ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.64 by root, Sun Nov 4 23:14:11 2007 UTC vs.
Revision 1.110 by root, Mon Nov 12 05:56:49 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
84#else
85# define WIN32_LEAN_AND_MEAN
86# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1
71#endif 89# endif
72#include <sys/time.h> 90#endif
73#include <time.h>
74 91
75/**/ 92/**/
76 93
77#ifndef EV_USE_MONOTONIC 94#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 95# define EV_USE_MONOTONIC 1
79#endif 96#endif
80 97
81#ifndef EV_USE_SELECT 98#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 99# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
83#endif 101#endif
84 102
85#ifndef EV_USE_POLL 103#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 104# ifdef _WIN32
105# define EV_USE_POLL 0
106# else
107# define EV_USE_POLL 1
108# endif
87#endif 109#endif
88 110
89#ifndef EV_USE_EPOLL 111#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 112# define EV_USE_EPOLL 0
91#endif 113#endif
92 114
93#ifndef EV_USE_KQUEUE 115#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 116# define EV_USE_KQUEUE 0
95#endif 117#endif
96 118
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 119#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1 120# define EV_USE_REALTIME 1
107#endif 121#endif
108 122
109/**/ 123/**/
124
125/* darwin simply cannot be helped */
126#ifdef __APPLE__
127# undef EV_USE_POLL
128# undef EV_USE_KQUEUE
129#endif
110 130
111#ifndef CLOCK_MONOTONIC 131#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 132# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 133# define EV_USE_MONOTONIC 0
114#endif 134#endif
115 135
116#ifndef CLOCK_REALTIME 136#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 137# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 138# define EV_USE_REALTIME 0
139#endif
140
141#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h>
119#endif 143#endif
120 144
121/**/ 145/**/
122 146
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 151
152#ifdef EV_H
153# include EV_H
154#else
128#include "ev.h" 155# include "ev.h"
156#endif
129 157
130#if __GNUC__ >= 3 158#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 159# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 160# define inline inline
133#else 161#else
139#define expect_true(expr) expect ((expr) != 0, 1) 167#define expect_true(expr) expect ((expr) != 0, 1)
140 168
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 170#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 171
172#define EMPTY /* required for microsofts broken pseudo-c compiler */
173
144typedef struct ev_watcher *W; 174typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 175typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 176typedef struct ev_watcher_time *WT;
147 177
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 178static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 179
180#ifdef _WIN32
181# include "ev_win32.c"
182#endif
183
150/*****************************************************************************/ 184/*****************************************************************************/
151 185
186static void (*syserr_cb)(const char *msg);
187
188void ev_set_syserr_cb (void (*cb)(const char *msg))
189{
190 syserr_cb = cb;
191}
192
193static void
194syserr (const char *msg)
195{
196 if (!msg)
197 msg = "(libev) system error";
198
199 if (syserr_cb)
200 syserr_cb (msg);
201 else
202 {
203 perror (msg);
204 abort ();
205 }
206}
207
208static void *(*alloc)(void *ptr, long size);
209
210void ev_set_allocator (void *(*cb)(void *ptr, long size))
211{
212 alloc = cb;
213}
214
215static void *
216ev_realloc (void *ptr, long size)
217{
218 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
219
220 if (!ptr && size)
221 {
222 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
223 abort ();
224 }
225
226 return ptr;
227}
228
229#define ev_malloc(size) ev_realloc (0, (size))
230#define ev_free(ptr) ev_realloc ((ptr), 0)
231
232/*****************************************************************************/
233
152typedef struct 234typedef struct
153{ 235{
154 struct ev_watcher_list *head; 236 WL head;
155 unsigned char events; 237 unsigned char events;
156 unsigned char reify; 238 unsigned char reify;
239#if EV_SELECT_IS_WINSOCKET
240 SOCKET handle;
241#endif
157} ANFD; 242} ANFD;
158 243
159typedef struct 244typedef struct
160{ 245{
161 W w; 246 W w;
162 int events; 247 int events;
163} ANPENDING; 248} ANPENDING;
164 249
165#if EV_MULTIPLICITY 250#if EV_MULTIPLICITY
166 251
167struct ev_loop 252 struct ev_loop
168{ 253 {
254 ev_tstamp ev_rt_now;
255 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 256 #define VAR(name,decl) decl;
170# include "ev_vars.h" 257 #include "ev_vars.h"
171};
172# undef VAR 258 #undef VAR
259 };
173# include "ev_wrap.h" 260 #include "ev_wrap.h"
261
262 struct ev_loop default_loop_struct;
263 static struct ev_loop *default_loop;
174 264
175#else 265#else
176 266
267 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 268 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 269 #include "ev_vars.h"
179# undef VAR 270 #undef VAR
271
272 static int default_loop;
180 273
181#endif 274#endif
182 275
183/*****************************************************************************/ 276/*****************************************************************************/
184 277
185inline ev_tstamp 278ev_tstamp
186ev_time (void) 279ev_time (void)
187{ 280{
188#if EV_USE_REALTIME 281#if EV_USE_REALTIME
189 struct timespec ts; 282 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 283 clock_gettime (CLOCK_REALTIME, &ts);
209#endif 302#endif
210 303
211 return ev_time (); 304 return ev_time ();
212} 305}
213 306
307#if EV_MULTIPLICITY
214ev_tstamp 308ev_tstamp
215ev_now (EV_P) 309ev_now (EV_P)
216{ 310{
217 return rt_now; 311 return ev_rt_now;
218} 312}
313#endif
219 314
220#define array_roundsize(base,n) ((n) | 4 & ~3) 315#define array_roundsize(type,n) (((n) | 4) & ~3)
221 316
222#define array_needsize(base,cur,cnt,init) \ 317#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 318 if (expect_false ((cnt) > cur)) \
224 { \ 319 { \
225 int newcnt = cur; \ 320 int newcnt = cur; \
226 do \ 321 do \
227 { \ 322 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 323 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 324 } \
230 while ((cnt) > newcnt); \ 325 while ((cnt) > newcnt); \
231 \ 326 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 327 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 328 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 329 cur = newcnt; \
235 } 330 }
331
332#define array_slim(type,stem) \
333 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
334 { \
335 stem ## max = array_roundsize (stem ## cnt >> 1); \
336 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
337 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
338 }
339
340#define array_free(stem, idx) \
341 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
236 342
237/*****************************************************************************/ 343/*****************************************************************************/
238 344
239static void 345static void
240anfds_init (ANFD *base, int count) 346anfds_init (ANFD *base, int count)
247 353
248 ++base; 354 ++base;
249 } 355 }
250} 356}
251 357
252static void 358void
253event (EV_P_ W w, int events) 359ev_feed_event (EV_P_ void *w, int revents)
254{ 360{
361 W w_ = (W)w;
362
255 if (w->pending) 363 if (w_->pending)
256 { 364 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events; 365 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
258 return; 366 return;
259 } 367 }
260 368
261 w->pending = ++pendingcnt [ABSPRI (w)]; 369 w_->pending = ++pendingcnt [ABSPRI (w_)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 370 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
263 pendings [ABSPRI (w)][w->pending - 1].w = w; 371 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
264 pendings [ABSPRI (w)][w->pending - 1].events = events; 372 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
265} 373}
266 374
267static void 375static void
268queue_events (EV_P_ W *events, int eventcnt, int type) 376queue_events (EV_P_ W *events, int eventcnt, int type)
269{ 377{
270 int i; 378 int i;
271 379
272 for (i = 0; i < eventcnt; ++i) 380 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type); 381 ev_feed_event (EV_A_ events [i], type);
274} 382}
275 383
276static void 384inline void
277fd_event (EV_P_ int fd, int events) 385fd_event (EV_P_ int fd, int revents)
278{ 386{
279 ANFD *anfd = anfds + fd; 387 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 388 struct ev_io *w;
281 389
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 390 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
283 { 391 {
284 int ev = w->events & events; 392 int ev = w->events & revents;
285 393
286 if (ev) 394 if (ev)
287 event (EV_A_ (W)w, ev); 395 ev_feed_event (EV_A_ (W)w, ev);
288 } 396 }
397}
398
399void
400ev_feed_fd_event (EV_P_ int fd, int revents)
401{
402 fd_event (EV_A_ fd, revents);
289} 403}
290 404
291/*****************************************************************************/ 405/*****************************************************************************/
292 406
293static void 407static void
304 int events = 0; 418 int events = 0;
305 419
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 420 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events; 421 events |= w->events;
308 422
423#if EV_SELECT_IS_WINSOCKET
424 if (events)
425 {
426 unsigned long argp;
427 anfd->handle = _get_osfhandle (fd);
428 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
429 }
430#endif
431
309 anfd->reify = 0; 432 anfd->reify = 0;
310 433
311 method_modify (EV_A_ fd, anfd->events, events); 434 method_modify (EV_A_ fd, anfd->events, events);
312 anfd->events = events; 435 anfd->events = events;
313 } 436 }
316} 439}
317 440
318static void 441static void
319fd_change (EV_P_ int fd) 442fd_change (EV_P_ int fd)
320{ 443{
321 if (anfds [fd].reify || fdchangecnt < 0) 444 if (anfds [fd].reify)
322 return; 445 return;
323 446
324 anfds [fd].reify = 1; 447 anfds [fd].reify = 1;
325 448
326 ++fdchangecnt; 449 ++fdchangecnt;
327 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 450 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
328 fdchanges [fdchangecnt - 1] = fd; 451 fdchanges [fdchangecnt - 1] = fd;
329} 452}
330 453
331static void 454static void
332fd_kill (EV_P_ int fd) 455fd_kill (EV_P_ int fd)
334 struct ev_io *w; 457 struct ev_io *w;
335 458
336 while ((w = (struct ev_io *)anfds [fd].head)) 459 while ((w = (struct ev_io *)anfds [fd].head))
337 { 460 {
338 ev_io_stop (EV_A_ w); 461 ev_io_stop (EV_A_ w);
339 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 462 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
340 } 463 }
464}
465
466static int
467fd_valid (int fd)
468{
469#ifdef _WIN32
470 return _get_osfhandle (fd) != -1;
471#else
472 return fcntl (fd, F_GETFD) != -1;
473#endif
341} 474}
342 475
343/* called on EBADF to verify fds */ 476/* called on EBADF to verify fds */
344static void 477static void
345fd_ebadf (EV_P) 478fd_ebadf (EV_P)
346{ 479{
347 int fd; 480 int fd;
348 481
349 for (fd = 0; fd < anfdmax; ++fd) 482 for (fd = 0; fd < anfdmax; ++fd)
350 if (anfds [fd].events) 483 if (anfds [fd].events)
351 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 484 if (!fd_valid (fd) == -1 && errno == EBADF)
352 fd_kill (EV_A_ fd); 485 fd_kill (EV_A_ fd);
353} 486}
354 487
355/* called on ENOMEM in select/poll to kill some fds and retry */ 488/* called on ENOMEM in select/poll to kill some fds and retry */
356static void 489static void
359 int fd; 492 int fd;
360 493
361 for (fd = anfdmax; fd--; ) 494 for (fd = anfdmax; fd--; )
362 if (anfds [fd].events) 495 if (anfds [fd].events)
363 { 496 {
364 close (fd);
365 fd_kill (EV_A_ fd); 497 fd_kill (EV_A_ fd);
366 return; 498 return;
367 } 499 }
368} 500}
369 501
370/* susually called after fork if method needs to re-arm all fds from scratch */ 502/* usually called after fork if method needs to re-arm all fds from scratch */
371static void 503static void
372fd_rearm_all (EV_P) 504fd_rearm_all (EV_P)
373{ 505{
374 int fd; 506 int fd;
375 507
423 555
424 heap [k] = w; 556 heap [k] = w;
425 ((W)heap [k])->active = k + 1; 557 ((W)heap [k])->active = k + 1;
426} 558}
427 559
560inline void
561adjustheap (WT *heap, int N, int k)
562{
563 upheap (heap, k);
564 downheap (heap, N, k);
565}
566
428/*****************************************************************************/ 567/*****************************************************************************/
429 568
430typedef struct 569typedef struct
431{ 570{
432 struct ev_watcher_list *head; 571 WL head;
433 sig_atomic_t volatile gotsig; 572 sig_atomic_t volatile gotsig;
434} ANSIG; 573} ANSIG;
435 574
436static ANSIG *signals; 575static ANSIG *signals;
437static int signalmax; 576static int signalmax;
453} 592}
454 593
455static void 594static void
456sighandler (int signum) 595sighandler (int signum)
457{ 596{
597#if _WIN32
598 signal (signum, sighandler);
599#endif
600
458 signals [signum - 1].gotsig = 1; 601 signals [signum - 1].gotsig = 1;
459 602
460 if (!gotsig) 603 if (!gotsig)
461 { 604 {
462 int old_errno = errno; 605 int old_errno = errno;
464 write (sigpipe [1], &signum, 1); 607 write (sigpipe [1], &signum, 1);
465 errno = old_errno; 608 errno = old_errno;
466 } 609 }
467} 610}
468 611
612void
613ev_feed_signal_event (EV_P_ int signum)
614{
615 WL w;
616
617#if EV_MULTIPLICITY
618 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
619#endif
620
621 --signum;
622
623 if (signum < 0 || signum >= signalmax)
624 return;
625
626 signals [signum].gotsig = 0;
627
628 for (w = signals [signum].head; w; w = w->next)
629 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
630}
631
469static void 632static void
470sigcb (EV_P_ struct ev_io *iow, int revents) 633sigcb (EV_P_ struct ev_io *iow, int revents)
471{ 634{
472 struct ev_watcher_list *w;
473 int signum; 635 int signum;
474 636
475 read (sigpipe [0], &revents, 1); 637 read (sigpipe [0], &revents, 1);
476 gotsig = 0; 638 gotsig = 0;
477 639
478 for (signum = signalmax; signum--; ) 640 for (signum = signalmax; signum--; )
479 if (signals [signum].gotsig) 641 if (signals [signum].gotsig)
480 { 642 ev_feed_signal_event (EV_A_ signum + 1);
481 signals [signum].gotsig = 0; 643}
482 644
483 for (w = signals [signum].head; w; w = w->next) 645inline void
484 event (EV_A_ (W)w, EV_SIGNAL); 646fd_intern (int fd)
485 } 647{
648#ifdef _WIN32
649 int arg = 1;
650 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
651#else
652 fcntl (fd, F_SETFD, FD_CLOEXEC);
653 fcntl (fd, F_SETFL, O_NONBLOCK);
654#endif
486} 655}
487 656
488static void 657static void
489siginit (EV_P) 658siginit (EV_P)
490{ 659{
491#ifndef WIN32 660 fd_intern (sigpipe [0]);
492 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 661 fd_intern (sigpipe [1]);
493 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
494
495 /* rather than sort out wether we really need nb, set it */
496 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
497 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
498#endif
499 662
500 ev_io_set (&sigev, sigpipe [0], EV_READ); 663 ev_io_set (&sigev, sigpipe [0], EV_READ);
501 ev_io_start (EV_A_ &sigev); 664 ev_io_start (EV_A_ &sigev);
502 ev_unref (EV_A); /* child watcher should not keep loop alive */ 665 ev_unref (EV_A); /* child watcher should not keep loop alive */
503} 666}
504 667
505/*****************************************************************************/ 668/*****************************************************************************/
506 669
507#ifndef WIN32
508
509static struct ev_child *childs [PID_HASHSIZE]; 670static struct ev_child *childs [PID_HASHSIZE];
671
672#ifndef _WIN32
673
510static struct ev_signal childev; 674static struct ev_signal childev;
511 675
512#ifndef WCONTINUED 676#ifndef WCONTINUED
513# define WCONTINUED 0 677# define WCONTINUED 0
514#endif 678#endif
522 if (w->pid == pid || !w->pid) 686 if (w->pid == pid || !w->pid)
523 { 687 {
524 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 688 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
525 w->rpid = pid; 689 w->rpid = pid;
526 w->rstatus = status; 690 w->rstatus = status;
527 event (EV_A_ (W)w, EV_CHILD); 691 ev_feed_event (EV_A_ (W)w, EV_CHILD);
528 } 692 }
529} 693}
530 694
531static void 695static void
532childcb (EV_P_ struct ev_signal *sw, int revents) 696childcb (EV_P_ struct ev_signal *sw, int revents)
534 int pid, status; 698 int pid, status;
535 699
536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 700 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
537 { 701 {
538 /* make sure we are called again until all childs have been reaped */ 702 /* make sure we are called again until all childs have been reaped */
539 event (EV_A_ (W)sw, EV_SIGNAL); 703 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
540 704
541 child_reap (EV_A_ sw, pid, pid, status); 705 child_reap (EV_A_ sw, pid, pid, status);
542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 706 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
543 } 707 }
544} 708}
574 738
575/* return true if we are running with elevated privileges and should ignore env variables */ 739/* return true if we are running with elevated privileges and should ignore env variables */
576static int 740static int
577enable_secure (void) 741enable_secure (void)
578{ 742{
579#ifdef WIN32 743#ifdef _WIN32
580 return 0; 744 return 0;
581#else 745#else
582 return getuid () != geteuid () 746 return getuid () != geteuid ()
583 || getgid () != getegid (); 747 || getgid () != getegid ();
584#endif 748#endif
589{ 753{
590 return method; 754 return method;
591} 755}
592 756
593static void 757static void
594loop_init (EV_P_ int methods) 758loop_init (EV_P_ unsigned int flags)
595{ 759{
596 if (!method) 760 if (!method)
597 { 761 {
598#if EV_USE_MONOTONIC 762#if EV_USE_MONOTONIC
599 { 763 {
601 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 765 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
602 have_monotonic = 1; 766 have_monotonic = 1;
603 } 767 }
604#endif 768#endif
605 769
606 rt_now = ev_time (); 770 ev_rt_now = ev_time ();
607 mn_now = get_clock (); 771 mn_now = get_clock ();
608 now_floor = mn_now; 772 now_floor = mn_now;
609 rtmn_diff = rt_now - mn_now; 773 rtmn_diff = ev_rt_now - mn_now;
610 774
611 if (methods == EVMETHOD_AUTO) 775 if (!(flags & EVMETHOD_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
612 if (!enable_secure () && getenv ("LIBEV_METHODS"))
613 methods = atoi (getenv ("LIBEV_METHODS")); 776 flags = atoi (getenv ("LIBEV_FLAGS"));
614 else 777
615 methods = EVMETHOD_ANY; 778 if (!(flags & 0x0000ffff))
779 flags |= 0x0000ffff;
616 780
617 method = 0; 781 method = 0;
618#if EV_USE_WIN32
619 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
620#endif
621#if EV_USE_KQUEUE 782#if EV_USE_KQUEUE
622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 783 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
623#endif 784#endif
624#if EV_USE_EPOLL 785#if EV_USE_EPOLL
625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 786 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
626#endif 787#endif
627#if EV_USE_POLL 788#if EV_USE_POLL
628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 789 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
629#endif 790#endif
630#if EV_USE_SELECT 791#if EV_USE_SELECT
631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 792 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
632#endif 793#endif
794
795 ev_init (&sigev, sigcb);
796 ev_set_priority (&sigev, EV_MAXPRI);
633 } 797 }
634} 798}
635 799
636void 800void
637loop_destroy (EV_P) 801loop_destroy (EV_P)
638{ 802{
639#if EV_USE_WIN32 803 int i;
640 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 804
641#endif
642#if EV_USE_KQUEUE 805#if EV_USE_KQUEUE
643 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 806 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
644#endif 807#endif
645#if EV_USE_EPOLL 808#if EV_USE_EPOLL
646 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 809 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
650#endif 813#endif
651#if EV_USE_SELECT 814#if EV_USE_SELECT
652 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 815 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
653#endif 816#endif
654 817
818 for (i = NUMPRI; i--; )
819 array_free (pending, [i]);
820
821 /* have to use the microsoft-never-gets-it-right macro */
822 array_free (fdchange, EMPTY);
823 array_free (timer, EMPTY);
824#if EV_PERIODICS
825 array_free (periodic, EMPTY);
826#endif
827 array_free (idle, EMPTY);
828 array_free (prepare, EMPTY);
829 array_free (check, EMPTY);
830
655 method = 0; 831 method = 0;
656 /*TODO*/
657} 832}
658 833
659void 834static void
660loop_fork (EV_P) 835loop_fork (EV_P)
661{ 836{
662 /*TODO*/
663#if EV_USE_EPOLL 837#if EV_USE_EPOLL
664 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 838 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
665#endif 839#endif
666#if EV_USE_KQUEUE 840#if EV_USE_KQUEUE
667 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 841 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
668#endif 842#endif
843
844 if (ev_is_active (&sigev))
845 {
846 /* default loop */
847
848 ev_ref (EV_A);
849 ev_io_stop (EV_A_ &sigev);
850 close (sigpipe [0]);
851 close (sigpipe [1]);
852
853 while (pipe (sigpipe))
854 syserr ("(libev) error creating pipe");
855
856 siginit (EV_A);
857 }
858
859 postfork = 0;
669} 860}
670 861
671#if EV_MULTIPLICITY 862#if EV_MULTIPLICITY
672struct ev_loop * 863struct ev_loop *
673ev_loop_new (int methods) 864ev_loop_new (unsigned int flags)
674{ 865{
675 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 866 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
676 867
868 memset (loop, 0, sizeof (struct ev_loop));
869
677 loop_init (EV_A_ methods); 870 loop_init (EV_A_ flags);
678 871
679 if (ev_method (EV_A)) 872 if (ev_method (EV_A))
680 return loop; 873 return loop;
681 874
682 return 0; 875 return 0;
684 877
685void 878void
686ev_loop_destroy (EV_P) 879ev_loop_destroy (EV_P)
687{ 880{
688 loop_destroy (EV_A); 881 loop_destroy (EV_A);
689 free (loop); 882 ev_free (loop);
690} 883}
691 884
692void 885void
693ev_loop_fork (EV_P) 886ev_loop_fork (EV_P)
694{ 887{
695 loop_fork (EV_A); 888 postfork = 1;
696} 889}
697 890
698#endif 891#endif
699 892
700#if EV_MULTIPLICITY 893#if EV_MULTIPLICITY
701struct ev_loop default_loop_struct;
702static struct ev_loop *default_loop;
703
704struct ev_loop * 894struct ev_loop *
705#else 895#else
706static int default_loop;
707
708int 896int
709#endif 897#endif
710ev_default_loop (int methods) 898ev_default_loop (unsigned int flags)
711{ 899{
712 if (sigpipe [0] == sigpipe [1]) 900 if (sigpipe [0] == sigpipe [1])
713 if (pipe (sigpipe)) 901 if (pipe (sigpipe))
714 return 0; 902 return 0;
715 903
719 struct ev_loop *loop = default_loop = &default_loop_struct; 907 struct ev_loop *loop = default_loop = &default_loop_struct;
720#else 908#else
721 default_loop = 1; 909 default_loop = 1;
722#endif 910#endif
723 911
724 loop_init (EV_A_ methods); 912 loop_init (EV_A_ flags);
725 913
726 if (ev_method (EV_A)) 914 if (ev_method (EV_A))
727 { 915 {
728 ev_watcher_init (&sigev, sigcb);
729 ev_set_priority (&sigev, EV_MAXPRI);
730 siginit (EV_A); 916 siginit (EV_A);
731 917
732#ifndef WIN32 918#ifndef _WIN32
733 ev_signal_init (&childev, childcb, SIGCHLD); 919 ev_signal_init (&childev, childcb, SIGCHLD);
734 ev_set_priority (&childev, EV_MAXPRI); 920 ev_set_priority (&childev, EV_MAXPRI);
735 ev_signal_start (EV_A_ &childev); 921 ev_signal_start (EV_A_ &childev);
736 ev_unref (EV_A); /* child watcher should not keep loop alive */ 922 ev_unref (EV_A); /* child watcher should not keep loop alive */
737#endif 923#endif
748{ 934{
749#if EV_MULTIPLICITY 935#if EV_MULTIPLICITY
750 struct ev_loop *loop = default_loop; 936 struct ev_loop *loop = default_loop;
751#endif 937#endif
752 938
939#ifndef _WIN32
753 ev_ref (EV_A); /* child watcher */ 940 ev_ref (EV_A); /* child watcher */
754 ev_signal_stop (EV_A_ &childev); 941 ev_signal_stop (EV_A_ &childev);
942#endif
755 943
756 ev_ref (EV_A); /* signal watcher */ 944 ev_ref (EV_A); /* signal watcher */
757 ev_io_stop (EV_A_ &sigev); 945 ev_io_stop (EV_A_ &sigev);
758 946
759 close (sigpipe [0]); sigpipe [0] = 0; 947 close (sigpipe [0]); sigpipe [0] = 0;
767{ 955{
768#if EV_MULTIPLICITY 956#if EV_MULTIPLICITY
769 struct ev_loop *loop = default_loop; 957 struct ev_loop *loop = default_loop;
770#endif 958#endif
771 959
772 loop_fork (EV_A); 960 if (method)
773 961 postfork = 1;
774 ev_io_stop (EV_A_ &sigev);
775 close (sigpipe [0]);
776 close (sigpipe [1]);
777 pipe (sigpipe);
778
779 ev_ref (EV_A); /* signal watcher */
780 siginit (EV_A);
781} 962}
782 963
783/*****************************************************************************/ 964/*****************************************************************************/
965
966static int
967any_pending (EV_P)
968{
969 int pri;
970
971 for (pri = NUMPRI; pri--; )
972 if (pendingcnt [pri])
973 return 1;
974
975 return 0;
976}
784 977
785static void 978static void
786call_pending (EV_P) 979call_pending (EV_P)
787{ 980{
788 int pri; 981 int pri;
793 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 986 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
794 987
795 if (p->w) 988 if (p->w)
796 { 989 {
797 p->w->pending = 0; 990 p->w->pending = 0;
798 991 EV_CB_INVOKE (p->w, p->events);
799 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
800 } 992 }
801 } 993 }
802} 994}
803 995
804static void 996static void
812 1004
813 /* first reschedule or stop timer */ 1005 /* first reschedule or stop timer */
814 if (w->repeat) 1006 if (w->repeat)
815 { 1007 {
816 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1008 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1009
817 ((WT)w)->at = mn_now + w->repeat; 1010 ((WT)w)->at += w->repeat;
1011 if (((WT)w)->at < mn_now)
1012 ((WT)w)->at = mn_now;
1013
818 downheap ((WT *)timers, timercnt, 0); 1014 downheap ((WT *)timers, timercnt, 0);
819 } 1015 }
820 else 1016 else
821 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1017 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
822 1018
823 event (EV_A_ (W)w, EV_TIMEOUT); 1019 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
824 } 1020 }
825} 1021}
826 1022
1023#if EV_PERIODICS
827static void 1024static void
828periodics_reify (EV_P) 1025periodics_reify (EV_P)
829{ 1026{
830 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1027 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
831 { 1028 {
832 struct ev_periodic *w = periodics [0]; 1029 struct ev_periodic *w = periodics [0];
833 1030
834 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1031 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
835 1032
836 /* first reschedule or stop timer */ 1033 /* first reschedule or stop timer */
837 if (w->interval) 1034 if (w->reschedule_cb)
838 { 1035 {
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1037 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1038 downheap ((WT *)periodics, periodiccnt, 0);
1039 }
1040 else if (w->interval)
1041 {
839 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1042 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
840 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1043 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
841 downheap ((WT *)periodics, periodiccnt, 0); 1044 downheap ((WT *)periodics, periodiccnt, 0);
842 } 1045 }
843 else 1046 else
844 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1047 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
845 1048
846 event (EV_A_ (W)w, EV_PERIODIC); 1049 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
847 } 1050 }
848} 1051}
849 1052
850static void 1053static void
851periodics_reschedule (EV_P) 1054periodics_reschedule (EV_P)
855 /* adjust periodics after time jump */ 1058 /* adjust periodics after time jump */
856 for (i = 0; i < periodiccnt; ++i) 1059 for (i = 0; i < periodiccnt; ++i)
857 { 1060 {
858 struct ev_periodic *w = periodics [i]; 1061 struct ev_periodic *w = periodics [i];
859 1062
1063 if (w->reschedule_cb)
1064 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
860 if (w->interval) 1065 else if (w->interval)
861 {
862 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1066 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
863
864 if (fabs (diff) >= 1e-4)
865 {
866 ev_periodic_stop (EV_A_ w);
867 ev_periodic_start (EV_A_ w);
868
869 i = 0; /* restart loop, inefficient, but time jumps should be rare */
870 }
871 }
872 } 1067 }
1068
1069 /* now rebuild the heap */
1070 for (i = periodiccnt >> 1; i--; )
1071 downheap ((WT *)periodics, periodiccnt, i);
873} 1072}
1073#endif
874 1074
875inline int 1075inline int
876time_update_monotonic (EV_P) 1076time_update_monotonic (EV_P)
877{ 1077{
878 mn_now = get_clock (); 1078 mn_now = get_clock ();
879 1079
880 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1080 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
881 { 1081 {
882 rt_now = rtmn_diff + mn_now; 1082 ev_rt_now = rtmn_diff + mn_now;
883 return 0; 1083 return 0;
884 } 1084 }
885 else 1085 else
886 { 1086 {
887 now_floor = mn_now; 1087 now_floor = mn_now;
888 rt_now = ev_time (); 1088 ev_rt_now = ev_time ();
889 return 1; 1089 return 1;
890 } 1090 }
891} 1091}
892 1092
893static void 1093static void
902 { 1102 {
903 ev_tstamp odiff = rtmn_diff; 1103 ev_tstamp odiff = rtmn_diff;
904 1104
905 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1105 for (i = 4; --i; ) /* loop a few times, before making important decisions */
906 { 1106 {
907 rtmn_diff = rt_now - mn_now; 1107 rtmn_diff = ev_rt_now - mn_now;
908 1108
909 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1109 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
910 return; /* all is well */ 1110 return; /* all is well */
911 1111
912 rt_now = ev_time (); 1112 ev_rt_now = ev_time ();
913 mn_now = get_clock (); 1113 mn_now = get_clock ();
914 now_floor = mn_now; 1114 now_floor = mn_now;
915 } 1115 }
916 1116
1117# if EV_PERIODICS
917 periodics_reschedule (EV_A); 1118 periodics_reschedule (EV_A);
1119# endif
918 /* no timer adjustment, as the monotonic clock doesn't jump */ 1120 /* no timer adjustment, as the monotonic clock doesn't jump */
919 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1121 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
920 } 1122 }
921 } 1123 }
922 else 1124 else
923#endif 1125#endif
924 { 1126 {
925 rt_now = ev_time (); 1127 ev_rt_now = ev_time ();
926 1128
927 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1129 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
928 { 1130 {
1131#if EV_PERIODICS
929 periodics_reschedule (EV_A); 1132 periodics_reschedule (EV_A);
1133#endif
930 1134
931 /* adjust timers. this is easy, as the offset is the same for all */ 1135 /* adjust timers. this is easy, as the offset is the same for all */
932 for (i = 0; i < timercnt; ++i) 1136 for (i = 0; i < timercnt; ++i)
933 ((WT)timers [i])->at += rt_now - mn_now; 1137 ((WT)timers [i])->at += ev_rt_now - mn_now;
934 } 1138 }
935 1139
936 mn_now = rt_now; 1140 mn_now = ev_rt_now;
937 } 1141 }
938} 1142}
939 1143
940void 1144void
941ev_ref (EV_P) 1145ev_ref (EV_P)
964 { 1168 {
965 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1169 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
966 call_pending (EV_A); 1170 call_pending (EV_A);
967 } 1171 }
968 1172
1173 /* we might have forked, so reify kernel state if necessary */
1174 if (expect_false (postfork))
1175 loop_fork (EV_A);
1176
969 /* update fd-related kernel structures */ 1177 /* update fd-related kernel structures */
970 fd_reify (EV_A); 1178 fd_reify (EV_A);
971 1179
972 /* calculate blocking time */ 1180 /* calculate blocking time */
973 1181
974 /* we only need this for !monotonic clockor timers, but as we basically 1182 /* we only need this for !monotonic clock or timers, but as we basically
975 always have timers, we just calculate it always */ 1183 always have timers, we just calculate it always */
976#if EV_USE_MONOTONIC 1184#if EV_USE_MONOTONIC
977 if (expect_true (have_monotonic)) 1185 if (expect_true (have_monotonic))
978 time_update_monotonic (EV_A); 1186 time_update_monotonic (EV_A);
979 else 1187 else
980#endif 1188#endif
981 { 1189 {
982 rt_now = ev_time (); 1190 ev_rt_now = ev_time ();
983 mn_now = rt_now; 1191 mn_now = ev_rt_now;
984 } 1192 }
985 1193
986 if (flags & EVLOOP_NONBLOCK || idlecnt) 1194 if (flags & EVLOOP_NONBLOCK || idlecnt)
987 block = 0.; 1195 block = 0.;
988 else 1196 else
993 { 1201 {
994 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1202 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
995 if (block > to) block = to; 1203 if (block > to) block = to;
996 } 1204 }
997 1205
1206#if EV_PERIODICS
998 if (periodiccnt) 1207 if (periodiccnt)
999 { 1208 {
1000 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1209 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1001 if (block > to) block = to; 1210 if (block > to) block = to;
1002 } 1211 }
1212#endif
1003 1213
1004 if (block < 0.) block = 0.; 1214 if (block < 0.) block = 0.;
1005 } 1215 }
1006 1216
1007 method_poll (EV_A_ block); 1217 method_poll (EV_A_ block);
1008 1218
1009 /* update rt_now, do magic */ 1219 /* update ev_rt_now, do magic */
1010 time_update (EV_A); 1220 time_update (EV_A);
1011 1221
1012 /* queue pending timers and reschedule them */ 1222 /* queue pending timers and reschedule them */
1013 timers_reify (EV_A); /* relative timers called last */ 1223 timers_reify (EV_A); /* relative timers called last */
1224#if EV_PERIODICS
1014 periodics_reify (EV_A); /* absolute timers called first */ 1225 periodics_reify (EV_A); /* absolute timers called first */
1226#endif
1015 1227
1016 /* queue idle watchers unless io or timers are pending */ 1228 /* queue idle watchers unless io or timers are pending */
1017 if (!pendingcnt) 1229 if (idlecnt && !any_pending (EV_A))
1018 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1230 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1019 1231
1020 /* queue check watchers, to be executed first */ 1232 /* queue check watchers, to be executed first */
1021 if (checkcnt) 1233 if (checkcnt)
1022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1234 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1097 return; 1309 return;
1098 1310
1099 assert (("ev_io_start called with negative fd", fd >= 0)); 1311 assert (("ev_io_start called with negative fd", fd >= 0));
1100 1312
1101 ev_start (EV_A_ (W)w, 1); 1313 ev_start (EV_A_ (W)w, 1);
1102 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1314 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1103 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1315 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1104 1316
1105 fd_change (EV_A_ fd); 1317 fd_change (EV_A_ fd);
1106} 1318}
1107 1319
1110{ 1322{
1111 ev_clear_pending (EV_A_ (W)w); 1323 ev_clear_pending (EV_A_ (W)w);
1112 if (!ev_is_active (w)) 1324 if (!ev_is_active (w))
1113 return; 1325 return;
1114 1326
1327 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1328
1115 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1329 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1116 ev_stop (EV_A_ (W)w); 1330 ev_stop (EV_A_ (W)w);
1117 1331
1118 fd_change (EV_A_ w->fd); 1332 fd_change (EV_A_ w->fd);
1119} 1333}
1127 ((WT)w)->at += mn_now; 1341 ((WT)w)->at += mn_now;
1128 1342
1129 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1343 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1130 1344
1131 ev_start (EV_A_ (W)w, ++timercnt); 1345 ev_start (EV_A_ (W)w, ++timercnt);
1132 array_needsize (timers, timermax, timercnt, ); 1346 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1133 timers [timercnt - 1] = w; 1347 timers [timercnt - 1] = w;
1134 upheap ((WT *)timers, timercnt - 1); 1348 upheap ((WT *)timers, timercnt - 1);
1135 1349
1136 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1137} 1351}
1146 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1360 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1147 1361
1148 if (((W)w)->active < timercnt--) 1362 if (((W)w)->active < timercnt--)
1149 { 1363 {
1150 timers [((W)w)->active - 1] = timers [timercnt]; 1364 timers [((W)w)->active - 1] = timers [timercnt];
1151 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1152 } 1366 }
1153 1367
1154 ((WT)w)->at = w->repeat; 1368 ((WT)w)->at -= mn_now;
1155 1369
1156 ev_stop (EV_A_ (W)w); 1370 ev_stop (EV_A_ (W)w);
1157} 1371}
1158 1372
1159void 1373void
1162 if (ev_is_active (w)) 1376 if (ev_is_active (w))
1163 { 1377 {
1164 if (w->repeat) 1378 if (w->repeat)
1165 { 1379 {
1166 ((WT)w)->at = mn_now + w->repeat; 1380 ((WT)w)->at = mn_now + w->repeat;
1167 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1381 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1168 } 1382 }
1169 else 1383 else
1170 ev_timer_stop (EV_A_ w); 1384 ev_timer_stop (EV_A_ w);
1171 } 1385 }
1172 else if (w->repeat) 1386 else if (w->repeat)
1173 ev_timer_start (EV_A_ w); 1387 ev_timer_start (EV_A_ w);
1174} 1388}
1175 1389
1390#if EV_PERIODICS
1176void 1391void
1177ev_periodic_start (EV_P_ struct ev_periodic *w) 1392ev_periodic_start (EV_P_ struct ev_periodic *w)
1178{ 1393{
1179 if (ev_is_active (w)) 1394 if (ev_is_active (w))
1180 return; 1395 return;
1181 1396
1397 if (w->reschedule_cb)
1398 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1399 else if (w->interval)
1400 {
1182 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1401 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1183
1184 /* this formula differs from the one in periodic_reify because we do not always round up */ 1402 /* this formula differs from the one in periodic_reify because we do not always round up */
1185 if (w->interval)
1186 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1403 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1404 }
1187 1405
1188 ev_start (EV_A_ (W)w, ++periodiccnt); 1406 ev_start (EV_A_ (W)w, ++periodiccnt);
1189 array_needsize (periodics, periodicmax, periodiccnt, ); 1407 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1190 periodics [periodiccnt - 1] = w; 1408 periodics [periodiccnt - 1] = w;
1191 upheap ((WT *)periodics, periodiccnt - 1); 1409 upheap ((WT *)periodics, periodiccnt - 1);
1192 1410
1193 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1411 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1194} 1412}
1203 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1421 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1204 1422
1205 if (((W)w)->active < periodiccnt--) 1423 if (((W)w)->active < periodiccnt--)
1206 { 1424 {
1207 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1425 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1208 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1426 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1209 } 1427 }
1210 1428
1211 ev_stop (EV_A_ (W)w); 1429 ev_stop (EV_A_ (W)w);
1212} 1430}
1213 1431
1214void 1432void
1433ev_periodic_again (EV_P_ struct ev_periodic *w)
1434{
1435 /* TODO: use adjustheap and recalculation */
1436 ev_periodic_stop (EV_A_ w);
1437 ev_periodic_start (EV_A_ w);
1438}
1439#endif
1440
1441void
1215ev_idle_start (EV_P_ struct ev_idle *w) 1442ev_idle_start (EV_P_ struct ev_idle *w)
1216{ 1443{
1217 if (ev_is_active (w)) 1444 if (ev_is_active (w))
1218 return; 1445 return;
1219 1446
1220 ev_start (EV_A_ (W)w, ++idlecnt); 1447 ev_start (EV_A_ (W)w, ++idlecnt);
1221 array_needsize (idles, idlemax, idlecnt, ); 1448 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1222 idles [idlecnt - 1] = w; 1449 idles [idlecnt - 1] = w;
1223} 1450}
1224 1451
1225void 1452void
1226ev_idle_stop (EV_P_ struct ev_idle *w) 1453ev_idle_stop (EV_P_ struct ev_idle *w)
1227{ 1454{
1228 ev_clear_pending (EV_A_ (W)w); 1455 ev_clear_pending (EV_A_ (W)w);
1229 if (ev_is_active (w)) 1456 if (!ev_is_active (w))
1230 return; 1457 return;
1231 1458
1232 idles [((W)w)->active - 1] = idles [--idlecnt]; 1459 idles [((W)w)->active - 1] = idles [--idlecnt];
1233 ev_stop (EV_A_ (W)w); 1460 ev_stop (EV_A_ (W)w);
1234} 1461}
1238{ 1465{
1239 if (ev_is_active (w)) 1466 if (ev_is_active (w))
1240 return; 1467 return;
1241 1468
1242 ev_start (EV_A_ (W)w, ++preparecnt); 1469 ev_start (EV_A_ (W)w, ++preparecnt);
1243 array_needsize (prepares, preparemax, preparecnt, ); 1470 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1244 prepares [preparecnt - 1] = w; 1471 prepares [preparecnt - 1] = w;
1245} 1472}
1246 1473
1247void 1474void
1248ev_prepare_stop (EV_P_ struct ev_prepare *w) 1475ev_prepare_stop (EV_P_ struct ev_prepare *w)
1249{ 1476{
1250 ev_clear_pending (EV_A_ (W)w); 1477 ev_clear_pending (EV_A_ (W)w);
1251 if (ev_is_active (w)) 1478 if (!ev_is_active (w))
1252 return; 1479 return;
1253 1480
1254 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1481 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1255 ev_stop (EV_A_ (W)w); 1482 ev_stop (EV_A_ (W)w);
1256} 1483}
1260{ 1487{
1261 if (ev_is_active (w)) 1488 if (ev_is_active (w))
1262 return; 1489 return;
1263 1490
1264 ev_start (EV_A_ (W)w, ++checkcnt); 1491 ev_start (EV_A_ (W)w, ++checkcnt);
1265 array_needsize (checks, checkmax, checkcnt, ); 1492 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1266 checks [checkcnt - 1] = w; 1493 checks [checkcnt - 1] = w;
1267} 1494}
1268 1495
1269void 1496void
1270ev_check_stop (EV_P_ struct ev_check *w) 1497ev_check_stop (EV_P_ struct ev_check *w)
1271{ 1498{
1272 ev_clear_pending (EV_A_ (W)w); 1499 ev_clear_pending (EV_A_ (W)w);
1273 if (ev_is_active (w)) 1500 if (!ev_is_active (w))
1274 return; 1501 return;
1275 1502
1276 checks [((W)w)->active - 1] = checks [--checkcnt]; 1503 checks [((W)w)->active - 1] = checks [--checkcnt];
1277 ev_stop (EV_A_ (W)w); 1504 ev_stop (EV_A_ (W)w);
1278} 1505}
1291 return; 1518 return;
1292 1519
1293 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1520 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1294 1521
1295 ev_start (EV_A_ (W)w, 1); 1522 ev_start (EV_A_ (W)w, 1);
1296 array_needsize (signals, signalmax, w->signum, signals_init); 1523 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1297 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1524 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1298 1525
1299 if (!((WL)w)->next) 1526 if (!((WL)w)->next)
1300 { 1527 {
1528#if _WIN32
1529 signal (w->signum, sighandler);
1530#else
1301 struct sigaction sa; 1531 struct sigaction sa;
1302 sa.sa_handler = sighandler; 1532 sa.sa_handler = sighandler;
1303 sigfillset (&sa.sa_mask); 1533 sigfillset (&sa.sa_mask);
1304 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1534 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1305 sigaction (w->signum, &sa, 0); 1535 sigaction (w->signum, &sa, 0);
1536#endif
1306 } 1537 }
1307} 1538}
1308 1539
1309void 1540void
1310ev_signal_stop (EV_P_ struct ev_signal *w) 1541ev_signal_stop (EV_P_ struct ev_signal *w)
1335 1566
1336void 1567void
1337ev_child_stop (EV_P_ struct ev_child *w) 1568ev_child_stop (EV_P_ struct ev_child *w)
1338{ 1569{
1339 ev_clear_pending (EV_A_ (W)w); 1570 ev_clear_pending (EV_A_ (W)w);
1340 if (ev_is_active (w)) 1571 if (!ev_is_active (w))
1341 return; 1572 return;
1342 1573
1343 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1574 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1344 ev_stop (EV_A_ (W)w); 1575 ev_stop (EV_A_ (W)w);
1345} 1576}
1360 void (*cb)(int revents, void *arg) = once->cb; 1591 void (*cb)(int revents, void *arg) = once->cb;
1361 void *arg = once->arg; 1592 void *arg = once->arg;
1362 1593
1363 ev_io_stop (EV_A_ &once->io); 1594 ev_io_stop (EV_A_ &once->io);
1364 ev_timer_stop (EV_A_ &once->to); 1595 ev_timer_stop (EV_A_ &once->to);
1365 free (once); 1596 ev_free (once);
1366 1597
1367 cb (revents, arg); 1598 cb (revents, arg);
1368} 1599}
1369 1600
1370static void 1601static void
1380} 1611}
1381 1612
1382void 1613void
1383ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1614ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1384{ 1615{
1385 struct ev_once *once = malloc (sizeof (struct ev_once)); 1616 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1386 1617
1387 if (!once) 1618 if (!once)
1388 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1619 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1389 else 1620 else
1390 { 1621 {
1391 once->cb = cb; 1622 once->cb = cb;
1392 once->arg = arg; 1623 once->arg = arg;
1393 1624
1394 ev_watcher_init (&once->io, once_cb_io); 1625 ev_init (&once->io, once_cb_io);
1395 if (fd >= 0) 1626 if (fd >= 0)
1396 { 1627 {
1397 ev_io_set (&once->io, fd, events); 1628 ev_io_set (&once->io, fd, events);
1398 ev_io_start (EV_A_ &once->io); 1629 ev_io_start (EV_A_ &once->io);
1399 } 1630 }
1400 1631
1401 ev_watcher_init (&once->to, once_cb_to); 1632 ev_init (&once->to, once_cb_to);
1402 if (timeout >= 0.) 1633 if (timeout >= 0.)
1403 { 1634 {
1404 ev_timer_set (&once->to, timeout, 0.); 1635 ev_timer_set (&once->to, timeout, 0.);
1405 ev_timer_start (EV_A_ &once->to); 1636 ev_timer_start (EV_A_ &once->to);
1406 } 1637 }
1407 } 1638 }
1408} 1639}
1409 1640
1641#ifdef __cplusplus
1642}
1643#endif
1644

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines