formula differs from the one in periodic_reify because we do not always round up */ 1789 /* this formula differs from the one in periodic_reify because we do not always round up */
1404 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1790 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1405 } 1791 }
1792 else
1793 ((WT)w)->at = w->offset;
1406 1794
1407 ev_start (EV_A_ (W)w, ++periodiccnt); 1795 ev_start (EV_A_ (W)w, ++periodiccnt);
1408 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1796 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1409 periodics [periodiccnt - 1] = w; 1797 periodics [periodiccnt - 1] = (WT)w;
1410 upheap ((WT *)periodics, periodiccnt - 1); 1798 upheap (periodics, periodiccnt - 1);
1411 1799
1412 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1800 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1413} 1801}
1414 1802
1415void 1803void noinline
1416ev_periodic_stop (EV_P_ struct ev_periodic *w) 1804ev_periodic_stop (EV_P_ ev_periodic *w)
1417{ 1805{
1418 ev_clear_pending (EV_A_ (W)w); 1806 clear_pending (EV_A_ (W)w);
1419 if (!ev_is_active (w)) 1807 if (expect_false (!ev_is_active (w)))
1420 return; 1808 return;
1421 1809
1422 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1810 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1423 1811
1424 if (((W)w)->active < periodiccnt--) 1812 {
1813 int active = ((W)w)->active;
1814
1815 if (expect_true (--active < --periodiccnt))
1425 { 1816 {
1426 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1817 periodics [active] = periodics [periodiccnt];
1427 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1818 adjustheap (periodics, periodiccnt, active);
1428 } 1819 }
1820 }
1429 1821
1430 ev_stop (EV_A_ (W)w); 1822 ev_stop (EV_A_ (W)w);
1431} 1823}
1432 1824
1433void 1825void noinline
1434ev_periodic_again (EV_P_ struct ev_periodic *w) 1826ev_periodic_again (EV_P_ ev_periodic *w)
1435{ 1827{
1436 /* TODO: use adjustheap and recalculation */ 1828 /* TODO: use adjustheap and recalculation */
1437 ev_periodic_stop (EV_A_ w); 1829 ev_periodic_stop (EV_A_ w);
1438 ev_periodic_start (EV_A_ w); 1830 ev_periodic_start (EV_A_ w);
1439} 1831}
1440#endif 1832#endif
1441 1833
1442void
1443ev_idle_start (EV_P_ struct ev_idle *w)
1444{
1445 if (ev_is_active (w))
1446 return;
1447
1448 ev_start (EV_A_ (W)w, ++idlecnt);
1449 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1450 idles [idlecnt - 1] = w;
1451}
1452
1453void
1454ev_idle_stop (EV_P_ struct ev_idle *w)
1455{
1456 ev_clear_pending (EV_A_ (W)w);
1457 if (!ev_is_active (w))
1458 return;
1459
1460 idles [((W)w)->active - 1] = idles [--idlecnt];
1461 ev_stop (EV_A_ (W)w);
1462}
1463
1464void
1465ev_prepare_start (EV_P_ struct ev_prepare *w)
1466{
1467 if (ev_is_active (w))
1468 return;
1469
1470 ev_start (EV_A_ (W)w, ++preparecnt);
1471 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1472 prepares [preparecnt - 1] = w;
1473}
1474
1475void
1476ev_prepare_stop (EV_P_ struct ev_prepare *w)
1477{
1478 ev_clear_pending (EV_A_ (W)w);
1479 if (!ev_is_active (w))
1480 return;
1481
1482 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1483 ev_stop (EV_A_ (W)w);
1484}
1485
1486void
1487ev_check_start (EV_P_ struct ev_check *w)
1488{
1489 if (ev_is_active (w))
1490 return;
1491
1492 ev_start (EV_A_ (W)w, ++checkcnt);
1493 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1494 checks [checkcnt - 1] = w;
1495}
1496
1497void
1498ev_check_stop (EV_P_ struct ev_check *w)
1499{
1500 ev_clear_pending (EV_A_ (W)w);
1501 if (!ev_is_active (w))
1502 return;
1503
1504 checks [((W)w)->active - 1] = checks [--checkcnt];
1505 ev_stop (EV_A_ (W)w);
1506}
1507
1508#ifndef SA_RESTART 1834#ifndef SA_RESTART
1509# define SA_RESTART 0 1835# define SA_RESTART 0
1510#endif 1836#endif
1511 1837
1512void 1838void noinline
1513ev_signal_start (EV_P_ struct ev_signal *w) 1839ev_signal_start (EV_P_ ev_signal *w)
1514{ 1840{
1515#if EV_MULTIPLICITY 1841#if EV_MULTIPLICITY
1516 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1842 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1517#endif 1843#endif
1518 if (ev_is_active (w)) 1844 if (expect_false (ev_is_active (w)))
1519 return; 1845 return;
1520 1846
1521 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1847 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1522 1848
1849 {
1850#ifndef _WIN32
1851 sigset_t full, prev;
1852 sigfillset (&full);
1853 sigprocmask (SIG_SETMASK, &full, &prev);
1854#endif
1855
1856 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1857
1858#ifndef _WIN32
1859 sigprocmask (SIG_SETMASK, &prev, 0);
1860#endif
1861 }
1862
1523 ev_start (EV_A_ (W)w, 1); 1863 ev_start (EV_A_ (W)w, 1);
1524 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1525 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1864 wlist_add (&signals [w->signum - 1].head, (WL)w);
1526 1865
1527 if (!((WL)w)->next) 1866 if (!((WL)w)->next)
1528 { 1867 {
1529#if _WIN32 1868#if _WIN32
1530 signal (w->signum, sighandler); 1869 signal (w->signum, sighandler);
1536 sigaction (w->signum, &sa, 0); 1875 sigaction (w->signum, &sa, 0);
1537#endif 1876#endif
1538 } 1877 }
1539} 1878}
1540 1879
1541void 1880void noinline
1542ev_signal_stop (EV_P_ struct ev_signal *w) 1881ev_signal_stop (EV_P_ ev_signal *w)
1543{ 1882{
1544 ev_clear_pending (EV_A_ (W)w); 1883 clear_pending (EV_A_ (W)w);
1545 if (!ev_is_active (w)) 1884 if (expect_false (!ev_is_active (w)))
1546 return; 1885 return;
1547 1886
1548 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1887 wlist_del (&signals [w->signum - 1].head, (WL)w);
1549 ev_stop (EV_A_ (W)w); 1888 ev_stop (EV_A_ (W)w);
1550 1889
1551 if (!signals [w->signum - 1].head) 1890 if (!signals [w->signum - 1].head)
1552 signal (w->signum, SIG_DFL); 1891 signal (w->signum, SIG_DFL);
1553} 1892}
1554 1893
1555void 1894void
1556ev_child_start (EV_P_ struct ev_child *w) 1895ev_child_start (EV_P_ ev_child *w)
1557{ 1896{
1558#if EV_MULTIPLICITY 1897#if EV_MULTIPLICITY
1559 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1898 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1560#endif 1899#endif
1561 if (ev_is_active (w)) 1900 if (expect_false (ev_is_active (w)))
1562 return; 1901 return;
1563 1902
1564 ev_start (EV_A_ (W)w, 1); 1903 ev_start (EV_A_ (W)w, 1);
1565 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1904 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1566} 1905}
1567 1906
1568void 1907void
1569ev_child_stop (EV_P_ struct ev_child *w) 1908ev_child_stop (EV_P_ ev_child *w)
1570{ 1909{
1571 ev_clear_pending (EV_A_ (W)w); 1910 clear_pending (EV_A_ (W)w);
1572 if (!ev_is_active (w)) 1911 if (expect_false (!ev_is_active (w)))
1573 return; 1912 return;
1574 1913
1575 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1914 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1576 ev_stop (EV_A_ (W)w); 1915 ev_stop (EV_A_ (W)w);
1577} 1916}
1578 1917
1918#if EV_STAT_ENABLE
1919
1920# ifdef _WIN32
1921# undef lstat
1922# define lstat(a,b) _stati64 (a,b)
1923# endif
1924
1925#define DEF_STAT_INTERVAL 5.0074891
1926#define MIN_STAT_INTERVAL 0.1074891
1927
1928static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1929
1930#if EV_USE_INOTIFY
1931# define EV_INOTIFY_BUFSIZE 8192
1932
1933static void noinline
1934infy_add (EV_P_ ev_stat *w)
1935{
1936 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1937
1938 if (w->wd < 0)
1939 {
1940 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1941
1942 /* monitor some parent directory for speedup hints */
1943 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1944 {
1945 char path [4096];
1946 strcpy (path, w->path);
1947
1948 do
1949 {
1950 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1951 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1952
1953 char *pend = strrchr (path, '/');
1954
1955 if (!pend)
1956 break; /* whoops, no '/', complain to your admin */
1957
1958 *pend = 0;
1959 w->wd = inotify_add_watch (fs_fd, path, mask);
1960 }
1961 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1962 }
1963 }
1964 else
1965 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1966
1967 if (w->wd >= 0)
1968 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1969}
1970
1971static void noinline
1972infy_del (EV_P_ ev_stat *w)
1973{
1974 int slot;
1975 int wd = w->wd;
1976
1977 if (wd < 0)
1978 return;
1979
1980 w->wd = -2;
1981 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1982 wlist_del (&fs_hash [slot].head, (WL)w);
1983
1984 /* remove this watcher, if others are watching it, they will rearm */
1985 inotify_rm_watch (fs_fd, wd);
1986}
1987
1988static void noinline
1989infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1990{
1991 if (slot < 0)
1992 /* overflow, need to check for all hahs slots */
1993 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1994 infy_wd (EV_A_ slot, wd, ev);
1995 else
1996 {
1997 WL w_;
1998
1999 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2000 {
2001 ev_stat *w = (ev_stat *)w_;
2002 w_ = w_->next; /* lets us remove this watcher and all before it */
2003
2004 if (w->wd == wd || wd == -1)
2005 {
2006 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2007 {
2008 w->wd = -1;
2009 infy_add (EV_A_ w); /* re-add, no matter what */
2010 }
2011
2012 stat_timer_cb (EV_A_ &w->timer, 0);
2013 }
2014 }
2015 }
2016}
2017
2018static void
2019infy_cb (EV_P_ ev_io *w, int revents)
2020{
2021 char buf [EV_INOTIFY_BUFSIZE];
2022 struct inotify_event *ev = (struct inotify_event *)buf;
2023 int ofs;
2024 int len = read (fs_fd, buf, sizeof (buf));
2025
2026 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2027 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2028}
2029
2030void inline_size
2031infy_init (EV_P)
2032{
2033 if (fs_fd != -2)
2034 return;
2035
2036 fs_fd = inotify_init ();
2037
2038 if (fs_fd >= 0)
2039 {
2040 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2041 ev_set_priority (&fs_w, EV_MAXPRI);
2042 ev_io_start (EV_A_ &fs_w);
2043 }
2044}
2045
2046void inline_size
2047infy_fork (EV_P)
2048{
2049 int slot;
2050
2051 if (fs_fd < 0)
2052 return;
2053
2054 close (fs_fd);
2055 fs_fd = inotify_init ();
2056
2057 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2058 {
2059 WL w_ = fs_hash [slot].head;
2060 fs_hash [slot].head = 0;
2061
2062 while (w_)
2063 {
2064 ev_stat *w = (ev_stat *)w_;
2065 w_ = w_->next; /* lets us add this watcher */
2066
2067 w->wd = -1;
2068
2069 if (fs_fd >= 0)
2070 infy_add (EV_A_ w); /* re-add, no matter what */
2071 else
2072 ev_timer_start (EV_A_ &w->timer);
2073 }
2074
2075 }
2076}
2077
2078#endif
2079
2080void
2081ev_stat_stat (EV_P_ ev_stat *w)
2082{
2083 if (lstat (w->path, &w->attr) < 0)
2084 w->attr.st_nlink = 0;
2085 else if (!w->attr.st_nlink)
2086 w->attr.st_nlink = 1;
2087}
2088
2089static void noinline
2090stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2091{
2092 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2093
2094 /* we copy this here each the time so that */
2095 /* prev has the old value when the callback gets invoked */
2096 w->prev = w->attr;
2097 ev_stat_stat (EV_A_ w);
2098
2099 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2100 if (
2101 w->prev.st_dev != w->attr.st_dev
2102 || w->prev.st_ino != w->attr.st_ino
2103 || w->prev.st_mode != w->attr.st_mode
2104 || w->prev.st_nlink != w->attr.st_nlink
2105 || w->prev.st_uid != w->attr.st_uid
2106 || w->prev.st_gid != w->attr.st_gid
2107 || w->prev.st_rdev != w->attr.st_rdev
2108 || w->prev.st_size != w->attr.st_size
2109 || w->prev.st_atime != w->attr.st_atime
2110 || w->prev.st_mtime != w->attr.st_mtime
2111 || w->prev.st_ctime != w->attr.st_ctime
2112 ) {
2113 #if EV_USE_INOTIFY
2114 infy_del (EV_A_ w);
2115 infy_add (EV_A_ w);
2116 ev_stat_stat (EV_A_ w); /* avoid race... */
2117 #endif
2118
2119 ev_feed_event (EV_A_ w, EV_STAT);
2120 }
2121}
2122
2123void
2124ev_stat_start (EV_P_ ev_stat *w)
2125{
2126 if (expect_false (ev_is_active (w)))
2127 return;
2128
2129 /* since we use memcmp, we need to clear any padding data etc. */
2130 memset (&w->prev, 0, sizeof (ev_statdata));
2131 memset (&w->attr, 0, sizeof (ev_statdata));
2132
2133 ev_stat_stat (EV_A_ w);
2134
2135 if (w->interval < MIN_STAT_INTERVAL)
2136 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2137
2138 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2139 ev_set_priority (&w->timer, ev_priority (w));
2140
2141#if EV_USE_INOTIFY
2142 infy_init (EV_A);
2143
2144 if (fs_fd >= 0)
2145 infy_add (EV_A_ w);
2146 else
2147#endif
2148 ev_timer_start (EV_A_ &w->timer);
2149
2150 ev_start (EV_A_ (W)w, 1);
2151}
2152
2153void
2154ev_stat_stop (EV_P_ ev_stat *w)
2155{
2156 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w)))
2158 return;
2159
2160#if EV_USE_INOTIFY
2161 infy_del (EV_A_ w);
2162#endif
2163 ev_timer_stop (EV_A_ &w->timer);
2164
2165 ev_stop (EV_A_ (W)w);
2166}
2167#endif
2168
2169#if EV_IDLE_ENABLE
2170void
2171ev_idle_start (EV_P_ ev_idle *w)
2172{
2173 if (expect_false (ev_is_active (w)))
2174 return;
2175
2176 pri_adjust (EV_A_ (W)w);
2177
2178 {
2179 int active = ++idlecnt [ABSPRI (w)];
2180
2181 ++idleall;
2182 ev_start (EV_A_ (W)w, active);
2183
2184 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2185 idles [ABSPRI (w)][active - 1] = w;
2186 }
2187}
2188
2189void
2190ev_idle_stop (EV_P_ ev_idle *w)
2191{
2192 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w)))
2194 return;
2195
2196 {
2197 int active = ((W)w)->active;
2198
2199 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2200 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2201
2202 ev_stop (EV_A_ (W)w);
2203 --idleall;
2204 }
2205}
2206#endif
2207
2208void
2209ev_prepare_start (EV_P_ ev_prepare *w)
2210{
2211 if (expect_false (ev_is_active (w)))
2212 return;
2213
2214 ev_start (EV_A_ (W)w, ++preparecnt);
2215 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2216 prepares [preparecnt - 1] = w;
2217}
2218
2219void
2220ev_prepare_stop (EV_P_ ev_prepare *w)
2221{
2222 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w)))
2224 return;
2225
2226 {
2227 int active = ((W)w)->active;
2228 prepares [active - 1] = prepares [--preparecnt];
2229 ((W)prepares [active - 1])->active = active;
2230 }
2231
2232 ev_stop (EV_A_ (W)w);
2233}
2234
2235void
2236ev_check_start (EV_P_ ev_check *w)
2237{
2238 if (expect_false (ev_is_active (w)))
2239 return;
2240
2241 ev_start (EV_A_ (W)w, ++checkcnt);
2242 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2243 checks [checkcnt - 1] = w;
2244}
2245
2246void
2247ev_check_stop (EV_P_ ev_check *w)
2248{
2249 clear_pending (EV_A_ (W)w);
2250 if (expect_false (!ev_is_active (w)))
2251 return;
2252
2253 {
2254 int active = ((W)w)->active;
2255 checks [active - 1] = checks [--checkcnt];
2256 ((W)checks [active - 1])->active = active;
2257 }
2258
2259 ev_stop (EV_A_ (W)w);
2260}
2261
2262#if EV_EMBED_ENABLE
2263void noinline
2264ev_embed_sweep (EV_P_ ev_embed *w)
2265{
2266 ev_loop (w->other, EVLOOP_NONBLOCK);
2267}
2268
2269static void
2270embed_io_cb (EV_P_ ev_io *io, int revents)
2271{
2272 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2273
2274 if (ev_cb (w))
2275 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2276 else
2277 ev_loop (w->other, EVLOOP_NONBLOCK);
2278}
2279
2280static void
2281embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2282{
2283 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2284
2285 {
2286 struct ev_loop *loop = w->other;
2287
2288 while (fdchangecnt)
2289 {
2290 fd_reify (EV_A);
2291 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2292 }
2293 }
2294}
2295
2296#if 0
2297static void
2298embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2299{
2300 ev_idle_stop (EV_A_ idle);
2301}
2302#endif
2303
2304void
2305ev_embed_start (EV_P_ ev_embed *w)
2306{
2307 if (expect_false (ev_is_active (w)))
2308 return;
2309
2310 {
2311 struct ev_loop *loop = w->other;
2312 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2313 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2314 }
2315
2316 ev_set_priority (&w->io, ev_priority (w));
2317 ev_io_start (EV_A_ &w->io);
2318
2319 ev_prepare_init (&w->prepare, embed_prepare_cb);
2320 ev_set_priority (&w->prepare, EV_MINPRI);
2321 ev_prepare_start (EV_A_ &w->prepare);
2322
2323 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2324
2325 ev_start (EV_A_ (W)w, 1);
2326}
2327
2328void
2329ev_embed_stop (EV_P_ ev_embed *w)
2330{
2331 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w)))
2333 return;
2334
2335 ev_io_stop (EV_A_ &w->io);
2336 ev_prepare_stop (EV_A_ &w->prepare);
2337
2338 ev_stop (EV_A_ (W)w);
2339}
2340#endif
2341
2342#if EV_FORK_ENABLE
2343void
2344ev_fork_start (EV_P_ ev_fork *w)
2345{
2346 if (expect_false (ev_is_active (w)))
2347 return;
2348
2349 ev_start (EV_A_ (W)w, ++forkcnt);
2350 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2351 forks [forkcnt - 1] = w;
2352}
2353
2354void
2355ev_fork_stop (EV_P_ ev_fork *w)
2356{
2357 clear_pending (EV_A_ (W)w);
2358 if (expect_false (!ev_is_active (w)))
2359 return;
2360
2361 {
2362 int active = ((W)w)->active;
2363 forks [active - 1] = forks [--forkcnt];
2364 ((W)forks [active - 1])->active = active;
2365 }
2366
2367 ev_stop (EV_A_ (W)w);
2368}
2369#endif
2370
1579/*****************************************************************************/ 2371/*****************************************************************************/
1580 2372
1581struct ev_once 2373struct ev_once
1582{ 2374{
1583 struct ev_io io; 2375 ev_io io;
1584 struct ev_timer to; 2376 ev_timer to;
1585 void (*cb)(int revents, void *arg); 2377 void (*cb)(int revents, void *arg);
1586 void *arg; 2378 void *arg;
1587}; 2379};
1588 2380
1589static void 2381static void
1598 2390
1599 cb (revents, arg); 2391 cb (revents, arg);
1600} 2392}
1601 2393
1602static void 2394static void
1603once_cb_io (EV_P_ struct ev_io *w, int revents) 2395once_cb_io (EV_P_ ev_io *w, int revents)
1604{ 2396{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2397 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1606} 2398}
1607 2399
1608static void 2400static void
1609once_cb_to (EV_P_ struct ev_timer *w, int revents) 2401once_cb_to (EV_P_ ev_timer *w, int revents)
1610{ 2402{
1611 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2403 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1612} 2404}
1613 2405
1614void 2406void
1615ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2407ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1616{ 2408{
1617 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2409 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1618 2410
1619 if (!once) 2411 if (expect_false (!once))
2412 {
1620 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2413 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1621 else 2414 return;
1622 { 2415 }
2416
1623 once->cb = cb; 2417 once->cb = cb;
1624 once->arg = arg; 2418 once->arg = arg;
1625 2419
1626 ev_init (&once->io, once_cb_io); 2420 ev_init (&once->io, once_cb_io);
1627 if (fd >= 0) 2421 if (fd >= 0)
1628 { 2422 {
1629 ev_io_set (&once->io, fd, events); 2423 ev_io_set (&once->io, fd, events);
1630 ev_io_start (EV_A_ &once->io); 2424 ev_io_start (EV_A_ &once->io);
1631 } 2425 }
1632 2426
1633 ev_init (&once->to, once_cb_to); 2427 ev_init (&once->to, once_cb_to);
1634 if (timeout >= 0.) 2428 if (timeout >= 0.)
1635 { 2429 {
1636 ev_timer_set (&once->to, timeout, 0.); 2430 ev_timer_set (&once->to, timeout, 0.);
1637 ev_timer_start (EV_A_ &once->to); 2431 ev_timer_start (EV_A_ &once->to);
1638 }
1639 } 2432 }
1640} 2433}
2434
2435#if EV_MULTIPLICITY
2436 #include "ev_wrap.h"
2437#endif
1641 2438
1642#ifdef __cplusplus 2439#ifdef __cplusplus
1643} 2440}
1644#endif 2441#endif
1645 2442

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines