ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.111 by root, Mon Nov 12 06:34:49 2007 UTC vs.
Revision 1.300 by root, Tue Jul 14 20:31:21 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
45# endif 79# endif
46# endif 80# endif
47 81
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
50# endif 88# endif
51 89
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
54# endif 96# endif
55 97
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
58# endif 104# endif
59 105
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
62# endif 112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
63 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
64#endif 146#endif
65 147
66#include <math.h> 148#include <math.h>
67#include <stdlib.h> 149#include <stdlib.h>
68#include <fcntl.h> 150#include <fcntl.h>
75#include <sys/types.h> 157#include <sys/types.h>
76#include <time.h> 158#include <time.h>
77 159
78#include <signal.h> 160#include <signal.h>
79 161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
80#ifndef _WIN32 168#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 169# include <sys/time.h>
83# include <sys/wait.h> 170# include <sys/wait.h>
171# include <unistd.h>
84#else 172#else
173# include <io.h>
85# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 175# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
89# endif 178# endif
90#endif 179#endif
91 180
92/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
93 190
94#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
95# define EV_USE_MONOTONIC 1 193# define EV_USE_MONOTONIC 1
194# else
195# define EV_USE_MONOTONIC 0
196# endif
197#endif
198
199#ifndef EV_USE_REALTIME
200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
96#endif 209#endif
97 210
98#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 213#endif
102 214
103#ifndef EV_USE_POLL 215#ifndef EV_USE_POLL
104# ifdef _WIN32 216# ifdef _WIN32
105# define EV_USE_POLL 0 217# define EV_USE_POLL 0
107# define EV_USE_POLL 1 219# define EV_USE_POLL 1
108# endif 220# endif
109#endif 221#endif
110 222
111#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
112# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
113#endif 229#endif
114 230
115#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
117#endif 233#endif
118 234
119#ifndef EV_USE_REALTIME 235#ifndef EV_USE_PORT
236# define EV_USE_PORT 0
237#endif
238
239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
120# define EV_USE_REALTIME 1 241# define EV_USE_INOTIFY 1
242# else
243# define EV_USE_INOTIFY 0
121#endif 244# endif
245#endif
122 246
123/**/ 247#ifndef EV_PID_HASHSIZE
124 248# if EV_MINIMAL
125/* darwin simply cannot be helped */ 249# define EV_PID_HASHSIZE 1
126#ifdef __APPLE__ 250# else
127# undef EV_USE_POLL 251# define EV_PID_HASHSIZE 16
128# undef EV_USE_KQUEUE
129#endif 252# endif
253#endif
254
255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
130 304
131#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
134#endif 308#endif
136#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
139#endif 313#endif
140 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
141#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h> 338# include <winsock.h>
143#endif 339#endif
144 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
145/**/ 353/**/
146 354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
151 374
152#ifdef EV_H
153# include EV_H
154#else
155# include "ev.h"
156#endif
157
158#if __GNUC__ >= 3 375#if __GNUC__ >= 4
159# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
160# define inline inline 377# define noinline __attribute__ ((noinline))
161#else 378#else
162# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
163# define inline static 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
164#endif 384#endif
165 385
166#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
168 389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
395
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
171 403
172#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
405#define EMPTY2(a,b) /* used to suppress some warnings */
173 406
174typedef struct ev_watcher *W; 407typedef ev_watcher *W;
175typedef struct ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
176typedef struct ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
177 410
411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
178static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422#endif
179 423
180#ifdef _WIN32 424#ifdef _WIN32
181# include "ev_win32.c" 425# include "ev_win32.c"
182#endif 426#endif
183 427
184/*****************************************************************************/ 428/*****************************************************************************/
185 429
186static void (*syserr_cb)(const char *msg); 430static void (*syserr_cb)(const char *msg);
187 431
432void
188void ev_set_syserr_cb (void (*cb)(const char *msg)) 433ev_set_syserr_cb (void (*cb)(const char *msg))
189{ 434{
190 syserr_cb = cb; 435 syserr_cb = cb;
191} 436}
192 437
193static void 438static void noinline
194syserr (const char *msg) 439ev_syserr (const char *msg)
195{ 440{
196 if (!msg) 441 if (!msg)
197 msg = "(libev) system error"; 442 msg = "(libev) system error";
198 443
199 if (syserr_cb) 444 if (syserr_cb)
203 perror (msg); 448 perror (msg);
204 abort (); 449 abort ();
205 } 450 }
206} 451}
207 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
208static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
209 469
470void
210void ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
211{ 472{
212 alloc = cb; 473 alloc = cb;
213} 474}
214 475
215static void * 476inline_speed void *
216ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
217{ 478{
218 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
219 480
220 if (!ptr && size) 481 if (!ptr && size)
221 { 482 {
222 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
223 abort (); 484 abort ();
229#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
230#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
231 492
232/*****************************************************************************/ 493/*****************************************************************************/
233 494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
234typedef struct 499typedef struct
235{ 500{
236 WL head; 501 WL head;
237 unsigned char events; 502 unsigned char events; /* the events watched for */
503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
238 unsigned char reify; 505 unsigned char unused;
506#if EV_USE_EPOLL
507 unsigned int egen; /* generation counter to counter epoll bugs */
508#endif
239#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
240 SOCKET handle; 510 SOCKET handle;
241#endif 511#endif
242} ANFD; 512} ANFD;
243 513
514/* stores the pending event set for a given watcher */
244typedef struct 515typedef struct
245{ 516{
246 W w; 517 W w;
247 int events; 518 int events; /* the pending event set for the given watcher */
248} ANPENDING; 519} ANPENDING;
520
521#if EV_USE_INOTIFY
522/* hash table entry per inotify-id */
523typedef struct
524{
525 WL head;
526} ANFS;
527#endif
528
529/* Heap Entry */
530#if EV_HEAP_CACHE_AT
531 /* a heap element */
532 typedef struct {
533 ev_tstamp at;
534 WT w;
535 } ANHE;
536
537 #define ANHE_w(he) (he).w /* access watcher, read-write */
538 #define ANHE_at(he) (he).at /* access cached at, read-only */
539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540#else
541 /* a heap element */
542 typedef WT ANHE;
543
544 #define ANHE_w(he) (he)
545 #define ANHE_at(he) (he)->at
546 #define ANHE_at_cache(he)
547#endif
249 548
250#if EV_MULTIPLICITY 549#if EV_MULTIPLICITY
251 550
252 struct ev_loop 551 struct ev_loop
253 { 552 {
257 #include "ev_vars.h" 556 #include "ev_vars.h"
258 #undef VAR 557 #undef VAR
259 }; 558 };
260 #include "ev_wrap.h" 559 #include "ev_wrap.h"
261 560
262 struct ev_loop default_loop_struct; 561 static struct ev_loop default_loop_struct;
263 static struct ev_loop *default_loop; 562 struct ev_loop *ev_default_loop_ptr;
264 563
265#else 564#else
266 565
267 ev_tstamp ev_rt_now; 566 ev_tstamp ev_rt_now;
268 #define VAR(name,decl) static decl; 567 #define VAR(name,decl) static decl;
269 #include "ev_vars.h" 568 #include "ev_vars.h"
270 #undef VAR 569 #undef VAR
271 570
272 static int default_loop; 571 static int ev_default_loop_ptr;
273 572
274#endif 573#endif
574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
275 586
276/*****************************************************************************/ 587/*****************************************************************************/
277 588
589#ifndef EV_HAVE_EV_TIME
278ev_tstamp 590ev_tstamp
279ev_time (void) 591ev_time (void)
280{ 592{
281#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
282 struct timespec ts; 596 struct timespec ts;
283 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
284 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
285#else 599 }
600#endif
601
286 struct timeval tv; 602 struct timeval tv;
287 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
288 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
289#endif
290} 605}
606#endif
291 607
292inline ev_tstamp 608inline_size ev_tstamp
293get_clock (void) 609get_clock (void)
294{ 610{
295#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
296 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
297 { 613 {
310{ 626{
311 return ev_rt_now; 627 return ev_rt_now;
312} 628}
313#endif 629#endif
314 630
315#define array_roundsize(type,n) (((n) | 4) & ~3) 631void
632ev_sleep (ev_tstamp delay)
633{
634 if (delay > 0.)
635 {
636#if EV_USE_NANOSLEEP
637 struct timespec ts;
638
639 ts.tv_sec = (time_t)delay;
640 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
641
642 nanosleep (&ts, 0);
643#elif defined(_WIN32)
644 Sleep ((unsigned long)(delay * 1e3));
645#else
646 struct timeval tv;
647
648 tv.tv_sec = (time_t)delay;
649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
650
651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 /* somehting not guaranteed by newer posix versions, but guaranteed */
653 /* by older ones */
654 select (0, 0, 0, 0, &tv);
655#endif
656 }
657}
658
659/*****************************************************************************/
660
661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
662
663/* find a suitable new size for the given array, */
664/* hopefully by rounding to a ncie-to-malloc size */
665inline_size int
666array_nextsize (int elem, int cur, int cnt)
667{
668 int ncur = cur + 1;
669
670 do
671 ncur <<= 1;
672 while (cnt > ncur);
673
674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
676 {
677 ncur *= elem;
678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
679 ncur = ncur - sizeof (void *) * 4;
680 ncur /= elem;
681 }
682
683 return ncur;
684}
685
686static noinline void *
687array_realloc (int elem, void *base, int *cur, int cnt)
688{
689 *cur = array_nextsize (elem, *cur, cnt);
690 return ev_realloc (base, elem * *cur);
691}
692
693#define array_init_zero(base,count) \
694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
316 695
317#define array_needsize(type,base,cur,cnt,init) \ 696#define array_needsize(type,base,cur,cnt,init) \
318 if (expect_false ((cnt) > cur)) \ 697 if (expect_false ((cnt) > (cur))) \
319 { \ 698 { \
320 int newcnt = cur; \ 699 int ocur_ = (cur); \
321 do \ 700 (base) = (type *)array_realloc \
322 { \ 701 (sizeof (type), (base), &(cur), (cnt)); \
323 newcnt = array_roundsize (type, newcnt << 1); \ 702 init ((base) + (ocur_), (cur) - ocur_); \
324 } \
325 while ((cnt) > newcnt); \
326 \
327 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
328 init (base + cur, newcnt - cur); \
329 cur = newcnt; \
330 } 703 }
331 704
705#if 0
332#define array_slim(type,stem) \ 706#define array_slim(type,stem) \
333 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 707 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
334 { \ 708 { \
335 stem ## max = array_roundsize (stem ## cnt >> 1); \ 709 stem ## max = array_roundsize (stem ## cnt >> 1); \
336 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 710 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
337 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
338 } 712 }
713#endif
339 714
340#define array_free(stem, idx) \ 715#define array_free(stem, idx) \
341 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
342 717
343/*****************************************************************************/ 718/*****************************************************************************/
344 719
345static void 720/* dummy callback for pending events */
346anfds_init (ANFD *base, int count) 721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
347{ 723{
348 while (count--)
349 {
350 base->head = 0;
351 base->events = EV_NONE;
352 base->reify = 0;
353
354 ++base;
355 }
356} 724}
357 725
358void 726void noinline
359ev_feed_event (EV_P_ void *w, int revents) 727ev_feed_event (EV_P_ void *w, int revents)
360{ 728{
361 W w_ = (W)w; 729 W w_ = (W)w;
730 int pri = ABSPRI (w_);
362 731
363 if (w_->pending) 732 if (expect_false (w_->pending))
733 pendings [pri][w_->pending - 1].events |= revents;
734 else
364 { 735 {
736 w_->pending = ++pendingcnt [pri];
737 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
738 pendings [pri][w_->pending - 1].w = w_;
365 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 739 pendings [pri][w_->pending - 1].events = revents;
366 return;
367 } 740 }
368
369 w_->pending = ++pendingcnt [ABSPRI (w_)];
370 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
371 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
372 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
373} 741}
374 742
375static void 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
376queue_events (EV_P_ W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
377{ 760{
378 int i; 761 int i;
379 762
380 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
381 ev_feed_event (EV_A_ events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
382} 765}
383 766
767/*****************************************************************************/
768
384inline void 769inline_speed void
385fd_event (EV_P_ int fd, int revents) 770fd_event_nc (EV_P_ int fd, int revents)
386{ 771{
387 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 773 ev_io *w;
389 774
390 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
391 { 776 {
392 int ev = w->events & revents; 777 int ev = w->events & revents;
393 778
394 if (ev) 779 if (ev)
395 ev_feed_event (EV_A_ (W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
396 } 781 }
397} 782}
398 783
784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
790
791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793}
794
399void 795void
400ev_feed_fd_event (EV_P_ int fd, int revents) 796ev_feed_fd_event (EV_P_ int fd, int revents)
401{ 797{
798 if (fd >= 0 && fd < anfdmax)
402 fd_event (EV_A_ fd, revents); 799 fd_event_nc (EV_A_ fd, revents);
403} 800}
404 801
405/*****************************************************************************/ 802/* make sure the external fd watch events are in-sync */
406 803/* with the kernel/libev internal state */
407static void 804inline_size void
408fd_reify (EV_P) 805fd_reify (EV_P)
409{ 806{
410 int i; 807 int i;
411 808
412 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
413 { 810 {
414 int fd = fdchanges [i]; 811 int fd = fdchanges [i];
415 ANFD *anfd = anfds + fd; 812 ANFD *anfd = anfds + fd;
416 struct ev_io *w; 813 ev_io *w;
417 814
418 int events = 0; 815 unsigned char events = 0;
419 816
420 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 817 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
421 events |= w->events; 818 events |= (unsigned char)w->events;
422 819
423#if EV_SELECT_IS_WINSOCKET 820#if EV_SELECT_IS_WINSOCKET
424 if (events) 821 if (events)
425 { 822 {
426 unsigned long argp; 823 unsigned long arg;
824 #ifdef EV_FD_TO_WIN32_HANDLE
825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
826 #else
427 anfd->handle = _get_osfhandle (fd); 827 anfd->handle = _get_osfhandle (fd);
828 #endif
428 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
429 } 830 }
430#endif 831#endif
431 832
833 {
834 unsigned char o_events = anfd->events;
835 unsigned char o_reify = anfd->reify;
836
432 anfd->reify = 0; 837 anfd->reify = 0;
433
434 method_modify (EV_A_ fd, anfd->events, events);
435 anfd->events = events; 838 anfd->events = events;
839
840 if (o_events != events || o_reify & EV__IOFDSET)
841 backend_modify (EV_A_ fd, o_events, events);
842 }
436 } 843 }
437 844
438 fdchangecnt = 0; 845 fdchangecnt = 0;
439} 846}
440 847
441static void 848/* something about the given fd changed */
849inline_size void
442fd_change (EV_P_ int fd) 850fd_change (EV_P_ int fd, int flags)
443{ 851{
444 if (anfds [fd].reify) 852 unsigned char reify = anfds [fd].reify;
445 return;
446
447 anfds [fd].reify = 1; 853 anfds [fd].reify |= flags;
448 854
855 if (expect_true (!reify))
856 {
449 ++fdchangecnt; 857 ++fdchangecnt;
450 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
451 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
860 }
452} 861}
453 862
454static void 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
455fd_kill (EV_P_ int fd) 865fd_kill (EV_P_ int fd)
456{ 866{
457 struct ev_io *w; 867 ev_io *w;
458 868
459 while ((w = (struct ev_io *)anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
460 { 870 {
461 ev_io_stop (EV_A_ w); 871 ev_io_stop (EV_A_ w);
462 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
463 } 873 }
464} 874}
465 875
466static int 876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
467fd_valid (int fd) 878fd_valid (int fd)
468{ 879{
469#ifdef _WIN32 880#ifdef _WIN32
470 return _get_osfhandle (fd) != -1; 881 return _get_osfhandle (fd) != -1;
471#else 882#else
472 return fcntl (fd, F_GETFD) != -1; 883 return fcntl (fd, F_GETFD) != -1;
473#endif 884#endif
474} 885}
475 886
476/* called on EBADF to verify fds */ 887/* called on EBADF to verify fds */
477static void 888static void noinline
478fd_ebadf (EV_P) 889fd_ebadf (EV_P)
479{ 890{
480 int fd; 891 int fd;
481 892
482 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
483 if (anfds [fd].events) 894 if (anfds [fd].events)
484 if (!fd_valid (fd) == -1 && errno == EBADF) 895 if (!fd_valid (fd) && errno == EBADF)
485 fd_kill (EV_A_ fd); 896 fd_kill (EV_A_ fd);
486} 897}
487 898
488/* called on ENOMEM in select/poll to kill some fds and retry */ 899/* called on ENOMEM in select/poll to kill some fds and retry */
489static void 900static void noinline
490fd_enomem (EV_P) 901fd_enomem (EV_P)
491{ 902{
492 int fd; 903 int fd;
493 904
494 for (fd = anfdmax; fd--; ) 905 for (fd = anfdmax; fd--; )
497 fd_kill (EV_A_ fd); 908 fd_kill (EV_A_ fd);
498 return; 909 return;
499 } 910 }
500} 911}
501 912
502/* usually called after fork if method needs to re-arm all fds from scratch */ 913/* usually called after fork if backend needs to re-arm all fds from scratch */
503static void 914static void noinline
504fd_rearm_all (EV_P) 915fd_rearm_all (EV_P)
505{ 916{
506 int fd; 917 int fd;
507 918
508 /* this should be highly optimised to not do anything but set a flag */
509 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
510 if (anfds [fd].events) 920 if (anfds [fd].events)
511 { 921 {
512 anfds [fd].events = 0; 922 anfds [fd].events = 0;
513 fd_change (EV_A_ fd); 923 anfds [fd].emask = 0;
924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
514 } 925 }
515} 926}
516 927
517/*****************************************************************************/ 928/*****************************************************************************/
518 929
519static void 930/*
520upheap (WT *heap, int k) 931 * the heap functions want a real array index. array index 0 uis guaranteed to not
521{ 932 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
522 WT w = heap [k]; 933 * the branching factor of the d-tree.
934 */
523 935
524 while (k && heap [k >> 1]->at > w->at) 936/*
525 { 937 * at the moment we allow libev the luxury of two heaps,
526 heap [k] = heap [k >> 1]; 938 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
527 ((W)heap [k])->active = k + 1; 939 * which is more cache-efficient.
528 k >>= 1; 940 * the difference is about 5% with 50000+ watchers.
529 } 941 */
942#if EV_USE_4HEAP
530 943
531 heap [k] = w; 944#define DHEAP 4
532 ((W)heap [k])->active = k + 1; 945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
947#define UPHEAP_DONE(p,k) ((p) == (k))
533 948
534} 949/* away from the root */
535 950inline_speed void
536static void
537downheap (WT *heap, int N, int k) 951downheap (ANHE *heap, int N, int k)
538{ 952{
539 WT w = heap [k]; 953 ANHE he = heap [k];
954 ANHE *E = heap + N + HEAP0;
540 955
541 while (k < (N >> 1)) 956 for (;;)
542 { 957 {
543 int j = k << 1; 958 ev_tstamp minat;
959 ANHE *minpos;
960 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
544 961
545 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 962 /* find minimum child */
963 if (expect_true (pos + DHEAP - 1 < E))
546 ++j; 964 {
547 965 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
548 if (w->at <= heap [j]->at) 966 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
967 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
968 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 }
970 else if (pos < E)
971 {
972 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
976 }
977 else
549 break; 978 break;
550 979
980 if (ANHE_at (he) <= minat)
981 break;
982
983 heap [k] = *minpos;
984 ev_active (ANHE_w (*minpos)) = k;
985
986 k = minpos - heap;
987 }
988
989 heap [k] = he;
990 ev_active (ANHE_w (he)) = k;
991}
992
993#else /* 4HEAP */
994
995#define HEAP0 1
996#define HPARENT(k) ((k) >> 1)
997#define UPHEAP_DONE(p,k) (!(p))
998
999/* away from the root */
1000inline_speed void
1001downheap (ANHE *heap, int N, int k)
1002{
1003 ANHE he = heap [k];
1004
1005 for (;;)
1006 {
1007 int c = k << 1;
1008
1009 if (c > N + HEAP0 - 1)
1010 break;
1011
1012 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1013 ? 1 : 0;
1014
1015 if (ANHE_at (he) <= ANHE_at (heap [c]))
1016 break;
1017
551 heap [k] = heap [j]; 1018 heap [k] = heap [c];
552 ((W)heap [k])->active = k + 1; 1019 ev_active (ANHE_w (heap [k])) = k;
1020
553 k = j; 1021 k = c;
554 } 1022 }
555 1023
556 heap [k] = w; 1024 heap [k] = he;
557 ((W)heap [k])->active = k + 1; 1025 ev_active (ANHE_w (he)) = k;
558} 1026}
1027#endif
559 1028
1029/* towards the root */
1030inline_speed void
1031upheap (ANHE *heap, int k)
1032{
1033 ANHE he = heap [k];
1034
1035 for (;;)
1036 {
1037 int p = HPARENT (k);
1038
1039 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1040 break;
1041
1042 heap [k] = heap [p];
1043 ev_active (ANHE_w (heap [k])) = k;
1044 k = p;
1045 }
1046
1047 heap [k] = he;
1048 ev_active (ANHE_w (he)) = k;
1049}
1050
1051/* move an element suitably so it is in a correct place */
560inline void 1052inline_size void
561adjustheap (WT *heap, int N, int k) 1053adjustheap (ANHE *heap, int N, int k)
562{ 1054{
1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
563 upheap (heap, k); 1056 upheap (heap, k);
1057 else
564 downheap (heap, N, k); 1058 downheap (heap, N, k);
1059}
1060
1061/* rebuild the heap: this function is used only once and executed rarely */
1062inline_size void
1063reheap (ANHE *heap, int N)
1064{
1065 int i;
1066
1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069 for (i = 0; i < N; ++i)
1070 upheap (heap, i + HEAP0);
565} 1071}
566 1072
567/*****************************************************************************/ 1073/*****************************************************************************/
568 1074
1075/* associate signal watchers to a signal signal */
569typedef struct 1076typedef struct
570{ 1077{
571 WL head; 1078 WL head;
572 sig_atomic_t volatile gotsig; 1079 EV_ATOMIC_T gotsig;
573} ANSIG; 1080} ANSIG;
574 1081
575static ANSIG *signals; 1082static ANSIG *signals;
576static int signalmax; 1083static int signalmax;
577 1084
578static int sigpipe [2]; 1085static EV_ATOMIC_T gotsig;
579static sig_atomic_t volatile gotsig;
580static struct ev_io sigev;
581 1086
582static void 1087/*****************************************************************************/
583signals_init (ANSIG *base, int count)
584{
585 while (count--)
586 {
587 base->head = 0;
588 base->gotsig = 0;
589 1088
590 ++base; 1089/* used to prepare libev internal fd's */
591 } 1090/* this is not fork-safe */
592}
593
594static void
595sighandler (int signum)
596{
597#if _WIN32
598 signal (signum, sighandler);
599#endif
600
601 signals [signum - 1].gotsig = 1;
602
603 if (!gotsig)
604 {
605 int old_errno = errno;
606 gotsig = 1;
607 write (sigpipe [1], &signum, 1);
608 errno = old_errno;
609 }
610}
611
612void
613ev_feed_signal_event (EV_P_ int signum)
614{
615 WL w;
616
617#if EV_MULTIPLICITY
618 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
619#endif
620
621 --signum;
622
623 if (signum < 0 || signum >= signalmax)
624 return;
625
626 signals [signum].gotsig = 0;
627
628 for (w = signals [signum].head; w; w = w->next)
629 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
630}
631
632static void
633sigcb (EV_P_ struct ev_io *iow, int revents)
634{
635 int signum;
636
637 read (sigpipe [0], &revents, 1);
638 gotsig = 0;
639
640 for (signum = signalmax; signum--; )
641 if (signals [signum].gotsig)
642 ev_feed_signal_event (EV_A_ signum + 1);
643}
644
645inline void 1091inline_speed void
646fd_intern (int fd) 1092fd_intern (int fd)
647{ 1093{
648#ifdef _WIN32 1094#ifdef _WIN32
649 int arg = 1; 1095 unsigned long arg = 1;
650 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
651#else 1097#else
652 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
653 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
654#endif 1100#endif
655} 1101}
656 1102
1103static void noinline
1104evpipe_init (EV_P)
1105{
1106 if (!ev_is_active (&pipe_w))
1107 {
1108#if EV_USE_EVENTFD
1109 if ((evfd = eventfd (0, 0)) >= 0)
1110 {
1111 evpipe [0] = -1;
1112 fd_intern (evfd);
1113 ev_io_set (&pipe_w, evfd, EV_READ);
1114 }
1115 else
1116#endif
1117 {
1118 while (pipe (evpipe))
1119 ev_syserr ("(libev) error creating signal/async pipe");
1120
1121 fd_intern (evpipe [0]);
1122 fd_intern (evpipe [1]);
1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1124 }
1125
1126 ev_io_start (EV_A_ &pipe_w);
1127 ev_unref (EV_A); /* watcher should not keep loop alive */
1128 }
1129}
1130
1131inline_size void
1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1133{
1134 if (!*flag)
1135 {
1136 int old_errno = errno; /* save errno because write might clobber it */
1137
1138 *flag = 1;
1139
1140#if EV_USE_EVENTFD
1141 if (evfd >= 0)
1142 {
1143 uint64_t counter = 1;
1144 write (evfd, &counter, sizeof (uint64_t));
1145 }
1146 else
1147#endif
1148 write (evpipe [1], &old_errno, 1);
1149
1150 errno = old_errno;
1151 }
1152}
1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
657static void 1156static void
658siginit (EV_P) 1157pipecb (EV_P_ ev_io *iow, int revents)
659{ 1158{
660 fd_intern (sigpipe [0]); 1159#if EV_USE_EVENTFD
661 fd_intern (sigpipe [1]); 1160 if (evfd >= 0)
1161 {
1162 uint64_t counter;
1163 read (evfd, &counter, sizeof (uint64_t));
1164 }
1165 else
1166#endif
1167 {
1168 char dummy;
1169 read (evpipe [0], &dummy, 1);
1170 }
662 1171
663 ev_io_set (&sigev, sigpipe [0], EV_READ); 1172 if (gotsig && ev_is_default_loop (EV_A))
664 ev_io_start (EV_A_ &sigev); 1173 {
665 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1174 int signum;
1175 gotsig = 0;
1176
1177 for (signum = signalmax; signum--; )
1178 if (signals [signum].gotsig)
1179 ev_feed_signal_event (EV_A_ signum + 1);
1180 }
1181
1182#if EV_ASYNC_ENABLE
1183 if (gotasync)
1184 {
1185 int i;
1186 gotasync = 0;
1187
1188 for (i = asynccnt; i--; )
1189 if (asyncs [i]->sent)
1190 {
1191 asyncs [i]->sent = 0;
1192 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1193 }
1194 }
1195#endif
666} 1196}
667 1197
668/*****************************************************************************/ 1198/*****************************************************************************/
669 1199
670static struct ev_child *childs [PID_HASHSIZE]; 1200static void
1201ev_sighandler (int signum)
1202{
1203#if EV_MULTIPLICITY
1204 struct ev_loop *loop = &default_loop_struct;
1205#endif
1206
1207#if _WIN32
1208 signal (signum, ev_sighandler);
1209#endif
1210
1211 signals [signum - 1].gotsig = 1;
1212 evpipe_write (EV_A_ &gotsig);
1213}
1214
1215void noinline
1216ev_feed_signal_event (EV_P_ int signum)
1217{
1218 WL w;
1219
1220#if EV_MULTIPLICITY
1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1222#endif
1223
1224 --signum;
1225
1226 if (signum < 0 || signum >= signalmax)
1227 return;
1228
1229 signals [signum].gotsig = 0;
1230
1231 for (w = signals [signum].head; w; w = w->next)
1232 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1233}
1234
1235/*****************************************************************************/
1236
1237static WL childs [EV_PID_HASHSIZE];
671 1238
672#ifndef _WIN32 1239#ifndef _WIN32
673 1240
674static struct ev_signal childev; 1241static ev_signal childev;
1242
1243#ifndef WIFCONTINUED
1244# define WIFCONTINUED(status) 0
1245#endif
1246
1247/* handle a single child status event */
1248inline_speed void
1249child_reap (EV_P_ int chain, int pid, int status)
1250{
1251 ev_child *w;
1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1253
1254 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1255 {
1256 if ((w->pid == pid || !w->pid)
1257 && (!traced || (w->flags & 1)))
1258 {
1259 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1260 w->rpid = pid;
1261 w->rstatus = status;
1262 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1263 }
1264 }
1265}
675 1266
676#ifndef WCONTINUED 1267#ifndef WCONTINUED
677# define WCONTINUED 0 1268# define WCONTINUED 0
678#endif 1269#endif
679 1270
1271/* called on sigchld etc., calls waitpid */
680static void 1272static void
681child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
682{
683 struct ev_child *w;
684
685 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
686 if (w->pid == pid || !w->pid)
687 {
688 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
689 w->rpid = pid;
690 w->rstatus = status;
691 ev_feed_event (EV_A_ (W)w, EV_CHILD);
692 }
693}
694
695static void
696childcb (EV_P_ struct ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
697{ 1274{
698 int pid, status; 1275 int pid, status;
699 1276
1277 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
700 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1278 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
701 { 1279 if (!WCONTINUED
1280 || errno != EINVAL
1281 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1282 return;
1283
702 /* make sure we are called again until all childs have been reaped */ 1284 /* make sure we are called again until all children have been reaped */
1285 /* we need to do it this way so that the callback gets called before we continue */
703 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1286 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
704 1287
705 child_reap (EV_A_ sw, pid, pid, status); 1288 child_reap (EV_A_ pid, pid, status);
1289 if (EV_PID_HASHSIZE > 1)
706 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1290 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
707 }
708} 1291}
709 1292
710#endif 1293#endif
711 1294
712/*****************************************************************************/ 1295/*****************************************************************************/
713 1296
1297#if EV_USE_PORT
1298# include "ev_port.c"
1299#endif
714#if EV_USE_KQUEUE 1300#if EV_USE_KQUEUE
715# include "ev_kqueue.c" 1301# include "ev_kqueue.c"
716#endif 1302#endif
717#if EV_USE_EPOLL 1303#if EV_USE_EPOLL
718# include "ev_epoll.c" 1304# include "ev_epoll.c"
735{ 1321{
736 return EV_VERSION_MINOR; 1322 return EV_VERSION_MINOR;
737} 1323}
738 1324
739/* return true if we are running with elevated privileges and should ignore env variables */ 1325/* return true if we are running with elevated privileges and should ignore env variables */
740static int 1326int inline_size
741enable_secure (void) 1327enable_secure (void)
742{ 1328{
743#ifdef _WIN32 1329#ifdef _WIN32
744 return 0; 1330 return 0;
745#else 1331#else
747 || getgid () != getegid (); 1333 || getgid () != getegid ();
748#endif 1334#endif
749} 1335}
750 1336
751unsigned int 1337unsigned int
752ev_method (EV_P) 1338ev_supported_backends (void)
753{ 1339{
754 return method; 1340 unsigned int flags = 0;
755}
756 1341
757static void 1342 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1343 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1344 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1345 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1346 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1347
1348 return flags;
1349}
1350
1351unsigned int
1352ev_recommended_backends (void)
1353{
1354 unsigned int flags = ev_supported_backends ();
1355
1356#ifndef __NetBSD__
1357 /* kqueue is borked on everything but netbsd apparently */
1358 /* it usually doesn't work correctly on anything but sockets and pipes */
1359 flags &= ~EVBACKEND_KQUEUE;
1360#endif
1361#ifdef __APPLE__
1362 /* only select works correctly on that "unix-certified" platform */
1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1365#endif
1366
1367 return flags;
1368}
1369
1370unsigned int
1371ev_embeddable_backends (void)
1372{
1373 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1374
1375 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1376 /* please fix it and tell me how to detect the fix */
1377 flags &= ~EVBACKEND_EPOLL;
1378
1379 return flags;
1380}
1381
1382unsigned int
1383ev_backend (EV_P)
1384{
1385 return backend;
1386}
1387
1388#if EV_MINIMAL < 2
1389unsigned int
1390ev_loop_count (EV_P)
1391{
1392 return loop_count;
1393}
1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1401void
1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1403{
1404 io_blocktime = interval;
1405}
1406
1407void
1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1409{
1410 timeout_blocktime = interval;
1411}
1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
1438static void noinline
758loop_init (EV_P_ unsigned int flags) 1439loop_init (EV_P_ unsigned int flags)
759{ 1440{
760 if (!method) 1441 if (!backend)
761 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
762#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
763 { 1455 {
764 struct timespec ts; 1456 struct timespec ts;
1457
765 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
766 have_monotonic = 1; 1459 have_monotonic = 1;
767 } 1460 }
768#endif 1461#endif
769 1462
770 ev_rt_now = ev_time (); 1463 ev_rt_now = ev_time ();
771 mn_now = get_clock (); 1464 mn_now = get_clock ();
772 now_floor = mn_now; 1465 now_floor = mn_now;
773 rtmn_diff = ev_rt_now - mn_now; 1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
774 1470
775 if (!(flags & EVMETHOD_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1471 io_blocktime = 0.;
1472 timeout_blocktime = 0.;
1473 backend = 0;
1474 backend_fd = -1;
1475 gotasync = 0;
1476#if EV_USE_INOTIFY
1477 fs_fd = -2;
1478#endif
1479
1480 /* pid check not overridable via env */
1481#ifndef _WIN32
1482 if (flags & EVFLAG_FORKCHECK)
1483 curpid = getpid ();
1484#endif
1485
1486 if (!(flags & EVFLAG_NOENV)
1487 && !enable_secure ()
1488 && getenv ("LIBEV_FLAGS"))
776 flags = atoi (getenv ("LIBEV_FLAGS")); 1489 flags = atoi (getenv ("LIBEV_FLAGS"));
777 1490
778 if (!(flags & 0x0000ffff)) 1491 if (!(flags & 0x0000ffffU))
779 flags |= 0x0000ffff; 1492 flags |= ev_recommended_backends ();
780 1493
781 method = 0; 1494#if EV_USE_PORT
1495 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1496#endif
782#if EV_USE_KQUEUE 1497#if EV_USE_KQUEUE
783 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1498 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
784#endif 1499#endif
785#if EV_USE_EPOLL 1500#if EV_USE_EPOLL
786 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1501 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
787#endif 1502#endif
788#if EV_USE_POLL 1503#if EV_USE_POLL
789 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1504 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
790#endif 1505#endif
791#if EV_USE_SELECT 1506#if EV_USE_SELECT
792 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
793#endif 1508#endif
794 1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
795 ev_init (&sigev, sigcb); 1512 ev_init (&pipe_w, pipecb);
796 ev_set_priority (&sigev, EV_MAXPRI); 1513 ev_set_priority (&pipe_w, EV_MAXPRI);
797 } 1514 }
798} 1515}
799 1516
800void 1517/* free up a loop structure */
1518static void noinline
801loop_destroy (EV_P) 1519loop_destroy (EV_P)
802{ 1520{
803 int i; 1521 int i;
804 1522
1523 if (ev_is_active (&pipe_w))
1524 {
1525 ev_ref (EV_A); /* signal watcher */
1526 ev_io_stop (EV_A_ &pipe_w);
1527
1528#if EV_USE_EVENTFD
1529 if (evfd >= 0)
1530 close (evfd);
1531#endif
1532
1533 if (evpipe [0] >= 0)
1534 {
1535 close (evpipe [0]);
1536 close (evpipe [1]);
1537 }
1538 }
1539
1540#if EV_USE_INOTIFY
1541 if (fs_fd >= 0)
1542 close (fs_fd);
1543#endif
1544
1545 if (backend_fd >= 0)
1546 close (backend_fd);
1547
1548#if EV_USE_PORT
1549 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1550#endif
805#if EV_USE_KQUEUE 1551#if EV_USE_KQUEUE
806 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1552 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
807#endif 1553#endif
808#if EV_USE_EPOLL 1554#if EV_USE_EPOLL
809 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1555 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
810#endif 1556#endif
811#if EV_USE_POLL 1557#if EV_USE_POLL
812 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1558 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
813#endif 1559#endif
814#if EV_USE_SELECT 1560#if EV_USE_SELECT
815 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1561 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
816#endif 1562#endif
817 1563
818 for (i = NUMPRI; i--; ) 1564 for (i = NUMPRI; i--; )
1565 {
819 array_free (pending, [i]); 1566 array_free (pending, [i]);
1567#if EV_IDLE_ENABLE
1568 array_free (idle, [i]);
1569#endif
1570 }
1571
1572 ev_free (anfds); anfdmax = 0;
820 1573
821 /* have to use the microsoft-never-gets-it-right macro */ 1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
822 array_free (fdchange, EMPTY); 1576 array_free (fdchange, EMPTY);
823 array_free (timer, EMPTY); 1577 array_free (timer, EMPTY);
824#if EV_PERIODICS 1578#if EV_PERIODIC_ENABLE
825 array_free (periodic, EMPTY); 1579 array_free (periodic, EMPTY);
826#endif 1580#endif
1581#if EV_FORK_ENABLE
827 array_free (idle, EMPTY); 1582 array_free (fork, EMPTY);
1583#endif
828 array_free (prepare, EMPTY); 1584 array_free (prepare, EMPTY);
829 array_free (check, EMPTY); 1585 array_free (check, EMPTY);
1586#if EV_ASYNC_ENABLE
1587 array_free (async, EMPTY);
1588#endif
830 1589
831 method = 0; 1590 backend = 0;
832} 1591}
833 1592
834static void 1593#if EV_USE_INOTIFY
1594inline_size void infy_fork (EV_P);
1595#endif
1596
1597inline_size void
835loop_fork (EV_P) 1598loop_fork (EV_P)
836{ 1599{
1600#if EV_USE_PORT
1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1602#endif
1603#if EV_USE_KQUEUE
1604 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1605#endif
837#if EV_USE_EPOLL 1606#if EV_USE_EPOLL
838 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1607 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
839#endif 1608#endif
840#if EV_USE_KQUEUE 1609#if EV_USE_INOTIFY
841 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1610 infy_fork (EV_A);
842#endif 1611#endif
843 1612
844 if (ev_is_active (&sigev)) 1613 if (ev_is_active (&pipe_w))
845 { 1614 {
846 /* default loop */ 1615 /* this "locks" the handlers against writing to the pipe */
1616 /* while we modify the fd vars */
1617 gotsig = 1;
1618#if EV_ASYNC_ENABLE
1619 gotasync = 1;
1620#endif
847 1621
848 ev_ref (EV_A); 1622 ev_ref (EV_A);
849 ev_io_stop (EV_A_ &sigev); 1623 ev_io_stop (EV_A_ &pipe_w);
1624
1625#if EV_USE_EVENTFD
1626 if (evfd >= 0)
1627 close (evfd);
1628#endif
1629
1630 if (evpipe [0] >= 0)
1631 {
850 close (sigpipe [0]); 1632 close (evpipe [0]);
851 close (sigpipe [1]); 1633 close (evpipe [1]);
1634 }
852 1635
853 while (pipe (sigpipe))
854 syserr ("(libev) error creating pipe");
855
856 siginit (EV_A); 1636 evpipe_init (EV_A);
1637 /* now iterate over everything, in case we missed something */
1638 pipecb (EV_A_ &pipe_w, EV_READ);
857 } 1639 }
858 1640
859 postfork = 0; 1641 postfork = 0;
860} 1642}
1643
1644#if EV_MULTIPLICITY
1645
1646struct ev_loop *
1647ev_loop_new (unsigned int flags)
1648{
1649 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1650
1651 memset (loop, 0, sizeof (struct ev_loop));
1652
1653 loop_init (EV_A_ flags);
1654
1655 if (ev_backend (EV_A))
1656 return loop;
1657
1658 return 0;
1659}
1660
1661void
1662ev_loop_destroy (EV_P)
1663{
1664 loop_destroy (EV_A);
1665 ev_free (loop);
1666}
1667
1668void
1669ev_loop_fork (EV_P)
1670{
1671 postfork = 1; /* must be in line with ev_default_fork */
1672}
1673#endif /* multiplicity */
1674
1675#if EV_VERIFY
1676static void noinline
1677verify_watcher (EV_P_ W w)
1678{
1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680
1681 if (w->pending)
1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683}
1684
1685static void noinline
1686verify_heap (EV_P_ ANHE *heap, int N)
1687{
1688 int i;
1689
1690 for (i = HEAP0; i < N + HEAP0; ++i)
1691 {
1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695
1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697 }
1698}
1699
1700static void noinline
1701array_verify (EV_P_ W *ws, int cnt)
1702{
1703 while (cnt--)
1704 {
1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 verify_watcher (EV_A_ ws [cnt]);
1707 }
1708}
1709#endif
1710
1711#if EV_MINIMAL < 2
1712void
1713ev_loop_verify (EV_P)
1714{
1715#if EV_VERIFY
1716 int i;
1717 WL w;
1718
1719 assert (activecnt >= -1);
1720
1721 assert (fdchangemax >= fdchangecnt);
1722 for (i = 0; i < fdchangecnt; ++i)
1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724
1725 assert (anfdmax >= 0);
1726 for (i = 0; i < anfdmax; ++i)
1727 for (w = anfds [i].head; w; w = w->next)
1728 {
1729 verify_watcher (EV_A_ (W)w);
1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1732 }
1733
1734 assert (timermax >= timercnt);
1735 verify_heap (EV_A_ timers, timercnt);
1736
1737#if EV_PERIODIC_ENABLE
1738 assert (periodicmax >= periodiccnt);
1739 verify_heap (EV_A_ periodics, periodiccnt);
1740#endif
1741
1742 for (i = NUMPRI; i--; )
1743 {
1744 assert (pendingmax [i] >= pendingcnt [i]);
1745#if EV_IDLE_ENABLE
1746 assert (idleall >= 0);
1747 assert (idlemax [i] >= idlecnt [i]);
1748 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749#endif
1750 }
1751
1752#if EV_FORK_ENABLE
1753 assert (forkmax >= forkcnt);
1754 array_verify (EV_A_ (W *)forks, forkcnt);
1755#endif
1756
1757#if EV_ASYNC_ENABLE
1758 assert (asyncmax >= asynccnt);
1759 array_verify (EV_A_ (W *)asyncs, asynccnt);
1760#endif
1761
1762 assert (preparemax >= preparecnt);
1763 array_verify (EV_A_ (W *)prepares, preparecnt);
1764
1765 assert (checkmax >= checkcnt);
1766 array_verify (EV_A_ (W *)checks, checkcnt);
1767
1768# if 0
1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1771# endif
1772#endif
1773}
1774#endif
861 1775
862#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
863struct ev_loop * 1777struct ev_loop *
864ev_loop_new (unsigned int flags) 1778ev_default_loop_init (unsigned int flags)
865{
866 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
867
868 memset (loop, 0, sizeof (struct ev_loop));
869
870 loop_init (EV_A_ flags);
871
872 if (ev_method (EV_A))
873 return loop;
874
875 return 0;
876}
877
878void
879ev_loop_destroy (EV_P)
880{
881 loop_destroy (EV_A);
882 ev_free (loop);
883}
884
885void
886ev_loop_fork (EV_P)
887{
888 postfork = 1;
889}
890
891#endif
892
893#if EV_MULTIPLICITY
894struct ev_loop *
895#else 1779#else
896int 1780int
897#endif
898ev_default_loop (unsigned int flags) 1781ev_default_loop (unsigned int flags)
1782#endif
899{ 1783{
900 if (sigpipe [0] == sigpipe [1])
901 if (pipe (sigpipe))
902 return 0;
903
904 if (!default_loop) 1784 if (!ev_default_loop_ptr)
905 { 1785 {
906#if EV_MULTIPLICITY 1786#if EV_MULTIPLICITY
907 struct ev_loop *loop = default_loop = &default_loop_struct; 1787 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
908#else 1788#else
909 default_loop = 1; 1789 ev_default_loop_ptr = 1;
910#endif 1790#endif
911 1791
912 loop_init (EV_A_ flags); 1792 loop_init (EV_A_ flags);
913 1793
914 if (ev_method (EV_A)) 1794 if (ev_backend (EV_A))
915 { 1795 {
916 siginit (EV_A);
917
918#ifndef _WIN32 1796#ifndef _WIN32
919 ev_signal_init (&childev, childcb, SIGCHLD); 1797 ev_signal_init (&childev, childcb, SIGCHLD);
920 ev_set_priority (&childev, EV_MAXPRI); 1798 ev_set_priority (&childev, EV_MAXPRI);
921 ev_signal_start (EV_A_ &childev); 1799 ev_signal_start (EV_A_ &childev);
922 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1800 ev_unref (EV_A); /* child watcher should not keep loop alive */
923#endif 1801#endif
924 } 1802 }
925 else 1803 else
926 default_loop = 0; 1804 ev_default_loop_ptr = 0;
927 } 1805 }
928 1806
929 return default_loop; 1807 return ev_default_loop_ptr;
930} 1808}
931 1809
932void 1810void
933ev_default_destroy (void) 1811ev_default_destroy (void)
934{ 1812{
935#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
936 struct ev_loop *loop = default_loop; 1814 struct ev_loop *loop = ev_default_loop_ptr;
937#endif 1815#endif
1816
1817 ev_default_loop_ptr = 0;
938 1818
939#ifndef _WIN32 1819#ifndef _WIN32
940 ev_ref (EV_A); /* child watcher */ 1820 ev_ref (EV_A); /* child watcher */
941 ev_signal_stop (EV_A_ &childev); 1821 ev_signal_stop (EV_A_ &childev);
942#endif 1822#endif
943 1823
944 ev_ref (EV_A); /* signal watcher */
945 ev_io_stop (EV_A_ &sigev);
946
947 close (sigpipe [0]); sigpipe [0] = 0;
948 close (sigpipe [1]); sigpipe [1] = 0;
949
950 loop_destroy (EV_A); 1824 loop_destroy (EV_A);
951} 1825}
952 1826
953void 1827void
954ev_default_fork (void) 1828ev_default_fork (void)
955{ 1829{
956#if EV_MULTIPLICITY 1830#if EV_MULTIPLICITY
957 struct ev_loop *loop = default_loop; 1831 struct ev_loop *loop = ev_default_loop_ptr;
958#endif 1832#endif
959 1833
960 if (method) 1834 postfork = 1; /* must be in line with ev_loop_fork */
961 postfork = 1;
962} 1835}
963 1836
964/*****************************************************************************/ 1837/*****************************************************************************/
965 1838
966static int 1839void
967any_pending (EV_P) 1840ev_invoke (EV_P_ void *w, int revents)
1841{
1842 EV_CB_INVOKE ((W)w, revents);
1843}
1844
1845unsigned int
1846ev_pending_count (EV_P)
968{ 1847{
969 int pri; 1848 int pri;
1849 unsigned int count = 0;
970 1850
971 for (pri = NUMPRI; pri--; ) 1851 for (pri = NUMPRI; pri--; )
972 if (pendingcnt [pri]) 1852 count += pendingcnt [pri];
973 return 1;
974 1853
975 return 0; 1854 return count;
976} 1855}
977 1856
978static void 1857void noinline
979call_pending (EV_P) 1858ev_invoke_pending (EV_P)
980{ 1859{
981 int pri; 1860 int pri;
982 1861
983 for (pri = NUMPRI; pri--; ) 1862 for (pri = NUMPRI; pri--; )
984 while (pendingcnt [pri]) 1863 while (pendingcnt [pri])
985 { 1864 {
986 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1865 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
987 1866
988 if (p->w) 1867 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
989 { 1868 /* ^ this is no longer true, as pending_w could be here */
1869
990 p->w->pending = 0; 1870 p->w->pending = 0;
991 EV_CB_INVOKE (p->w, p->events); 1871 EV_CB_INVOKE (p->w, p->events);
992 } 1872 EV_FREQUENT_CHECK;
993 } 1873 }
994} 1874}
995 1875
996static void 1876#if EV_IDLE_ENABLE
1877/* make idle watchers pending. this handles the "call-idle */
1878/* only when higher priorities are idle" logic */
1879inline_size void
1880idle_reify (EV_P)
1881{
1882 if (expect_false (idleall))
1883 {
1884 int pri;
1885
1886 for (pri = NUMPRI; pri--; )
1887 {
1888 if (pendingcnt [pri])
1889 break;
1890
1891 if (idlecnt [pri])
1892 {
1893 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1894 break;
1895 }
1896 }
1897 }
1898}
1899#endif
1900
1901/* make timers pending */
1902inline_size void
997timers_reify (EV_P) 1903timers_reify (EV_P)
998{ 1904{
1905 EV_FREQUENT_CHECK;
1906
999 while (timercnt && ((WT)timers [0])->at <= mn_now) 1907 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1000 { 1908 {
1001 struct ev_timer *w = timers [0]; 1909 do
1002
1003 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1004
1005 /* first reschedule or stop timer */
1006 if (w->repeat)
1007 { 1910 {
1911 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1912
1913 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1914
1915 /* first reschedule or stop timer */
1916 if (w->repeat)
1917 {
1918 ev_at (w) += w->repeat;
1919 if (ev_at (w) < mn_now)
1920 ev_at (w) = mn_now;
1921
1008 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1922 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1009 1923
1010 ((WT)w)->at += w->repeat; 1924 ANHE_at_cache (timers [HEAP0]);
1011 if (((WT)w)->at < mn_now)
1012 ((WT)w)->at = mn_now;
1013
1014 downheap ((WT *)timers, timercnt, 0); 1925 downheap (timers, timercnt, HEAP0);
1926 }
1927 else
1928 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1929
1930 EV_FREQUENT_CHECK;
1931 feed_reverse (EV_A_ (W)w);
1015 } 1932 }
1016 else 1933 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1017 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1018 1934
1019 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1935 feed_reverse_done (EV_A_ EV_TIMEOUT);
1020 } 1936 }
1021} 1937}
1022 1938
1023#if EV_PERIODICS 1939#if EV_PERIODIC_ENABLE
1024static void 1940/* make periodics pending */
1941inline_size void
1025periodics_reify (EV_P) 1942periodics_reify (EV_P)
1026{ 1943{
1944 EV_FREQUENT_CHECK;
1945
1027 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1946 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1028 { 1947 {
1029 struct ev_periodic *w = periodics [0]; 1948 int feed_count = 0;
1030 1949
1950 do
1951 {
1952 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1953
1031 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1954 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1032 1955
1033 /* first reschedule or stop timer */ 1956 /* first reschedule or stop timer */
1957 if (w->reschedule_cb)
1958 {
1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1960
1961 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1962
1963 ANHE_at_cache (periodics [HEAP0]);
1964 downheap (periodics, periodiccnt, HEAP0);
1965 }
1966 else if (w->interval)
1967 {
1968 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1969 /* if next trigger time is not sufficiently in the future, put it there */
1970 /* this might happen because of floating point inexactness */
1971 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1972 {
1973 ev_at (w) += w->interval;
1974
1975 /* if interval is unreasonably low we might still have a time in the past */
1976 /* so correct this. this will make the periodic very inexact, but the user */
1977 /* has effectively asked to get triggered more often than possible */
1978 if (ev_at (w) < ev_rt_now)
1979 ev_at (w) = ev_rt_now;
1980 }
1981
1982 ANHE_at_cache (periodics [HEAP0]);
1983 downheap (periodics, periodiccnt, HEAP0);
1984 }
1985 else
1986 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1987
1988 EV_FREQUENT_CHECK;
1989 feed_reverse (EV_A_ (W)w);
1990 }
1991 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1992
1993 feed_reverse_done (EV_A_ EV_PERIODIC);
1994 }
1995}
1996
1997/* simply recalculate all periodics */
1998/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1999static void noinline
2000periodics_reschedule (EV_P)
2001{
2002 int i;
2003
2004 /* adjust periodics after time jump */
2005 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2006 {
2007 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2008
1034 if (w->reschedule_cb) 2009 if (w->reschedule_cb)
2010 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2011 else if (w->interval)
2012 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2013
2014 ANHE_at_cache (periodics [i]);
2015 }
2016
2017 reheap (periodics, periodiccnt);
2018}
2019#endif
2020
2021/* adjust all timers by a given offset */
2022static void noinline
2023timers_reschedule (EV_P_ ev_tstamp adjust)
2024{
2025 int i;
2026
2027 for (i = 0; i < timercnt; ++i)
2028 {
2029 ANHE *he = timers + i + HEAP0;
2030 ANHE_w (*he)->at += adjust;
2031 ANHE_at_cache (*he);
2032 }
2033}
2034
2035/* fetch new monotonic and realtime times from the kernel */
2036/* also detetc if there was a timejump, and act accordingly */
2037inline_speed void
2038time_update (EV_P_ ev_tstamp max_block)
2039{
2040#if EV_USE_MONOTONIC
2041 if (expect_true (have_monotonic))
2042 {
2043 int i;
2044 ev_tstamp odiff = rtmn_diff;
2045
2046 mn_now = get_clock ();
2047
2048 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2049 /* interpolate in the meantime */
2050 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1035 { 2051 {
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2052 ev_rt_now = rtmn_diff + mn_now;
1037 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2053 return;
1038 downheap ((WT *)periodics, periodiccnt, 0);
1039 } 2054 }
1040 else if (w->interval)
1041 {
1042 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1043 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1044 downheap ((WT *)periodics, periodiccnt, 0);
1045 }
1046 else
1047 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1048 2055
1049 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1050 }
1051}
1052
1053static void
1054periodics_reschedule (EV_P)
1055{
1056 int i;
1057
1058 /* adjust periodics after time jump */
1059 for (i = 0; i < periodiccnt; ++i)
1060 {
1061 struct ev_periodic *w = periodics [i];
1062
1063 if (w->reschedule_cb)
1064 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1065 else if (w->interval)
1066 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1067 }
1068
1069 /* now rebuild the heap */
1070 for (i = periodiccnt >> 1; i--; )
1071 downheap ((WT *)periodics, periodiccnt, i);
1072}
1073#endif
1074
1075inline int
1076time_update_monotonic (EV_P)
1077{
1078 mn_now = get_clock ();
1079
1080 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1081 {
1082 ev_rt_now = rtmn_diff + mn_now;
1083 return 0;
1084 }
1085 else
1086 {
1087 now_floor = mn_now; 2056 now_floor = mn_now;
1088 ev_rt_now = ev_time (); 2057 ev_rt_now = ev_time ();
1089 return 1;
1090 }
1091}
1092 2058
1093static void 2059 /* loop a few times, before making important decisions.
1094time_update (EV_P) 2060 * on the choice of "4": one iteration isn't enough,
1095{ 2061 * in case we get preempted during the calls to
1096 int i; 2062 * ev_time and get_clock. a second call is almost guaranteed
1097 2063 * to succeed in that case, though. and looping a few more times
1098#if EV_USE_MONOTONIC 2064 * doesn't hurt either as we only do this on time-jumps or
1099 if (expect_true (have_monotonic)) 2065 * in the unlikely event of having been preempted here.
1100 { 2066 */
1101 if (time_update_monotonic (EV_A)) 2067 for (i = 4; --i; )
1102 { 2068 {
1103 ev_tstamp odiff = rtmn_diff;
1104
1105 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1106 {
1107 rtmn_diff = ev_rt_now - mn_now; 2069 rtmn_diff = ev_rt_now - mn_now;
1108 2070
1109 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2071 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1110 return; /* all is well */ 2072 return; /* all is well */
1111 2073
1112 ev_rt_now = ev_time (); 2074 ev_rt_now = ev_time ();
1113 mn_now = get_clock (); 2075 mn_now = get_clock ();
1114 now_floor = mn_now; 2076 now_floor = mn_now;
1115 } 2077 }
1116 2078
2079 /* no timer adjustment, as the monotonic clock doesn't jump */
2080 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1117# if EV_PERIODICS 2081# if EV_PERIODIC_ENABLE
2082 periodics_reschedule (EV_A);
2083# endif
2084 }
2085 else
2086#endif
2087 {
2088 ev_rt_now = ev_time ();
2089
2090 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2091 {
2092 /* adjust timers. this is easy, as the offset is the same for all of them */
2093 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2094#if EV_PERIODIC_ENABLE
1118 periodics_reschedule (EV_A); 2095 periodics_reschedule (EV_A);
1119# endif 2096#endif
1120 /* no timer adjustment, as the monotonic clock doesn't jump */
1121 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1122 } 2097 }
1123 }
1124 else
1125#endif
1126 {
1127 ev_rt_now = ev_time ();
1128
1129 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1130 {
1131#if EV_PERIODICS
1132 periodics_reschedule (EV_A);
1133#endif
1134
1135 /* adjust timers. this is easy, as the offset is the same for all */
1136 for (i = 0; i < timercnt; ++i)
1137 ((WT)timers [i])->at += ev_rt_now - mn_now;
1138 }
1139 2098
1140 mn_now = ev_rt_now; 2099 mn_now = ev_rt_now;
1141 } 2100 }
1142} 2101}
1143 2102
1144void 2103void
1145ev_ref (EV_P)
1146{
1147 ++activecnt;
1148}
1149
1150void
1151ev_unref (EV_P)
1152{
1153 --activecnt;
1154}
1155
1156static int loop_done;
1157
1158void
1159ev_loop (EV_P_ int flags) 2104ev_loop (EV_P_ int flags)
1160{ 2105{
1161 double block; 2106#if EV_MINIMAL < 2
1162 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2107 ++loop_depth;
2108#endif
2109
2110 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2111
2112 loop_done = EVUNLOOP_CANCEL;
2113
2114 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1163 2115
1164 do 2116 do
1165 { 2117 {
2118#if EV_VERIFY >= 2
2119 ev_loop_verify (EV_A);
2120#endif
2121
2122#ifndef _WIN32
2123 if (expect_false (curpid)) /* penalise the forking check even more */
2124 if (expect_false (getpid () != curpid))
2125 {
2126 curpid = getpid ();
2127 postfork = 1;
2128 }
2129#endif
2130
2131#if EV_FORK_ENABLE
2132 /* we might have forked, so queue fork handlers */
2133 if (expect_false (postfork))
2134 if (forkcnt)
2135 {
2136 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2137 EV_INVOKE_PENDING;
2138 }
2139#endif
2140
1166 /* queue check watchers (and execute them) */ 2141 /* queue prepare watchers (and execute them) */
1167 if (expect_false (preparecnt)) 2142 if (expect_false (preparecnt))
1168 { 2143 {
1169 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2144 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1170 call_pending (EV_A); 2145 EV_INVOKE_PENDING;
1171 } 2146 }
2147
2148 if (expect_false (loop_done))
2149 break;
1172 2150
1173 /* we might have forked, so reify kernel state if necessary */ 2151 /* we might have forked, so reify kernel state if necessary */
1174 if (expect_false (postfork)) 2152 if (expect_false (postfork))
1175 loop_fork (EV_A); 2153 loop_fork (EV_A);
1176 2154
1177 /* update fd-related kernel structures */ 2155 /* update fd-related kernel structures */
1178 fd_reify (EV_A); 2156 fd_reify (EV_A);
1179 2157
1180 /* calculate blocking time */ 2158 /* calculate blocking time */
2159 {
2160 ev_tstamp waittime = 0.;
2161 ev_tstamp sleeptime = 0.;
1181 2162
1182 /* we only need this for !monotonic clock or timers, but as we basically 2163 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1183 always have timers, we just calculate it always */
1184#if EV_USE_MONOTONIC
1185 if (expect_true (have_monotonic))
1186 time_update_monotonic (EV_A);
1187 else
1188#endif
1189 { 2164 {
1190 ev_rt_now = ev_time (); 2165 /* remember old timestamp for io_blocktime calculation */
1191 mn_now = ev_rt_now; 2166 ev_tstamp prev_mn_now = mn_now;
1192 }
1193 2167
1194 if (flags & EVLOOP_NONBLOCK || idlecnt) 2168 /* update time to cancel out callback processing overhead */
1195 block = 0.; 2169 time_update (EV_A_ 1e100);
1196 else 2170
1197 {
1198 block = MAX_BLOCKTIME; 2171 waittime = MAX_BLOCKTIME;
1199 2172
1200 if (timercnt) 2173 if (timercnt)
1201 { 2174 {
1202 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2175 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1203 if (block > to) block = to; 2176 if (waittime > to) waittime = to;
1204 } 2177 }
1205 2178
1206#if EV_PERIODICS 2179#if EV_PERIODIC_ENABLE
1207 if (periodiccnt) 2180 if (periodiccnt)
1208 { 2181 {
1209 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2182 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1210 if (block > to) block = to; 2183 if (waittime > to) waittime = to;
1211 } 2184 }
1212#endif 2185#endif
1213 2186
1214 if (block < 0.) block = 0.; 2187 /* don't let timeouts decrease the waittime below timeout_blocktime */
2188 if (expect_false (waittime < timeout_blocktime))
2189 waittime = timeout_blocktime;
2190
2191 /* extra check because io_blocktime is commonly 0 */
2192 if (expect_false (io_blocktime))
2193 {
2194 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2195
2196 if (sleeptime > waittime - backend_fudge)
2197 sleeptime = waittime - backend_fudge;
2198
2199 if (expect_true (sleeptime > 0.))
2200 {
2201 ev_sleep (sleeptime);
2202 waittime -= sleeptime;
2203 }
2204 }
1215 } 2205 }
1216 2206
1217 method_poll (EV_A_ block); 2207#if EV_MINIMAL < 2
2208 ++loop_count;
2209#endif
2210 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2211 backend_poll (EV_A_ waittime);
2212 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1218 2213
1219 /* update ev_rt_now, do magic */ 2214 /* update ev_rt_now, do magic */
1220 time_update (EV_A); 2215 time_update (EV_A_ waittime + sleeptime);
2216 }
1221 2217
1222 /* queue pending timers and reschedule them */ 2218 /* queue pending timers and reschedule them */
1223 timers_reify (EV_A); /* relative timers called last */ 2219 timers_reify (EV_A); /* relative timers called last */
1224#if EV_PERIODICS 2220#if EV_PERIODIC_ENABLE
1225 periodics_reify (EV_A); /* absolute timers called first */ 2221 periodics_reify (EV_A); /* absolute timers called first */
1226#endif 2222#endif
1227 2223
2224#if EV_IDLE_ENABLE
1228 /* queue idle watchers unless io or timers are pending */ 2225 /* queue idle watchers unless other events are pending */
1229 if (idlecnt && !any_pending (EV_A)) 2226 idle_reify (EV_A);
1230 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2227#endif
1231 2228
1232 /* queue check watchers, to be executed first */ 2229 /* queue check watchers, to be executed first */
1233 if (checkcnt) 2230 if (expect_false (checkcnt))
1234 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2231 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1235 2232
1236 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1237 } 2234 }
1238 while (activecnt && !loop_done); 2235 while (expect_true (
2236 activecnt
2237 && !loop_done
2238 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2239 ));
1239 2240
1240 if (loop_done != 2) 2241 if (loop_done == EVUNLOOP_ONE)
1241 loop_done = 0; 2242 loop_done = EVUNLOOP_CANCEL;
2243
2244#if EV_MINIMAL < 2
2245 --loop_depth;
2246#endif
1242} 2247}
1243 2248
1244void 2249void
1245ev_unloop (EV_P_ int how) 2250ev_unloop (EV_P_ int how)
1246{ 2251{
1247 loop_done = how; 2252 loop_done = how;
1248} 2253}
1249 2254
2255void
2256ev_ref (EV_P)
2257{
2258 ++activecnt;
2259}
2260
2261void
2262ev_unref (EV_P)
2263{
2264 --activecnt;
2265}
2266
2267void
2268ev_now_update (EV_P)
2269{
2270 time_update (EV_A_ 1e100);
2271}
2272
2273void
2274ev_suspend (EV_P)
2275{
2276 ev_now_update (EV_A);
2277}
2278
2279void
2280ev_resume (EV_P)
2281{
2282 ev_tstamp mn_prev = mn_now;
2283
2284 ev_now_update (EV_A);
2285 timers_reschedule (EV_A_ mn_now - mn_prev);
2286#if EV_PERIODIC_ENABLE
2287 /* TODO: really do this? */
2288 periodics_reschedule (EV_A);
2289#endif
2290}
2291
1250/*****************************************************************************/ 2292/*****************************************************************************/
2293/* singly-linked list management, used when the expected list length is short */
1251 2294
1252inline void 2295inline_size void
1253wlist_add (WL *head, WL elem) 2296wlist_add (WL *head, WL elem)
1254{ 2297{
1255 elem->next = *head; 2298 elem->next = *head;
1256 *head = elem; 2299 *head = elem;
1257} 2300}
1258 2301
1259inline void 2302inline_size void
1260wlist_del (WL *head, WL elem) 2303wlist_del (WL *head, WL elem)
1261{ 2304{
1262 while (*head) 2305 while (*head)
1263 { 2306 {
1264 if (*head == elem) 2307 if (*head == elem)
1269 2312
1270 head = &(*head)->next; 2313 head = &(*head)->next;
1271 } 2314 }
1272} 2315}
1273 2316
2317/* internal, faster, version of ev_clear_pending */
1274inline void 2318inline_speed void
1275ev_clear_pending (EV_P_ W w) 2319clear_pending (EV_P_ W w)
1276{ 2320{
1277 if (w->pending) 2321 if (w->pending)
1278 { 2322 {
1279 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2323 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1280 w->pending = 0; 2324 w->pending = 0;
1281 } 2325 }
1282} 2326}
1283 2327
2328int
2329ev_clear_pending (EV_P_ void *w)
2330{
2331 W w_ = (W)w;
2332 int pending = w_->pending;
2333
2334 if (expect_true (pending))
2335 {
2336 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2337 p->w = (W)&pending_w;
2338 w_->pending = 0;
2339 return p->events;
2340 }
2341 else
2342 return 0;
2343}
2344
1284inline void 2345inline_size void
2346pri_adjust (EV_P_ W w)
2347{
2348 int pri = ev_priority (w);
2349 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2350 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2351 ev_set_priority (w, pri);
2352}
2353
2354inline_speed void
1285ev_start (EV_P_ W w, int active) 2355ev_start (EV_P_ W w, int active)
1286{ 2356{
1287 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2357 pri_adjust (EV_A_ w);
1288 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1289
1290 w->active = active; 2358 w->active = active;
1291 ev_ref (EV_A); 2359 ev_ref (EV_A);
1292} 2360}
1293 2361
1294inline void 2362inline_size void
1295ev_stop (EV_P_ W w) 2363ev_stop (EV_P_ W w)
1296{ 2364{
1297 ev_unref (EV_A); 2365 ev_unref (EV_A);
1298 w->active = 0; 2366 w->active = 0;
1299} 2367}
1300 2368
1301/*****************************************************************************/ 2369/*****************************************************************************/
1302 2370
1303void 2371void noinline
1304ev_io_start (EV_P_ struct ev_io *w) 2372ev_io_start (EV_P_ ev_io *w)
1305{ 2373{
1306 int fd = w->fd; 2374 int fd = w->fd;
1307 2375
1308 if (ev_is_active (w)) 2376 if (expect_false (ev_is_active (w)))
1309 return; 2377 return;
1310 2378
1311 assert (("ev_io_start called with negative fd", fd >= 0)); 2379 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2380 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2381
2382 EV_FREQUENT_CHECK;
1312 2383
1313 ev_start (EV_A_ (W)w, 1); 2384 ev_start (EV_A_ (W)w, 1);
1314 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2385 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1315 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2386 wlist_add (&anfds[fd].head, (WL)w);
1316 2387
1317 fd_change (EV_A_ fd); 2388 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1318} 2389 w->events &= ~EV__IOFDSET;
1319 2390
1320void 2391 EV_FREQUENT_CHECK;
2392}
2393
2394void noinline
1321ev_io_stop (EV_P_ struct ev_io *w) 2395ev_io_stop (EV_P_ ev_io *w)
1322{ 2396{
1323 ev_clear_pending (EV_A_ (W)w); 2397 clear_pending (EV_A_ (W)w);
1324 if (!ev_is_active (w)) 2398 if (expect_false (!ev_is_active (w)))
1325 return; 2399 return;
1326 2400
1327 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2401 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1328 2402
2403 EV_FREQUENT_CHECK;
2404
1329 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2405 wlist_del (&anfds[w->fd].head, (WL)w);
1330 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
1331 2407
1332 fd_change (EV_A_ w->fd); 2408 fd_change (EV_A_ w->fd, 1);
1333}
1334 2409
1335void 2410 EV_FREQUENT_CHECK;
2411}
2412
2413void noinline
1336ev_timer_start (EV_P_ struct ev_timer *w) 2414ev_timer_start (EV_P_ ev_timer *w)
1337{ 2415{
1338 if (ev_is_active (w)) 2416 if (expect_false (ev_is_active (w)))
1339 return; 2417 return;
1340 2418
1341 ((WT)w)->at += mn_now; 2419 ev_at (w) += mn_now;
1342 2420
1343 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2421 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1344 2422
2423 EV_FREQUENT_CHECK;
2424
2425 ++timercnt;
1345 ev_start (EV_A_ (W)w, ++timercnt); 2426 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1346 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2427 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1347 timers [timercnt - 1] = w; 2428 ANHE_w (timers [ev_active (w)]) = (WT)w;
1348 upheap ((WT *)timers, timercnt - 1); 2429 ANHE_at_cache (timers [ev_active (w)]);
2430 upheap (timers, ev_active (w));
1349 2431
2432 EV_FREQUENT_CHECK;
2433
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2434 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1351} 2435}
1352 2436
1353void 2437void noinline
1354ev_timer_stop (EV_P_ struct ev_timer *w) 2438ev_timer_stop (EV_P_ ev_timer *w)
1355{ 2439{
1356 ev_clear_pending (EV_A_ (W)w); 2440 clear_pending (EV_A_ (W)w);
1357 if (!ev_is_active (w)) 2441 if (expect_false (!ev_is_active (w)))
1358 return; 2442 return;
1359 2443
2444 EV_FREQUENT_CHECK;
2445
2446 {
2447 int active = ev_active (w);
2448
1360 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2449 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1361 2450
1362 if (((W)w)->active < timercnt--) 2451 --timercnt;
2452
2453 if (expect_true (active < timercnt + HEAP0))
1363 { 2454 {
1364 timers [((W)w)->active - 1] = timers [timercnt]; 2455 timers [active] = timers [timercnt + HEAP0];
1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2456 adjustheap (timers, timercnt, active);
1366 } 2457 }
2458 }
1367 2459
1368 ((WT)w)->at -= mn_now; 2460 EV_FREQUENT_CHECK;
2461
2462 ev_at (w) -= mn_now;
1369 2463
1370 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
1371} 2465}
1372 2466
1373void 2467void noinline
1374ev_timer_again (EV_P_ struct ev_timer *w) 2468ev_timer_again (EV_P_ ev_timer *w)
1375{ 2469{
2470 EV_FREQUENT_CHECK;
2471
1376 if (ev_is_active (w)) 2472 if (ev_is_active (w))
1377 { 2473 {
1378 if (w->repeat) 2474 if (w->repeat)
1379 { 2475 {
1380 ((WT)w)->at = mn_now + w->repeat; 2476 ev_at (w) = mn_now + w->repeat;
2477 ANHE_at_cache (timers [ev_active (w)]);
1381 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2478 adjustheap (timers, timercnt, ev_active (w));
1382 } 2479 }
1383 else 2480 else
1384 ev_timer_stop (EV_A_ w); 2481 ev_timer_stop (EV_A_ w);
1385 } 2482 }
1386 else if (w->repeat) 2483 else if (w->repeat)
2484 {
2485 ev_at (w) = w->repeat;
1387 ev_timer_start (EV_A_ w); 2486 ev_timer_start (EV_A_ w);
1388} 2487 }
1389 2488
2489 EV_FREQUENT_CHECK;
2490}
2491
1390#if EV_PERIODICS 2492#if EV_PERIODIC_ENABLE
1391void 2493void noinline
1392ev_periodic_start (EV_P_ struct ev_periodic *w) 2494ev_periodic_start (EV_P_ ev_periodic *w)
1393{ 2495{
1394 if (ev_is_active (w)) 2496 if (expect_false (ev_is_active (w)))
1395 return; 2497 return;
1396 2498
1397 if (w->reschedule_cb) 2499 if (w->reschedule_cb)
1398 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2500 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1399 else if (w->interval) 2501 else if (w->interval)
1400 { 2502 {
1401 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2503 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1402 /* this formula differs from the one in periodic_reify because we do not always round up */ 2504 /* this formula differs from the one in periodic_reify because we do not always round up */
1403 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2505 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1404 } 2506 }
2507 else
2508 ev_at (w) = w->offset;
1405 2509
2510 EV_FREQUENT_CHECK;
2511
2512 ++periodiccnt;
1406 ev_start (EV_A_ (W)w, ++periodiccnt); 2513 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1407 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2514 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1408 periodics [periodiccnt - 1] = w; 2515 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1409 upheap ((WT *)periodics, periodiccnt - 1); 2516 ANHE_at_cache (periodics [ev_active (w)]);
2517 upheap (periodics, ev_active (w));
1410 2518
2519 EV_FREQUENT_CHECK;
2520
1411 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2521 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1412} 2522}
1413 2523
1414void 2524void noinline
1415ev_periodic_stop (EV_P_ struct ev_periodic *w) 2525ev_periodic_stop (EV_P_ ev_periodic *w)
1416{ 2526{
1417 ev_clear_pending (EV_A_ (W)w); 2527 clear_pending (EV_A_ (W)w);
1418 if (!ev_is_active (w)) 2528 if (expect_false (!ev_is_active (w)))
1419 return; 2529 return;
1420 2530
2531 EV_FREQUENT_CHECK;
2532
2533 {
2534 int active = ev_active (w);
2535
1421 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2536 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1422 2537
1423 if (((W)w)->active < periodiccnt--) 2538 --periodiccnt;
2539
2540 if (expect_true (active < periodiccnt + HEAP0))
1424 { 2541 {
1425 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2542 periodics [active] = periodics [periodiccnt + HEAP0];
1426 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2543 adjustheap (periodics, periodiccnt, active);
1427 } 2544 }
2545 }
2546
2547 EV_FREQUENT_CHECK;
1428 2548
1429 ev_stop (EV_A_ (W)w); 2549 ev_stop (EV_A_ (W)w);
1430} 2550}
1431 2551
1432void 2552void noinline
1433ev_periodic_again (EV_P_ struct ev_periodic *w) 2553ev_periodic_again (EV_P_ ev_periodic *w)
1434{ 2554{
1435 /* TODO: use adjustheap and recalculation */ 2555 /* TODO: use adjustheap and recalculation */
1436 ev_periodic_stop (EV_A_ w); 2556 ev_periodic_stop (EV_A_ w);
1437 ev_periodic_start (EV_A_ w); 2557 ev_periodic_start (EV_A_ w);
1438} 2558}
1439#endif 2559#endif
1440 2560
1441void
1442ev_idle_start (EV_P_ struct ev_idle *w)
1443{
1444 if (ev_is_active (w))
1445 return;
1446
1447 ev_start (EV_A_ (W)w, ++idlecnt);
1448 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1449 idles [idlecnt - 1] = w;
1450}
1451
1452void
1453ev_idle_stop (EV_P_ struct ev_idle *w)
1454{
1455 ev_clear_pending (EV_A_ (W)w);
1456 if (!ev_is_active (w))
1457 return;
1458
1459 idles [((W)w)->active - 1] = idles [--idlecnt];
1460 ev_stop (EV_A_ (W)w);
1461}
1462
1463void
1464ev_prepare_start (EV_P_ struct ev_prepare *w)
1465{
1466 if (ev_is_active (w))
1467 return;
1468
1469 ev_start (EV_A_ (W)w, ++preparecnt);
1470 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1471 prepares [preparecnt - 1] = w;
1472}
1473
1474void
1475ev_prepare_stop (EV_P_ struct ev_prepare *w)
1476{
1477 ev_clear_pending (EV_A_ (W)w);
1478 if (!ev_is_active (w))
1479 return;
1480
1481 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1482 ev_stop (EV_A_ (W)w);
1483}
1484
1485void
1486ev_check_start (EV_P_ struct ev_check *w)
1487{
1488 if (ev_is_active (w))
1489 return;
1490
1491 ev_start (EV_A_ (W)w, ++checkcnt);
1492 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1493 checks [checkcnt - 1] = w;
1494}
1495
1496void
1497ev_check_stop (EV_P_ struct ev_check *w)
1498{
1499 ev_clear_pending (EV_A_ (W)w);
1500 if (!ev_is_active (w))
1501 return;
1502
1503 checks [((W)w)->active - 1] = checks [--checkcnt];
1504 ev_stop (EV_A_ (W)w);
1505}
1506
1507#ifndef SA_RESTART 2561#ifndef SA_RESTART
1508# define SA_RESTART 0 2562# define SA_RESTART 0
1509#endif 2563#endif
1510 2564
1511void 2565void noinline
1512ev_signal_start (EV_P_ struct ev_signal *w) 2566ev_signal_start (EV_P_ ev_signal *w)
1513{ 2567{
1514#if EV_MULTIPLICITY 2568#if EV_MULTIPLICITY
1515 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2569 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1516#endif 2570#endif
1517 if (ev_is_active (w)) 2571 if (expect_false (ev_is_active (w)))
1518 return; 2572 return;
1519 2573
1520 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2574 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2575
2576 evpipe_init (EV_A);
2577
2578 EV_FREQUENT_CHECK;
2579
2580 {
2581#ifndef _WIN32
2582 sigset_t full, prev;
2583 sigfillset (&full);
2584 sigprocmask (SIG_SETMASK, &full, &prev);
2585#endif
2586
2587 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2588
2589#ifndef _WIN32
2590 sigprocmask (SIG_SETMASK, &prev, 0);
2591#endif
2592 }
1521 2593
1522 ev_start (EV_A_ (W)w, 1); 2594 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1524 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2595 wlist_add (&signals [w->signum - 1].head, (WL)w);
1525 2596
1526 if (!((WL)w)->next) 2597 if (!((WL)w)->next)
1527 { 2598 {
1528#if _WIN32 2599#if _WIN32
1529 signal (w->signum, sighandler); 2600 signal (w->signum, ev_sighandler);
1530#else 2601#else
1531 struct sigaction sa; 2602 struct sigaction sa = { };
1532 sa.sa_handler = sighandler; 2603 sa.sa_handler = ev_sighandler;
1533 sigfillset (&sa.sa_mask); 2604 sigfillset (&sa.sa_mask);
1534 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2605 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1535 sigaction (w->signum, &sa, 0); 2606 sigaction (w->signum, &sa, 0);
1536#endif 2607#endif
1537 } 2608 }
1538}
1539 2609
1540void 2610 EV_FREQUENT_CHECK;
2611}
2612
2613void noinline
1541ev_signal_stop (EV_P_ struct ev_signal *w) 2614ev_signal_stop (EV_P_ ev_signal *w)
1542{ 2615{
1543 ev_clear_pending (EV_A_ (W)w); 2616 clear_pending (EV_A_ (W)w);
1544 if (!ev_is_active (w)) 2617 if (expect_false (!ev_is_active (w)))
1545 return; 2618 return;
1546 2619
2620 EV_FREQUENT_CHECK;
2621
1547 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2622 wlist_del (&signals [w->signum - 1].head, (WL)w);
1548 ev_stop (EV_A_ (W)w); 2623 ev_stop (EV_A_ (W)w);
1549 2624
1550 if (!signals [w->signum - 1].head) 2625 if (!signals [w->signum - 1].head)
1551 signal (w->signum, SIG_DFL); 2626 signal (w->signum, SIG_DFL);
1552}
1553 2627
2628 EV_FREQUENT_CHECK;
2629}
2630
1554void 2631void
1555ev_child_start (EV_P_ struct ev_child *w) 2632ev_child_start (EV_P_ ev_child *w)
1556{ 2633{
1557#if EV_MULTIPLICITY 2634#if EV_MULTIPLICITY
1558 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2635 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1559#endif 2636#endif
1560 if (ev_is_active (w)) 2637 if (expect_false (ev_is_active (w)))
1561 return; 2638 return;
1562 2639
2640 EV_FREQUENT_CHECK;
2641
1563 ev_start (EV_A_ (W)w, 1); 2642 ev_start (EV_A_ (W)w, 1);
1564 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2643 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1565}
1566 2644
2645 EV_FREQUENT_CHECK;
2646}
2647
1567void 2648void
1568ev_child_stop (EV_P_ struct ev_child *w) 2649ev_child_stop (EV_P_ ev_child *w)
1569{ 2650{
1570 ev_clear_pending (EV_A_ (W)w); 2651 clear_pending (EV_A_ (W)w);
1571 if (!ev_is_active (w)) 2652 if (expect_false (!ev_is_active (w)))
1572 return; 2653 return;
1573 2654
2655 EV_FREQUENT_CHECK;
2656
1574 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2657 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1575 ev_stop (EV_A_ (W)w); 2658 ev_stop (EV_A_ (W)w);
2659
2660 EV_FREQUENT_CHECK;
1576} 2661}
2662
2663#if EV_STAT_ENABLE
2664
2665# ifdef _WIN32
2666# undef lstat
2667# define lstat(a,b) _stati64 (a,b)
2668# endif
2669
2670#define DEF_STAT_INTERVAL 5.0074891
2671#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2672#define MIN_STAT_INTERVAL 0.1074891
2673
2674static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2675
2676#if EV_USE_INOTIFY
2677# define EV_INOTIFY_BUFSIZE 8192
2678
2679static void noinline
2680infy_add (EV_P_ ev_stat *w)
2681{
2682 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2683
2684 if (w->wd < 0)
2685 {
2686 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2687 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2688
2689 /* monitor some parent directory for speedup hints */
2690 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2691 /* but an efficiency issue only */
2692 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2693 {
2694 char path [4096];
2695 strcpy (path, w->path);
2696
2697 do
2698 {
2699 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2700 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2701
2702 char *pend = strrchr (path, '/');
2703
2704 if (!pend || pend == path)
2705 break;
2706
2707 *pend = 0;
2708 w->wd = inotify_add_watch (fs_fd, path, mask);
2709 }
2710 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2711 }
2712 }
2713
2714 if (w->wd >= 0)
2715 {
2716 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2717
2718 /* now local changes will be tracked by inotify, but remote changes won't */
2719 /* unless the filesystem it known to be local, we therefore still poll */
2720 /* also do poll on <2.6.25, but with normal frequency */
2721 struct statfs sfs;
2722
2723 if (fs_2625 && !statfs (w->path, &sfs))
2724 if (sfs.f_type == 0x1373 /* devfs */
2725 || sfs.f_type == 0xEF53 /* ext2/3 */
2726 || sfs.f_type == 0x3153464a /* jfs */
2727 || sfs.f_type == 0x52654973 /* reiser3 */
2728 || sfs.f_type == 0x01021994 /* tempfs */
2729 || sfs.f_type == 0x58465342 /* xfs */)
2730 return;
2731
2732 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2733 ev_timer_again (EV_A_ &w->timer);
2734 }
2735}
2736
2737static void noinline
2738infy_del (EV_P_ ev_stat *w)
2739{
2740 int slot;
2741 int wd = w->wd;
2742
2743 if (wd < 0)
2744 return;
2745
2746 w->wd = -2;
2747 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2748 wlist_del (&fs_hash [slot].head, (WL)w);
2749
2750 /* remove this watcher, if others are watching it, they will rearm */
2751 inotify_rm_watch (fs_fd, wd);
2752}
2753
2754static void noinline
2755infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2756{
2757 if (slot < 0)
2758 /* overflow, need to check for all hash slots */
2759 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2760 infy_wd (EV_A_ slot, wd, ev);
2761 else
2762 {
2763 WL w_;
2764
2765 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2766 {
2767 ev_stat *w = (ev_stat *)w_;
2768 w_ = w_->next; /* lets us remove this watcher and all before it */
2769
2770 if (w->wd == wd || wd == -1)
2771 {
2772 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2773 {
2774 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2775 w->wd = -1;
2776 infy_add (EV_A_ w); /* re-add, no matter what */
2777 }
2778
2779 stat_timer_cb (EV_A_ &w->timer, 0);
2780 }
2781 }
2782 }
2783}
2784
2785static void
2786infy_cb (EV_P_ ev_io *w, int revents)
2787{
2788 char buf [EV_INOTIFY_BUFSIZE];
2789 struct inotify_event *ev = (struct inotify_event *)buf;
2790 int ofs;
2791 int len = read (fs_fd, buf, sizeof (buf));
2792
2793 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2794 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2795}
2796
2797inline_size void
2798check_2625 (EV_P)
2799{
2800 /* kernels < 2.6.25 are borked
2801 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2802 */
2803 struct utsname buf;
2804 int major, minor, micro;
2805
2806 if (uname (&buf))
2807 return;
2808
2809 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2810 return;
2811
2812 if (major < 2
2813 || (major == 2 && minor < 6)
2814 || (major == 2 && minor == 6 && micro < 25))
2815 return;
2816
2817 fs_2625 = 1;
2818}
2819
2820inline_size void
2821infy_init (EV_P)
2822{
2823 if (fs_fd != -2)
2824 return;
2825
2826 fs_fd = -1;
2827
2828 check_2625 (EV_A);
2829
2830 fs_fd = inotify_init ();
2831
2832 if (fs_fd >= 0)
2833 {
2834 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2835 ev_set_priority (&fs_w, EV_MAXPRI);
2836 ev_io_start (EV_A_ &fs_w);
2837 }
2838}
2839
2840inline_size void
2841infy_fork (EV_P)
2842{
2843 int slot;
2844
2845 if (fs_fd < 0)
2846 return;
2847
2848 close (fs_fd);
2849 fs_fd = inotify_init ();
2850
2851 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2852 {
2853 WL w_ = fs_hash [slot].head;
2854 fs_hash [slot].head = 0;
2855
2856 while (w_)
2857 {
2858 ev_stat *w = (ev_stat *)w_;
2859 w_ = w_->next; /* lets us add this watcher */
2860
2861 w->wd = -1;
2862
2863 if (fs_fd >= 0)
2864 infy_add (EV_A_ w); /* re-add, no matter what */
2865 else
2866 ev_timer_again (EV_A_ &w->timer);
2867 }
2868 }
2869}
2870
2871#endif
2872
2873#ifdef _WIN32
2874# define EV_LSTAT(p,b) _stati64 (p, b)
2875#else
2876# define EV_LSTAT(p,b) lstat (p, b)
2877#endif
2878
2879void
2880ev_stat_stat (EV_P_ ev_stat *w)
2881{
2882 if (lstat (w->path, &w->attr) < 0)
2883 w->attr.st_nlink = 0;
2884 else if (!w->attr.st_nlink)
2885 w->attr.st_nlink = 1;
2886}
2887
2888static void noinline
2889stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2890{
2891 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2892
2893 /* we copy this here each the time so that */
2894 /* prev has the old value when the callback gets invoked */
2895 w->prev = w->attr;
2896 ev_stat_stat (EV_A_ w);
2897
2898 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2899 if (
2900 w->prev.st_dev != w->attr.st_dev
2901 || w->prev.st_ino != w->attr.st_ino
2902 || w->prev.st_mode != w->attr.st_mode
2903 || w->prev.st_nlink != w->attr.st_nlink
2904 || w->prev.st_uid != w->attr.st_uid
2905 || w->prev.st_gid != w->attr.st_gid
2906 || w->prev.st_rdev != w->attr.st_rdev
2907 || w->prev.st_size != w->attr.st_size
2908 || w->prev.st_atime != w->attr.st_atime
2909 || w->prev.st_mtime != w->attr.st_mtime
2910 || w->prev.st_ctime != w->attr.st_ctime
2911 ) {
2912 #if EV_USE_INOTIFY
2913 if (fs_fd >= 0)
2914 {
2915 infy_del (EV_A_ w);
2916 infy_add (EV_A_ w);
2917 ev_stat_stat (EV_A_ w); /* avoid race... */
2918 }
2919 #endif
2920
2921 ev_feed_event (EV_A_ w, EV_STAT);
2922 }
2923}
2924
2925void
2926ev_stat_start (EV_P_ ev_stat *w)
2927{
2928 if (expect_false (ev_is_active (w)))
2929 return;
2930
2931 ev_stat_stat (EV_A_ w);
2932
2933 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2934 w->interval = MIN_STAT_INTERVAL;
2935
2936 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2937 ev_set_priority (&w->timer, ev_priority (w));
2938
2939#if EV_USE_INOTIFY
2940 infy_init (EV_A);
2941
2942 if (fs_fd >= 0)
2943 infy_add (EV_A_ w);
2944 else
2945#endif
2946 ev_timer_again (EV_A_ &w->timer);
2947
2948 ev_start (EV_A_ (W)w, 1);
2949
2950 EV_FREQUENT_CHECK;
2951}
2952
2953void
2954ev_stat_stop (EV_P_ ev_stat *w)
2955{
2956 clear_pending (EV_A_ (W)w);
2957 if (expect_false (!ev_is_active (w)))
2958 return;
2959
2960 EV_FREQUENT_CHECK;
2961
2962#if EV_USE_INOTIFY
2963 infy_del (EV_A_ w);
2964#endif
2965 ev_timer_stop (EV_A_ &w->timer);
2966
2967 ev_stop (EV_A_ (W)w);
2968
2969 EV_FREQUENT_CHECK;
2970}
2971#endif
2972
2973#if EV_IDLE_ENABLE
2974void
2975ev_idle_start (EV_P_ ev_idle *w)
2976{
2977 if (expect_false (ev_is_active (w)))
2978 return;
2979
2980 pri_adjust (EV_A_ (W)w);
2981
2982 EV_FREQUENT_CHECK;
2983
2984 {
2985 int active = ++idlecnt [ABSPRI (w)];
2986
2987 ++idleall;
2988 ev_start (EV_A_ (W)w, active);
2989
2990 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2991 idles [ABSPRI (w)][active - 1] = w;
2992 }
2993
2994 EV_FREQUENT_CHECK;
2995}
2996
2997void
2998ev_idle_stop (EV_P_ ev_idle *w)
2999{
3000 clear_pending (EV_A_ (W)w);
3001 if (expect_false (!ev_is_active (w)))
3002 return;
3003
3004 EV_FREQUENT_CHECK;
3005
3006 {
3007 int active = ev_active (w);
3008
3009 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3010 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3011
3012 ev_stop (EV_A_ (W)w);
3013 --idleall;
3014 }
3015
3016 EV_FREQUENT_CHECK;
3017}
3018#endif
3019
3020void
3021ev_prepare_start (EV_P_ ev_prepare *w)
3022{
3023 if (expect_false (ev_is_active (w)))
3024 return;
3025
3026 EV_FREQUENT_CHECK;
3027
3028 ev_start (EV_A_ (W)w, ++preparecnt);
3029 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3030 prepares [preparecnt - 1] = w;
3031
3032 EV_FREQUENT_CHECK;
3033}
3034
3035void
3036ev_prepare_stop (EV_P_ ev_prepare *w)
3037{
3038 clear_pending (EV_A_ (W)w);
3039 if (expect_false (!ev_is_active (w)))
3040 return;
3041
3042 EV_FREQUENT_CHECK;
3043
3044 {
3045 int active = ev_active (w);
3046
3047 prepares [active - 1] = prepares [--preparecnt];
3048 ev_active (prepares [active - 1]) = active;
3049 }
3050
3051 ev_stop (EV_A_ (W)w);
3052
3053 EV_FREQUENT_CHECK;
3054}
3055
3056void
3057ev_check_start (EV_P_ ev_check *w)
3058{
3059 if (expect_false (ev_is_active (w)))
3060 return;
3061
3062 EV_FREQUENT_CHECK;
3063
3064 ev_start (EV_A_ (W)w, ++checkcnt);
3065 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3066 checks [checkcnt - 1] = w;
3067
3068 EV_FREQUENT_CHECK;
3069}
3070
3071void
3072ev_check_stop (EV_P_ ev_check *w)
3073{
3074 clear_pending (EV_A_ (W)w);
3075 if (expect_false (!ev_is_active (w)))
3076 return;
3077
3078 EV_FREQUENT_CHECK;
3079
3080 {
3081 int active = ev_active (w);
3082
3083 checks [active - 1] = checks [--checkcnt];
3084 ev_active (checks [active - 1]) = active;
3085 }
3086
3087 ev_stop (EV_A_ (W)w);
3088
3089 EV_FREQUENT_CHECK;
3090}
3091
3092#if EV_EMBED_ENABLE
3093void noinline
3094ev_embed_sweep (EV_P_ ev_embed *w)
3095{
3096 ev_loop (w->other, EVLOOP_NONBLOCK);
3097}
3098
3099static void
3100embed_io_cb (EV_P_ ev_io *io, int revents)
3101{
3102 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3103
3104 if (ev_cb (w))
3105 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3106 else
3107 ev_loop (w->other, EVLOOP_NONBLOCK);
3108}
3109
3110static void
3111embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3112{
3113 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3114
3115 {
3116 struct ev_loop *loop = w->other;
3117
3118 while (fdchangecnt)
3119 {
3120 fd_reify (EV_A);
3121 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3122 }
3123 }
3124}
3125
3126static void
3127embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3128{
3129 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3130
3131 ev_embed_stop (EV_A_ w);
3132
3133 {
3134 struct ev_loop *loop = w->other;
3135
3136 ev_loop_fork (EV_A);
3137 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3138 }
3139
3140 ev_embed_start (EV_A_ w);
3141}
3142
3143#if 0
3144static void
3145embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3146{
3147 ev_idle_stop (EV_A_ idle);
3148}
3149#endif
3150
3151void
3152ev_embed_start (EV_P_ ev_embed *w)
3153{
3154 if (expect_false (ev_is_active (w)))
3155 return;
3156
3157 {
3158 struct ev_loop *loop = w->other;
3159 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3160 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3161 }
3162
3163 EV_FREQUENT_CHECK;
3164
3165 ev_set_priority (&w->io, ev_priority (w));
3166 ev_io_start (EV_A_ &w->io);
3167
3168 ev_prepare_init (&w->prepare, embed_prepare_cb);
3169 ev_set_priority (&w->prepare, EV_MINPRI);
3170 ev_prepare_start (EV_A_ &w->prepare);
3171
3172 ev_fork_init (&w->fork, embed_fork_cb);
3173 ev_fork_start (EV_A_ &w->fork);
3174
3175 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3176
3177 ev_start (EV_A_ (W)w, 1);
3178
3179 EV_FREQUENT_CHECK;
3180}
3181
3182void
3183ev_embed_stop (EV_P_ ev_embed *w)
3184{
3185 clear_pending (EV_A_ (W)w);
3186 if (expect_false (!ev_is_active (w)))
3187 return;
3188
3189 EV_FREQUENT_CHECK;
3190
3191 ev_io_stop (EV_A_ &w->io);
3192 ev_prepare_stop (EV_A_ &w->prepare);
3193 ev_fork_stop (EV_A_ &w->fork);
3194
3195 EV_FREQUENT_CHECK;
3196}
3197#endif
3198
3199#if EV_FORK_ENABLE
3200void
3201ev_fork_start (EV_P_ ev_fork *w)
3202{
3203 if (expect_false (ev_is_active (w)))
3204 return;
3205
3206 EV_FREQUENT_CHECK;
3207
3208 ev_start (EV_A_ (W)w, ++forkcnt);
3209 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3210 forks [forkcnt - 1] = w;
3211
3212 EV_FREQUENT_CHECK;
3213}
3214
3215void
3216ev_fork_stop (EV_P_ ev_fork *w)
3217{
3218 clear_pending (EV_A_ (W)w);
3219 if (expect_false (!ev_is_active (w)))
3220 return;
3221
3222 EV_FREQUENT_CHECK;
3223
3224 {
3225 int active = ev_active (w);
3226
3227 forks [active - 1] = forks [--forkcnt];
3228 ev_active (forks [active - 1]) = active;
3229 }
3230
3231 ev_stop (EV_A_ (W)w);
3232
3233 EV_FREQUENT_CHECK;
3234}
3235#endif
3236
3237#if EV_ASYNC_ENABLE
3238void
3239ev_async_start (EV_P_ ev_async *w)
3240{
3241 if (expect_false (ev_is_active (w)))
3242 return;
3243
3244 evpipe_init (EV_A);
3245
3246 EV_FREQUENT_CHECK;
3247
3248 ev_start (EV_A_ (W)w, ++asynccnt);
3249 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3250 asyncs [asynccnt - 1] = w;
3251
3252 EV_FREQUENT_CHECK;
3253}
3254
3255void
3256ev_async_stop (EV_P_ ev_async *w)
3257{
3258 clear_pending (EV_A_ (W)w);
3259 if (expect_false (!ev_is_active (w)))
3260 return;
3261
3262 EV_FREQUENT_CHECK;
3263
3264 {
3265 int active = ev_active (w);
3266
3267 asyncs [active - 1] = asyncs [--asynccnt];
3268 ev_active (asyncs [active - 1]) = active;
3269 }
3270
3271 ev_stop (EV_A_ (W)w);
3272
3273 EV_FREQUENT_CHECK;
3274}
3275
3276void
3277ev_async_send (EV_P_ ev_async *w)
3278{
3279 w->sent = 1;
3280 evpipe_write (EV_A_ &gotasync);
3281}
3282#endif
1577 3283
1578/*****************************************************************************/ 3284/*****************************************************************************/
1579 3285
1580struct ev_once 3286struct ev_once
1581{ 3287{
1582 struct ev_io io; 3288 ev_io io;
1583 struct ev_timer to; 3289 ev_timer to;
1584 void (*cb)(int revents, void *arg); 3290 void (*cb)(int revents, void *arg);
1585 void *arg; 3291 void *arg;
1586}; 3292};
1587 3293
1588static void 3294static void
1589once_cb (EV_P_ struct ev_once *once, int revents) 3295once_cb (EV_P_ struct ev_once *once, int revents)
1590{ 3296{
1591 void (*cb)(int revents, void *arg) = once->cb; 3297 void (*cb)(int revents, void *arg) = once->cb;
1592 void *arg = once->arg; 3298 void *arg = once->arg;
1593 3299
1594 ev_io_stop (EV_A_ &once->io); 3300 ev_io_stop (EV_A_ &once->io);
1595 ev_timer_stop (EV_A_ &once->to); 3301 ev_timer_stop (EV_A_ &once->to);
1596 ev_free (once); 3302 ev_free (once);
1597 3303
1598 cb (revents, arg); 3304 cb (revents, arg);
1599} 3305}
1600 3306
1601static void 3307static void
1602once_cb_io (EV_P_ struct ev_io *w, int revents) 3308once_cb_io (EV_P_ ev_io *w, int revents)
1603{ 3309{
1604 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3310 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3311
3312 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1605} 3313}
1606 3314
1607static void 3315static void
1608once_cb_to (EV_P_ struct ev_timer *w, int revents) 3316once_cb_to (EV_P_ ev_timer *w, int revents)
1609{ 3317{
1610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3318 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3319
3320 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1611} 3321}
1612 3322
1613void 3323void
1614ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3324ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1615{ 3325{
1616 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3326 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1617 3327
1618 if (!once) 3328 if (expect_false (!once))
3329 {
1619 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3330 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1620 else 3331 return;
1621 { 3332 }
3333
1622 once->cb = cb; 3334 once->cb = cb;
1623 once->arg = arg; 3335 once->arg = arg;
1624 3336
1625 ev_init (&once->io, once_cb_io); 3337 ev_init (&once->io, once_cb_io);
1626 if (fd >= 0) 3338 if (fd >= 0)
3339 {
3340 ev_io_set (&once->io, fd, events);
3341 ev_io_start (EV_A_ &once->io);
3342 }
3343
3344 ev_init (&once->to, once_cb_to);
3345 if (timeout >= 0.)
3346 {
3347 ev_timer_set (&once->to, timeout, 0.);
3348 ev_timer_start (EV_A_ &once->to);
3349 }
3350}
3351
3352/*****************************************************************************/
3353
3354#if EV_WALK_ENABLE
3355void
3356ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3357{
3358 int i, j;
3359 ev_watcher_list *wl, *wn;
3360
3361 if (types & (EV_IO | EV_EMBED))
3362 for (i = 0; i < anfdmax; ++i)
3363 for (wl = anfds [i].head; wl; )
1627 { 3364 {
1628 ev_io_set (&once->io, fd, events); 3365 wn = wl->next;
1629 ev_io_start (EV_A_ &once->io); 3366
3367#if EV_EMBED_ENABLE
3368 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3369 {
3370 if (types & EV_EMBED)
3371 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3372 }
3373 else
3374#endif
3375#if EV_USE_INOTIFY
3376 if (ev_cb ((ev_io *)wl) == infy_cb)
3377 ;
3378 else
3379#endif
3380 if ((ev_io *)wl != &pipe_w)
3381 if (types & EV_IO)
3382 cb (EV_A_ EV_IO, wl);
3383
3384 wl = wn;
1630 } 3385 }
1631 3386
1632 ev_init (&once->to, once_cb_to); 3387 if (types & (EV_TIMER | EV_STAT))
1633 if (timeout >= 0.) 3388 for (i = timercnt + HEAP0; i-- > HEAP0; )
3389#if EV_STAT_ENABLE
3390 /*TODO: timer is not always active*/
3391 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1634 { 3392 {
1635 ev_timer_set (&once->to, timeout, 0.); 3393 if (types & EV_STAT)
1636 ev_timer_start (EV_A_ &once->to); 3394 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1637 } 3395 }
1638 } 3396 else
3397#endif
3398 if (types & EV_TIMER)
3399 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3400
3401#if EV_PERIODIC_ENABLE
3402 if (types & EV_PERIODIC)
3403 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3404 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3405#endif
3406
3407#if EV_IDLE_ENABLE
3408 if (types & EV_IDLE)
3409 for (j = NUMPRI; i--; )
3410 for (i = idlecnt [j]; i--; )
3411 cb (EV_A_ EV_IDLE, idles [j][i]);
3412#endif
3413
3414#if EV_FORK_ENABLE
3415 if (types & EV_FORK)
3416 for (i = forkcnt; i--; )
3417 if (ev_cb (forks [i]) != embed_fork_cb)
3418 cb (EV_A_ EV_FORK, forks [i]);
3419#endif
3420
3421#if EV_ASYNC_ENABLE
3422 if (types & EV_ASYNC)
3423 for (i = asynccnt; i--; )
3424 cb (EV_A_ EV_ASYNC, asyncs [i]);
3425#endif
3426
3427 if (types & EV_PREPARE)
3428 for (i = preparecnt; i--; )
3429#if EV_EMBED_ENABLE
3430 if (ev_cb (prepares [i]) != embed_prepare_cb)
3431#endif
3432 cb (EV_A_ EV_PREPARE, prepares [i]);
3433
3434 if (types & EV_CHECK)
3435 for (i = checkcnt; i--; )
3436 cb (EV_A_ EV_CHECK, checks [i]);
3437
3438 if (types & EV_SIGNAL)
3439 for (i = 0; i < signalmax; ++i)
3440 for (wl = signals [i].head; wl; )
3441 {
3442 wn = wl->next;
3443 cb (EV_A_ EV_SIGNAL, wl);
3444 wl = wn;
3445 }
3446
3447 if (types & EV_CHILD)
3448 for (i = EV_PID_HASHSIZE; i--; )
3449 for (wl = childs [i]; wl; )
3450 {
3451 wn = wl->next;
3452 cb (EV_A_ EV_CHILD, wl);
3453 wl = wn;
3454 }
3455/* EV_STAT 0x00001000 /* stat data changed */
3456/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1639} 3457}
3458#endif
3459
3460#if EV_MULTIPLICITY
3461 #include "ev_wrap.h"
3462#endif
1640 3463
1641#ifdef __cplusplus 3464#ifdef __cplusplus
1642} 3465}
1643#endif 3466#endif
1644 3467

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines