ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.107 by root, Mon Nov 12 01:20:25 2007 UTC vs.
Revision 1.458 by root, Sun Oct 27 16:26:07 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
64#endif 127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
65 137
66#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
67#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
68#include <fcntl.h> 169#include <fcntl.h>
69#include <stddef.h> 170#include <stddef.h>
70 171
71#include <stdio.h> 172#include <stdio.h>
72 173
73#include <assert.h> 174#include <assert.h>
74#include <errno.h> 175#include <errno.h>
75#include <sys/types.h> 176#include <sys/types.h>
76#include <time.h> 177#include <time.h>
178#include <limits.h>
77 179
78#include <signal.h> 180#include <signal.h>
79 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
80#ifndef _WIN32 199#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 200# include <sys/time.h>
83# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
84#else 203#else
204# include <io.h>
85# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
86# include <windows.h> 207# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
89# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
90#endif 261# endif
91 262#endif
92/**/
93 263
94#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
95# define EV_USE_MONOTONIC 1 268# define EV_USE_MONOTONIC 0
269# endif
270#endif
271
272#ifndef EV_USE_REALTIME
273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
96#endif 282#endif
97 283
98#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
100# define EV_SELECT_USE_FD_SET 1
101#endif 286#endif
102 287
103#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
104# ifdef _WIN32 289# ifdef _WIN32
105# define EV_USE_POLL 0 290# define EV_USE_POLL 0
106# else 291# else
107# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
108# endif 293# endif
109#endif 294#endif
110 295
111#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
112# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
113#endif 302#endif
114 303
115#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
117#endif 306#endif
118 307
119#ifndef EV_USE_REALTIME 308#ifndef EV_USE_PORT
120# define EV_USE_REALTIME 1 309# define EV_USE_PORT 0
310#endif
311
312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
316# define EV_USE_INOTIFY 0
121#endif 317# endif
318#endif
122 319
123/**/ 320#ifndef EV_PID_HASHSIZE
321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322#endif
124 323
125/* darwin simply cannot be helped */ 324#ifndef EV_INOTIFY_HASHSIZE
126#ifdef __APPLE__ 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
331# else
332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362#ifdef ANDROID
363/* supposedly, android doesn't typedef fd_mask */
364# undef EV_USE_SELECT
365# define EV_USE_SELECT 0
366/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367# undef EV_USE_CLOCK_SYSCALL
368# define EV_USE_CLOCK_SYSCALL 0
369#endif
370
371/* aix's poll.h seems to cause lots of trouble */
372#ifdef _AIX
373/* AIX has a completely broken poll.h header */
127# undef EV_USE_POLL 374# undef EV_USE_POLL
128# undef EV_USE_KQUEUE 375# define EV_USE_POLL 0
376#endif
377
378/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379/* which makes programs even slower. might work on other unices, too. */
380#if EV_USE_CLOCK_SYSCALL
381# include <sys/syscall.h>
382# ifdef SYS_clock_gettime
383# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 1
386# else
387# undef EV_USE_CLOCK_SYSCALL
388# define EV_USE_CLOCK_SYSCALL 0
129#endif 389# endif
390#endif
391
392/* this block fixes any misconfiguration where we know we run into trouble otherwise */
130 393
131#ifndef CLOCK_MONOTONIC 394#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 395# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 396# define EV_USE_MONOTONIC 0
134#endif 397#endif
136#ifndef CLOCK_REALTIME 399#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 400# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 401# define EV_USE_REALTIME 0
139#endif 402#endif
140 403
141#if EV_SELECT_IS_WINSOCKET 404#if !EV_STAT_ENABLE
405# undef EV_USE_INOTIFY
406# define EV_USE_INOTIFY 0
407#endif
408
409#if !EV_USE_NANOSLEEP
410/* hp-ux has it in sys/time.h, which we unconditionally include above */
411# if !defined _WIN32 && !defined __hpux
412# include <sys/select.h>
413# endif
414#endif
415
416#if EV_USE_INOTIFY
417# include <sys/statfs.h>
418# include <sys/inotify.h>
419/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420# ifndef IN_DONT_FOLLOW
421# undef EV_USE_INOTIFY
422# define EV_USE_INOTIFY 0
423# endif
424#endif
425
426#if EV_USE_EVENTFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
142# include <winsock.h> 428# include <stdint.h>
429# ifndef EFD_NONBLOCK
430# define EFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef EFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define EFD_CLOEXEC O_CLOEXEC
435# else
436# define EFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440#endif
441
442#if EV_USE_SIGNALFD
443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444# include <stdint.h>
445# ifndef SFD_NONBLOCK
446# define SFD_NONBLOCK O_NONBLOCK
447# endif
448# ifndef SFD_CLOEXEC
449# ifdef O_CLOEXEC
450# define SFD_CLOEXEC O_CLOEXEC
451# else
452# define SFD_CLOEXEC 02000000
453# endif
454# endif
455EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457struct signalfd_siginfo
458{
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461};
143#endif 462#endif
144 463
145/**/ 464/**/
146 465
466#if EV_VERIFY >= 3
467# define EV_FREQUENT_CHECK ev_verify (EV_A)
468#else
469# define EV_FREQUENT_CHECK do { } while (0)
470#endif
471
472/*
473 * This is used to work around floating point rounding problems.
474 * This value is good at least till the year 4000.
475 */
476#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
478
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 479#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 480#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
151 481
482#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486/* ECB.H BEGIN */
487/*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
152#ifdef EV_H 516#ifndef ECB_H
153# include EV_H 517#define ECB_H
518
519/* 16 bits major, 16 bits minor */
520#define ECB_VERSION 0x00010003
521
522#ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
529 #if __GNUC__
530 typedef signed long long int64_t;
531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
154#else 545#else
155# include "ev.h" 546 #include <inttypes.h>
547 #if UINTMAX_MAX > 0xffffffffU
548 #define ECB_PTRSIZE 8
549 #else
550 #define ECB_PTRSIZE 4
156#endif 551 #endif
552#endif
157 553
158#if __GNUC__ >= 3 554/* work around x32 idiocy by defining proper macros */
159# define expect(expr,value) __builtin_expect ((expr),(value)) 555#if __x86_64 || _M_AMD64
160# define inline inline 556 #if _ILP32
557 #define ECB_AMD64_X32 1
558 #else
559 #define ECB_AMD64 1
560 #endif
561#endif
562
563/* many compilers define _GNUC_ to some versions but then only implement
564 * what their idiot authors think are the "more important" extensions,
565 * causing enormous grief in return for some better fake benchmark numbers.
566 * or so.
567 * we try to detect these and simply assume they are not gcc - if they have
568 * an issue with that they should have done it right in the first place.
569 */
570#ifndef ECB_GCC_VERSION
571 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
572 #define ECB_GCC_VERSION(major,minor) 0
573 #else
574 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
575 #endif
576#endif
577
578#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
579#define ECB_C99 (__STDC_VERSION__ >= 199901L)
580#define ECB_C11 (__STDC_VERSION__ >= 201112L)
581#define ECB_CPP (__cplusplus+0)
582#define ECB_CPP11 (__cplusplus >= 201103L)
583
584#if ECB_CPP
585 #define ECB_EXTERN_C extern "C"
586 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
587 #define ECB_EXTERN_C_END }
161#else 588#else
589 #define ECB_EXTERN_C extern
590 #define ECB_EXTERN_C_BEG
591 #define ECB_EXTERN_C_END
592#endif
593
594/*****************************************************************************/
595
596/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
597/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
598
599#if ECB_NO_THREADS
600 #define ECB_NO_SMP 1
601#endif
602
603#if ECB_NO_SMP
604 #define ECB_MEMORY_FENCE do { } while (0)
605#endif
606
607#ifndef ECB_MEMORY_FENCE
608 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
609 #if __i386 || __i386__
610 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
611 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
612 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
613 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
614 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
615 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
616 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
617 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
619 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
620 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
622 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
623 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
624 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
625 #elif __sparc || __sparc__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
629 #elif defined __s390__ || defined __s390x__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
631 #elif defined __mips__
632 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
633 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
635 #elif defined __alpha__
636 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
637 #elif defined __hppa__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
639 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
640 #elif defined __ia64__
641 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
642 #elif defined __m68k__
643 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
644 #elif defined __m88k__
645 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
646 #elif defined __sh__
647 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
648 #endif
649 #endif
650#endif
651
652#ifndef ECB_MEMORY_FENCE
653 #if ECB_GCC_VERSION(4,7)
654 /* see comment below (stdatomic.h) about the C11 memory model. */
655 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
656
657 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
658 * without risking compile time errors with other compilers. We *could*
659 * define our own ecb_clang_has_feature, but I just can't be bothered to work
660 * around this shit time and again.
661 * #elif defined __clang && __has_feature (cxx_atomic)
662 * // see comment below (stdatomic.h) about the C11 memory model.
663 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
664 */
665
666 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
667 #define ECB_MEMORY_FENCE __sync_synchronize ()
668 #elif _MSC_VER >= 1400 /* VC++ 2005 */
669 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
670 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
671 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
672 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
673 #elif defined _WIN32
674 #include <WinNT.h>
675 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
676 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
677 #include <mbarrier.h>
678 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
679 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
680 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
681 #elif __xlC__
682 #define ECB_MEMORY_FENCE __sync ()
683 #endif
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
688 /* we assume that these memory fences work on all variables/all memory accesses, */
689 /* not just C11 atomics and atomic accesses */
690 #include <stdatomic.h>
691 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
692 /* any fence other than seq_cst, which isn't very efficient for us. */
693 /* Why that is, we don't know - either the C11 memory model is quite useless */
694 /* for most usages, or gcc and clang have a bug */
695 /* I *currently* lean towards the latter, and inefficiently implement */
696 /* all three of ecb's fences as a seq_cst fence */
697 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
698 #endif
699#endif
700
701#ifndef ECB_MEMORY_FENCE
702 #if !ECB_AVOID_PTHREADS
703 /*
704 * if you get undefined symbol references to pthread_mutex_lock,
705 * or failure to find pthread.h, then you should implement
706 * the ECB_MEMORY_FENCE operations for your cpu/compiler
707 * OR provide pthread.h and link against the posix thread library
708 * of your system.
709 */
710 #include <pthread.h>
711 #define ECB_NEEDS_PTHREADS 1
712 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
713
714 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
715 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
716 #endif
717#endif
718
719#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
720 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
721#endif
722
723#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
724 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
725#endif
726
727/*****************************************************************************/
728
729#if __cplusplus
730 #define ecb_inline static inline
731#elif ECB_GCC_VERSION(2,5)
732 #define ecb_inline static __inline__
733#elif ECB_C99
734 #define ecb_inline static inline
735#else
736 #define ecb_inline static
737#endif
738
739#if ECB_GCC_VERSION(3,3)
740 #define ecb_restrict __restrict__
741#elif ECB_C99
742 #define ecb_restrict restrict
743#else
744 #define ecb_restrict
745#endif
746
747typedef int ecb_bool;
748
749#define ECB_CONCAT_(a, b) a ## b
750#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
751#define ECB_STRINGIFY_(a) # a
752#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
753
754#define ecb_function_ ecb_inline
755
756#if ECB_GCC_VERSION(3,1)
757 #define ecb_attribute(attrlist) __attribute__(attrlist)
758 #define ecb_is_constant(expr) __builtin_constant_p (expr)
759 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
760 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
761#else
762 #define ecb_attribute(attrlist)
763 #define ecb_is_constant(expr) 0
162# define expect(expr,value) (expr) 764 #define ecb_expect(expr,value) (expr)
163# define inline static 765 #define ecb_prefetch(addr,rw,locality)
164#endif 766#endif
165 767
768/* no emulation for ecb_decltype */
769#if ECB_GCC_VERSION(4,5)
770 #define ecb_decltype(x) __decltype(x)
771#elif ECB_GCC_VERSION(3,0)
772 #define ecb_decltype(x) __typeof(x)
773#endif
774
775#define ecb_noinline ecb_attribute ((__noinline__))
776#define ecb_unused ecb_attribute ((__unused__))
777#define ecb_const ecb_attribute ((__const__))
778#define ecb_pure ecb_attribute ((__pure__))
779
780#if ECB_C11
781 #define ecb_noreturn _Noreturn
782#else
783 #define ecb_noreturn ecb_attribute ((__noreturn__))
784#endif
785
786#if ECB_GCC_VERSION(4,3)
787 #define ecb_artificial ecb_attribute ((__artificial__))
788 #define ecb_hot ecb_attribute ((__hot__))
789 #define ecb_cold ecb_attribute ((__cold__))
790#else
791 #define ecb_artificial
792 #define ecb_hot
793 #define ecb_cold
794#endif
795
796/* put around conditional expressions if you are very sure that the */
797/* expression is mostly true or mostly false. note that these return */
798/* booleans, not the expression. */
166#define expect_false(expr) expect ((expr) != 0, 0) 799#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 800#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
801/* for compatibility to the rest of the world */
802#define ecb_likely(expr) ecb_expect_true (expr)
803#define ecb_unlikely(expr) ecb_expect_false (expr)
168 804
805/* count trailing zero bits and count # of one bits */
806#if ECB_GCC_VERSION(3,4)
807 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
808 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
809 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
810 #define ecb_ctz32(x) __builtin_ctz (x)
811 #define ecb_ctz64(x) __builtin_ctzll (x)
812 #define ecb_popcount32(x) __builtin_popcount (x)
813 /* no popcountll */
814#else
815 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
816 ecb_function_ int
817 ecb_ctz32 (uint32_t x)
818 {
819 int r = 0;
820
821 x &= ~x + 1; /* this isolates the lowest bit */
822
823#if ECB_branchless_on_i386
824 r += !!(x & 0xaaaaaaaa) << 0;
825 r += !!(x & 0xcccccccc) << 1;
826 r += !!(x & 0xf0f0f0f0) << 2;
827 r += !!(x & 0xff00ff00) << 3;
828 r += !!(x & 0xffff0000) << 4;
829#else
830 if (x & 0xaaaaaaaa) r += 1;
831 if (x & 0xcccccccc) r += 2;
832 if (x & 0xf0f0f0f0) r += 4;
833 if (x & 0xff00ff00) r += 8;
834 if (x & 0xffff0000) r += 16;
835#endif
836
837 return r;
838 }
839
840 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
841 ecb_function_ int
842 ecb_ctz64 (uint64_t x)
843 {
844 int shift = x & 0xffffffffU ? 0 : 32;
845 return ecb_ctz32 (x >> shift) + shift;
846 }
847
848 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
849 ecb_function_ int
850 ecb_popcount32 (uint32_t x)
851 {
852 x -= (x >> 1) & 0x55555555;
853 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
854 x = ((x >> 4) + x) & 0x0f0f0f0f;
855 x *= 0x01010101;
856
857 return x >> 24;
858 }
859
860 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
861 ecb_function_ int ecb_ld32 (uint32_t x)
862 {
863 int r = 0;
864
865 if (x >> 16) { x >>= 16; r += 16; }
866 if (x >> 8) { x >>= 8; r += 8; }
867 if (x >> 4) { x >>= 4; r += 4; }
868 if (x >> 2) { x >>= 2; r += 2; }
869 if (x >> 1) { r += 1; }
870
871 return r;
872 }
873
874 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
875 ecb_function_ int ecb_ld64 (uint64_t x)
876 {
877 int r = 0;
878
879 if (x >> 32) { x >>= 32; r += 32; }
880
881 return r + ecb_ld32 (x);
882 }
883#endif
884
885ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
886ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
887ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
888ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
889
890ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
891ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
892{
893 return ( (x * 0x0802U & 0x22110U)
894 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
895}
896
897ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
898ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
899{
900 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
901 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
902 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
903 x = ( x >> 8 ) | ( x << 8);
904
905 return x;
906}
907
908ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
909ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
910{
911 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
912 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
913 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
914 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
915 x = ( x >> 16 ) | ( x << 16);
916
917 return x;
918}
919
920/* popcount64 is only available on 64 bit cpus as gcc builtin */
921/* so for this version we are lazy */
922ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
923ecb_function_ int
924ecb_popcount64 (uint64_t x)
925{
926 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
927}
928
929ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
930ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
931ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
932ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
933ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
934ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
935ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
936ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
937
938ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
939ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
940ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
941ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
942ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
943ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
944ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
945ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
946
947#if ECB_GCC_VERSION(4,3)
948 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
949 #define ecb_bswap32(x) __builtin_bswap32 (x)
950 #define ecb_bswap64(x) __builtin_bswap64 (x)
951#else
952 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
953 ecb_function_ uint16_t
954 ecb_bswap16 (uint16_t x)
955 {
956 return ecb_rotl16 (x, 8);
957 }
958
959 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
960 ecb_function_ uint32_t
961 ecb_bswap32 (uint32_t x)
962 {
963 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
964 }
965
966 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
967 ecb_function_ uint64_t
968 ecb_bswap64 (uint64_t x)
969 {
970 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
971 }
972#endif
973
974#if ECB_GCC_VERSION(4,5)
975 #define ecb_unreachable() __builtin_unreachable ()
976#else
977 /* this seems to work fine, but gcc always emits a warning for it :/ */
978 ecb_inline void ecb_unreachable (void) ecb_noreturn;
979 ecb_inline void ecb_unreachable (void) { }
980#endif
981
982/* try to tell the compiler that some condition is definitely true */
983#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
984
985ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
986ecb_inline unsigned char
987ecb_byteorder_helper (void)
988{
989 /* the union code still generates code under pressure in gcc, */
990 /* but less than using pointers, and always seems to */
991 /* successfully return a constant. */
992 /* the reason why we have this horrible preprocessor mess */
993 /* is to avoid it in all cases, at least on common architectures */
994 /* or when using a recent enough gcc version (>= 4.6) */
995#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
996 return 0x44;
997#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
998 return 0x44;
999#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1000 return 0x11;
1001#else
1002 union
1003 {
1004 uint32_t i;
1005 uint8_t c;
1006 } u = { 0x11223344 };
1007 return u.c;
1008#endif
1009}
1010
1011ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1012ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1013ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1014ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1015
1016#if ECB_GCC_VERSION(3,0) || ECB_C99
1017 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1018#else
1019 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1020#endif
1021
1022#if __cplusplus
1023 template<typename T>
1024 static inline T ecb_div_rd (T val, T div)
1025 {
1026 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1027 }
1028 template<typename T>
1029 static inline T ecb_div_ru (T val, T div)
1030 {
1031 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1032 }
1033#else
1034 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1035 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1036#endif
1037
1038#if ecb_cplusplus_does_not_suck
1039 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1040 template<typename T, int N>
1041 static inline int ecb_array_length (const T (&arr)[N])
1042 {
1043 return N;
1044 }
1045#else
1046 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1047#endif
1048
1049/*******************************************************************************/
1050/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1051
1052/* basically, everything uses "ieee pure-endian" floating point numbers */
1053/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1054#if 0 \
1055 || __i386 || __i386__ \
1056 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1057 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1058 || defined __arm__ && defined __ARM_EABI__ \
1059 || defined __s390__ || defined __s390x__ \
1060 || defined __mips__ \
1061 || defined __alpha__ \
1062 || defined __hppa__ \
1063 || defined __ia64__ \
1064 || defined __m68k__ \
1065 || defined __m88k__ \
1066 || defined __sh__ \
1067 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1068 #define ECB_STDFP 1
1069 #include <string.h> /* for memcpy */
1070#else
1071 #define ECB_STDFP 0
1072#endif
1073
1074#ifndef ECB_NO_LIBM
1075
1076 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1077
1078 #ifdef NEN
1079 #define ECB_NAN NAN
1080 #else
1081 #define ECB_NAN INFINITY
1082 #endif
1083
1084 /* converts an ieee half/binary16 to a float */
1085 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1086 ecb_function_ float
1087 ecb_binary16_to_float (uint16_t x)
1088 {
1089 int e = (x >> 10) & 0x1f;
1090 int m = x & 0x3ff;
1091 float r;
1092
1093 if (!e ) r = ldexpf (m , -24);
1094 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1095 else if (m ) r = ECB_NAN;
1096 else r = INFINITY;
1097
1098 return x & 0x8000 ? -r : r;
1099 }
1100
1101 /* convert a float to ieee single/binary32 */
1102 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1103 ecb_function_ uint32_t
1104 ecb_float_to_binary32 (float x)
1105 {
1106 uint32_t r;
1107
1108 #if ECB_STDFP
1109 memcpy (&r, &x, 4);
1110 #else
1111 /* slow emulation, works for anything but -0 */
1112 uint32_t m;
1113 int e;
1114
1115 if (x == 0e0f ) return 0x00000000U;
1116 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1117 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1118 if (x != x ) return 0x7fbfffffU;
1119
1120 m = frexpf (x, &e) * 0x1000000U;
1121
1122 r = m & 0x80000000U;
1123
1124 if (r)
1125 m = -m;
1126
1127 if (e <= -126)
1128 {
1129 m &= 0xffffffU;
1130 m >>= (-125 - e);
1131 e = -126;
1132 }
1133
1134 r |= (e + 126) << 23;
1135 r |= m & 0x7fffffU;
1136 #endif
1137
1138 return r;
1139 }
1140
1141 /* converts an ieee single/binary32 to a float */
1142 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1143 ecb_function_ float
1144 ecb_binary32_to_float (uint32_t x)
1145 {
1146 float r;
1147
1148 #if ECB_STDFP
1149 memcpy (&r, &x, 4);
1150 #else
1151 /* emulation, only works for normals and subnormals and +0 */
1152 int neg = x >> 31;
1153 int e = (x >> 23) & 0xffU;
1154
1155 x &= 0x7fffffU;
1156
1157 if (e)
1158 x |= 0x800000U;
1159 else
1160 e = 1;
1161
1162 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1163 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1164
1165 r = neg ? -r : r;
1166 #endif
1167
1168 return r;
1169 }
1170
1171 /* convert a double to ieee double/binary64 */
1172 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1173 ecb_function_ uint64_t
1174 ecb_double_to_binary64 (double x)
1175 {
1176 uint64_t r;
1177
1178 #if ECB_STDFP
1179 memcpy (&r, &x, 8);
1180 #else
1181 /* slow emulation, works for anything but -0 */
1182 uint64_t m;
1183 int e;
1184
1185 if (x == 0e0 ) return 0x0000000000000000U;
1186 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1187 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1188 if (x != x ) return 0X7ff7ffffffffffffU;
1189
1190 m = frexp (x, &e) * 0x20000000000000U;
1191
1192 r = m & 0x8000000000000000;;
1193
1194 if (r)
1195 m = -m;
1196
1197 if (e <= -1022)
1198 {
1199 m &= 0x1fffffffffffffU;
1200 m >>= (-1021 - e);
1201 e = -1022;
1202 }
1203
1204 r |= ((uint64_t)(e + 1022)) << 52;
1205 r |= m & 0xfffffffffffffU;
1206 #endif
1207
1208 return r;
1209 }
1210
1211 /* converts an ieee double/binary64 to a double */
1212 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1213 ecb_function_ double
1214 ecb_binary64_to_double (uint64_t x)
1215 {
1216 double r;
1217
1218 #if ECB_STDFP
1219 memcpy (&r, &x, 8);
1220 #else
1221 /* emulation, only works for normals and subnormals and +0 */
1222 int neg = x >> 63;
1223 int e = (x >> 52) & 0x7ffU;
1224
1225 x &= 0xfffffffffffffU;
1226
1227 if (e)
1228 x |= 0x10000000000000U;
1229 else
1230 e = 1;
1231
1232 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1233 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1234
1235 r = neg ? -r : r;
1236 #endif
1237
1238 return r;
1239 }
1240
1241#endif
1242
1243#endif
1244
1245/* ECB.H END */
1246
1247#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1248/* if your architecture doesn't need memory fences, e.g. because it is
1249 * single-cpu/core, or if you use libev in a project that doesn't use libev
1250 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1251 * libev, in which cases the memory fences become nops.
1252 * alternatively, you can remove this #error and link against libpthread,
1253 * which will then provide the memory fences.
1254 */
1255# error "memory fences not defined for your architecture, please report"
1256#endif
1257
1258#ifndef ECB_MEMORY_FENCE
1259# define ECB_MEMORY_FENCE do { } while (0)
1260# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1261# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1262#endif
1263
1264#define expect_false(cond) ecb_expect_false (cond)
1265#define expect_true(cond) ecb_expect_true (cond)
1266#define noinline ecb_noinline
1267
1268#define inline_size ecb_inline
1269
1270#if EV_FEATURE_CODE
1271# define inline_speed ecb_inline
1272#else
1273# define inline_speed static noinline
1274#endif
1275
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1276#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1277
1278#if EV_MINPRI == EV_MAXPRI
1279# define ABSPRI(w) (((W)w), 0)
1280#else
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1281# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1282#endif
171 1283
172#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1284#define EMPTY /* required for microsofts broken pseudo-c compiler */
1285#define EMPTY2(a,b) /* used to suppress some warnings */
173 1286
174typedef struct ev_watcher *W; 1287typedef ev_watcher *W;
175typedef struct ev_watcher_list *WL; 1288typedef ev_watcher_list *WL;
176typedef struct ev_watcher_time *WT; 1289typedef ev_watcher_time *WT;
177 1290
1291#define ev_active(w) ((W)(w))->active
1292#define ev_at(w) ((WT)(w))->at
1293
1294#if EV_USE_REALTIME
1295/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1296/* giving it a reasonably high chance of working on typical architectures */
1297static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1298#endif
1299
1300#if EV_USE_MONOTONIC
178static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1301static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1302#endif
1303
1304#ifndef EV_FD_TO_WIN32_HANDLE
1305# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1306#endif
1307#ifndef EV_WIN32_HANDLE_TO_FD
1308# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1309#endif
1310#ifndef EV_WIN32_CLOSE_FD
1311# define EV_WIN32_CLOSE_FD(fd) close (fd)
1312#endif
179 1313
180#ifdef _WIN32 1314#ifdef _WIN32
181# include "ev_win32.c" 1315# include "ev_win32.c"
182#endif 1316#endif
183 1317
184/*****************************************************************************/ 1318/*****************************************************************************/
185 1319
1320/* define a suitable floor function (only used by periodics atm) */
1321
1322#if EV_USE_FLOOR
1323# include <math.h>
1324# define ev_floor(v) floor (v)
1325#else
1326
1327#include <float.h>
1328
1329/* a floor() replacement function, should be independent of ev_tstamp type */
1330static ev_tstamp noinline
1331ev_floor (ev_tstamp v)
1332{
1333 /* the choice of shift factor is not terribly important */
1334#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1335 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1336#else
1337 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1338#endif
1339
1340 /* argument too large for an unsigned long? */
1341 if (expect_false (v >= shift))
1342 {
1343 ev_tstamp f;
1344
1345 if (v == v - 1.)
1346 return v; /* very large number */
1347
1348 f = shift * ev_floor (v * (1. / shift));
1349 return f + ev_floor (v - f);
1350 }
1351
1352 /* special treatment for negative args? */
1353 if (expect_false (v < 0.))
1354 {
1355 ev_tstamp f = -ev_floor (-v);
1356
1357 return f - (f == v ? 0 : 1);
1358 }
1359
1360 /* fits into an unsigned long */
1361 return (unsigned long)v;
1362}
1363
1364#endif
1365
1366/*****************************************************************************/
1367
1368#ifdef __linux
1369# include <sys/utsname.h>
1370#endif
1371
1372static unsigned int noinline ecb_cold
1373ev_linux_version (void)
1374{
1375#ifdef __linux
1376 unsigned int v = 0;
1377 struct utsname buf;
1378 int i;
1379 char *p = buf.release;
1380
1381 if (uname (&buf))
1382 return 0;
1383
1384 for (i = 3+1; --i; )
1385 {
1386 unsigned int c = 0;
1387
1388 for (;;)
1389 {
1390 if (*p >= '0' && *p <= '9')
1391 c = c * 10 + *p++ - '0';
1392 else
1393 {
1394 p += *p == '.';
1395 break;
1396 }
1397 }
1398
1399 v = (v << 8) | c;
1400 }
1401
1402 return v;
1403#else
1404 return 0;
1405#endif
1406}
1407
1408/*****************************************************************************/
1409
1410#if EV_AVOID_STDIO
1411static void noinline ecb_cold
1412ev_printerr (const char *msg)
1413{
1414 write (STDERR_FILENO, msg, strlen (msg));
1415}
1416#endif
1417
186static void (*syserr_cb)(const char *msg); 1418static void (*syserr_cb)(const char *msg) EV_THROW;
187 1419
1420void ecb_cold
188void ev_set_syserr_cb (void (*cb)(const char *msg)) 1421ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
189{ 1422{
190 syserr_cb = cb; 1423 syserr_cb = cb;
191} 1424}
192 1425
193static void 1426static void noinline ecb_cold
194syserr (const char *msg) 1427ev_syserr (const char *msg)
195{ 1428{
196 if (!msg) 1429 if (!msg)
197 msg = "(libev) system error"; 1430 msg = "(libev) system error";
198 1431
199 if (syserr_cb) 1432 if (syserr_cb)
200 syserr_cb (msg); 1433 syserr_cb (msg);
201 else 1434 else
202 { 1435 {
1436#if EV_AVOID_STDIO
1437 ev_printerr (msg);
1438 ev_printerr (": ");
1439 ev_printerr (strerror (errno));
1440 ev_printerr ("\n");
1441#else
203 perror (msg); 1442 perror (msg);
1443#endif
204 abort (); 1444 abort ();
205 } 1445 }
206} 1446}
207 1447
1448static void *
1449ev_realloc_emul (void *ptr, long size) EV_THROW
1450{
1451 /* some systems, notably openbsd and darwin, fail to properly
1452 * implement realloc (x, 0) (as required by both ansi c-89 and
1453 * the single unix specification, so work around them here.
1454 * recently, also (at least) fedora and debian started breaking it,
1455 * despite documenting it otherwise.
1456 */
1457
1458 if (size)
1459 return realloc (ptr, size);
1460
1461 free (ptr);
1462 return 0;
1463}
1464
208static void *(*alloc)(void *ptr, long size); 1465static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
209 1466
1467void ecb_cold
210void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1468ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
211{ 1469{
212 alloc = cb; 1470 alloc = cb;
213} 1471}
214 1472
215static void * 1473inline_speed void *
216ev_realloc (void *ptr, long size) 1474ev_realloc (void *ptr, long size)
217{ 1475{
218 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1476 ptr = alloc (ptr, size);
219 1477
220 if (!ptr && size) 1478 if (!ptr && size)
221 { 1479 {
1480#if EV_AVOID_STDIO
1481 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1482#else
222 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1483 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1484#endif
223 abort (); 1485 abort ();
224 } 1486 }
225 1487
226 return ptr; 1488 return ptr;
227} 1489}
229#define ev_malloc(size) ev_realloc (0, (size)) 1491#define ev_malloc(size) ev_realloc (0, (size))
230#define ev_free(ptr) ev_realloc ((ptr), 0) 1492#define ev_free(ptr) ev_realloc ((ptr), 0)
231 1493
232/*****************************************************************************/ 1494/*****************************************************************************/
233 1495
1496/* set in reify when reification needed */
1497#define EV_ANFD_REIFY 1
1498
1499/* file descriptor info structure */
234typedef struct 1500typedef struct
235{ 1501{
236 WL head; 1502 WL head;
237 unsigned char events; 1503 unsigned char events; /* the events watched for */
1504 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1505 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
238 unsigned char reify; 1506 unsigned char unused;
1507#if EV_USE_EPOLL
1508 unsigned int egen; /* generation counter to counter epoll bugs */
1509#endif
239#if EV_SELECT_IS_WINSOCKET 1510#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
240 SOCKET handle; 1511 SOCKET handle;
241#endif 1512#endif
1513#if EV_USE_IOCP
1514 OVERLAPPED or, ow;
1515#endif
242} ANFD; 1516} ANFD;
243 1517
1518/* stores the pending event set for a given watcher */
244typedef struct 1519typedef struct
245{ 1520{
246 W w; 1521 W w;
247 int events; 1522 int events; /* the pending event set for the given watcher */
248} ANPENDING; 1523} ANPENDING;
1524
1525#if EV_USE_INOTIFY
1526/* hash table entry per inotify-id */
1527typedef struct
1528{
1529 WL head;
1530} ANFS;
1531#endif
1532
1533/* Heap Entry */
1534#if EV_HEAP_CACHE_AT
1535 /* a heap element */
1536 typedef struct {
1537 ev_tstamp at;
1538 WT w;
1539 } ANHE;
1540
1541 #define ANHE_w(he) (he).w /* access watcher, read-write */
1542 #define ANHE_at(he) (he).at /* access cached at, read-only */
1543 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1544#else
1545 /* a heap element */
1546 typedef WT ANHE;
1547
1548 #define ANHE_w(he) (he)
1549 #define ANHE_at(he) (he)->at
1550 #define ANHE_at_cache(he)
1551#endif
249 1552
250#if EV_MULTIPLICITY 1553#if EV_MULTIPLICITY
251 1554
252 struct ev_loop 1555 struct ev_loop
253 { 1556 {
257 #include "ev_vars.h" 1560 #include "ev_vars.h"
258 #undef VAR 1561 #undef VAR
259 }; 1562 };
260 #include "ev_wrap.h" 1563 #include "ev_wrap.h"
261 1564
262 struct ev_loop default_loop_struct; 1565 static struct ev_loop default_loop_struct;
263 static struct ev_loop *default_loop; 1566 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
264 1567
265#else 1568#else
266 1569
267 ev_tstamp ev_rt_now; 1570 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
268 #define VAR(name,decl) static decl; 1571 #define VAR(name,decl) static decl;
269 #include "ev_vars.h" 1572 #include "ev_vars.h"
270 #undef VAR 1573 #undef VAR
271 1574
272 static int default_loop; 1575 static int ev_default_loop_ptr;
273 1576
274#endif 1577#endif
1578
1579#if EV_FEATURE_API
1580# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1581# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1582# define EV_INVOKE_PENDING invoke_cb (EV_A)
1583#else
1584# define EV_RELEASE_CB (void)0
1585# define EV_ACQUIRE_CB (void)0
1586# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1587#endif
1588
1589#define EVBREAK_RECURSE 0x80
275 1590
276/*****************************************************************************/ 1591/*****************************************************************************/
277 1592
1593#ifndef EV_HAVE_EV_TIME
278ev_tstamp 1594ev_tstamp
279ev_time (void) 1595ev_time (void) EV_THROW
280{ 1596{
281#if EV_USE_REALTIME 1597#if EV_USE_REALTIME
1598 if (expect_true (have_realtime))
1599 {
282 struct timespec ts; 1600 struct timespec ts;
283 clock_gettime (CLOCK_REALTIME, &ts); 1601 clock_gettime (CLOCK_REALTIME, &ts);
284 return ts.tv_sec + ts.tv_nsec * 1e-9; 1602 return ts.tv_sec + ts.tv_nsec * 1e-9;
285#else 1603 }
1604#endif
1605
286 struct timeval tv; 1606 struct timeval tv;
287 gettimeofday (&tv, 0); 1607 gettimeofday (&tv, 0);
288 return tv.tv_sec + tv.tv_usec * 1e-6; 1608 return tv.tv_sec + tv.tv_usec * 1e-6;
289#endif
290} 1609}
1610#endif
291 1611
292inline ev_tstamp 1612inline_size ev_tstamp
293get_clock (void) 1613get_clock (void)
294{ 1614{
295#if EV_USE_MONOTONIC 1615#if EV_USE_MONOTONIC
296 if (expect_true (have_monotonic)) 1616 if (expect_true (have_monotonic))
297 { 1617 {
304 return ev_time (); 1624 return ev_time ();
305} 1625}
306 1626
307#if EV_MULTIPLICITY 1627#if EV_MULTIPLICITY
308ev_tstamp 1628ev_tstamp
309ev_now (EV_P) 1629ev_now (EV_P) EV_THROW
310{ 1630{
311 return ev_rt_now; 1631 return ev_rt_now;
312} 1632}
313#endif 1633#endif
314 1634
315#define array_roundsize(type,n) ((n) | 4 & ~3) 1635void
1636ev_sleep (ev_tstamp delay) EV_THROW
1637{
1638 if (delay > 0.)
1639 {
1640#if EV_USE_NANOSLEEP
1641 struct timespec ts;
1642
1643 EV_TS_SET (ts, delay);
1644 nanosleep (&ts, 0);
1645#elif defined _WIN32
1646 Sleep ((unsigned long)(delay * 1e3));
1647#else
1648 struct timeval tv;
1649
1650 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1651 /* something not guaranteed by newer posix versions, but guaranteed */
1652 /* by older ones */
1653 EV_TV_SET (tv, delay);
1654 select (0, 0, 0, 0, &tv);
1655#endif
1656 }
1657}
1658
1659/*****************************************************************************/
1660
1661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1662
1663/* find a suitable new size for the given array, */
1664/* hopefully by rounding to a nice-to-malloc size */
1665inline_size int
1666array_nextsize (int elem, int cur, int cnt)
1667{
1668 int ncur = cur + 1;
1669
1670 do
1671 ncur <<= 1;
1672 while (cnt > ncur);
1673
1674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1676 {
1677 ncur *= elem;
1678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1679 ncur = ncur - sizeof (void *) * 4;
1680 ncur /= elem;
1681 }
1682
1683 return ncur;
1684}
1685
1686static void * noinline ecb_cold
1687array_realloc (int elem, void *base, int *cur, int cnt)
1688{
1689 *cur = array_nextsize (elem, *cur, cnt);
1690 return ev_realloc (base, elem * *cur);
1691}
1692
1693#define array_init_zero(base,count) \
1694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
316 1695
317#define array_needsize(type,base,cur,cnt,init) \ 1696#define array_needsize(type,base,cur,cnt,init) \
318 if (expect_false ((cnt) > cur)) \ 1697 if (expect_false ((cnt) > (cur))) \
319 { \ 1698 { \
320 int newcnt = cur; \ 1699 int ecb_unused ocur_ = (cur); \
321 do \ 1700 (base) = (type *)array_realloc \
322 { \ 1701 (sizeof (type), (base), &(cur), (cnt)); \
323 newcnt = array_roundsize (type, newcnt << 1); \ 1702 init ((base) + (ocur_), (cur) - ocur_); \
324 } \
325 while ((cnt) > newcnt); \
326 \
327 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
328 init (base + cur, newcnt - cur); \
329 cur = newcnt; \
330 } 1703 }
331 1704
1705#if 0
332#define array_slim(type,stem) \ 1706#define array_slim(type,stem) \
333 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1707 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
334 { \ 1708 { \
335 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1709 stem ## max = array_roundsize (stem ## cnt >> 1); \
336 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1710 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
337 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
338 } 1712 }
1713#endif
339 1714
340#define array_free(stem, idx) \ 1715#define array_free(stem, idx) \
341 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
342 1717
343/*****************************************************************************/ 1718/*****************************************************************************/
344 1719
345static void 1720/* dummy callback for pending events */
346anfds_init (ANFD *base, int count) 1721static void noinline
1722pendingcb (EV_P_ ev_prepare *w, int revents)
347{ 1723{
348 while (count--)
349 {
350 base->head = 0;
351 base->events = EV_NONE;
352 base->reify = 0;
353
354 ++base;
355 }
356} 1724}
357 1725
358void 1726void noinline
359ev_feed_event (EV_P_ void *w, int revents) 1727ev_feed_event (EV_P_ void *w, int revents) EV_THROW
360{ 1728{
361 W w_ = (W)w; 1729 W w_ = (W)w;
1730 int pri = ABSPRI (w_);
362 1731
363 if (w_->pending) 1732 if (expect_false (w_->pending))
1733 pendings [pri][w_->pending - 1].events |= revents;
1734 else
364 { 1735 {
1736 w_->pending = ++pendingcnt [pri];
1737 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1738 pendings [pri][w_->pending - 1].w = w_;
365 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1739 pendings [pri][w_->pending - 1].events = revents;
366 return;
367 } 1740 }
368 1741
369 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1742 pendingpri = NUMPRI - 1;
370 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
371 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
372 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
373} 1743}
374 1744
375static void 1745inline_speed void
1746feed_reverse (EV_P_ W w)
1747{
1748 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1749 rfeeds [rfeedcnt++] = w;
1750}
1751
1752inline_size void
1753feed_reverse_done (EV_P_ int revents)
1754{
1755 do
1756 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1757 while (rfeedcnt);
1758}
1759
1760inline_speed void
376queue_events (EV_P_ W *events, int eventcnt, int type) 1761queue_events (EV_P_ W *events, int eventcnt, int type)
377{ 1762{
378 int i; 1763 int i;
379 1764
380 for (i = 0; i < eventcnt; ++i) 1765 for (i = 0; i < eventcnt; ++i)
381 ev_feed_event (EV_A_ events [i], type); 1766 ev_feed_event (EV_A_ events [i], type);
382} 1767}
383 1768
1769/*****************************************************************************/
1770
384inline void 1771inline_speed void
385fd_event (EV_P_ int fd, int revents) 1772fd_event_nocheck (EV_P_ int fd, int revents)
386{ 1773{
387 ANFD *anfd = anfds + fd; 1774 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 1775 ev_io *w;
389 1776
390 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1777 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
391 { 1778 {
392 int ev = w->events & revents; 1779 int ev = w->events & revents;
393 1780
394 if (ev) 1781 if (ev)
395 ev_feed_event (EV_A_ (W)w, ev); 1782 ev_feed_event (EV_A_ (W)w, ev);
396 } 1783 }
397} 1784}
398 1785
1786/* do not submit kernel events for fds that have reify set */
1787/* because that means they changed while we were polling for new events */
1788inline_speed void
1789fd_event (EV_P_ int fd, int revents)
1790{
1791 ANFD *anfd = anfds + fd;
1792
1793 if (expect_true (!anfd->reify))
1794 fd_event_nocheck (EV_A_ fd, revents);
1795}
1796
399void 1797void
400ev_feed_fd_event (EV_P_ int fd, int revents) 1798ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
401{ 1799{
1800 if (fd >= 0 && fd < anfdmax)
402 fd_event (EV_A_ fd, revents); 1801 fd_event_nocheck (EV_A_ fd, revents);
403} 1802}
404 1803
405/*****************************************************************************/ 1804/* make sure the external fd watch events are in-sync */
406 1805/* with the kernel/libev internal state */
407static void 1806inline_size void
408fd_reify (EV_P) 1807fd_reify (EV_P)
409{ 1808{
410 int i; 1809 int i;
411 1810
1811#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
412 for (i = 0; i < fdchangecnt; ++i) 1812 for (i = 0; i < fdchangecnt; ++i)
413 { 1813 {
414 int fd = fdchanges [i]; 1814 int fd = fdchanges [i];
415 ANFD *anfd = anfds + fd; 1815 ANFD *anfd = anfds + fd;
416 struct ev_io *w;
417 1816
418 int events = 0; 1817 if (anfd->reify & EV__IOFDSET && anfd->head)
419
420 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
421 events |= w->events;
422
423#if EV_SELECT_IS_WINSOCKET
424 if (events)
425 { 1818 {
1819 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1820
1821 if (handle != anfd->handle)
1822 {
426 unsigned long argp; 1823 unsigned long arg;
427 anfd->handle = _get_osfhandle (fd); 1824
428 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1825 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1826
1827 /* handle changed, but fd didn't - we need to do it in two steps */
1828 backend_modify (EV_A_ fd, anfd->events, 0);
1829 anfd->events = 0;
1830 anfd->handle = handle;
1831 }
429 } 1832 }
1833 }
430#endif 1834#endif
431 1835
1836 for (i = 0; i < fdchangecnt; ++i)
1837 {
1838 int fd = fdchanges [i];
1839 ANFD *anfd = anfds + fd;
1840 ev_io *w;
1841
1842 unsigned char o_events = anfd->events;
1843 unsigned char o_reify = anfd->reify;
1844
432 anfd->reify = 0; 1845 anfd->reify = 0;
433 1846
434 method_modify (EV_A_ fd, anfd->events, events); 1847 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1848 {
435 anfd->events = events; 1849 anfd->events = 0;
1850
1851 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1852 anfd->events |= (unsigned char)w->events;
1853
1854 if (o_events != anfd->events)
1855 o_reify = EV__IOFDSET; /* actually |= */
1856 }
1857
1858 if (o_reify & EV__IOFDSET)
1859 backend_modify (EV_A_ fd, o_events, anfd->events);
436 } 1860 }
437 1861
438 fdchangecnt = 0; 1862 fdchangecnt = 0;
439} 1863}
440 1864
441static void 1865/* something about the given fd changed */
1866inline_size void
442fd_change (EV_P_ int fd) 1867fd_change (EV_P_ int fd, int flags)
443{ 1868{
444 if (anfds [fd].reify) 1869 unsigned char reify = anfds [fd].reify;
445 return;
446
447 anfds [fd].reify = 1; 1870 anfds [fd].reify |= flags;
448 1871
1872 if (expect_true (!reify))
1873 {
449 ++fdchangecnt; 1874 ++fdchangecnt;
450 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1875 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
451 fdchanges [fdchangecnt - 1] = fd; 1876 fdchanges [fdchangecnt - 1] = fd;
1877 }
452} 1878}
453 1879
454static void 1880/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1881inline_speed void ecb_cold
455fd_kill (EV_P_ int fd) 1882fd_kill (EV_P_ int fd)
456{ 1883{
457 struct ev_io *w; 1884 ev_io *w;
458 1885
459 while ((w = (struct ev_io *)anfds [fd].head)) 1886 while ((w = (ev_io *)anfds [fd].head))
460 { 1887 {
461 ev_io_stop (EV_A_ w); 1888 ev_io_stop (EV_A_ w);
462 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1889 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
463 } 1890 }
464} 1891}
465 1892
466static int 1893/* check whether the given fd is actually valid, for error recovery */
1894inline_size int ecb_cold
467fd_valid (int fd) 1895fd_valid (int fd)
468{ 1896{
469#ifdef _WIN32 1897#ifdef _WIN32
470 return _get_osfhandle (fd) != -1; 1898 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
471#else 1899#else
472 return fcntl (fd, F_GETFD) != -1; 1900 return fcntl (fd, F_GETFD) != -1;
473#endif 1901#endif
474} 1902}
475 1903
476/* called on EBADF to verify fds */ 1904/* called on EBADF to verify fds */
477static void 1905static void noinline ecb_cold
478fd_ebadf (EV_P) 1906fd_ebadf (EV_P)
479{ 1907{
480 int fd; 1908 int fd;
481 1909
482 for (fd = 0; fd < anfdmax; ++fd) 1910 for (fd = 0; fd < anfdmax; ++fd)
483 if (anfds [fd].events) 1911 if (anfds [fd].events)
484 if (!fd_valid (fd) == -1 && errno == EBADF) 1912 if (!fd_valid (fd) && errno == EBADF)
485 fd_kill (EV_A_ fd); 1913 fd_kill (EV_A_ fd);
486} 1914}
487 1915
488/* called on ENOMEM in select/poll to kill some fds and retry */ 1916/* called on ENOMEM in select/poll to kill some fds and retry */
489static void 1917static void noinline ecb_cold
490fd_enomem (EV_P) 1918fd_enomem (EV_P)
491{ 1919{
492 int fd; 1920 int fd;
493 1921
494 for (fd = anfdmax; fd--; ) 1922 for (fd = anfdmax; fd--; )
495 if (anfds [fd].events) 1923 if (anfds [fd].events)
496 { 1924 {
497 fd_kill (EV_A_ fd); 1925 fd_kill (EV_A_ fd);
498 return; 1926 break;
499 } 1927 }
500} 1928}
501 1929
502/* usually called after fork if method needs to re-arm all fds from scratch */ 1930/* usually called after fork if backend needs to re-arm all fds from scratch */
503static void 1931static void noinline
504fd_rearm_all (EV_P) 1932fd_rearm_all (EV_P)
505{ 1933{
506 int fd; 1934 int fd;
507 1935
508 /* this should be highly optimised to not do anything but set a flag */
509 for (fd = 0; fd < anfdmax; ++fd) 1936 for (fd = 0; fd < anfdmax; ++fd)
510 if (anfds [fd].events) 1937 if (anfds [fd].events)
511 { 1938 {
512 anfds [fd].events = 0; 1939 anfds [fd].events = 0;
513 fd_change (EV_A_ fd); 1940 anfds [fd].emask = 0;
1941 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
514 } 1942 }
515} 1943}
516 1944
517/*****************************************************************************/ 1945/* used to prepare libev internal fd's */
518 1946/* this is not fork-safe */
519static void
520upheap (WT *heap, int k)
521{
522 WT w = heap [k];
523
524 while (k && heap [k >> 1]->at > w->at)
525 {
526 heap [k] = heap [k >> 1];
527 ((W)heap [k])->active = k + 1;
528 k >>= 1;
529 }
530
531 heap [k] = w;
532 ((W)heap [k])->active = k + 1;
533
534}
535
536static void
537downheap (WT *heap, int N, int k)
538{
539 WT w = heap [k];
540
541 while (k < (N >> 1))
542 {
543 int j = k << 1;
544
545 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
546 ++j;
547
548 if (w->at <= heap [j]->at)
549 break;
550
551 heap [k] = heap [j];
552 ((W)heap [k])->active = k + 1;
553 k = j;
554 }
555
556 heap [k] = w;
557 ((W)heap [k])->active = k + 1;
558}
559
560inline void 1947inline_speed void
561adjustheap (WT *heap, int N, int k)
562{
563 upheap (heap, k);
564 downheap (heap, N, k);
565}
566
567/*****************************************************************************/
568
569typedef struct
570{
571 WL head;
572 sig_atomic_t volatile gotsig;
573} ANSIG;
574
575static ANSIG *signals;
576static int signalmax;
577
578static int sigpipe [2];
579static sig_atomic_t volatile gotsig;
580static struct ev_io sigev;
581
582static void
583signals_init (ANSIG *base, int count)
584{
585 while (count--)
586 {
587 base->head = 0;
588 base->gotsig = 0;
589
590 ++base;
591 }
592}
593
594static void
595sighandler (int signum)
596{
597#if _WIN32
598 signal (signum, sighandler);
599#endif
600
601 signals [signum - 1].gotsig = 1;
602
603 if (!gotsig)
604 {
605 int old_errno = errno;
606 gotsig = 1;
607 write (sigpipe [1], &signum, 1);
608 errno = old_errno;
609 }
610}
611
612void
613ev_feed_signal_event (EV_P_ int signum)
614{
615 WL w;
616
617#if EV_MULTIPLICITY
618 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
619#endif
620
621 --signum;
622
623 if (signum < 0 || signum >= signalmax)
624 return;
625
626 signals [signum].gotsig = 0;
627
628 for (w = signals [signum].head; w; w = w->next)
629 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
630}
631
632static void
633sigcb (EV_P_ struct ev_io *iow, int revents)
634{
635 int signum;
636
637 read (sigpipe [0], &revents, 1);
638 gotsig = 0;
639
640 for (signum = signalmax; signum--; )
641 if (signals [signum].gotsig)
642 ev_feed_signal_event (EV_A_ signum + 1);
643}
644
645inline void
646fd_intern (int fd) 1948fd_intern (int fd)
647{ 1949{
648#ifdef _WIN32 1950#ifdef _WIN32
649 int arg = 1; 1951 unsigned long arg = 1;
650 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1952 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
651#else 1953#else
652 fcntl (fd, F_SETFD, FD_CLOEXEC); 1954 fcntl (fd, F_SETFD, FD_CLOEXEC);
653 fcntl (fd, F_SETFL, O_NONBLOCK); 1955 fcntl (fd, F_SETFL, O_NONBLOCK);
654#endif 1956#endif
655} 1957}
656 1958
1959/*****************************************************************************/
1960
1961/*
1962 * the heap functions want a real array index. array index 0 is guaranteed to not
1963 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1964 * the branching factor of the d-tree.
1965 */
1966
1967/*
1968 * at the moment we allow libev the luxury of two heaps,
1969 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1970 * which is more cache-efficient.
1971 * the difference is about 5% with 50000+ watchers.
1972 */
1973#if EV_USE_4HEAP
1974
1975#define DHEAP 4
1976#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1977#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1978#define UPHEAP_DONE(p,k) ((p) == (k))
1979
1980/* away from the root */
1981inline_speed void
1982downheap (ANHE *heap, int N, int k)
1983{
1984 ANHE he = heap [k];
1985 ANHE *E = heap + N + HEAP0;
1986
1987 for (;;)
1988 {
1989 ev_tstamp minat;
1990 ANHE *minpos;
1991 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1992
1993 /* find minimum child */
1994 if (expect_true (pos + DHEAP - 1 < E))
1995 {
1996 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1997 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1998 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1999 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2000 }
2001 else if (pos < E)
2002 {
2003 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2004 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2005 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2006 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2007 }
2008 else
2009 break;
2010
2011 if (ANHE_at (he) <= minat)
2012 break;
2013
2014 heap [k] = *minpos;
2015 ev_active (ANHE_w (*minpos)) = k;
2016
2017 k = minpos - heap;
2018 }
2019
2020 heap [k] = he;
2021 ev_active (ANHE_w (he)) = k;
2022}
2023
2024#else /* 4HEAP */
2025
2026#define HEAP0 1
2027#define HPARENT(k) ((k) >> 1)
2028#define UPHEAP_DONE(p,k) (!(p))
2029
2030/* away from the root */
2031inline_speed void
2032downheap (ANHE *heap, int N, int k)
2033{
2034 ANHE he = heap [k];
2035
2036 for (;;)
2037 {
2038 int c = k << 1;
2039
2040 if (c >= N + HEAP0)
2041 break;
2042
2043 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2044 ? 1 : 0;
2045
2046 if (ANHE_at (he) <= ANHE_at (heap [c]))
2047 break;
2048
2049 heap [k] = heap [c];
2050 ev_active (ANHE_w (heap [k])) = k;
2051
2052 k = c;
2053 }
2054
2055 heap [k] = he;
2056 ev_active (ANHE_w (he)) = k;
2057}
2058#endif
2059
2060/* towards the root */
2061inline_speed void
2062upheap (ANHE *heap, int k)
2063{
2064 ANHE he = heap [k];
2065
2066 for (;;)
2067 {
2068 int p = HPARENT (k);
2069
2070 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2071 break;
2072
2073 heap [k] = heap [p];
2074 ev_active (ANHE_w (heap [k])) = k;
2075 k = p;
2076 }
2077
2078 heap [k] = he;
2079 ev_active (ANHE_w (he)) = k;
2080}
2081
2082/* move an element suitably so it is in a correct place */
2083inline_size void
2084adjustheap (ANHE *heap, int N, int k)
2085{
2086 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2087 upheap (heap, k);
2088 else
2089 downheap (heap, N, k);
2090}
2091
2092/* rebuild the heap: this function is used only once and executed rarely */
2093inline_size void
2094reheap (ANHE *heap, int N)
2095{
2096 int i;
2097
2098 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2099 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2100 for (i = 0; i < N; ++i)
2101 upheap (heap, i + HEAP0);
2102}
2103
2104/*****************************************************************************/
2105
2106/* associate signal watchers to a signal signal */
2107typedef struct
2108{
2109 EV_ATOMIC_T pending;
2110#if EV_MULTIPLICITY
2111 EV_P;
2112#endif
2113 WL head;
2114} ANSIG;
2115
2116static ANSIG signals [EV_NSIG - 1];
2117
2118/*****************************************************************************/
2119
2120#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2121
2122static void noinline ecb_cold
2123evpipe_init (EV_P)
2124{
2125 if (!ev_is_active (&pipe_w))
2126 {
2127 int fds [2];
2128
2129# if EV_USE_EVENTFD
2130 fds [0] = -1;
2131 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2132 if (fds [1] < 0 && errno == EINVAL)
2133 fds [1] = eventfd (0, 0);
2134
2135 if (fds [1] < 0)
2136# endif
2137 {
2138 while (pipe (fds))
2139 ev_syserr ("(libev) error creating signal/async pipe");
2140
2141 fd_intern (fds [0]);
2142 }
2143
2144 evpipe [0] = fds [0];
2145
2146 if (evpipe [1] < 0)
2147 evpipe [1] = fds [1]; /* first call, set write fd */
2148 else
2149 {
2150 /* on subsequent calls, do not change evpipe [1] */
2151 /* so that evpipe_write can always rely on its value. */
2152 /* this branch does not do anything sensible on windows, */
2153 /* so must not be executed on windows */
2154
2155 dup2 (fds [1], evpipe [1]);
2156 close (fds [1]);
2157 }
2158
2159 fd_intern (evpipe [1]);
2160
2161 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2162 ev_io_start (EV_A_ &pipe_w);
2163 ev_unref (EV_A); /* watcher should not keep loop alive */
2164 }
2165}
2166
2167inline_speed void
2168evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2169{
2170 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2171
2172 if (expect_true (*flag))
2173 return;
2174
2175 *flag = 1;
2176 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2177
2178 pipe_write_skipped = 1;
2179
2180 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2181
2182 if (pipe_write_wanted)
2183 {
2184 int old_errno;
2185
2186 pipe_write_skipped = 0;
2187 ECB_MEMORY_FENCE_RELEASE;
2188
2189 old_errno = errno; /* save errno because write will clobber it */
2190
2191#if EV_USE_EVENTFD
2192 if (evpipe [0] < 0)
2193 {
2194 uint64_t counter = 1;
2195 write (evpipe [1], &counter, sizeof (uint64_t));
2196 }
2197 else
2198#endif
2199 {
2200#ifdef _WIN32
2201 WSABUF buf;
2202 DWORD sent;
2203 buf.buf = &buf;
2204 buf.len = 1;
2205 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2206#else
2207 write (evpipe [1], &(evpipe [1]), 1);
2208#endif
2209 }
2210
2211 errno = old_errno;
2212 }
2213}
2214
2215/* called whenever the libev signal pipe */
2216/* got some events (signal, async) */
657static void 2217static void
658siginit (EV_P) 2218pipecb (EV_P_ ev_io *iow, int revents)
659{ 2219{
660 fd_intern (sigpipe [0]); 2220 int i;
661 fd_intern (sigpipe [1]);
662 2221
663 ev_io_set (&sigev, sigpipe [0], EV_READ); 2222 if (revents & EV_READ)
664 ev_io_start (EV_A_ &sigev); 2223 {
665 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2224#if EV_USE_EVENTFD
2225 if (evpipe [0] < 0)
2226 {
2227 uint64_t counter;
2228 read (evpipe [1], &counter, sizeof (uint64_t));
2229 }
2230 else
2231#endif
2232 {
2233 char dummy[4];
2234#ifdef _WIN32
2235 WSABUF buf;
2236 DWORD recvd;
2237 DWORD flags = 0;
2238 buf.buf = dummy;
2239 buf.len = sizeof (dummy);
2240 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2241#else
2242 read (evpipe [0], &dummy, sizeof (dummy));
2243#endif
2244 }
2245 }
2246
2247 pipe_write_skipped = 0;
2248
2249 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2250
2251#if EV_SIGNAL_ENABLE
2252 if (sig_pending)
2253 {
2254 sig_pending = 0;
2255
2256 ECB_MEMORY_FENCE;
2257
2258 for (i = EV_NSIG - 1; i--; )
2259 if (expect_false (signals [i].pending))
2260 ev_feed_signal_event (EV_A_ i + 1);
2261 }
2262#endif
2263
2264#if EV_ASYNC_ENABLE
2265 if (async_pending)
2266 {
2267 async_pending = 0;
2268
2269 ECB_MEMORY_FENCE;
2270
2271 for (i = asynccnt; i--; )
2272 if (asyncs [i]->sent)
2273 {
2274 asyncs [i]->sent = 0;
2275 ECB_MEMORY_FENCE_RELEASE;
2276 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2277 }
2278 }
2279#endif
666} 2280}
667 2281
668/*****************************************************************************/ 2282/*****************************************************************************/
669 2283
670static struct ev_child *childs [PID_HASHSIZE]; 2284void
2285ev_feed_signal (int signum) EV_THROW
2286{
2287#if EV_MULTIPLICITY
2288 EV_P;
2289 ECB_MEMORY_FENCE_ACQUIRE;
2290 EV_A = signals [signum - 1].loop;
671 2291
2292 if (!EV_A)
2293 return;
2294#endif
2295
2296 signals [signum - 1].pending = 1;
2297 evpipe_write (EV_A_ &sig_pending);
2298}
2299
2300static void
2301ev_sighandler (int signum)
2302{
672#ifndef _WIN32 2303#ifdef _WIN32
2304 signal (signum, ev_sighandler);
2305#endif
673 2306
2307 ev_feed_signal (signum);
2308}
2309
2310void noinline
2311ev_feed_signal_event (EV_P_ int signum) EV_THROW
2312{
2313 WL w;
2314
2315 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2316 return;
2317
2318 --signum;
2319
2320#if EV_MULTIPLICITY
2321 /* it is permissible to try to feed a signal to the wrong loop */
2322 /* or, likely more useful, feeding a signal nobody is waiting for */
2323
2324 if (expect_false (signals [signum].loop != EV_A))
2325 return;
2326#endif
2327
2328 signals [signum].pending = 0;
2329 ECB_MEMORY_FENCE_RELEASE;
2330
2331 for (w = signals [signum].head; w; w = w->next)
2332 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2333}
2334
2335#if EV_USE_SIGNALFD
2336static void
2337sigfdcb (EV_P_ ev_io *iow, int revents)
2338{
2339 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2340
2341 for (;;)
2342 {
2343 ssize_t res = read (sigfd, si, sizeof (si));
2344
2345 /* not ISO-C, as res might be -1, but works with SuS */
2346 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2347 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2348
2349 if (res < (ssize_t)sizeof (si))
2350 break;
2351 }
2352}
2353#endif
2354
2355#endif
2356
2357/*****************************************************************************/
2358
2359#if EV_CHILD_ENABLE
2360static WL childs [EV_PID_HASHSIZE];
2361
674static struct ev_signal childev; 2362static ev_signal childev;
2363
2364#ifndef WIFCONTINUED
2365# define WIFCONTINUED(status) 0
2366#endif
2367
2368/* handle a single child status event */
2369inline_speed void
2370child_reap (EV_P_ int chain, int pid, int status)
2371{
2372 ev_child *w;
2373 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2374
2375 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2376 {
2377 if ((w->pid == pid || !w->pid)
2378 && (!traced || (w->flags & 1)))
2379 {
2380 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2381 w->rpid = pid;
2382 w->rstatus = status;
2383 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2384 }
2385 }
2386}
675 2387
676#ifndef WCONTINUED 2388#ifndef WCONTINUED
677# define WCONTINUED 0 2389# define WCONTINUED 0
678#endif 2390#endif
679 2391
2392/* called on sigchld etc., calls waitpid */
680static void 2393static void
681child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
682{
683 struct ev_child *w;
684
685 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
686 if (w->pid == pid || !w->pid)
687 {
688 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
689 w->rpid = pid;
690 w->rstatus = status;
691 ev_feed_event (EV_A_ (W)w, EV_CHILD);
692 }
693}
694
695static void
696childcb (EV_P_ struct ev_signal *sw, int revents) 2394childcb (EV_P_ ev_signal *sw, int revents)
697{ 2395{
698 int pid, status; 2396 int pid, status;
699 2397
2398 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
700 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2399 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
701 { 2400 if (!WCONTINUED
2401 || errno != EINVAL
2402 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2403 return;
2404
702 /* make sure we are called again until all childs have been reaped */ 2405 /* make sure we are called again until all children have been reaped */
2406 /* we need to do it this way so that the callback gets called before we continue */
703 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2407 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
704 2408
705 child_reap (EV_A_ sw, pid, pid, status); 2409 child_reap (EV_A_ pid, pid, status);
2410 if ((EV_PID_HASHSIZE) > 1)
706 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2411 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
707 }
708} 2412}
709 2413
710#endif 2414#endif
711 2415
712/*****************************************************************************/ 2416/*****************************************************************************/
713 2417
2418#if EV_USE_IOCP
2419# include "ev_iocp.c"
2420#endif
2421#if EV_USE_PORT
2422# include "ev_port.c"
2423#endif
714#if EV_USE_KQUEUE 2424#if EV_USE_KQUEUE
715# include "ev_kqueue.c" 2425# include "ev_kqueue.c"
716#endif 2426#endif
717#if EV_USE_EPOLL 2427#if EV_USE_EPOLL
718# include "ev_epoll.c" 2428# include "ev_epoll.c"
722#endif 2432#endif
723#if EV_USE_SELECT 2433#if EV_USE_SELECT
724# include "ev_select.c" 2434# include "ev_select.c"
725#endif 2435#endif
726 2436
727int 2437int ecb_cold
728ev_version_major (void) 2438ev_version_major (void) EV_THROW
729{ 2439{
730 return EV_VERSION_MAJOR; 2440 return EV_VERSION_MAJOR;
731} 2441}
732 2442
733int 2443int ecb_cold
734ev_version_minor (void) 2444ev_version_minor (void) EV_THROW
735{ 2445{
736 return EV_VERSION_MINOR; 2446 return EV_VERSION_MINOR;
737} 2447}
738 2448
739/* return true if we are running with elevated privileges and should ignore env variables */ 2449/* return true if we are running with elevated privileges and should ignore env variables */
740static int 2450int inline_size ecb_cold
741enable_secure (void) 2451enable_secure (void)
742{ 2452{
743#ifdef _WIN32 2453#ifdef _WIN32
744 return 0; 2454 return 0;
745#else 2455#else
746 return getuid () != geteuid () 2456 return getuid () != geteuid ()
747 || getgid () != getegid (); 2457 || getgid () != getegid ();
748#endif 2458#endif
749} 2459}
750 2460
751int 2461unsigned int ecb_cold
752ev_method (EV_P) 2462ev_supported_backends (void) EV_THROW
753{ 2463{
754 return method; 2464 unsigned int flags = 0;
755}
756 2465
757static void 2466 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
758loop_init (EV_P_ int methods) 2467 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2468 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2469 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2470 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2471
2472 return flags;
2473}
2474
2475unsigned int ecb_cold
2476ev_recommended_backends (void) EV_THROW
759{ 2477{
760 if (!method) 2478 unsigned int flags = ev_supported_backends ();
2479
2480#ifndef __NetBSD__
2481 /* kqueue is borked on everything but netbsd apparently */
2482 /* it usually doesn't work correctly on anything but sockets and pipes */
2483 flags &= ~EVBACKEND_KQUEUE;
2484#endif
2485#ifdef __APPLE__
2486 /* only select works correctly on that "unix-certified" platform */
2487 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2488 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2489#endif
2490#ifdef __FreeBSD__
2491 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2492#endif
2493
2494 return flags;
2495}
2496
2497unsigned int ecb_cold
2498ev_embeddable_backends (void) EV_THROW
2499{
2500 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2501
2502 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2503 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2504 flags &= ~EVBACKEND_EPOLL;
2505
2506 return flags;
2507}
2508
2509unsigned int
2510ev_backend (EV_P) EV_THROW
2511{
2512 return backend;
2513}
2514
2515#if EV_FEATURE_API
2516unsigned int
2517ev_iteration (EV_P) EV_THROW
2518{
2519 return loop_count;
2520}
2521
2522unsigned int
2523ev_depth (EV_P) EV_THROW
2524{
2525 return loop_depth;
2526}
2527
2528void
2529ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2530{
2531 io_blocktime = interval;
2532}
2533
2534void
2535ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2536{
2537 timeout_blocktime = interval;
2538}
2539
2540void
2541ev_set_userdata (EV_P_ void *data) EV_THROW
2542{
2543 userdata = data;
2544}
2545
2546void *
2547ev_userdata (EV_P) EV_THROW
2548{
2549 return userdata;
2550}
2551
2552void
2553ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2554{
2555 invoke_cb = invoke_pending_cb;
2556}
2557
2558void
2559ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2560{
2561 release_cb = release;
2562 acquire_cb = acquire;
2563}
2564#endif
2565
2566/* initialise a loop structure, must be zero-initialised */
2567static void noinline ecb_cold
2568loop_init (EV_P_ unsigned int flags) EV_THROW
2569{
2570 if (!backend)
761 { 2571 {
2572 origflags = flags;
2573
2574#if EV_USE_REALTIME
2575 if (!have_realtime)
2576 {
2577 struct timespec ts;
2578
2579 if (!clock_gettime (CLOCK_REALTIME, &ts))
2580 have_realtime = 1;
2581 }
2582#endif
2583
762#if EV_USE_MONOTONIC 2584#if EV_USE_MONOTONIC
2585 if (!have_monotonic)
763 { 2586 {
764 struct timespec ts; 2587 struct timespec ts;
2588
765 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2589 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
766 have_monotonic = 1; 2590 have_monotonic = 1;
767 } 2591 }
768#endif 2592#endif
769 2593
2594 /* pid check not overridable via env */
2595#ifndef _WIN32
2596 if (flags & EVFLAG_FORKCHECK)
2597 curpid = getpid ();
2598#endif
2599
2600 if (!(flags & EVFLAG_NOENV)
2601 && !enable_secure ()
2602 && getenv ("LIBEV_FLAGS"))
2603 flags = atoi (getenv ("LIBEV_FLAGS"));
2604
770 ev_rt_now = ev_time (); 2605 ev_rt_now = ev_time ();
771 mn_now = get_clock (); 2606 mn_now = get_clock ();
772 now_floor = mn_now; 2607 now_floor = mn_now;
773 rtmn_diff = ev_rt_now - mn_now; 2608 rtmn_diff = ev_rt_now - mn_now;
2609#if EV_FEATURE_API
2610 invoke_cb = ev_invoke_pending;
2611#endif
774 2612
775 if (methods == EVMETHOD_AUTO) 2613 io_blocktime = 0.;
776 if (!enable_secure () && getenv ("LIBEV_METHODS")) 2614 timeout_blocktime = 0.;
777 methods = atoi (getenv ("LIBEV_METHODS")); 2615 backend = 0;
778 else 2616 backend_fd = -1;
779 methods = EVMETHOD_ANY; 2617 sig_pending = 0;
2618#if EV_ASYNC_ENABLE
2619 async_pending = 0;
2620#endif
2621 pipe_write_skipped = 0;
2622 pipe_write_wanted = 0;
2623 evpipe [0] = -1;
2624 evpipe [1] = -1;
2625#if EV_USE_INOTIFY
2626 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2627#endif
2628#if EV_USE_SIGNALFD
2629 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2630#endif
780 2631
781 method = 0; 2632 if (!(flags & EVBACKEND_MASK))
2633 flags |= ev_recommended_backends ();
2634
2635#if EV_USE_IOCP
2636 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2637#endif
2638#if EV_USE_PORT
2639 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2640#endif
782#if EV_USE_KQUEUE 2641#if EV_USE_KQUEUE
783 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 2642 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
784#endif 2643#endif
785#if EV_USE_EPOLL 2644#if EV_USE_EPOLL
786 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 2645 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
787#endif 2646#endif
788#if EV_USE_POLL 2647#if EV_USE_POLL
789 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 2648 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
790#endif 2649#endif
791#if EV_USE_SELECT 2650#if EV_USE_SELECT
792 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 2651 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
793#endif 2652#endif
794 2653
2654 ev_prepare_init (&pending_w, pendingcb);
2655
2656#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
795 ev_init (&sigev, sigcb); 2657 ev_init (&pipe_w, pipecb);
796 ev_set_priority (&sigev, EV_MAXPRI); 2658 ev_set_priority (&pipe_w, EV_MAXPRI);
2659#endif
797 } 2660 }
798} 2661}
799 2662
800void 2663/* free up a loop structure */
2664void ecb_cold
801loop_destroy (EV_P) 2665ev_loop_destroy (EV_P)
802{ 2666{
803 int i; 2667 int i;
804 2668
2669#if EV_MULTIPLICITY
2670 /* mimic free (0) */
2671 if (!EV_A)
2672 return;
2673#endif
2674
2675#if EV_CLEANUP_ENABLE
2676 /* queue cleanup watchers (and execute them) */
2677 if (expect_false (cleanupcnt))
2678 {
2679 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2680 EV_INVOKE_PENDING;
2681 }
2682#endif
2683
2684#if EV_CHILD_ENABLE
2685 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2686 {
2687 ev_ref (EV_A); /* child watcher */
2688 ev_signal_stop (EV_A_ &childev);
2689 }
2690#endif
2691
2692 if (ev_is_active (&pipe_w))
2693 {
2694 /*ev_ref (EV_A);*/
2695 /*ev_io_stop (EV_A_ &pipe_w);*/
2696
2697 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2698 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2699 }
2700
2701#if EV_USE_SIGNALFD
2702 if (ev_is_active (&sigfd_w))
2703 close (sigfd);
2704#endif
2705
2706#if EV_USE_INOTIFY
2707 if (fs_fd >= 0)
2708 close (fs_fd);
2709#endif
2710
2711 if (backend_fd >= 0)
2712 close (backend_fd);
2713
2714#if EV_USE_IOCP
2715 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2716#endif
2717#if EV_USE_PORT
2718 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2719#endif
805#if EV_USE_KQUEUE 2720#if EV_USE_KQUEUE
806 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 2721 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
807#endif 2722#endif
808#if EV_USE_EPOLL 2723#if EV_USE_EPOLL
809 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 2724 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
810#endif 2725#endif
811#if EV_USE_POLL 2726#if EV_USE_POLL
812 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 2727 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
813#endif 2728#endif
814#if EV_USE_SELECT 2729#if EV_USE_SELECT
815 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 2730 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
816#endif 2731#endif
817 2732
818 for (i = NUMPRI; i--; ) 2733 for (i = NUMPRI; i--; )
2734 {
819 array_free (pending, [i]); 2735 array_free (pending, [i]);
2736#if EV_IDLE_ENABLE
2737 array_free (idle, [i]);
2738#endif
2739 }
2740
2741 ev_free (anfds); anfds = 0; anfdmax = 0;
820 2742
821 /* have to use the microsoft-never-gets-it-right macro */ 2743 /* have to use the microsoft-never-gets-it-right macro */
2744 array_free (rfeed, EMPTY);
822 array_free (fdchange, EMPTY); 2745 array_free (fdchange, EMPTY);
823 array_free (timer, EMPTY); 2746 array_free (timer, EMPTY);
824#if EV_PERIODICS 2747#if EV_PERIODIC_ENABLE
825 array_free (periodic, EMPTY); 2748 array_free (periodic, EMPTY);
826#endif 2749#endif
2750#if EV_FORK_ENABLE
2751 array_free (fork, EMPTY);
2752#endif
2753#if EV_CLEANUP_ENABLE
827 array_free (idle, EMPTY); 2754 array_free (cleanup, EMPTY);
2755#endif
828 array_free (prepare, EMPTY); 2756 array_free (prepare, EMPTY);
829 array_free (check, EMPTY); 2757 array_free (check, EMPTY);
2758#if EV_ASYNC_ENABLE
2759 array_free (async, EMPTY);
2760#endif
830 2761
831 method = 0; 2762 backend = 0;
832}
833 2763
834static void 2764#if EV_MULTIPLICITY
2765 if (ev_is_default_loop (EV_A))
2766#endif
2767 ev_default_loop_ptr = 0;
2768#if EV_MULTIPLICITY
2769 else
2770 ev_free (EV_A);
2771#endif
2772}
2773
2774#if EV_USE_INOTIFY
2775inline_size void infy_fork (EV_P);
2776#endif
2777
2778inline_size void
835loop_fork (EV_P) 2779loop_fork (EV_P)
836{ 2780{
2781#if EV_USE_PORT
2782 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2783#endif
2784#if EV_USE_KQUEUE
2785 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2786#endif
837#if EV_USE_EPOLL 2787#if EV_USE_EPOLL
838 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2788 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
839#endif 2789#endif
840#if EV_USE_KQUEUE 2790#if EV_USE_INOTIFY
841 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 2791 infy_fork (EV_A);
842#endif 2792#endif
843 2793
2794#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
844 if (ev_is_active (&sigev)) 2795 if (ev_is_active (&pipe_w))
845 { 2796 {
846 /* default loop */ 2797 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
847 2798
848 ev_ref (EV_A); 2799 ev_ref (EV_A);
849 ev_io_stop (EV_A_ &sigev); 2800 ev_io_stop (EV_A_ &pipe_w);
850 close (sigpipe [0]);
851 close (sigpipe [1]);
852 2801
853 while (pipe (sigpipe)) 2802 if (evpipe [0] >= 0)
854 syserr ("(libev) error creating pipe"); 2803 EV_WIN32_CLOSE_FD (evpipe [0]);
855 2804
856 siginit (EV_A); 2805 evpipe_init (EV_A);
2806 /* iterate over everything, in case we missed something before */
2807 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
857 } 2808 }
2809#endif
858 2810
859 postfork = 0; 2811 postfork = 0;
860} 2812}
861 2813
862#if EV_MULTIPLICITY 2814#if EV_MULTIPLICITY
2815
863struct ev_loop * 2816struct ev_loop * ecb_cold
864ev_loop_new (int methods) 2817ev_loop_new (unsigned int flags) EV_THROW
865{ 2818{
866 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2819 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
867 2820
868 memset (loop, 0, sizeof (struct ev_loop)); 2821 memset (EV_A, 0, sizeof (struct ev_loop));
869
870 loop_init (EV_A_ methods); 2822 loop_init (EV_A_ flags);
871 2823
872 if (ev_method (EV_A)) 2824 if (ev_backend (EV_A))
873 return loop; 2825 return EV_A;
874 2826
2827 ev_free (EV_A);
875 return 0; 2828 return 0;
876} 2829}
877 2830
878void 2831#endif /* multiplicity */
879ev_loop_destroy (EV_P)
880{
881 loop_destroy (EV_A);
882 ev_free (loop);
883}
884 2832
885void 2833#if EV_VERIFY
886ev_loop_fork (EV_P) 2834static void noinline ecb_cold
2835verify_watcher (EV_P_ W w)
887{ 2836{
888 postfork = 1; 2837 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
889}
890 2838
2839 if (w->pending)
2840 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2841}
2842
2843static void noinline ecb_cold
2844verify_heap (EV_P_ ANHE *heap, int N)
2845{
2846 int i;
2847
2848 for (i = HEAP0; i < N + HEAP0; ++i)
2849 {
2850 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2851 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2852 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2853
2854 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2855 }
2856}
2857
2858static void noinline ecb_cold
2859array_verify (EV_P_ W *ws, int cnt)
2860{
2861 while (cnt--)
2862 {
2863 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2864 verify_watcher (EV_A_ ws [cnt]);
2865 }
2866}
2867#endif
2868
2869#if EV_FEATURE_API
2870void ecb_cold
2871ev_verify (EV_P) EV_THROW
2872{
2873#if EV_VERIFY
2874 int i;
2875 WL w, w2;
2876
2877 assert (activecnt >= -1);
2878
2879 assert (fdchangemax >= fdchangecnt);
2880 for (i = 0; i < fdchangecnt; ++i)
2881 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2882
2883 assert (anfdmax >= 0);
2884 for (i = 0; i < anfdmax; ++i)
2885 {
2886 int j = 0;
2887
2888 for (w = w2 = anfds [i].head; w; w = w->next)
2889 {
2890 verify_watcher (EV_A_ (W)w);
2891
2892 if (j++ & 1)
2893 {
2894 assert (("libev: io watcher list contains a loop", w != w2));
2895 w2 = w2->next;
2896 }
2897
2898 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2899 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2900 }
2901 }
2902
2903 assert (timermax >= timercnt);
2904 verify_heap (EV_A_ timers, timercnt);
2905
2906#if EV_PERIODIC_ENABLE
2907 assert (periodicmax >= periodiccnt);
2908 verify_heap (EV_A_ periodics, periodiccnt);
2909#endif
2910
2911 for (i = NUMPRI; i--; )
2912 {
2913 assert (pendingmax [i] >= pendingcnt [i]);
2914#if EV_IDLE_ENABLE
2915 assert (idleall >= 0);
2916 assert (idlemax [i] >= idlecnt [i]);
2917 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2918#endif
2919 }
2920
2921#if EV_FORK_ENABLE
2922 assert (forkmax >= forkcnt);
2923 array_verify (EV_A_ (W *)forks, forkcnt);
2924#endif
2925
2926#if EV_CLEANUP_ENABLE
2927 assert (cleanupmax >= cleanupcnt);
2928 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2929#endif
2930
2931#if EV_ASYNC_ENABLE
2932 assert (asyncmax >= asynccnt);
2933 array_verify (EV_A_ (W *)asyncs, asynccnt);
2934#endif
2935
2936#if EV_PREPARE_ENABLE
2937 assert (preparemax >= preparecnt);
2938 array_verify (EV_A_ (W *)prepares, preparecnt);
2939#endif
2940
2941#if EV_CHECK_ENABLE
2942 assert (checkmax >= checkcnt);
2943 array_verify (EV_A_ (W *)checks, checkcnt);
2944#endif
2945
2946# if 0
2947#if EV_CHILD_ENABLE
2948 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2949 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2950#endif
2951# endif
2952#endif
2953}
891#endif 2954#endif
892 2955
893#if EV_MULTIPLICITY 2956#if EV_MULTIPLICITY
894struct ev_loop * 2957struct ev_loop * ecb_cold
895#else 2958#else
896int 2959int
897#endif 2960#endif
898ev_default_loop (int methods) 2961ev_default_loop (unsigned int flags) EV_THROW
899{ 2962{
900 if (sigpipe [0] == sigpipe [1])
901 if (pipe (sigpipe))
902 return 0;
903
904 if (!default_loop) 2963 if (!ev_default_loop_ptr)
905 { 2964 {
906#if EV_MULTIPLICITY 2965#if EV_MULTIPLICITY
907 struct ev_loop *loop = default_loop = &default_loop_struct; 2966 EV_P = ev_default_loop_ptr = &default_loop_struct;
908#else 2967#else
909 default_loop = 1; 2968 ev_default_loop_ptr = 1;
910#endif 2969#endif
911 2970
912 loop_init (EV_A_ methods); 2971 loop_init (EV_A_ flags);
913 2972
914 if (ev_method (EV_A)) 2973 if (ev_backend (EV_A))
915 { 2974 {
916 siginit (EV_A); 2975#if EV_CHILD_ENABLE
917
918#ifndef _WIN32
919 ev_signal_init (&childev, childcb, SIGCHLD); 2976 ev_signal_init (&childev, childcb, SIGCHLD);
920 ev_set_priority (&childev, EV_MAXPRI); 2977 ev_set_priority (&childev, EV_MAXPRI);
921 ev_signal_start (EV_A_ &childev); 2978 ev_signal_start (EV_A_ &childev);
922 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2979 ev_unref (EV_A); /* child watcher should not keep loop alive */
923#endif 2980#endif
924 } 2981 }
925 else 2982 else
926 default_loop = 0; 2983 ev_default_loop_ptr = 0;
927 } 2984 }
928 2985
929 return default_loop; 2986 return ev_default_loop_ptr;
930} 2987}
931 2988
932void 2989void
933ev_default_destroy (void) 2990ev_loop_fork (EV_P) EV_THROW
934{ 2991{
935#if EV_MULTIPLICITY 2992 postfork = 1;
936 struct ev_loop *loop = default_loop;
937#endif
938
939#ifndef _WIN32
940 ev_ref (EV_A); /* child watcher */
941 ev_signal_stop (EV_A_ &childev);
942#endif
943
944 ev_ref (EV_A); /* signal watcher */
945 ev_io_stop (EV_A_ &sigev);
946
947 close (sigpipe [0]); sigpipe [0] = 0;
948 close (sigpipe [1]); sigpipe [1] = 0;
949
950 loop_destroy (EV_A);
951} 2993}
2994
2995/*****************************************************************************/
952 2996
953void 2997void
954ev_default_fork (void) 2998ev_invoke (EV_P_ void *w, int revents)
955{ 2999{
956#if EV_MULTIPLICITY 3000 EV_CB_INVOKE ((W)w, revents);
957 struct ev_loop *loop = default_loop;
958#endif
959
960 if (method)
961 postfork = 1;
962} 3001}
963 3002
964/*****************************************************************************/ 3003unsigned int
965 3004ev_pending_count (EV_P) EV_THROW
966static int
967any_pending (EV_P)
968{ 3005{
969 int pri; 3006 int pri;
3007 unsigned int count = 0;
970 3008
971 for (pri = NUMPRI; pri--; ) 3009 for (pri = NUMPRI; pri--; )
972 if (pendingcnt [pri]) 3010 count += pendingcnt [pri];
973 return 1;
974 3011
975 return 0; 3012 return count;
976} 3013}
977 3014
978static void 3015void noinline
979call_pending (EV_P) 3016ev_invoke_pending (EV_P)
980{ 3017{
981 int pri; 3018 pendingpri = NUMPRI;
982 3019
983 for (pri = NUMPRI; pri--; ) 3020 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3021 {
3022 --pendingpri;
3023
984 while (pendingcnt [pri]) 3024 while (pendingcnt [pendingpri])
985 {
986 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
987
988 if (p->w)
989 { 3025 {
3026 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3027
990 p->w->pending = 0; 3028 p->w->pending = 0;
991 EV_CB_INVOKE (p->w, p->events); 3029 EV_CB_INVOKE (p->w, p->events);
3030 EV_FREQUENT_CHECK;
3031 }
3032 }
3033}
3034
3035#if EV_IDLE_ENABLE
3036/* make idle watchers pending. this handles the "call-idle */
3037/* only when higher priorities are idle" logic */
3038inline_size void
3039idle_reify (EV_P)
3040{
3041 if (expect_false (idleall))
3042 {
3043 int pri;
3044
3045 for (pri = NUMPRI; pri--; )
3046 {
3047 if (pendingcnt [pri])
3048 break;
3049
3050 if (idlecnt [pri])
3051 {
3052 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3053 break;
992 } 3054 }
993 } 3055 }
3056 }
994} 3057}
3058#endif
995 3059
996static void 3060/* make timers pending */
3061inline_size void
997timers_reify (EV_P) 3062timers_reify (EV_P)
998{ 3063{
3064 EV_FREQUENT_CHECK;
3065
999 while (timercnt && ((WT)timers [0])->at <= mn_now) 3066 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1000 { 3067 {
1001 struct ev_timer *w = timers [0]; 3068 do
1002
1003 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1004
1005 /* first reschedule or stop timer */
1006 if (w->repeat)
1007 { 3069 {
3070 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3071
3072 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3073
3074 /* first reschedule or stop timer */
3075 if (w->repeat)
3076 {
3077 ev_at (w) += w->repeat;
3078 if (ev_at (w) < mn_now)
3079 ev_at (w) = mn_now;
3080
1008 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3081 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1009 3082
1010 ((WT)w)->at += w->repeat; 3083 ANHE_at_cache (timers [HEAP0]);
1011 if (((WT)w)->at < mn_now)
1012 ((WT)w)->at = mn_now;
1013
1014 downheap ((WT *)timers, timercnt, 0); 3084 downheap (timers, timercnt, HEAP0);
3085 }
3086 else
3087 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3088
3089 EV_FREQUENT_CHECK;
3090 feed_reverse (EV_A_ (W)w);
1015 } 3091 }
1016 else 3092 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1017 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1018 3093
1019 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3094 feed_reverse_done (EV_A_ EV_TIMER);
3095 }
3096}
3097
3098#if EV_PERIODIC_ENABLE
3099
3100static void noinline
3101periodic_recalc (EV_P_ ev_periodic *w)
3102{
3103 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3104 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3105
3106 /* the above almost always errs on the low side */
3107 while (at <= ev_rt_now)
1020 } 3108 {
1021} 3109 ev_tstamp nat = at + w->interval;
1022 3110
1023#if EV_PERIODICS 3111 /* when resolution fails us, we use ev_rt_now */
1024static void 3112 if (expect_false (nat == at))
3113 {
3114 at = ev_rt_now;
3115 break;
3116 }
3117
3118 at = nat;
3119 }
3120
3121 ev_at (w) = at;
3122}
3123
3124/* make periodics pending */
3125inline_size void
1025periodics_reify (EV_P) 3126periodics_reify (EV_P)
1026{ 3127{
3128 EV_FREQUENT_CHECK;
3129
1027 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 3130 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1028 { 3131 {
1029 struct ev_periodic *w = periodics [0]; 3132 do
3133 {
3134 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1030 3135
1031 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 3136 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1032 3137
1033 /* first reschedule or stop timer */ 3138 /* first reschedule or stop timer */
3139 if (w->reschedule_cb)
3140 {
3141 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3142
3143 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3144
3145 ANHE_at_cache (periodics [HEAP0]);
3146 downheap (periodics, periodiccnt, HEAP0);
3147 }
3148 else if (w->interval)
3149 {
3150 periodic_recalc (EV_A_ w);
3151 ANHE_at_cache (periodics [HEAP0]);
3152 downheap (periodics, periodiccnt, HEAP0);
3153 }
3154 else
3155 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3156
3157 EV_FREQUENT_CHECK;
3158 feed_reverse (EV_A_ (W)w);
3159 }
3160 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3161
3162 feed_reverse_done (EV_A_ EV_PERIODIC);
3163 }
3164}
3165
3166/* simply recalculate all periodics */
3167/* TODO: maybe ensure that at least one event happens when jumping forward? */
3168static void noinline ecb_cold
3169periodics_reschedule (EV_P)
3170{
3171 int i;
3172
3173 /* adjust periodics after time jump */
3174 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3175 {
3176 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3177
1034 if (w->reschedule_cb) 3178 if (w->reschedule_cb)
3179 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3180 else if (w->interval)
3181 periodic_recalc (EV_A_ w);
3182
3183 ANHE_at_cache (periodics [i]);
3184 }
3185
3186 reheap (periodics, periodiccnt);
3187}
3188#endif
3189
3190/* adjust all timers by a given offset */
3191static void noinline ecb_cold
3192timers_reschedule (EV_P_ ev_tstamp adjust)
3193{
3194 int i;
3195
3196 for (i = 0; i < timercnt; ++i)
3197 {
3198 ANHE *he = timers + i + HEAP0;
3199 ANHE_w (*he)->at += adjust;
3200 ANHE_at_cache (*he);
3201 }
3202}
3203
3204/* fetch new monotonic and realtime times from the kernel */
3205/* also detect if there was a timejump, and act accordingly */
3206inline_speed void
3207time_update (EV_P_ ev_tstamp max_block)
3208{
3209#if EV_USE_MONOTONIC
3210 if (expect_true (have_monotonic))
3211 {
3212 int i;
3213 ev_tstamp odiff = rtmn_diff;
3214
3215 mn_now = get_clock ();
3216
3217 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3218 /* interpolate in the meantime */
3219 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1035 { 3220 {
1036 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 3221 ev_rt_now = rtmn_diff + mn_now;
1037 3222 return;
1038 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0);
1040 } 3223 }
1041 else if (w->interval)
1042 {
1043 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1044 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1045 downheap ((WT *)periodics, periodiccnt, 0);
1046 }
1047 else
1048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1049 3224
1050 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1051 }
1052}
1053
1054static void
1055periodics_reschedule (EV_P)
1056{
1057 int i;
1058
1059 /* adjust periodics after time jump */
1060 for (i = 0; i < periodiccnt; ++i)
1061 {
1062 struct ev_periodic *w = periodics [i];
1063
1064 if (w->reschedule_cb)
1065 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1066 else if (w->interval)
1067 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1068 }
1069
1070 /* now rebuild the heap */
1071 for (i = periodiccnt >> 1; i--; )
1072 downheap ((WT *)periodics, periodiccnt, i);
1073}
1074#endif
1075
1076inline int
1077time_update_monotonic (EV_P)
1078{
1079 mn_now = get_clock ();
1080
1081 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1082 {
1083 ev_rt_now = rtmn_diff + mn_now;
1084 return 0;
1085 }
1086 else
1087 {
1088 now_floor = mn_now; 3225 now_floor = mn_now;
1089 ev_rt_now = ev_time (); 3226 ev_rt_now = ev_time ();
1090 return 1;
1091 }
1092}
1093 3227
1094static void 3228 /* loop a few times, before making important decisions.
1095time_update (EV_P) 3229 * on the choice of "4": one iteration isn't enough,
1096{ 3230 * in case we get preempted during the calls to
1097 int i; 3231 * ev_time and get_clock. a second call is almost guaranteed
1098 3232 * to succeed in that case, though. and looping a few more times
1099#if EV_USE_MONOTONIC 3233 * doesn't hurt either as we only do this on time-jumps or
1100 if (expect_true (have_monotonic)) 3234 * in the unlikely event of having been preempted here.
1101 { 3235 */
1102 if (time_update_monotonic (EV_A)) 3236 for (i = 4; --i; )
1103 { 3237 {
1104 ev_tstamp odiff = rtmn_diff; 3238 ev_tstamp diff;
1105
1106 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1107 {
1108 rtmn_diff = ev_rt_now - mn_now; 3239 rtmn_diff = ev_rt_now - mn_now;
1109 3240
1110 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3241 diff = odiff - rtmn_diff;
3242
3243 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1111 return; /* all is well */ 3244 return; /* all is well */
1112 3245
1113 ev_rt_now = ev_time (); 3246 ev_rt_now = ev_time ();
1114 mn_now = get_clock (); 3247 mn_now = get_clock ();
1115 now_floor = mn_now; 3248 now_floor = mn_now;
1116 } 3249 }
1117 3250
3251 /* no timer adjustment, as the monotonic clock doesn't jump */
3252 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1118# if EV_PERIODICS 3253# if EV_PERIODIC_ENABLE
3254 periodics_reschedule (EV_A);
3255# endif
3256 }
3257 else
3258#endif
3259 {
3260 ev_rt_now = ev_time ();
3261
3262 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3263 {
3264 /* adjust timers. this is easy, as the offset is the same for all of them */
3265 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3266#if EV_PERIODIC_ENABLE
1119 periodics_reschedule (EV_A); 3267 periodics_reschedule (EV_A);
1120# endif 3268#endif
1121 /* no timer adjustment, as the monotonic clock doesn't jump */
1122 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1123 } 3269 }
1124 }
1125 else
1126#endif
1127 {
1128 ev_rt_now = ev_time ();
1129
1130 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1131 {
1132#if EV_PERIODICS
1133 periodics_reschedule (EV_A);
1134#endif
1135
1136 /* adjust timers. this is easy, as the offset is the same for all */
1137 for (i = 0; i < timercnt; ++i)
1138 ((WT)timers [i])->at += ev_rt_now - mn_now;
1139 }
1140 3270
1141 mn_now = ev_rt_now; 3271 mn_now = ev_rt_now;
1142 } 3272 }
1143} 3273}
1144 3274
1145void 3275int
1146ev_ref (EV_P)
1147{
1148 ++activecnt;
1149}
1150
1151void
1152ev_unref (EV_P)
1153{
1154 --activecnt;
1155}
1156
1157static int loop_done;
1158
1159void
1160ev_loop (EV_P_ int flags) 3276ev_run (EV_P_ int flags)
1161{ 3277{
1162 double block; 3278#if EV_FEATURE_API
1163 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3279 ++loop_depth;
3280#endif
3281
3282 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3283
3284 loop_done = EVBREAK_CANCEL;
3285
3286 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1164 3287
1165 do 3288 do
1166 { 3289 {
3290#if EV_VERIFY >= 2
3291 ev_verify (EV_A);
3292#endif
3293
3294#ifndef _WIN32
3295 if (expect_false (curpid)) /* penalise the forking check even more */
3296 if (expect_false (getpid () != curpid))
3297 {
3298 curpid = getpid ();
3299 postfork = 1;
3300 }
3301#endif
3302
3303#if EV_FORK_ENABLE
3304 /* we might have forked, so queue fork handlers */
3305 if (expect_false (postfork))
3306 if (forkcnt)
3307 {
3308 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3309 EV_INVOKE_PENDING;
3310 }
3311#endif
3312
3313#if EV_PREPARE_ENABLE
1167 /* queue check watchers (and execute them) */ 3314 /* queue prepare watchers (and execute them) */
1168 if (expect_false (preparecnt)) 3315 if (expect_false (preparecnt))
1169 { 3316 {
1170 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3317 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1171 call_pending (EV_A); 3318 EV_INVOKE_PENDING;
1172 } 3319 }
3320#endif
3321
3322 if (expect_false (loop_done))
3323 break;
1173 3324
1174 /* we might have forked, so reify kernel state if necessary */ 3325 /* we might have forked, so reify kernel state if necessary */
1175 if (expect_false (postfork)) 3326 if (expect_false (postfork))
1176 loop_fork (EV_A); 3327 loop_fork (EV_A);
1177 3328
1178 /* update fd-related kernel structures */ 3329 /* update fd-related kernel structures */
1179 fd_reify (EV_A); 3330 fd_reify (EV_A);
1180 3331
1181 /* calculate blocking time */ 3332 /* calculate blocking time */
3333 {
3334 ev_tstamp waittime = 0.;
3335 ev_tstamp sleeptime = 0.;
1182 3336
1183 /* we only need this for !monotonic clock or timers, but as we basically 3337 /* remember old timestamp for io_blocktime calculation */
1184 always have timers, we just calculate it always */ 3338 ev_tstamp prev_mn_now = mn_now;
1185#if EV_USE_MONOTONIC 3339
1186 if (expect_true (have_monotonic)) 3340 /* update time to cancel out callback processing overhead */
1187 time_update_monotonic (EV_A); 3341 time_update (EV_A_ 1e100);
1188 else 3342
1189#endif 3343 /* from now on, we want a pipe-wake-up */
3344 pipe_write_wanted = 1;
3345
3346 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3347
3348 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1190 { 3349 {
1191 ev_rt_now = ev_time ();
1192 mn_now = ev_rt_now;
1193 }
1194
1195 if (flags & EVLOOP_NONBLOCK || idlecnt)
1196 block = 0.;
1197 else
1198 {
1199 block = MAX_BLOCKTIME; 3350 waittime = MAX_BLOCKTIME;
1200 3351
1201 if (timercnt) 3352 if (timercnt)
1202 { 3353 {
1203 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3354 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1204 if (block > to) block = to; 3355 if (waittime > to) waittime = to;
1205 } 3356 }
1206 3357
1207#if EV_PERIODICS 3358#if EV_PERIODIC_ENABLE
1208 if (periodiccnt) 3359 if (periodiccnt)
1209 { 3360 {
1210 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3361 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1211 if (block > to) block = to; 3362 if (waittime > to) waittime = to;
1212 } 3363 }
1213#endif 3364#endif
1214 3365
1215 if (block < 0.) block = 0.; 3366 /* don't let timeouts decrease the waittime below timeout_blocktime */
3367 if (expect_false (waittime < timeout_blocktime))
3368 waittime = timeout_blocktime;
3369
3370 /* at this point, we NEED to wait, so we have to ensure */
3371 /* to pass a minimum nonzero value to the backend */
3372 if (expect_false (waittime < backend_mintime))
3373 waittime = backend_mintime;
3374
3375 /* extra check because io_blocktime is commonly 0 */
3376 if (expect_false (io_blocktime))
3377 {
3378 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3379
3380 if (sleeptime > waittime - backend_mintime)
3381 sleeptime = waittime - backend_mintime;
3382
3383 if (expect_true (sleeptime > 0.))
3384 {
3385 ev_sleep (sleeptime);
3386 waittime -= sleeptime;
3387 }
3388 }
1216 } 3389 }
1217 3390
1218 method_poll (EV_A_ block); 3391#if EV_FEATURE_API
3392 ++loop_count;
3393#endif
3394 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3395 backend_poll (EV_A_ waittime);
3396 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1219 3397
3398 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3399
3400 ECB_MEMORY_FENCE_ACQUIRE;
3401 if (pipe_write_skipped)
3402 {
3403 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3404 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3405 }
3406
3407
1220 /* update ev_rt_now, do magic */ 3408 /* update ev_rt_now, do magic */
1221 time_update (EV_A); 3409 time_update (EV_A_ waittime + sleeptime);
3410 }
1222 3411
1223 /* queue pending timers and reschedule them */ 3412 /* queue pending timers and reschedule them */
1224 timers_reify (EV_A); /* relative timers called last */ 3413 timers_reify (EV_A); /* relative timers called last */
1225#if EV_PERIODICS 3414#if EV_PERIODIC_ENABLE
1226 periodics_reify (EV_A); /* absolute timers called first */ 3415 periodics_reify (EV_A); /* absolute timers called first */
1227#endif 3416#endif
1228 3417
3418#if EV_IDLE_ENABLE
1229 /* queue idle watchers unless io or timers are pending */ 3419 /* queue idle watchers unless other events are pending */
1230 if (idlecnt && !any_pending (EV_A)) 3420 idle_reify (EV_A);
1231 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3421#endif
1232 3422
3423#if EV_CHECK_ENABLE
1233 /* queue check watchers, to be executed first */ 3424 /* queue check watchers, to be executed first */
1234 if (checkcnt) 3425 if (expect_false (checkcnt))
1235 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3426 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3427#endif
1236 3428
1237 call_pending (EV_A); 3429 EV_INVOKE_PENDING;
1238 } 3430 }
1239 while (activecnt && !loop_done); 3431 while (expect_true (
3432 activecnt
3433 && !loop_done
3434 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3435 ));
1240 3436
1241 if (loop_done != 2) 3437 if (loop_done == EVBREAK_ONE)
1242 loop_done = 0; 3438 loop_done = EVBREAK_CANCEL;
3439
3440#if EV_FEATURE_API
3441 --loop_depth;
3442#endif
3443
3444 return activecnt;
1243} 3445}
1244 3446
1245void 3447void
1246ev_unloop (EV_P_ int how) 3448ev_break (EV_P_ int how) EV_THROW
1247{ 3449{
1248 loop_done = how; 3450 loop_done = how;
1249} 3451}
1250 3452
3453void
3454ev_ref (EV_P) EV_THROW
3455{
3456 ++activecnt;
3457}
3458
3459void
3460ev_unref (EV_P) EV_THROW
3461{
3462 --activecnt;
3463}
3464
3465void
3466ev_now_update (EV_P) EV_THROW
3467{
3468 time_update (EV_A_ 1e100);
3469}
3470
3471void
3472ev_suspend (EV_P) EV_THROW
3473{
3474 ev_now_update (EV_A);
3475}
3476
3477void
3478ev_resume (EV_P) EV_THROW
3479{
3480 ev_tstamp mn_prev = mn_now;
3481
3482 ev_now_update (EV_A);
3483 timers_reschedule (EV_A_ mn_now - mn_prev);
3484#if EV_PERIODIC_ENABLE
3485 /* TODO: really do this? */
3486 periodics_reschedule (EV_A);
3487#endif
3488}
3489
1251/*****************************************************************************/ 3490/*****************************************************************************/
3491/* singly-linked list management, used when the expected list length is short */
1252 3492
1253inline void 3493inline_size void
1254wlist_add (WL *head, WL elem) 3494wlist_add (WL *head, WL elem)
1255{ 3495{
1256 elem->next = *head; 3496 elem->next = *head;
1257 *head = elem; 3497 *head = elem;
1258} 3498}
1259 3499
1260inline void 3500inline_size void
1261wlist_del (WL *head, WL elem) 3501wlist_del (WL *head, WL elem)
1262{ 3502{
1263 while (*head) 3503 while (*head)
1264 { 3504 {
1265 if (*head == elem) 3505 if (expect_true (*head == elem))
1266 { 3506 {
1267 *head = elem->next; 3507 *head = elem->next;
1268 return; 3508 break;
1269 } 3509 }
1270 3510
1271 head = &(*head)->next; 3511 head = &(*head)->next;
1272 } 3512 }
1273} 3513}
1274 3514
3515/* internal, faster, version of ev_clear_pending */
1275inline void 3516inline_speed void
1276ev_clear_pending (EV_P_ W w) 3517clear_pending (EV_P_ W w)
1277{ 3518{
1278 if (w->pending) 3519 if (w->pending)
1279 { 3520 {
1280 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3521 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1281 w->pending = 0; 3522 w->pending = 0;
1282 } 3523 }
1283} 3524}
1284 3525
3526int
3527ev_clear_pending (EV_P_ void *w) EV_THROW
3528{
3529 W w_ = (W)w;
3530 int pending = w_->pending;
3531
3532 if (expect_true (pending))
3533 {
3534 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3535 p->w = (W)&pending_w;
3536 w_->pending = 0;
3537 return p->events;
3538 }
3539 else
3540 return 0;
3541}
3542
1285inline void 3543inline_size void
3544pri_adjust (EV_P_ W w)
3545{
3546 int pri = ev_priority (w);
3547 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3548 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3549 ev_set_priority (w, pri);
3550}
3551
3552inline_speed void
1286ev_start (EV_P_ W w, int active) 3553ev_start (EV_P_ W w, int active)
1287{ 3554{
1288 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3555 pri_adjust (EV_A_ w);
1289 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1290
1291 w->active = active; 3556 w->active = active;
1292 ev_ref (EV_A); 3557 ev_ref (EV_A);
1293} 3558}
1294 3559
1295inline void 3560inline_size void
1296ev_stop (EV_P_ W w) 3561ev_stop (EV_P_ W w)
1297{ 3562{
1298 ev_unref (EV_A); 3563 ev_unref (EV_A);
1299 w->active = 0; 3564 w->active = 0;
1300} 3565}
1301 3566
1302/*****************************************************************************/ 3567/*****************************************************************************/
1303 3568
1304void 3569void noinline
1305ev_io_start (EV_P_ struct ev_io *w) 3570ev_io_start (EV_P_ ev_io *w) EV_THROW
1306{ 3571{
1307 int fd = w->fd; 3572 int fd = w->fd;
1308 3573
1309 if (ev_is_active (w)) 3574 if (expect_false (ev_is_active (w)))
1310 return; 3575 return;
1311 3576
1312 assert (("ev_io_start called with negative fd", fd >= 0)); 3577 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3578 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3579
3580 EV_FREQUENT_CHECK;
1313 3581
1314 ev_start (EV_A_ (W)w, 1); 3582 ev_start (EV_A_ (W)w, 1);
1315 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3583 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1316 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3584 wlist_add (&anfds[fd].head, (WL)w);
1317 3585
1318 fd_change (EV_A_ fd); 3586 /* common bug, apparently */
1319} 3587 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1320 3588
1321void 3589 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3590 w->events &= ~EV__IOFDSET;
3591
3592 EV_FREQUENT_CHECK;
3593}
3594
3595void noinline
1322ev_io_stop (EV_P_ struct ev_io *w) 3596ev_io_stop (EV_P_ ev_io *w) EV_THROW
1323{ 3597{
1324 ev_clear_pending (EV_A_ (W)w); 3598 clear_pending (EV_A_ (W)w);
1325 if (!ev_is_active (w)) 3599 if (expect_false (!ev_is_active (w)))
1326 return; 3600 return;
1327 3601
1328 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3602 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1329 3603
3604 EV_FREQUENT_CHECK;
3605
1330 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3606 wlist_del (&anfds[w->fd].head, (WL)w);
1331 ev_stop (EV_A_ (W)w); 3607 ev_stop (EV_A_ (W)w);
1332 3608
1333 fd_change (EV_A_ w->fd); 3609 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1334}
1335 3610
1336void 3611 EV_FREQUENT_CHECK;
3612}
3613
3614void noinline
1337ev_timer_start (EV_P_ struct ev_timer *w) 3615ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1338{ 3616{
1339 if (ev_is_active (w)) 3617 if (expect_false (ev_is_active (w)))
1340 return; 3618 return;
1341 3619
1342 ((WT)w)->at += mn_now; 3620 ev_at (w) += mn_now;
1343 3621
1344 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3622 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1345 3623
3624 EV_FREQUENT_CHECK;
3625
3626 ++timercnt;
1346 ev_start (EV_A_ (W)w, ++timercnt); 3627 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1347 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 3628 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1348 timers [timercnt - 1] = w; 3629 ANHE_w (timers [ev_active (w)]) = (WT)w;
1349 upheap ((WT *)timers, timercnt - 1); 3630 ANHE_at_cache (timers [ev_active (w)]);
3631 upheap (timers, ev_active (w));
1350 3632
3633 EV_FREQUENT_CHECK;
3634
1351 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3635 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1352} 3636}
1353 3637
1354void 3638void noinline
1355ev_timer_stop (EV_P_ struct ev_timer *w) 3639ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1356{ 3640{
1357 ev_clear_pending (EV_A_ (W)w); 3641 clear_pending (EV_A_ (W)w);
1358 if (!ev_is_active (w)) 3642 if (expect_false (!ev_is_active (w)))
1359 return; 3643 return;
1360 3644
3645 EV_FREQUENT_CHECK;
3646
3647 {
3648 int active = ev_active (w);
3649
1361 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3650 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1362 3651
1363 if (((W)w)->active < timercnt--) 3652 --timercnt;
3653
3654 if (expect_true (active < timercnt + HEAP0))
1364 { 3655 {
1365 timers [((W)w)->active - 1] = timers [timercnt]; 3656 timers [active] = timers [timercnt + HEAP0];
1366 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3657 adjustheap (timers, timercnt, active);
1367 } 3658 }
3659 }
1368 3660
1369 ((WT)w)->at -= mn_now; 3661 ev_at (w) -= mn_now;
1370 3662
1371 ev_stop (EV_A_ (W)w); 3663 ev_stop (EV_A_ (W)w);
1372}
1373 3664
1374void 3665 EV_FREQUENT_CHECK;
3666}
3667
3668void noinline
1375ev_timer_again (EV_P_ struct ev_timer *w) 3669ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1376{ 3670{
3671 EV_FREQUENT_CHECK;
3672
3673 clear_pending (EV_A_ (W)w);
3674
1377 if (ev_is_active (w)) 3675 if (ev_is_active (w))
1378 { 3676 {
1379 if (w->repeat) 3677 if (w->repeat)
1380 { 3678 {
1381 ((WT)w)->at = mn_now + w->repeat; 3679 ev_at (w) = mn_now + w->repeat;
3680 ANHE_at_cache (timers [ev_active (w)]);
1382 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3681 adjustheap (timers, timercnt, ev_active (w));
1383 } 3682 }
1384 else 3683 else
1385 ev_timer_stop (EV_A_ w); 3684 ev_timer_stop (EV_A_ w);
1386 } 3685 }
1387 else if (w->repeat) 3686 else if (w->repeat)
3687 {
3688 ev_at (w) = w->repeat;
1388 ev_timer_start (EV_A_ w); 3689 ev_timer_start (EV_A_ w);
1389} 3690 }
1390 3691
3692 EV_FREQUENT_CHECK;
3693}
3694
3695ev_tstamp
3696ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3697{
3698 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3699}
3700
1391#if EV_PERIODICS 3701#if EV_PERIODIC_ENABLE
1392void 3702void noinline
1393ev_periodic_start (EV_P_ struct ev_periodic *w) 3703ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1394{ 3704{
1395 if (ev_is_active (w)) 3705 if (expect_false (ev_is_active (w)))
1396 return; 3706 return;
1397 3707
1398 if (w->reschedule_cb) 3708 if (w->reschedule_cb)
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3709 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1400 else if (w->interval) 3710 else if (w->interval)
1401 { 3711 {
1402 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3712 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1403 /* this formula differs from the one in periodic_reify because we do not always round up */ 3713 periodic_recalc (EV_A_ w);
1404 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1405 } 3714 }
3715 else
3716 ev_at (w) = w->offset;
1406 3717
3718 EV_FREQUENT_CHECK;
3719
3720 ++periodiccnt;
1407 ev_start (EV_A_ (W)w, ++periodiccnt); 3721 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1408 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 3722 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1409 periodics [periodiccnt - 1] = w; 3723 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1410 upheap ((WT *)periodics, periodiccnt - 1); 3724 ANHE_at_cache (periodics [ev_active (w)]);
3725 upheap (periodics, ev_active (w));
1411 3726
3727 EV_FREQUENT_CHECK;
3728
1412 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3729 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1413} 3730}
1414 3731
1415void 3732void noinline
1416ev_periodic_stop (EV_P_ struct ev_periodic *w) 3733ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1417{ 3734{
1418 ev_clear_pending (EV_A_ (W)w); 3735 clear_pending (EV_A_ (W)w);
1419 if (!ev_is_active (w)) 3736 if (expect_false (!ev_is_active (w)))
1420 return; 3737 return;
1421 3738
3739 EV_FREQUENT_CHECK;
3740
3741 {
3742 int active = ev_active (w);
3743
1422 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3744 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1423 3745
1424 if (((W)w)->active < periodiccnt--) 3746 --periodiccnt;
3747
3748 if (expect_true (active < periodiccnt + HEAP0))
1425 { 3749 {
1426 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3750 periodics [active] = periodics [periodiccnt + HEAP0];
1427 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3751 adjustheap (periodics, periodiccnt, active);
1428 } 3752 }
3753 }
1429 3754
1430 ev_stop (EV_A_ (W)w); 3755 ev_stop (EV_A_ (W)w);
1431}
1432 3756
1433void 3757 EV_FREQUENT_CHECK;
3758}
3759
3760void noinline
1434ev_periodic_again (EV_P_ struct ev_periodic *w) 3761ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1435{ 3762{
1436 /* TODO: use adjustheap and recalculation */ 3763 /* TODO: use adjustheap and recalculation */
1437 ev_periodic_stop (EV_A_ w); 3764 ev_periodic_stop (EV_A_ w);
1438 ev_periodic_start (EV_A_ w); 3765 ev_periodic_start (EV_A_ w);
1439} 3766}
1440#endif 3767#endif
1441 3768
1442void
1443ev_idle_start (EV_P_ struct ev_idle *w)
1444{
1445 if (ev_is_active (w))
1446 return;
1447
1448 ev_start (EV_A_ (W)w, ++idlecnt);
1449 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1450 idles [idlecnt - 1] = w;
1451}
1452
1453void
1454ev_idle_stop (EV_P_ struct ev_idle *w)
1455{
1456 ev_clear_pending (EV_A_ (W)w);
1457 if (!ev_is_active (w))
1458 return;
1459
1460 idles [((W)w)->active - 1] = idles [--idlecnt];
1461 ev_stop (EV_A_ (W)w);
1462}
1463
1464void
1465ev_prepare_start (EV_P_ struct ev_prepare *w)
1466{
1467 if (ev_is_active (w))
1468 return;
1469
1470 ev_start (EV_A_ (W)w, ++preparecnt);
1471 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1472 prepares [preparecnt - 1] = w;
1473}
1474
1475void
1476ev_prepare_stop (EV_P_ struct ev_prepare *w)
1477{
1478 ev_clear_pending (EV_A_ (W)w);
1479 if (!ev_is_active (w))
1480 return;
1481
1482 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1483 ev_stop (EV_A_ (W)w);
1484}
1485
1486void
1487ev_check_start (EV_P_ struct ev_check *w)
1488{
1489 if (ev_is_active (w))
1490 return;
1491
1492 ev_start (EV_A_ (W)w, ++checkcnt);
1493 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1494 checks [checkcnt - 1] = w;
1495}
1496
1497void
1498ev_check_stop (EV_P_ struct ev_check *w)
1499{
1500 ev_clear_pending (EV_A_ (W)w);
1501 if (!ev_is_active (w))
1502 return;
1503
1504 checks [((W)w)->active - 1] = checks [--checkcnt];
1505 ev_stop (EV_A_ (W)w);
1506}
1507
1508#ifndef SA_RESTART 3769#ifndef SA_RESTART
1509# define SA_RESTART 0 3770# define SA_RESTART 0
1510#endif 3771#endif
1511 3772
3773#if EV_SIGNAL_ENABLE
3774
3775void noinline
3776ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3777{
3778 if (expect_false (ev_is_active (w)))
3779 return;
3780
3781 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3782
3783#if EV_MULTIPLICITY
3784 assert (("libev: a signal must not be attached to two different loops",
3785 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3786
3787 signals [w->signum - 1].loop = EV_A;
3788 ECB_MEMORY_FENCE_RELEASE;
3789#endif
3790
3791 EV_FREQUENT_CHECK;
3792
3793#if EV_USE_SIGNALFD
3794 if (sigfd == -2)
3795 {
3796 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3797 if (sigfd < 0 && errno == EINVAL)
3798 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3799
3800 if (sigfd >= 0)
3801 {
3802 fd_intern (sigfd); /* doing it twice will not hurt */
3803
3804 sigemptyset (&sigfd_set);
3805
3806 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3807 ev_set_priority (&sigfd_w, EV_MAXPRI);
3808 ev_io_start (EV_A_ &sigfd_w);
3809 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3810 }
3811 }
3812
3813 if (sigfd >= 0)
3814 {
3815 /* TODO: check .head */
3816 sigaddset (&sigfd_set, w->signum);
3817 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3818
3819 signalfd (sigfd, &sigfd_set, 0);
3820 }
3821#endif
3822
3823 ev_start (EV_A_ (W)w, 1);
3824 wlist_add (&signals [w->signum - 1].head, (WL)w);
3825
3826 if (!((WL)w)->next)
3827# if EV_USE_SIGNALFD
3828 if (sigfd < 0) /*TODO*/
3829# endif
3830 {
3831# ifdef _WIN32
3832 evpipe_init (EV_A);
3833
3834 signal (w->signum, ev_sighandler);
3835# else
3836 struct sigaction sa;
3837
3838 evpipe_init (EV_A);
3839
3840 sa.sa_handler = ev_sighandler;
3841 sigfillset (&sa.sa_mask);
3842 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3843 sigaction (w->signum, &sa, 0);
3844
3845 if (origflags & EVFLAG_NOSIGMASK)
3846 {
3847 sigemptyset (&sa.sa_mask);
3848 sigaddset (&sa.sa_mask, w->signum);
3849 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3850 }
3851#endif
3852 }
3853
3854 EV_FREQUENT_CHECK;
3855}
3856
3857void noinline
3858ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3859{
3860 clear_pending (EV_A_ (W)w);
3861 if (expect_false (!ev_is_active (w)))
3862 return;
3863
3864 EV_FREQUENT_CHECK;
3865
3866 wlist_del (&signals [w->signum - 1].head, (WL)w);
3867 ev_stop (EV_A_ (W)w);
3868
3869 if (!signals [w->signum - 1].head)
3870 {
3871#if EV_MULTIPLICITY
3872 signals [w->signum - 1].loop = 0; /* unattach from signal */
3873#endif
3874#if EV_USE_SIGNALFD
3875 if (sigfd >= 0)
3876 {
3877 sigset_t ss;
3878
3879 sigemptyset (&ss);
3880 sigaddset (&ss, w->signum);
3881 sigdelset (&sigfd_set, w->signum);
3882
3883 signalfd (sigfd, &sigfd_set, 0);
3884 sigprocmask (SIG_UNBLOCK, &ss, 0);
3885 }
3886 else
3887#endif
3888 signal (w->signum, SIG_DFL);
3889 }
3890
3891 EV_FREQUENT_CHECK;
3892}
3893
3894#endif
3895
3896#if EV_CHILD_ENABLE
3897
1512void 3898void
1513ev_signal_start (EV_P_ struct ev_signal *w) 3899ev_child_start (EV_P_ ev_child *w) EV_THROW
1514{ 3900{
1515#if EV_MULTIPLICITY 3901#if EV_MULTIPLICITY
1516 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3902 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1517#endif 3903#endif
1518 if (ev_is_active (w)) 3904 if (expect_false (ev_is_active (w)))
1519 return; 3905 return;
1520 3906
1521 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3907 EV_FREQUENT_CHECK;
1522 3908
1523 ev_start (EV_A_ (W)w, 1); 3909 ev_start (EV_A_ (W)w, 1);
1524 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3910 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1525 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1526 3911
1527 if (!((WL)w)->next) 3912 EV_FREQUENT_CHECK;
3913}
3914
3915void
3916ev_child_stop (EV_P_ ev_child *w) EV_THROW
3917{
3918 clear_pending (EV_A_ (W)w);
3919 if (expect_false (!ev_is_active (w)))
3920 return;
3921
3922 EV_FREQUENT_CHECK;
3923
3924 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3925 ev_stop (EV_A_ (W)w);
3926
3927 EV_FREQUENT_CHECK;
3928}
3929
3930#endif
3931
3932#if EV_STAT_ENABLE
3933
3934# ifdef _WIN32
3935# undef lstat
3936# define lstat(a,b) _stati64 (a,b)
3937# endif
3938
3939#define DEF_STAT_INTERVAL 5.0074891
3940#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3941#define MIN_STAT_INTERVAL 0.1074891
3942
3943static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3944
3945#if EV_USE_INOTIFY
3946
3947/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3948# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3949
3950static void noinline
3951infy_add (EV_P_ ev_stat *w)
3952{
3953 w->wd = inotify_add_watch (fs_fd, w->path,
3954 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3955 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3956 | IN_DONT_FOLLOW | IN_MASK_ADD);
3957
3958 if (w->wd >= 0)
3959 {
3960 struct statfs sfs;
3961
3962 /* now local changes will be tracked by inotify, but remote changes won't */
3963 /* unless the filesystem is known to be local, we therefore still poll */
3964 /* also do poll on <2.6.25, but with normal frequency */
3965
3966 if (!fs_2625)
3967 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3968 else if (!statfs (w->path, &sfs)
3969 && (sfs.f_type == 0x1373 /* devfs */
3970 || sfs.f_type == 0x4006 /* fat */
3971 || sfs.f_type == 0x4d44 /* msdos */
3972 || sfs.f_type == 0xEF53 /* ext2/3 */
3973 || sfs.f_type == 0x72b6 /* jffs2 */
3974 || sfs.f_type == 0x858458f6 /* ramfs */
3975 || sfs.f_type == 0x5346544e /* ntfs */
3976 || sfs.f_type == 0x3153464a /* jfs */
3977 || sfs.f_type == 0x9123683e /* btrfs */
3978 || sfs.f_type == 0x52654973 /* reiser3 */
3979 || sfs.f_type == 0x01021994 /* tmpfs */
3980 || sfs.f_type == 0x58465342 /* xfs */))
3981 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3982 else
3983 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1528 { 3984 }
3985 else
3986 {
3987 /* can't use inotify, continue to stat */
3988 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3989
3990 /* if path is not there, monitor some parent directory for speedup hints */
3991 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3992 /* but an efficiency issue only */
3993 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3994 {
3995 char path [4096];
3996 strcpy (path, w->path);
3997
3998 do
3999 {
4000 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4001 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4002
4003 char *pend = strrchr (path, '/');
4004
4005 if (!pend || pend == path)
4006 break;
4007
4008 *pend = 0;
4009 w->wd = inotify_add_watch (fs_fd, path, mask);
4010 }
4011 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4012 }
4013 }
4014
4015 if (w->wd >= 0)
4016 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4017
4018 /* now re-arm timer, if required */
4019 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4020 ev_timer_again (EV_A_ &w->timer);
4021 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4022}
4023
4024static void noinline
4025infy_del (EV_P_ ev_stat *w)
4026{
4027 int slot;
4028 int wd = w->wd;
4029
4030 if (wd < 0)
4031 return;
4032
4033 w->wd = -2;
4034 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4035 wlist_del (&fs_hash [slot].head, (WL)w);
4036
4037 /* remove this watcher, if others are watching it, they will rearm */
4038 inotify_rm_watch (fs_fd, wd);
4039}
4040
4041static void noinline
4042infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4043{
4044 if (slot < 0)
4045 /* overflow, need to check for all hash slots */
4046 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4047 infy_wd (EV_A_ slot, wd, ev);
4048 else
4049 {
4050 WL w_;
4051
4052 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4053 {
4054 ev_stat *w = (ev_stat *)w_;
4055 w_ = w_->next; /* lets us remove this watcher and all before it */
4056
4057 if (w->wd == wd || wd == -1)
4058 {
4059 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4060 {
4061 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4062 w->wd = -1;
4063 infy_add (EV_A_ w); /* re-add, no matter what */
4064 }
4065
4066 stat_timer_cb (EV_A_ &w->timer, 0);
4067 }
4068 }
4069 }
4070}
4071
4072static void
4073infy_cb (EV_P_ ev_io *w, int revents)
4074{
4075 char buf [EV_INOTIFY_BUFSIZE];
4076 int ofs;
4077 int len = read (fs_fd, buf, sizeof (buf));
4078
4079 for (ofs = 0; ofs < len; )
4080 {
4081 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4082 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4083 ofs += sizeof (struct inotify_event) + ev->len;
4084 }
4085}
4086
4087inline_size void ecb_cold
4088ev_check_2625 (EV_P)
4089{
4090 /* kernels < 2.6.25 are borked
4091 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4092 */
4093 if (ev_linux_version () < 0x020619)
4094 return;
4095
4096 fs_2625 = 1;
4097}
4098
4099inline_size int
4100infy_newfd (void)
4101{
4102#if defined IN_CLOEXEC && defined IN_NONBLOCK
4103 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4104 if (fd >= 0)
4105 return fd;
4106#endif
4107 return inotify_init ();
4108}
4109
4110inline_size void
4111infy_init (EV_P)
4112{
4113 if (fs_fd != -2)
4114 return;
4115
4116 fs_fd = -1;
4117
4118 ev_check_2625 (EV_A);
4119
4120 fs_fd = infy_newfd ();
4121
4122 if (fs_fd >= 0)
4123 {
4124 fd_intern (fs_fd);
4125 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4126 ev_set_priority (&fs_w, EV_MAXPRI);
4127 ev_io_start (EV_A_ &fs_w);
4128 ev_unref (EV_A);
4129 }
4130}
4131
4132inline_size void
4133infy_fork (EV_P)
4134{
4135 int slot;
4136
4137 if (fs_fd < 0)
4138 return;
4139
4140 ev_ref (EV_A);
4141 ev_io_stop (EV_A_ &fs_w);
4142 close (fs_fd);
4143 fs_fd = infy_newfd ();
4144
4145 if (fs_fd >= 0)
4146 {
4147 fd_intern (fs_fd);
4148 ev_io_set (&fs_w, fs_fd, EV_READ);
4149 ev_io_start (EV_A_ &fs_w);
4150 ev_unref (EV_A);
4151 }
4152
4153 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4154 {
4155 WL w_ = fs_hash [slot].head;
4156 fs_hash [slot].head = 0;
4157
4158 while (w_)
4159 {
4160 ev_stat *w = (ev_stat *)w_;
4161 w_ = w_->next; /* lets us add this watcher */
4162
4163 w->wd = -1;
4164
4165 if (fs_fd >= 0)
4166 infy_add (EV_A_ w); /* re-add, no matter what */
4167 else
4168 {
4169 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4170 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4171 ev_timer_again (EV_A_ &w->timer);
4172 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4173 }
4174 }
4175 }
4176}
4177
4178#endif
4179
1529#if _WIN32 4180#ifdef _WIN32
1530 signal (w->signum, sighandler); 4181# define EV_LSTAT(p,b) _stati64 (p, b)
1531#else 4182#else
1532 struct sigaction sa; 4183# define EV_LSTAT(p,b) lstat (p, b)
1533 sa.sa_handler = sighandler;
1534 sigfillset (&sa.sa_mask);
1535 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1536 sigaction (w->signum, &sa, 0);
1537#endif 4184#endif
1538 }
1539}
1540 4185
1541void 4186void
1542ev_signal_stop (EV_P_ struct ev_signal *w) 4187ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1543{ 4188{
1544 ev_clear_pending (EV_A_ (W)w); 4189 if (lstat (w->path, &w->attr) < 0)
1545 if (!ev_is_active (w)) 4190 w->attr.st_nlink = 0;
4191 else if (!w->attr.st_nlink)
4192 w->attr.st_nlink = 1;
4193}
4194
4195static void noinline
4196stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4197{
4198 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4199
4200 ev_statdata prev = w->attr;
4201 ev_stat_stat (EV_A_ w);
4202
4203 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4204 if (
4205 prev.st_dev != w->attr.st_dev
4206 || prev.st_ino != w->attr.st_ino
4207 || prev.st_mode != w->attr.st_mode
4208 || prev.st_nlink != w->attr.st_nlink
4209 || prev.st_uid != w->attr.st_uid
4210 || prev.st_gid != w->attr.st_gid
4211 || prev.st_rdev != w->attr.st_rdev
4212 || prev.st_size != w->attr.st_size
4213 || prev.st_atime != w->attr.st_atime
4214 || prev.st_mtime != w->attr.st_mtime
4215 || prev.st_ctime != w->attr.st_ctime
4216 ) {
4217 /* we only update w->prev on actual differences */
4218 /* in case we test more often than invoke the callback, */
4219 /* to ensure that prev is always different to attr */
4220 w->prev = prev;
4221
4222 #if EV_USE_INOTIFY
4223 if (fs_fd >= 0)
4224 {
4225 infy_del (EV_A_ w);
4226 infy_add (EV_A_ w);
4227 ev_stat_stat (EV_A_ w); /* avoid race... */
4228 }
4229 #endif
4230
4231 ev_feed_event (EV_A_ w, EV_STAT);
4232 }
4233}
4234
4235void
4236ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4237{
4238 if (expect_false (ev_is_active (w)))
1546 return; 4239 return;
1547 4240
1548 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4241 ev_stat_stat (EV_A_ w);
4242
4243 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4244 w->interval = MIN_STAT_INTERVAL;
4245
4246 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4247 ev_set_priority (&w->timer, ev_priority (w));
4248
4249#if EV_USE_INOTIFY
4250 infy_init (EV_A);
4251
4252 if (fs_fd >= 0)
4253 infy_add (EV_A_ w);
4254 else
4255#endif
4256 {
4257 ev_timer_again (EV_A_ &w->timer);
4258 ev_unref (EV_A);
4259 }
4260
4261 ev_start (EV_A_ (W)w, 1);
4262
4263 EV_FREQUENT_CHECK;
4264}
4265
4266void
4267ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4268{
4269 clear_pending (EV_A_ (W)w);
4270 if (expect_false (!ev_is_active (w)))
4271 return;
4272
4273 EV_FREQUENT_CHECK;
4274
4275#if EV_USE_INOTIFY
4276 infy_del (EV_A_ w);
4277#endif
4278
4279 if (ev_is_active (&w->timer))
4280 {
4281 ev_ref (EV_A);
4282 ev_timer_stop (EV_A_ &w->timer);
4283 }
4284
1549 ev_stop (EV_A_ (W)w); 4285 ev_stop (EV_A_ (W)w);
1550 4286
1551 if (!signals [w->signum - 1].head) 4287 EV_FREQUENT_CHECK;
1552 signal (w->signum, SIG_DFL);
1553} 4288}
4289#endif
1554 4290
4291#if EV_IDLE_ENABLE
1555void 4292void
1556ev_child_start (EV_P_ struct ev_child *w) 4293ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1557{ 4294{
1558#if EV_MULTIPLICITY
1559 assert (("child watchers are only supported in the default loop", loop == default_loop));
1560#endif
1561 if (ev_is_active (w)) 4295 if (expect_false (ev_is_active (w)))
1562 return; 4296 return;
1563 4297
4298 pri_adjust (EV_A_ (W)w);
4299
4300 EV_FREQUENT_CHECK;
4301
4302 {
4303 int active = ++idlecnt [ABSPRI (w)];
4304
4305 ++idleall;
4306 ev_start (EV_A_ (W)w, active);
4307
4308 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4309 idles [ABSPRI (w)][active - 1] = w;
4310 }
4311
4312 EV_FREQUENT_CHECK;
4313}
4314
4315void
4316ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4317{
4318 clear_pending (EV_A_ (W)w);
4319 if (expect_false (!ev_is_active (w)))
4320 return;
4321
4322 EV_FREQUENT_CHECK;
4323
4324 {
4325 int active = ev_active (w);
4326
4327 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4328 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4329
4330 ev_stop (EV_A_ (W)w);
4331 --idleall;
4332 }
4333
4334 EV_FREQUENT_CHECK;
4335}
4336#endif
4337
4338#if EV_PREPARE_ENABLE
4339void
4340ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4341{
4342 if (expect_false (ev_is_active (w)))
4343 return;
4344
4345 EV_FREQUENT_CHECK;
4346
4347 ev_start (EV_A_ (W)w, ++preparecnt);
4348 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4349 prepares [preparecnt - 1] = w;
4350
4351 EV_FREQUENT_CHECK;
4352}
4353
4354void
4355ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4356{
4357 clear_pending (EV_A_ (W)w);
4358 if (expect_false (!ev_is_active (w)))
4359 return;
4360
4361 EV_FREQUENT_CHECK;
4362
4363 {
4364 int active = ev_active (w);
4365
4366 prepares [active - 1] = prepares [--preparecnt];
4367 ev_active (prepares [active - 1]) = active;
4368 }
4369
4370 ev_stop (EV_A_ (W)w);
4371
4372 EV_FREQUENT_CHECK;
4373}
4374#endif
4375
4376#if EV_CHECK_ENABLE
4377void
4378ev_check_start (EV_P_ ev_check *w) EV_THROW
4379{
4380 if (expect_false (ev_is_active (w)))
4381 return;
4382
4383 EV_FREQUENT_CHECK;
4384
4385 ev_start (EV_A_ (W)w, ++checkcnt);
4386 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4387 checks [checkcnt - 1] = w;
4388
4389 EV_FREQUENT_CHECK;
4390}
4391
4392void
4393ev_check_stop (EV_P_ ev_check *w) EV_THROW
4394{
4395 clear_pending (EV_A_ (W)w);
4396 if (expect_false (!ev_is_active (w)))
4397 return;
4398
4399 EV_FREQUENT_CHECK;
4400
4401 {
4402 int active = ev_active (w);
4403
4404 checks [active - 1] = checks [--checkcnt];
4405 ev_active (checks [active - 1]) = active;
4406 }
4407
4408 ev_stop (EV_A_ (W)w);
4409
4410 EV_FREQUENT_CHECK;
4411}
4412#endif
4413
4414#if EV_EMBED_ENABLE
4415void noinline
4416ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4417{
4418 ev_run (w->other, EVRUN_NOWAIT);
4419}
4420
4421static void
4422embed_io_cb (EV_P_ ev_io *io, int revents)
4423{
4424 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4425
4426 if (ev_cb (w))
4427 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4428 else
4429 ev_run (w->other, EVRUN_NOWAIT);
4430}
4431
4432static void
4433embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4434{
4435 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4436
4437 {
4438 EV_P = w->other;
4439
4440 while (fdchangecnt)
4441 {
4442 fd_reify (EV_A);
4443 ev_run (EV_A_ EVRUN_NOWAIT);
4444 }
4445 }
4446}
4447
4448static void
4449embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4450{
4451 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4452
4453 ev_embed_stop (EV_A_ w);
4454
4455 {
4456 EV_P = w->other;
4457
4458 ev_loop_fork (EV_A);
4459 ev_run (EV_A_ EVRUN_NOWAIT);
4460 }
4461
4462 ev_embed_start (EV_A_ w);
4463}
4464
4465#if 0
4466static void
4467embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4468{
4469 ev_idle_stop (EV_A_ idle);
4470}
4471#endif
4472
4473void
4474ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4475{
4476 if (expect_false (ev_is_active (w)))
4477 return;
4478
4479 {
4480 EV_P = w->other;
4481 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4482 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4483 }
4484
4485 EV_FREQUENT_CHECK;
4486
4487 ev_set_priority (&w->io, ev_priority (w));
4488 ev_io_start (EV_A_ &w->io);
4489
4490 ev_prepare_init (&w->prepare, embed_prepare_cb);
4491 ev_set_priority (&w->prepare, EV_MINPRI);
4492 ev_prepare_start (EV_A_ &w->prepare);
4493
4494 ev_fork_init (&w->fork, embed_fork_cb);
4495 ev_fork_start (EV_A_ &w->fork);
4496
4497 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4498
1564 ev_start (EV_A_ (W)w, 1); 4499 ev_start (EV_A_ (W)w, 1);
1565 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4500
4501 EV_FREQUENT_CHECK;
1566} 4502}
1567 4503
1568void 4504void
1569ev_child_stop (EV_P_ struct ev_child *w) 4505ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
1570{ 4506{
1571 ev_clear_pending (EV_A_ (W)w); 4507 clear_pending (EV_A_ (W)w);
1572 if (!ev_is_active (w)) 4508 if (expect_false (!ev_is_active (w)))
1573 return; 4509 return;
1574 4510
1575 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4511 EV_FREQUENT_CHECK;
4512
4513 ev_io_stop (EV_A_ &w->io);
4514 ev_prepare_stop (EV_A_ &w->prepare);
4515 ev_fork_stop (EV_A_ &w->fork);
4516
1576 ev_stop (EV_A_ (W)w); 4517 ev_stop (EV_A_ (W)w);
4518
4519 EV_FREQUENT_CHECK;
1577} 4520}
4521#endif
4522
4523#if EV_FORK_ENABLE
4524void
4525ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4526{
4527 if (expect_false (ev_is_active (w)))
4528 return;
4529
4530 EV_FREQUENT_CHECK;
4531
4532 ev_start (EV_A_ (W)w, ++forkcnt);
4533 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4534 forks [forkcnt - 1] = w;
4535
4536 EV_FREQUENT_CHECK;
4537}
4538
4539void
4540ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4541{
4542 clear_pending (EV_A_ (W)w);
4543 if (expect_false (!ev_is_active (w)))
4544 return;
4545
4546 EV_FREQUENT_CHECK;
4547
4548 {
4549 int active = ev_active (w);
4550
4551 forks [active - 1] = forks [--forkcnt];
4552 ev_active (forks [active - 1]) = active;
4553 }
4554
4555 ev_stop (EV_A_ (W)w);
4556
4557 EV_FREQUENT_CHECK;
4558}
4559#endif
4560
4561#if EV_CLEANUP_ENABLE
4562void
4563ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4564{
4565 if (expect_false (ev_is_active (w)))
4566 return;
4567
4568 EV_FREQUENT_CHECK;
4569
4570 ev_start (EV_A_ (W)w, ++cleanupcnt);
4571 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4572 cleanups [cleanupcnt - 1] = w;
4573
4574 /* cleanup watchers should never keep a refcount on the loop */
4575 ev_unref (EV_A);
4576 EV_FREQUENT_CHECK;
4577}
4578
4579void
4580ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4581{
4582 clear_pending (EV_A_ (W)w);
4583 if (expect_false (!ev_is_active (w)))
4584 return;
4585
4586 EV_FREQUENT_CHECK;
4587 ev_ref (EV_A);
4588
4589 {
4590 int active = ev_active (w);
4591
4592 cleanups [active - 1] = cleanups [--cleanupcnt];
4593 ev_active (cleanups [active - 1]) = active;
4594 }
4595
4596 ev_stop (EV_A_ (W)w);
4597
4598 EV_FREQUENT_CHECK;
4599}
4600#endif
4601
4602#if EV_ASYNC_ENABLE
4603void
4604ev_async_start (EV_P_ ev_async *w) EV_THROW
4605{
4606 if (expect_false (ev_is_active (w)))
4607 return;
4608
4609 w->sent = 0;
4610
4611 evpipe_init (EV_A);
4612
4613 EV_FREQUENT_CHECK;
4614
4615 ev_start (EV_A_ (W)w, ++asynccnt);
4616 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4617 asyncs [asynccnt - 1] = w;
4618
4619 EV_FREQUENT_CHECK;
4620}
4621
4622void
4623ev_async_stop (EV_P_ ev_async *w) EV_THROW
4624{
4625 clear_pending (EV_A_ (W)w);
4626 if (expect_false (!ev_is_active (w)))
4627 return;
4628
4629 EV_FREQUENT_CHECK;
4630
4631 {
4632 int active = ev_active (w);
4633
4634 asyncs [active - 1] = asyncs [--asynccnt];
4635 ev_active (asyncs [active - 1]) = active;
4636 }
4637
4638 ev_stop (EV_A_ (W)w);
4639
4640 EV_FREQUENT_CHECK;
4641}
4642
4643void
4644ev_async_send (EV_P_ ev_async *w) EV_THROW
4645{
4646 w->sent = 1;
4647 evpipe_write (EV_A_ &async_pending);
4648}
4649#endif
1578 4650
1579/*****************************************************************************/ 4651/*****************************************************************************/
1580 4652
1581struct ev_once 4653struct ev_once
1582{ 4654{
1583 struct ev_io io; 4655 ev_io io;
1584 struct ev_timer to; 4656 ev_timer to;
1585 void (*cb)(int revents, void *arg); 4657 void (*cb)(int revents, void *arg);
1586 void *arg; 4658 void *arg;
1587}; 4659};
1588 4660
1589static void 4661static void
1590once_cb (EV_P_ struct ev_once *once, int revents) 4662once_cb (EV_P_ struct ev_once *once, int revents)
1591{ 4663{
1592 void (*cb)(int revents, void *arg) = once->cb; 4664 void (*cb)(int revents, void *arg) = once->cb;
1593 void *arg = once->arg; 4665 void *arg = once->arg;
1594 4666
1595 ev_io_stop (EV_A_ &once->io); 4667 ev_io_stop (EV_A_ &once->io);
1596 ev_timer_stop (EV_A_ &once->to); 4668 ev_timer_stop (EV_A_ &once->to);
1597 ev_free (once); 4669 ev_free (once);
1598 4670
1599 cb (revents, arg); 4671 cb (revents, arg);
1600} 4672}
1601 4673
1602static void 4674static void
1603once_cb_io (EV_P_ struct ev_io *w, int revents) 4675once_cb_io (EV_P_ ev_io *w, int revents)
1604{ 4676{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4677 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4678
4679 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1606} 4680}
1607 4681
1608static void 4682static void
1609once_cb_to (EV_P_ struct ev_timer *w, int revents) 4683once_cb_to (EV_P_ ev_timer *w, int revents)
1610{ 4684{
1611 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4685 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4686
4687 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1612} 4688}
1613 4689
1614void 4690void
1615ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4691ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1616{ 4692{
1617 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4693 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1618 4694
1619 if (!once) 4695 if (expect_false (!once))
4696 {
1620 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4697 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1621 else 4698 return;
1622 { 4699 }
4700
1623 once->cb = cb; 4701 once->cb = cb;
1624 once->arg = arg; 4702 once->arg = arg;
1625 4703
1626 ev_init (&once->io, once_cb_io); 4704 ev_init (&once->io, once_cb_io);
1627 if (fd >= 0) 4705 if (fd >= 0)
4706 {
4707 ev_io_set (&once->io, fd, events);
4708 ev_io_start (EV_A_ &once->io);
4709 }
4710
4711 ev_init (&once->to, once_cb_to);
4712 if (timeout >= 0.)
4713 {
4714 ev_timer_set (&once->to, timeout, 0.);
4715 ev_timer_start (EV_A_ &once->to);
4716 }
4717}
4718
4719/*****************************************************************************/
4720
4721#if EV_WALK_ENABLE
4722void ecb_cold
4723ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4724{
4725 int i, j;
4726 ev_watcher_list *wl, *wn;
4727
4728 if (types & (EV_IO | EV_EMBED))
4729 for (i = 0; i < anfdmax; ++i)
4730 for (wl = anfds [i].head; wl; )
1628 { 4731 {
1629 ev_io_set (&once->io, fd, events); 4732 wn = wl->next;
1630 ev_io_start (EV_A_ &once->io); 4733
4734#if EV_EMBED_ENABLE
4735 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4736 {
4737 if (types & EV_EMBED)
4738 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4739 }
4740 else
4741#endif
4742#if EV_USE_INOTIFY
4743 if (ev_cb ((ev_io *)wl) == infy_cb)
4744 ;
4745 else
4746#endif
4747 if ((ev_io *)wl != &pipe_w)
4748 if (types & EV_IO)
4749 cb (EV_A_ EV_IO, wl);
4750
4751 wl = wn;
1631 } 4752 }
1632 4753
1633 ev_init (&once->to, once_cb_to); 4754 if (types & (EV_TIMER | EV_STAT))
1634 if (timeout >= 0.) 4755 for (i = timercnt + HEAP0; i-- > HEAP0; )
4756#if EV_STAT_ENABLE
4757 /*TODO: timer is not always active*/
4758 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1635 { 4759 {
1636 ev_timer_set (&once->to, timeout, 0.); 4760 if (types & EV_STAT)
1637 ev_timer_start (EV_A_ &once->to); 4761 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1638 } 4762 }
1639 } 4763 else
1640} 4764#endif
4765 if (types & EV_TIMER)
4766 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1641 4767
1642#ifdef __cplusplus 4768#if EV_PERIODIC_ENABLE
1643} 4769 if (types & EV_PERIODIC)
4770 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4771 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4772#endif
4773
4774#if EV_IDLE_ENABLE
4775 if (types & EV_IDLE)
4776 for (j = NUMPRI; j--; )
4777 for (i = idlecnt [j]; i--; )
4778 cb (EV_A_ EV_IDLE, idles [j][i]);
4779#endif
4780
4781#if EV_FORK_ENABLE
4782 if (types & EV_FORK)
4783 for (i = forkcnt; i--; )
4784 if (ev_cb (forks [i]) != embed_fork_cb)
4785 cb (EV_A_ EV_FORK, forks [i]);
4786#endif
4787
4788#if EV_ASYNC_ENABLE
4789 if (types & EV_ASYNC)
4790 for (i = asynccnt; i--; )
4791 cb (EV_A_ EV_ASYNC, asyncs [i]);
4792#endif
4793
4794#if EV_PREPARE_ENABLE
4795 if (types & EV_PREPARE)
4796 for (i = preparecnt; i--; )
4797# if EV_EMBED_ENABLE
4798 if (ev_cb (prepares [i]) != embed_prepare_cb)
1644#endif 4799# endif
4800 cb (EV_A_ EV_PREPARE, prepares [i]);
4801#endif
1645 4802
4803#if EV_CHECK_ENABLE
4804 if (types & EV_CHECK)
4805 for (i = checkcnt; i--; )
4806 cb (EV_A_ EV_CHECK, checks [i]);
4807#endif
4808
4809#if EV_SIGNAL_ENABLE
4810 if (types & EV_SIGNAL)
4811 for (i = 0; i < EV_NSIG - 1; ++i)
4812 for (wl = signals [i].head; wl; )
4813 {
4814 wn = wl->next;
4815 cb (EV_A_ EV_SIGNAL, wl);
4816 wl = wn;
4817 }
4818#endif
4819
4820#if EV_CHILD_ENABLE
4821 if (types & EV_CHILD)
4822 for (i = (EV_PID_HASHSIZE); i--; )
4823 for (wl = childs [i]; wl; )
4824 {
4825 wn = wl->next;
4826 cb (EV_A_ EV_CHILD, wl);
4827 wl = wn;
4828 }
4829#endif
4830/* EV_STAT 0x00001000 /* stat data changed */
4831/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4832}
4833#endif
4834
4835#if EV_MULTIPLICITY
4836 #include "ev_wrap.h"
4837#endif
4838

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines