ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.112 by root, Mon Nov 12 07:20:24 2007 UTC vs.
Revision 1.366 by root, Mon Jan 10 01:58:54 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
38 61
39# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
42# endif 65# endif
43# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
68# endif
69# else
70# ifndef EV_USE_MONOTONIC
71# define EV_USE_MONOTONIC 0
72# endif
73# ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 0
45# endif 75# endif
46# endif 76# endif
47 77
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 78# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 79# ifndef EV_USE_NANOSLEEP
80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
50# endif 85# endif
51 86
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
90# endif
91# else
92# undef EV_USE_SELECT
53# define EV_USE_POLL 1 93# define EV_USE_SELECT 0
54# endif 94# endif
55 95
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 102# define EV_USE_POLL 0
58# endif 103# endif
59 104
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 106# ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
62# endif 112# endif
113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115# ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
121# endif
122
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# ifndef EV_USE_PORT
125# define EV_USE_PORT EV_FEATURE_BACKENDS
126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
130# endif
63 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
64#endif 159#endif
65 160
66#include <math.h> 161#include <math.h>
67#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
68#include <fcntl.h> 164#include <fcntl.h>
69#include <stddef.h> 165#include <stddef.h>
70 166
71#include <stdio.h> 167#include <stdio.h>
72 168
73#include <assert.h> 169#include <assert.h>
74#include <errno.h> 170#include <errno.h>
75#include <sys/types.h> 171#include <sys/types.h>
76#include <time.h> 172#include <time.h>
173#include <limits.h>
77 174
78#include <signal.h> 175#include <signal.h>
79 176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
184
80#ifndef _WIN32 185#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 186# include <sys/time.h>
83# include <sys/wait.h> 187# include <sys/wait.h>
188# include <unistd.h>
84#else 189#else
190# include <io.h>
85# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 192# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
89# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
90#endif 242# endif
91 243#endif
92/**/
93 244
94#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
95# define EV_USE_MONOTONIC 1 249# define EV_USE_MONOTONIC 0
250# endif
251#endif
252
253#ifndef EV_USE_REALTIME
254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
96#endif 263#endif
97 264
98#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
100# define EV_SELECT_USE_FD_SET 1
101#endif 267#endif
102 268
103#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
104# ifdef _WIN32 270# ifdef _WIN32
105# define EV_USE_POLL 0 271# define EV_USE_POLL 0
106# else 272# else
107# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
108# endif 274# endif
109#endif 275#endif
110 276
111#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
112# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
113#endif 283#endif
114 284
115#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
117#endif 287#endif
118 288
119#ifndef EV_USE_REALTIME 289#ifndef EV_USE_PORT
120# define EV_USE_REALTIME 1 290# define EV_USE_PORT 0
291#endif
292
293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
297# define EV_USE_INOTIFY 0
121#endif 298# endif
299#endif
122 300
123/**/ 301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
124 304
125/* darwin simply cannot be helped */ 305#ifndef EV_INOTIFY_HASHSIZE
126#ifdef __APPLE__ 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
127# undef EV_USE_POLL 361# undef EV_USE_POLL
128# undef EV_USE_KQUEUE 362# define EV_USE_POLL 0
129#endif 363#endif
130 364
131#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
136#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
139#endif 373#endif
140 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
141#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h> 397# include <winsock.h>
143#endif 398#endif
144 399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
145/**/ 438/**/
146 439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
455
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
151 458
152#ifdef EV_H 459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
153# include EV_H 460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
154#else
155# include "ev.h"
156#endif
157 461
158#if __GNUC__ >= 3 462#if __GNUC__ >= 4
159# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
160# define inline inline 464# define noinline __attribute__ ((noinline))
161#else 465#else
162# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
163# define inline static 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
164#endif 471#endif
165 472
166#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
168 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
171 490
172#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
492#define EMPTY2(a,b) /* used to suppress some warnings */
173 493
174typedef struct ev_watcher *W; 494typedef ev_watcher *W;
175typedef struct ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
176typedef struct ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
177 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
178static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
179 520
180#ifdef _WIN32 521#ifdef _WIN32
181# include "ev_win32.c" 522# include "ev_win32.c"
182#endif 523#endif
183 524
184/*****************************************************************************/ 525/*****************************************************************************/
185 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
186static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
187 578
579void
188void ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
189{ 581{
190 syserr_cb = cb; 582 syserr_cb = cb;
191} 583}
192 584
193static void 585static void noinline
194syserr (const char *msg) 586ev_syserr (const char *msg)
195{ 587{
196 if (!msg) 588 if (!msg)
197 msg = "(libev) system error"; 589 msg = "(libev) system error";
198 590
199 if (syserr_cb) 591 if (syserr_cb)
200 syserr_cb (msg); 592 syserr_cb (msg);
201 else 593 else
202 { 594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
203 perror (msg); 601 perror (msg);
602#endif
204 abort (); 603 abort ();
205 } 604 }
206} 605}
207 606
607static void *
608ev_realloc_emul (void *ptr, long size)
609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
613 /* some systems, notably openbsd and darwin, fail to properly
614 * implement realloc (x, 0) (as required by both ansi c-89 and
615 * the single unix specification, so work around them here.
616 */
617
618 if (size)
619 return realloc (ptr, size);
620
621 free (ptr);
622 return 0;
623#endif
624}
625
208static void *(*alloc)(void *ptr, long size); 626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
209 627
628void
210void ev_set_allocator (void *(*cb)(void *ptr, long size)) 629ev_set_allocator (void *(*cb)(void *ptr, long size))
211{ 630{
212 alloc = cb; 631 alloc = cb;
213} 632}
214 633
215static void * 634inline_speed void *
216ev_realloc (void *ptr, long size) 635ev_realloc (void *ptr, long size)
217{ 636{
218 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 637 ptr = alloc (ptr, size);
219 638
220 if (!ptr && size) 639 if (!ptr && size)
221 { 640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
222 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
223 abort (); 646 abort ();
224 } 647 }
225 648
226 return ptr; 649 return ptr;
227} 650}
229#define ev_malloc(size) ev_realloc (0, (size)) 652#define ev_malloc(size) ev_realloc (0, (size))
230#define ev_free(ptr) ev_realloc ((ptr), 0) 653#define ev_free(ptr) ev_realloc ((ptr), 0)
231 654
232/*****************************************************************************/ 655/*****************************************************************************/
233 656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
234typedef struct 661typedef struct
235{ 662{
236 WL head; 663 WL head;
237 unsigned char events; 664 unsigned char events; /* the events watched for */
665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
238 unsigned char reify; 667 unsigned char unused;
668#if EV_USE_EPOLL
669 unsigned int egen; /* generation counter to counter epoll bugs */
670#endif
239#if EV_SELECT_IS_WINSOCKET 671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
240 SOCKET handle; 672 SOCKET handle;
241#endif 673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
242} ANFD; 677} ANFD;
243 678
679/* stores the pending event set for a given watcher */
244typedef struct 680typedef struct
245{ 681{
246 W w; 682 W w;
247 int events; 683 int events; /* the pending event set for the given watcher */
248} ANPENDING; 684} ANPENDING;
685
686#if EV_USE_INOTIFY
687/* hash table entry per inotify-id */
688typedef struct
689{
690 WL head;
691} ANFS;
692#endif
693
694/* Heap Entry */
695#if EV_HEAP_CACHE_AT
696 /* a heap element */
697 typedef struct {
698 ev_tstamp at;
699 WT w;
700 } ANHE;
701
702 #define ANHE_w(he) (he).w /* access watcher, read-write */
703 #define ANHE_at(he) (he).at /* access cached at, read-only */
704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
705#else
706 /* a heap element */
707 typedef WT ANHE;
708
709 #define ANHE_w(he) (he)
710 #define ANHE_at(he) (he)->at
711 #define ANHE_at_cache(he)
712#endif
249 713
250#if EV_MULTIPLICITY 714#if EV_MULTIPLICITY
251 715
252 struct ev_loop 716 struct ev_loop
253 { 717 {
257 #include "ev_vars.h" 721 #include "ev_vars.h"
258 #undef VAR 722 #undef VAR
259 }; 723 };
260 #include "ev_wrap.h" 724 #include "ev_wrap.h"
261 725
262 struct ev_loop default_loop_struct; 726 static struct ev_loop default_loop_struct;
263 static struct ev_loop *default_loop; 727 struct ev_loop *ev_default_loop_ptr;
264 728
265#else 729#else
266 730
267 ev_tstamp ev_rt_now; 731 ev_tstamp ev_rt_now;
268 #define VAR(name,decl) static decl; 732 #define VAR(name,decl) static decl;
269 #include "ev_vars.h" 733 #include "ev_vars.h"
270 #undef VAR 734 #undef VAR
271 735
272 static int default_loop; 736 static int ev_default_loop_ptr;
273 737
274#endif 738#endif
739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
275 751
276/*****************************************************************************/ 752/*****************************************************************************/
277 753
754#ifndef EV_HAVE_EV_TIME
278ev_tstamp 755ev_tstamp
279ev_time (void) 756ev_time (void)
280{ 757{
281#if EV_USE_REALTIME 758#if EV_USE_REALTIME
759 if (expect_true (have_realtime))
760 {
282 struct timespec ts; 761 struct timespec ts;
283 clock_gettime (CLOCK_REALTIME, &ts); 762 clock_gettime (CLOCK_REALTIME, &ts);
284 return ts.tv_sec + ts.tv_nsec * 1e-9; 763 return ts.tv_sec + ts.tv_nsec * 1e-9;
285#else 764 }
765#endif
766
286 struct timeval tv; 767 struct timeval tv;
287 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
288 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
289#endif
290} 770}
771#endif
291 772
292inline ev_tstamp 773inline_size ev_tstamp
293get_clock (void) 774get_clock (void)
294{ 775{
295#if EV_USE_MONOTONIC 776#if EV_USE_MONOTONIC
296 if (expect_true (have_monotonic)) 777 if (expect_true (have_monotonic))
297 { 778 {
310{ 791{
311 return ev_rt_now; 792 return ev_rt_now;
312} 793}
313#endif 794#endif
314 795
315#define array_roundsize(type,n) (((n) | 4) & ~3) 796void
797ev_sleep (ev_tstamp delay)
798{
799 if (delay > 0.)
800 {
801#if EV_USE_NANOSLEEP
802 struct timespec ts;
803
804 EV_TS_SET (ts, delay);
805 nanosleep (&ts, 0);
806#elif defined(_WIN32)
807 Sleep ((unsigned long)(delay * 1e3));
808#else
809 struct timeval tv;
810
811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
812 /* something not guaranteed by newer posix versions, but guaranteed */
813 /* by older ones */
814 EV_TV_SET (tv, delay);
815 select (0, 0, 0, 0, &tv);
816#endif
817 }
818}
819
820/*****************************************************************************/
821
822#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
823
824/* find a suitable new size for the given array, */
825/* hopefully by rounding to a nice-to-malloc size */
826inline_size int
827array_nextsize (int elem, int cur, int cnt)
828{
829 int ncur = cur + 1;
830
831 do
832 ncur <<= 1;
833 while (cnt > ncur);
834
835 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
836 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
837 {
838 ncur *= elem;
839 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
840 ncur = ncur - sizeof (void *) * 4;
841 ncur /= elem;
842 }
843
844 return ncur;
845}
846
847static noinline void *
848array_realloc (int elem, void *base, int *cur, int cnt)
849{
850 *cur = array_nextsize (elem, *cur, cnt);
851 return ev_realloc (base, elem * *cur);
852}
853
854#define array_init_zero(base,count) \
855 memset ((void *)(base), 0, sizeof (*(base)) * (count))
316 856
317#define array_needsize(type,base,cur,cnt,init) \ 857#define array_needsize(type,base,cur,cnt,init) \
318 if (expect_false ((cnt) > cur)) \ 858 if (expect_false ((cnt) > (cur))) \
319 { \ 859 { \
320 int newcnt = cur; \ 860 int ocur_ = (cur); \
321 do \ 861 (base) = (type *)array_realloc \
322 { \ 862 (sizeof (type), (base), &(cur), (cnt)); \
323 newcnt = array_roundsize (type, newcnt << 1); \ 863 init ((base) + (ocur_), (cur) - ocur_); \
324 } \
325 while ((cnt) > newcnt); \
326 \
327 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
328 init (base + cur, newcnt - cur); \
329 cur = newcnt; \
330 } 864 }
331 865
866#if 0
332#define array_slim(type,stem) \ 867#define array_slim(type,stem) \
333 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 868 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
334 { \ 869 { \
335 stem ## max = array_roundsize (stem ## cnt >> 1); \ 870 stem ## max = array_roundsize (stem ## cnt >> 1); \
336 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 871 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
337 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 872 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
338 } 873 }
874#endif
339 875
340#define array_free(stem, idx) \ 876#define array_free(stem, idx) \
341 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 877 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
342 878
343/*****************************************************************************/ 879/*****************************************************************************/
344 880
345static void 881/* dummy callback for pending events */
346anfds_init (ANFD *base, int count) 882static void noinline
883pendingcb (EV_P_ ev_prepare *w, int revents)
347{ 884{
348 while (count--)
349 {
350 base->head = 0;
351 base->events = EV_NONE;
352 base->reify = 0;
353
354 ++base;
355 }
356} 885}
357 886
358void 887void noinline
359ev_feed_event (EV_P_ void *w, int revents) 888ev_feed_event (EV_P_ void *w, int revents)
360{ 889{
361 W w_ = (W)w; 890 W w_ = (W)w;
891 int pri = ABSPRI (w_);
362 892
363 if (w_->pending) 893 if (expect_false (w_->pending))
894 pendings [pri][w_->pending - 1].events |= revents;
895 else
364 { 896 {
897 w_->pending = ++pendingcnt [pri];
898 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
899 pendings [pri][w_->pending - 1].w = w_;
365 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 900 pendings [pri][w_->pending - 1].events = revents;
366 return;
367 } 901 }
368
369 w_->pending = ++pendingcnt [ABSPRI (w_)];
370 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
371 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
372 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
373} 902}
374 903
375static void 904inline_speed void
905feed_reverse (EV_P_ W w)
906{
907 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
908 rfeeds [rfeedcnt++] = w;
909}
910
911inline_size void
912feed_reverse_done (EV_P_ int revents)
913{
914 do
915 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
916 while (rfeedcnt);
917}
918
919inline_speed void
376queue_events (EV_P_ W *events, int eventcnt, int type) 920queue_events (EV_P_ W *events, int eventcnt, int type)
377{ 921{
378 int i; 922 int i;
379 923
380 for (i = 0; i < eventcnt; ++i) 924 for (i = 0; i < eventcnt; ++i)
381 ev_feed_event (EV_A_ events [i], type); 925 ev_feed_event (EV_A_ events [i], type);
382} 926}
383 927
928/*****************************************************************************/
929
384inline void 930inline_speed void
385fd_event (EV_P_ int fd, int revents) 931fd_event_nocheck (EV_P_ int fd, int revents)
386{ 932{
387 ANFD *anfd = anfds + fd; 933 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 934 ev_io *w;
389 935
390 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 936 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
391 { 937 {
392 int ev = w->events & revents; 938 int ev = w->events & revents;
393 939
394 if (ev) 940 if (ev)
395 ev_feed_event (EV_A_ (W)w, ev); 941 ev_feed_event (EV_A_ (W)w, ev);
396 } 942 }
397} 943}
398 944
945/* do not submit kernel events for fds that have reify set */
946/* because that means they changed while we were polling for new events */
947inline_speed void
948fd_event (EV_P_ int fd, int revents)
949{
950 ANFD *anfd = anfds + fd;
951
952 if (expect_true (!anfd->reify))
953 fd_event_nocheck (EV_A_ fd, revents);
954}
955
399void 956void
400ev_feed_fd_event (EV_P_ int fd, int revents) 957ev_feed_fd_event (EV_P_ int fd, int revents)
401{ 958{
959 if (fd >= 0 && fd < anfdmax)
402 fd_event (EV_A_ fd, revents); 960 fd_event_nocheck (EV_A_ fd, revents);
403} 961}
404 962
405/*****************************************************************************/ 963/* make sure the external fd watch events are in-sync */
406 964/* with the kernel/libev internal state */
407static void 965inline_size void
408fd_reify (EV_P) 966fd_reify (EV_P)
409{ 967{
410 int i; 968 int i;
411 969
412 for (i = 0; i < fdchangecnt; ++i) 970 for (i = 0; i < fdchangecnt; ++i)
413 { 971 {
414 int fd = fdchanges [i]; 972 int fd = fdchanges [i];
415 ANFD *anfd = anfds + fd; 973 ANFD *anfd = anfds + fd;
416 struct ev_io *w; 974 ev_io *w;
417 975
418 int events = 0; 976 unsigned char o_events = anfd->events;
977 unsigned char o_reify = anfd->reify;
419 978
420 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 979 anfd->reify = 0;
421 events |= w->events;
422 980
423#if EV_SELECT_IS_WINSOCKET 981#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
424 if (events) 982 if (o_reify & EV__IOFDSET)
425 { 983 {
426 unsigned long argp; 984 unsigned long arg;
427 anfd->handle = _get_osfhandle (fd); 985 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
428 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 986 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
987 printf ("oi %d %x\n", fd, anfd->handle);//D
429 } 988 }
430#endif 989#endif
431 990
432 anfd->reify = 0; 991 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
433 992 {
434 method_modify (EV_A_ fd, anfd->events, events);
435 anfd->events = events; 993 anfd->events = 0;
994
995 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
996 anfd->events |= (unsigned char)w->events;
997
998 if (o_events != anfd->events)
999 o_reify = EV__IOFDSET; /* actually |= */
1000 }
1001
1002 if (o_reify & EV__IOFDSET)
1003 backend_modify (EV_A_ fd, o_events, anfd->events);
436 } 1004 }
437 1005
438 fdchangecnt = 0; 1006 fdchangecnt = 0;
439} 1007}
440 1008
441static void 1009/* something about the given fd changed */
1010inline_size void
442fd_change (EV_P_ int fd) 1011fd_change (EV_P_ int fd, int flags)
443{ 1012{
444 if (anfds [fd].reify) 1013 unsigned char reify = anfds [fd].reify;
445 return;
446
447 anfds [fd].reify = 1; 1014 anfds [fd].reify |= flags;
448 1015
1016 if (expect_true (!reify))
1017 {
449 ++fdchangecnt; 1018 ++fdchangecnt;
450 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1019 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
451 fdchanges [fdchangecnt - 1] = fd; 1020 fdchanges [fdchangecnt - 1] = fd;
1021 }
452} 1022}
453 1023
454static void 1024/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1025inline_speed void
455fd_kill (EV_P_ int fd) 1026fd_kill (EV_P_ int fd)
456{ 1027{
457 struct ev_io *w; 1028 ev_io *w;
458 1029
459 while ((w = (struct ev_io *)anfds [fd].head)) 1030 while ((w = (ev_io *)anfds [fd].head))
460 { 1031 {
461 ev_io_stop (EV_A_ w); 1032 ev_io_stop (EV_A_ w);
462 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1033 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
463 } 1034 }
464} 1035}
465 1036
466static int 1037/* check whether the given fd is actually valid, for error recovery */
1038inline_size int
467fd_valid (int fd) 1039fd_valid (int fd)
468{ 1040{
469#ifdef _WIN32 1041#ifdef _WIN32
470 return _get_osfhandle (fd) != -1; 1042 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
471#else 1043#else
472 return fcntl (fd, F_GETFD) != -1; 1044 return fcntl (fd, F_GETFD) != -1;
473#endif 1045#endif
474} 1046}
475 1047
476/* called on EBADF to verify fds */ 1048/* called on EBADF to verify fds */
477static void 1049static void noinline
478fd_ebadf (EV_P) 1050fd_ebadf (EV_P)
479{ 1051{
480 int fd; 1052 int fd;
481 1053
482 for (fd = 0; fd < anfdmax; ++fd) 1054 for (fd = 0; fd < anfdmax; ++fd)
483 if (anfds [fd].events) 1055 if (anfds [fd].events)
484 if (!fd_valid (fd) == -1 && errno == EBADF) 1056 if (!fd_valid (fd) && errno == EBADF)
485 fd_kill (EV_A_ fd); 1057 fd_kill (EV_A_ fd);
486} 1058}
487 1059
488/* called on ENOMEM in select/poll to kill some fds and retry */ 1060/* called on ENOMEM in select/poll to kill some fds and retry */
489static void 1061static void noinline
490fd_enomem (EV_P) 1062fd_enomem (EV_P)
491{ 1063{
492 int fd; 1064 int fd;
493 1065
494 for (fd = anfdmax; fd--; ) 1066 for (fd = anfdmax; fd--; )
495 if (anfds [fd].events) 1067 if (anfds [fd].events)
496 { 1068 {
497 fd_kill (EV_A_ fd); 1069 fd_kill (EV_A_ fd);
498 return; 1070 break;
499 } 1071 }
500} 1072}
501 1073
502/* usually called after fork if method needs to re-arm all fds from scratch */ 1074/* usually called after fork if backend needs to re-arm all fds from scratch */
503static void 1075static void noinline
504fd_rearm_all (EV_P) 1076fd_rearm_all (EV_P)
505{ 1077{
506 int fd; 1078 int fd;
507 1079
508 /* this should be highly optimised to not do anything but set a flag */
509 for (fd = 0; fd < anfdmax; ++fd) 1080 for (fd = 0; fd < anfdmax; ++fd)
510 if (anfds [fd].events) 1081 if (anfds [fd].events)
511 { 1082 {
512 anfds [fd].events = 0; 1083 anfds [fd].events = 0;
513 fd_change (EV_A_ fd); 1084 anfds [fd].emask = 0;
1085 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
514 } 1086 }
515} 1087}
516 1088
517/*****************************************************************************/ 1089/* used to prepare libev internal fd's */
518 1090/* this is not fork-safe */
519static void
520upheap (WT *heap, int k)
521{
522 WT w = heap [k];
523
524 while (k && heap [k >> 1]->at > w->at)
525 {
526 heap [k] = heap [k >> 1];
527 ((W)heap [k])->active = k + 1;
528 k >>= 1;
529 }
530
531 heap [k] = w;
532 ((W)heap [k])->active = k + 1;
533
534}
535
536static void
537downheap (WT *heap, int N, int k)
538{
539 WT w = heap [k];
540
541 while (k < (N >> 1))
542 {
543 int j = k << 1;
544
545 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
546 ++j;
547
548 if (w->at <= heap [j]->at)
549 break;
550
551 heap [k] = heap [j];
552 ((W)heap [k])->active = k + 1;
553 k = j;
554 }
555
556 heap [k] = w;
557 ((W)heap [k])->active = k + 1;
558}
559
560inline void 1091inline_speed void
561adjustheap (WT *heap, int N, int k)
562{
563 upheap (heap, k);
564 downheap (heap, N, k);
565}
566
567/*****************************************************************************/
568
569typedef struct
570{
571 WL head;
572 sig_atomic_t volatile gotsig;
573} ANSIG;
574
575static ANSIG *signals;
576static int signalmax;
577
578static int sigpipe [2];
579static sig_atomic_t volatile gotsig;
580static struct ev_io sigev;
581
582static void
583signals_init (ANSIG *base, int count)
584{
585 while (count--)
586 {
587 base->head = 0;
588 base->gotsig = 0;
589
590 ++base;
591 }
592}
593
594static void
595sighandler (int signum)
596{
597#if _WIN32
598 signal (signum, sighandler);
599#endif
600
601 signals [signum - 1].gotsig = 1;
602
603 if (!gotsig)
604 {
605 int old_errno = errno;
606 gotsig = 1;
607 write (sigpipe [1], &signum, 1);
608 errno = old_errno;
609 }
610}
611
612void
613ev_feed_signal_event (EV_P_ int signum)
614{
615 WL w;
616
617#if EV_MULTIPLICITY
618 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
619#endif
620
621 --signum;
622
623 if (signum < 0 || signum >= signalmax)
624 return;
625
626 signals [signum].gotsig = 0;
627
628 for (w = signals [signum].head; w; w = w->next)
629 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
630}
631
632static void
633sigcb (EV_P_ struct ev_io *iow, int revents)
634{
635 int signum;
636
637 read (sigpipe [0], &revents, 1);
638 gotsig = 0;
639
640 for (signum = signalmax; signum--; )
641 if (signals [signum].gotsig)
642 ev_feed_signal_event (EV_A_ signum + 1);
643}
644
645inline void
646fd_intern (int fd) 1092fd_intern (int fd)
647{ 1093{
648#ifdef _WIN32 1094#ifdef _WIN32
649 int arg = 1; 1095 unsigned long arg = 1;
650 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
651#else 1097#else
652 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
653 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
654#endif 1100#endif
655} 1101}
656 1102
1103/*****************************************************************************/
1104
1105/*
1106 * the heap functions want a real array index. array index 0 is guaranteed to not
1107 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1108 * the branching factor of the d-tree.
1109 */
1110
1111/*
1112 * at the moment we allow libev the luxury of two heaps,
1113 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1114 * which is more cache-efficient.
1115 * the difference is about 5% with 50000+ watchers.
1116 */
1117#if EV_USE_4HEAP
1118
1119#define DHEAP 4
1120#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1121#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1122#define UPHEAP_DONE(p,k) ((p) == (k))
1123
1124/* away from the root */
1125inline_speed void
1126downheap (ANHE *heap, int N, int k)
1127{
1128 ANHE he = heap [k];
1129 ANHE *E = heap + N + HEAP0;
1130
1131 for (;;)
1132 {
1133 ev_tstamp minat;
1134 ANHE *minpos;
1135 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1136
1137 /* find minimum child */
1138 if (expect_true (pos + DHEAP - 1 < E))
1139 {
1140 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1141 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1142 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1144 }
1145 else if (pos < E)
1146 {
1147 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1148 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1149 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1150 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1151 }
1152 else
1153 break;
1154
1155 if (ANHE_at (he) <= minat)
1156 break;
1157
1158 heap [k] = *minpos;
1159 ev_active (ANHE_w (*minpos)) = k;
1160
1161 k = minpos - heap;
1162 }
1163
1164 heap [k] = he;
1165 ev_active (ANHE_w (he)) = k;
1166}
1167
1168#else /* 4HEAP */
1169
1170#define HEAP0 1
1171#define HPARENT(k) ((k) >> 1)
1172#define UPHEAP_DONE(p,k) (!(p))
1173
1174/* away from the root */
1175inline_speed void
1176downheap (ANHE *heap, int N, int k)
1177{
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int c = k << 1;
1183
1184 if (c >= N + HEAP0)
1185 break;
1186
1187 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1188 ? 1 : 0;
1189
1190 if (ANHE_at (he) <= ANHE_at (heap [c]))
1191 break;
1192
1193 heap [k] = heap [c];
1194 ev_active (ANHE_w (heap [k])) = k;
1195
1196 k = c;
1197 }
1198
1199 heap [k] = he;
1200 ev_active (ANHE_w (he)) = k;
1201}
1202#endif
1203
1204/* towards the root */
1205inline_speed void
1206upheap (ANHE *heap, int k)
1207{
1208 ANHE he = heap [k];
1209
1210 for (;;)
1211 {
1212 int p = HPARENT (k);
1213
1214 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1215 break;
1216
1217 heap [k] = heap [p];
1218 ev_active (ANHE_w (heap [k])) = k;
1219 k = p;
1220 }
1221
1222 heap [k] = he;
1223 ev_active (ANHE_w (he)) = k;
1224}
1225
1226/* move an element suitably so it is in a correct place */
1227inline_size void
1228adjustheap (ANHE *heap, int N, int k)
1229{
1230 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1231 upheap (heap, k);
1232 else
1233 downheap (heap, N, k);
1234}
1235
1236/* rebuild the heap: this function is used only once and executed rarely */
1237inline_size void
1238reheap (ANHE *heap, int N)
1239{
1240 int i;
1241
1242 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1243 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1244 for (i = 0; i < N; ++i)
1245 upheap (heap, i + HEAP0);
1246}
1247
1248/*****************************************************************************/
1249
1250/* associate signal watchers to a signal signal */
1251typedef struct
1252{
1253 EV_ATOMIC_T pending;
1254#if EV_MULTIPLICITY
1255 EV_P;
1256#endif
1257 WL head;
1258} ANSIG;
1259
1260static ANSIG signals [EV_NSIG - 1];
1261
1262/*****************************************************************************/
1263
1264#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1265
1266static void noinline
1267evpipe_init (EV_P)
1268{
1269 if (!ev_is_active (&pipe_w))
1270 {
1271# if EV_USE_EVENTFD
1272 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1273 if (evfd < 0 && errno == EINVAL)
1274 evfd = eventfd (0, 0);
1275
1276 if (evfd >= 0)
1277 {
1278 evpipe [0] = -1;
1279 fd_intern (evfd); /* doing it twice doesn't hurt */
1280 ev_io_set (&pipe_w, evfd, EV_READ);
1281 }
1282 else
1283# endif
1284 {
1285 while (pipe (evpipe))
1286 ev_syserr ("(libev) error creating signal/async pipe");
1287
1288 fd_intern (evpipe [0]);
1289 fd_intern (evpipe [1]);
1290 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1291 }
1292
1293 ev_io_start (EV_A_ &pipe_w);
1294 ev_unref (EV_A); /* watcher should not keep loop alive */
1295 }
1296}
1297
1298inline_size void
1299evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1300{
1301 if (!*flag)
1302 {
1303 int old_errno = errno; /* save errno because write might clobber it */
1304 char dummy;
1305
1306 *flag = 1;
1307
1308#if EV_USE_EVENTFD
1309 if (evfd >= 0)
1310 {
1311 uint64_t counter = 1;
1312 write (evfd, &counter, sizeof (uint64_t));
1313 }
1314 else
1315#endif
1316 /* win32 people keep sending patches that change this write() to send() */
1317 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1318 /* so when you think this write should be a send instead, please find out */
1319 /* where your send() is from - it's definitely not the microsoft send, and */
1320 /* tell me. thank you. */
1321 write (evpipe [1], &dummy, 1);
1322
1323 errno = old_errno;
1324 }
1325}
1326
1327/* called whenever the libev signal pipe */
1328/* got some events (signal, async) */
657static void 1329static void
658siginit (EV_P) 1330pipecb (EV_P_ ev_io *iow, int revents)
659{ 1331{
660 fd_intern (sigpipe [0]); 1332 int i;
661 fd_intern (sigpipe [1]);
662 1333
663 ev_io_set (&sigev, sigpipe [0], EV_READ); 1334#if EV_USE_EVENTFD
664 ev_io_start (EV_A_ &sigev); 1335 if (evfd >= 0)
665 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1336 {
1337 uint64_t counter;
1338 read (evfd, &counter, sizeof (uint64_t));
1339 }
1340 else
1341#endif
1342 {
1343 char dummy;
1344 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1345 read (evpipe [0], &dummy, 1);
1346 }
1347
1348 if (sig_pending)
1349 {
1350 sig_pending = 0;
1351
1352 for (i = EV_NSIG - 1; i--; )
1353 if (expect_false (signals [i].pending))
1354 ev_feed_signal_event (EV_A_ i + 1);
1355 }
1356
1357#if EV_ASYNC_ENABLE
1358 if (async_pending)
1359 {
1360 async_pending = 0;
1361
1362 for (i = asynccnt; i--; )
1363 if (asyncs [i]->sent)
1364 {
1365 asyncs [i]->sent = 0;
1366 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1367 }
1368 }
1369#endif
666} 1370}
667 1371
668/*****************************************************************************/ 1372/*****************************************************************************/
669 1373
670static struct ev_child *childs [PID_HASHSIZE]; 1374void
1375ev_feed_signal (int signum)
1376{
1377#if EV_MULTIPLICITY
1378 EV_P = signals [signum - 1].loop;
671 1379
1380 if (!EV_A)
1381 return;
1382#endif
1383
1384 signals [signum - 1].pending = 1;
1385 evpipe_write (EV_A_ &sig_pending);
1386}
1387
1388static void
1389ev_sighandler (int signum)
1390{
672#ifndef _WIN32 1391#ifdef _WIN32
1392 signal (signum, ev_sighandler);
1393#endif
673 1394
1395 ev_feed_signal (signum);
1396}
1397
1398void noinline
1399ev_feed_signal_event (EV_P_ int signum)
1400{
1401 WL w;
1402
1403 if (expect_false (signum <= 0 || signum > EV_NSIG))
1404 return;
1405
1406 --signum;
1407
1408#if EV_MULTIPLICITY
1409 /* it is permissible to try to feed a signal to the wrong loop */
1410 /* or, likely more useful, feeding a signal nobody is waiting for */
1411
1412 if (expect_false (signals [signum].loop != EV_A))
1413 return;
1414#endif
1415
1416 signals [signum].pending = 0;
1417
1418 for (w = signals [signum].head; w; w = w->next)
1419 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1420}
1421
1422#if EV_USE_SIGNALFD
1423static void
1424sigfdcb (EV_P_ ev_io *iow, int revents)
1425{
1426 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1427
1428 for (;;)
1429 {
1430 ssize_t res = read (sigfd, si, sizeof (si));
1431
1432 /* not ISO-C, as res might be -1, but works with SuS */
1433 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1434 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1435
1436 if (res < (ssize_t)sizeof (si))
1437 break;
1438 }
1439}
1440#endif
1441
1442#endif
1443
1444/*****************************************************************************/
1445
1446#if EV_CHILD_ENABLE
1447static WL childs [EV_PID_HASHSIZE];
1448
674static struct ev_signal childev; 1449static ev_signal childev;
1450
1451#ifndef WIFCONTINUED
1452# define WIFCONTINUED(status) 0
1453#endif
1454
1455/* handle a single child status event */
1456inline_speed void
1457child_reap (EV_P_ int chain, int pid, int status)
1458{
1459 ev_child *w;
1460 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1461
1462 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1463 {
1464 if ((w->pid == pid || !w->pid)
1465 && (!traced || (w->flags & 1)))
1466 {
1467 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1468 w->rpid = pid;
1469 w->rstatus = status;
1470 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1471 }
1472 }
1473}
675 1474
676#ifndef WCONTINUED 1475#ifndef WCONTINUED
677# define WCONTINUED 0 1476# define WCONTINUED 0
678#endif 1477#endif
679 1478
1479/* called on sigchld etc., calls waitpid */
680static void 1480static void
681child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
682{
683 struct ev_child *w;
684
685 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
686 if (w->pid == pid || !w->pid)
687 {
688 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
689 w->rpid = pid;
690 w->rstatus = status;
691 ev_feed_event (EV_A_ (W)w, EV_CHILD);
692 }
693}
694
695static void
696childcb (EV_P_ struct ev_signal *sw, int revents) 1481childcb (EV_P_ ev_signal *sw, int revents)
697{ 1482{
698 int pid, status; 1483 int pid, status;
699 1484
1485 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
700 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1486 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
701 { 1487 if (!WCONTINUED
1488 || errno != EINVAL
1489 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1490 return;
1491
702 /* make sure we are called again until all childs have been reaped */ 1492 /* make sure we are called again until all children have been reaped */
1493 /* we need to do it this way so that the callback gets called before we continue */
703 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1494 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
704 1495
705 child_reap (EV_A_ sw, pid, pid, status); 1496 child_reap (EV_A_ pid, pid, status);
1497 if ((EV_PID_HASHSIZE) > 1)
706 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1498 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
707 }
708} 1499}
709 1500
710#endif 1501#endif
711 1502
712/*****************************************************************************/ 1503/*****************************************************************************/
713 1504
1505#if EV_USE_IOCP
1506# include "ev_iocp.c"
1507#endif
1508#if EV_USE_PORT
1509# include "ev_port.c"
1510#endif
714#if EV_USE_KQUEUE 1511#if EV_USE_KQUEUE
715# include "ev_kqueue.c" 1512# include "ev_kqueue.c"
716#endif 1513#endif
717#if EV_USE_EPOLL 1514#if EV_USE_EPOLL
718# include "ev_epoll.c" 1515# include "ev_epoll.c"
735{ 1532{
736 return EV_VERSION_MINOR; 1533 return EV_VERSION_MINOR;
737} 1534}
738 1535
739/* return true if we are running with elevated privileges and should ignore env variables */ 1536/* return true if we are running with elevated privileges and should ignore env variables */
740static int 1537int inline_size
741enable_secure (void) 1538enable_secure (void)
742{ 1539{
743#ifdef _WIN32 1540#ifdef _WIN32
744 return 0; 1541 return 0;
745#else 1542#else
747 || getgid () != getegid (); 1544 || getgid () != getegid ();
748#endif 1545#endif
749} 1546}
750 1547
751unsigned int 1548unsigned int
1549ev_supported_backends (void)
1550{
1551 unsigned int flags = 0;
1552
1553 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1554 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1555 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1556 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1557 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1558
1559 return flags;
1560}
1561
1562unsigned int
1563ev_recommended_backends (void)
1564{
1565 unsigned int flags = ev_supported_backends ();
1566
1567#ifndef __NetBSD__
1568 /* kqueue is borked on everything but netbsd apparently */
1569 /* it usually doesn't work correctly on anything but sockets and pipes */
1570 flags &= ~EVBACKEND_KQUEUE;
1571#endif
1572#ifdef __APPLE__
1573 /* only select works correctly on that "unix-certified" platform */
1574 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1575 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1576#endif
1577#ifdef __FreeBSD__
1578 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1579#endif
1580
1581 return flags;
1582}
1583
1584unsigned int
1585ev_embeddable_backends (void)
1586{
1587 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1588
1589 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1590 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1591 flags &= ~EVBACKEND_EPOLL;
1592
1593 return flags;
1594}
1595
1596unsigned int
1597ev_backend (EV_P)
1598{
1599 return backend;
1600}
1601
1602#if EV_FEATURE_API
1603unsigned int
1604ev_iteration (EV_P)
1605{
1606 return loop_count;
1607}
1608
1609unsigned int
752ev_method (EV_P) 1610ev_depth (EV_P)
753{ 1611{
754 return method; 1612 return loop_depth;
755} 1613}
756 1614
757static void 1615void
1616ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1617{
1618 io_blocktime = interval;
1619}
1620
1621void
1622ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1623{
1624 timeout_blocktime = interval;
1625}
1626
1627void
1628ev_set_userdata (EV_P_ void *data)
1629{
1630 userdata = data;
1631}
1632
1633void *
1634ev_userdata (EV_P)
1635{
1636 return userdata;
1637}
1638
1639void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1640{
1641 invoke_cb = invoke_pending_cb;
1642}
1643
1644void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1645{
1646 release_cb = release;
1647 acquire_cb = acquire;
1648}
1649#endif
1650
1651/* initialise a loop structure, must be zero-initialised */
1652static void noinline
758loop_init (EV_P_ unsigned int flags) 1653loop_init (EV_P_ unsigned int flags)
759{ 1654{
760 if (!method) 1655 if (!backend)
761 { 1656 {
1657 origflags = flags;
1658
1659#if EV_USE_REALTIME
1660 if (!have_realtime)
1661 {
1662 struct timespec ts;
1663
1664 if (!clock_gettime (CLOCK_REALTIME, &ts))
1665 have_realtime = 1;
1666 }
1667#endif
1668
762#if EV_USE_MONOTONIC 1669#if EV_USE_MONOTONIC
1670 if (!have_monotonic)
763 { 1671 {
764 struct timespec ts; 1672 struct timespec ts;
1673
765 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1674 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
766 have_monotonic = 1; 1675 have_monotonic = 1;
767 } 1676 }
768#endif 1677#endif
769 1678
770 ev_rt_now = ev_time (); 1679 /* pid check not overridable via env */
771 mn_now = get_clock (); 1680#ifndef _WIN32
772 now_floor = mn_now; 1681 if (flags & EVFLAG_FORKCHECK)
773 rtmn_diff = ev_rt_now - mn_now; 1682 curpid = getpid ();
1683#endif
774 1684
775 if (!(flags & EVMETHOD_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1685 if (!(flags & EVFLAG_NOENV)
1686 && !enable_secure ()
1687 && getenv ("LIBEV_FLAGS"))
776 flags = atoi (getenv ("LIBEV_FLAGS")); 1688 flags = atoi (getenv ("LIBEV_FLAGS"));
777 1689
778 if (!(flags & 0x0000ffff)) 1690 ev_rt_now = ev_time ();
779 flags |= 0x0000ffff; 1691 mn_now = get_clock ();
1692 now_floor = mn_now;
1693 rtmn_diff = ev_rt_now - mn_now;
1694#if EV_FEATURE_API
1695 invoke_cb = ev_invoke_pending;
1696#endif
780 1697
781 method = 0; 1698 io_blocktime = 0.;
1699 timeout_blocktime = 0.;
1700 backend = 0;
1701 backend_fd = -1;
1702 sig_pending = 0;
1703#if EV_ASYNC_ENABLE
1704 async_pending = 0;
1705#endif
1706#if EV_USE_INOTIFY
1707 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1708#endif
1709#if EV_USE_SIGNALFD
1710 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1711#endif
1712
1713 if (!(flags & EVBACKEND_MASK))
1714 flags |= ev_recommended_backends ();
1715
1716#if EV_USE_IOCP
1717 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1718#endif
1719#if EV_USE_PORT
1720 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1721#endif
782#if EV_USE_KQUEUE 1722#if EV_USE_KQUEUE
783 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
784#endif 1724#endif
785#if EV_USE_EPOLL 1725#if EV_USE_EPOLL
786 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1726 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
787#endif 1727#endif
788#if EV_USE_POLL 1728#if EV_USE_POLL
789 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1729 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
790#endif 1730#endif
791#if EV_USE_SELECT 1731#if EV_USE_SELECT
792 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1732 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
793#endif 1733#endif
794 1734
1735 ev_prepare_init (&pending_w, pendingcb);
1736
1737#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
795 ev_init (&sigev, sigcb); 1738 ev_init (&pipe_w, pipecb);
796 ev_set_priority (&sigev, EV_MAXPRI); 1739 ev_set_priority (&pipe_w, EV_MAXPRI);
1740#endif
797 } 1741 }
798} 1742}
799 1743
1744/* free up a loop structure */
800void 1745void
801loop_destroy (EV_P) 1746ev_loop_destroy (EV_P)
802{ 1747{
803 int i; 1748 int i;
804 1749
1750#if EV_MULTIPLICITY
1751 /* mimic free (0) */
1752 if (!EV_A)
1753 return;
1754#endif
1755
1756#if EV_CLEANUP_ENABLE
1757 /* queue cleanup watchers (and execute them) */
1758 if (expect_false (cleanupcnt))
1759 {
1760 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1761 EV_INVOKE_PENDING;
1762 }
1763#endif
1764
1765#if EV_CHILD_ENABLE
1766 if (ev_is_active (&childev))
1767 {
1768 ev_ref (EV_A); /* child watcher */
1769 ev_signal_stop (EV_A_ &childev);
1770 }
1771#endif
1772
1773 if (ev_is_active (&pipe_w))
1774 {
1775 /*ev_ref (EV_A);*/
1776 /*ev_io_stop (EV_A_ &pipe_w);*/
1777
1778#if EV_USE_EVENTFD
1779 if (evfd >= 0)
1780 close (evfd);
1781#endif
1782
1783 if (evpipe [0] >= 0)
1784 {
1785 EV_WIN32_CLOSE_FD (evpipe [0]);
1786 EV_WIN32_CLOSE_FD (evpipe [1]);
1787 }
1788 }
1789
1790#if EV_USE_SIGNALFD
1791 if (ev_is_active (&sigfd_w))
1792 close (sigfd);
1793#endif
1794
1795#if EV_USE_INOTIFY
1796 if (fs_fd >= 0)
1797 close (fs_fd);
1798#endif
1799
1800 if (backend_fd >= 0)
1801 close (backend_fd);
1802
1803#if EV_USE_IOCP
1804 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1805#endif
1806#if EV_USE_PORT
1807 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1808#endif
805#if EV_USE_KQUEUE 1809#if EV_USE_KQUEUE
806 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1810 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
807#endif 1811#endif
808#if EV_USE_EPOLL 1812#if EV_USE_EPOLL
809 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1813 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
810#endif 1814#endif
811#if EV_USE_POLL 1815#if EV_USE_POLL
812 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1816 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
813#endif 1817#endif
814#if EV_USE_SELECT 1818#if EV_USE_SELECT
815 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1819 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
816#endif 1820#endif
817 1821
818 for (i = NUMPRI; i--; ) 1822 for (i = NUMPRI; i--; )
1823 {
819 array_free (pending, [i]); 1824 array_free (pending, [i]);
1825#if EV_IDLE_ENABLE
1826 array_free (idle, [i]);
1827#endif
1828 }
1829
1830 ev_free (anfds); anfds = 0; anfdmax = 0;
820 1831
821 /* have to use the microsoft-never-gets-it-right macro */ 1832 /* have to use the microsoft-never-gets-it-right macro */
1833 array_free (rfeed, EMPTY);
822 array_free (fdchange, EMPTY); 1834 array_free (fdchange, EMPTY);
823 array_free (timer, EMPTY); 1835 array_free (timer, EMPTY);
824#if EV_PERIODICS 1836#if EV_PERIODIC_ENABLE
825 array_free (periodic, EMPTY); 1837 array_free (periodic, EMPTY);
826#endif 1838#endif
1839#if EV_FORK_ENABLE
1840 array_free (fork, EMPTY);
1841#endif
1842#if EV_CLEANUP_ENABLE
827 array_free (idle, EMPTY); 1843 array_free (cleanup, EMPTY);
1844#endif
828 array_free (prepare, EMPTY); 1845 array_free (prepare, EMPTY);
829 array_free (check, EMPTY); 1846 array_free (check, EMPTY);
1847#if EV_ASYNC_ENABLE
1848 array_free (async, EMPTY);
1849#endif
830 1850
831 method = 0; 1851 backend = 0;
832}
833 1852
834static void 1853#if EV_MULTIPLICITY
1854 if (ev_is_default_loop (EV_A))
1855#endif
1856 ev_default_loop_ptr = 0;
1857#if EV_MULTIPLICITY
1858 else
1859 ev_free (EV_A);
1860#endif
1861}
1862
1863#if EV_USE_INOTIFY
1864inline_size void infy_fork (EV_P);
1865#endif
1866
1867inline_size void
835loop_fork (EV_P) 1868loop_fork (EV_P)
836{ 1869{
1870#if EV_USE_PORT
1871 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1872#endif
1873#if EV_USE_KQUEUE
1874 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1875#endif
837#if EV_USE_EPOLL 1876#if EV_USE_EPOLL
838 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1877 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
839#endif 1878#endif
840#if EV_USE_KQUEUE 1879#if EV_USE_INOTIFY
841 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1880 infy_fork (EV_A);
842#endif 1881#endif
843 1882
844 if (ev_is_active (&sigev)) 1883 if (ev_is_active (&pipe_w))
845 { 1884 {
846 /* default loop */ 1885 /* this "locks" the handlers against writing to the pipe */
1886 /* while we modify the fd vars */
1887 sig_pending = 1;
1888#if EV_ASYNC_ENABLE
1889 async_pending = 1;
1890#endif
847 1891
848 ev_ref (EV_A); 1892 ev_ref (EV_A);
849 ev_io_stop (EV_A_ &sigev); 1893 ev_io_stop (EV_A_ &pipe_w);
850 close (sigpipe [0]);
851 close (sigpipe [1]);
852 1894
853 while (pipe (sigpipe)) 1895#if EV_USE_EVENTFD
854 syserr ("(libev) error creating pipe"); 1896 if (evfd >= 0)
1897 close (evfd);
1898#endif
855 1899
1900 if (evpipe [0] >= 0)
1901 {
1902 EV_WIN32_CLOSE_FD (evpipe [0]);
1903 EV_WIN32_CLOSE_FD (evpipe [1]);
1904 }
1905
1906#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
856 siginit (EV_A); 1907 evpipe_init (EV_A);
1908 /* now iterate over everything, in case we missed something */
1909 pipecb (EV_A_ &pipe_w, EV_READ);
1910#endif
857 } 1911 }
858 1912
859 postfork = 0; 1913 postfork = 0;
860} 1914}
861 1915
862#if EV_MULTIPLICITY 1916#if EV_MULTIPLICITY
1917
863struct ev_loop * 1918struct ev_loop *
864ev_loop_new (unsigned int flags) 1919ev_loop_new (unsigned int flags)
865{ 1920{
866 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1921 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
867 1922
868 memset (loop, 0, sizeof (struct ev_loop)); 1923 memset (EV_A, 0, sizeof (struct ev_loop));
869
870 loop_init (EV_A_ flags); 1924 loop_init (EV_A_ flags);
871 1925
872 if (ev_method (EV_A)) 1926 if (ev_backend (EV_A))
873 return loop; 1927 return EV_A;
874 1928
1929 ev_free (EV_A);
875 return 0; 1930 return 0;
876} 1931}
877 1932
878void 1933#endif /* multiplicity */
879ev_loop_destroy (EV_P)
880{
881 loop_destroy (EV_A);
882 ev_free (loop);
883}
884 1934
885void 1935#if EV_VERIFY
886ev_loop_fork (EV_P) 1936static void noinline
1937verify_watcher (EV_P_ W w)
887{ 1938{
888 postfork = 1; 1939 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
889}
890 1940
1941 if (w->pending)
1942 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1943}
1944
1945static void noinline
1946verify_heap (EV_P_ ANHE *heap, int N)
1947{
1948 int i;
1949
1950 for (i = HEAP0; i < N + HEAP0; ++i)
1951 {
1952 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1953 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1954 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1955
1956 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1957 }
1958}
1959
1960static void noinline
1961array_verify (EV_P_ W *ws, int cnt)
1962{
1963 while (cnt--)
1964 {
1965 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1966 verify_watcher (EV_A_ ws [cnt]);
1967 }
1968}
1969#endif
1970
1971#if EV_FEATURE_API
1972void
1973ev_verify (EV_P)
1974{
1975#if EV_VERIFY
1976 int i;
1977 WL w;
1978
1979 assert (activecnt >= -1);
1980
1981 assert (fdchangemax >= fdchangecnt);
1982 for (i = 0; i < fdchangecnt; ++i)
1983 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1984
1985 assert (anfdmax >= 0);
1986 for (i = 0; i < anfdmax; ++i)
1987 for (w = anfds [i].head; w; w = w->next)
1988 {
1989 verify_watcher (EV_A_ (W)w);
1990 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1991 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1992 }
1993
1994 assert (timermax >= timercnt);
1995 verify_heap (EV_A_ timers, timercnt);
1996
1997#if EV_PERIODIC_ENABLE
1998 assert (periodicmax >= periodiccnt);
1999 verify_heap (EV_A_ periodics, periodiccnt);
2000#endif
2001
2002 for (i = NUMPRI; i--; )
2003 {
2004 assert (pendingmax [i] >= pendingcnt [i]);
2005#if EV_IDLE_ENABLE
2006 assert (idleall >= 0);
2007 assert (idlemax [i] >= idlecnt [i]);
2008 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2009#endif
2010 }
2011
2012#if EV_FORK_ENABLE
2013 assert (forkmax >= forkcnt);
2014 array_verify (EV_A_ (W *)forks, forkcnt);
2015#endif
2016
2017#if EV_CLEANUP_ENABLE
2018 assert (cleanupmax >= cleanupcnt);
2019 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2020#endif
2021
2022#if EV_ASYNC_ENABLE
2023 assert (asyncmax >= asynccnt);
2024 array_verify (EV_A_ (W *)asyncs, asynccnt);
2025#endif
2026
2027#if EV_PREPARE_ENABLE
2028 assert (preparemax >= preparecnt);
2029 array_verify (EV_A_ (W *)prepares, preparecnt);
2030#endif
2031
2032#if EV_CHECK_ENABLE
2033 assert (checkmax >= checkcnt);
2034 array_verify (EV_A_ (W *)checks, checkcnt);
2035#endif
2036
2037# if 0
2038#if EV_CHILD_ENABLE
2039 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2040 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2041#endif
2042# endif
2043#endif
2044}
891#endif 2045#endif
892 2046
893#if EV_MULTIPLICITY 2047#if EV_MULTIPLICITY
894struct ev_loop * 2048struct ev_loop *
895#else 2049#else
896int 2050int
897#endif 2051#endif
898ev_default_loop (unsigned int flags) 2052ev_default_loop (unsigned int flags)
899{ 2053{
900 if (sigpipe [0] == sigpipe [1])
901 if (pipe (sigpipe))
902 return 0;
903
904 if (!default_loop) 2054 if (!ev_default_loop_ptr)
905 { 2055 {
906#if EV_MULTIPLICITY 2056#if EV_MULTIPLICITY
907 struct ev_loop *loop = default_loop = &default_loop_struct; 2057 EV_P = ev_default_loop_ptr = &default_loop_struct;
908#else 2058#else
909 default_loop = 1; 2059 ev_default_loop_ptr = 1;
910#endif 2060#endif
911 2061
912 loop_init (EV_A_ flags); 2062 loop_init (EV_A_ flags);
913 2063
914 if (ev_method (EV_A)) 2064 if (ev_backend (EV_A))
915 { 2065 {
916 siginit (EV_A); 2066#if EV_CHILD_ENABLE
917
918#ifndef _WIN32
919 ev_signal_init (&childev, childcb, SIGCHLD); 2067 ev_signal_init (&childev, childcb, SIGCHLD);
920 ev_set_priority (&childev, EV_MAXPRI); 2068 ev_set_priority (&childev, EV_MAXPRI);
921 ev_signal_start (EV_A_ &childev); 2069 ev_signal_start (EV_A_ &childev);
922 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2070 ev_unref (EV_A); /* child watcher should not keep loop alive */
923#endif 2071#endif
924 } 2072 }
925 else 2073 else
926 default_loop = 0; 2074 ev_default_loop_ptr = 0;
927 } 2075 }
928 2076
929 return default_loop; 2077 return ev_default_loop_ptr;
930} 2078}
931 2079
932void 2080void
933ev_default_destroy (void) 2081ev_loop_fork (EV_P)
934{ 2082{
935#if EV_MULTIPLICITY 2083 postfork = 1; /* must be in line with ev_default_fork */
936 struct ev_loop *loop = default_loop;
937#endif
938
939#ifndef _WIN32
940 ev_ref (EV_A); /* child watcher */
941 ev_signal_stop (EV_A_ &childev);
942#endif
943
944 ev_ref (EV_A); /* signal watcher */
945 ev_io_stop (EV_A_ &sigev);
946
947 close (sigpipe [0]); sigpipe [0] = 0;
948 close (sigpipe [1]); sigpipe [1] = 0;
949
950 loop_destroy (EV_A);
951}
952
953void
954ev_default_fork (void)
955{
956#if EV_MULTIPLICITY
957 struct ev_loop *loop = default_loop;
958#endif
959
960 if (method)
961 postfork = 1;
962} 2084}
963 2085
964/*****************************************************************************/ 2086/*****************************************************************************/
965 2087
966static int 2088void
967any_pending (EV_P) 2089ev_invoke (EV_P_ void *w, int revents)
2090{
2091 EV_CB_INVOKE ((W)w, revents);
2092}
2093
2094unsigned int
2095ev_pending_count (EV_P)
968{ 2096{
969 int pri; 2097 int pri;
2098 unsigned int count = 0;
970 2099
971 for (pri = NUMPRI; pri--; ) 2100 for (pri = NUMPRI; pri--; )
972 if (pendingcnt [pri]) 2101 count += pendingcnt [pri];
973 return 1;
974 2102
975 return 0; 2103 return count;
976} 2104}
977 2105
978static void 2106void noinline
979call_pending (EV_P) 2107ev_invoke_pending (EV_P)
980{ 2108{
981 int pri; 2109 int pri;
982 2110
983 for (pri = NUMPRI; pri--; ) 2111 for (pri = NUMPRI; pri--; )
984 while (pendingcnt [pri]) 2112 while (pendingcnt [pri])
985 { 2113 {
986 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2114 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
987 2115
988 if (p->w) 2116 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
989 { 2117 /* ^ this is no longer true, as pending_w could be here */
2118
990 p->w->pending = 0; 2119 p->w->pending = 0;
991 EV_CB_INVOKE (p->w, p->events); 2120 EV_CB_INVOKE (p->w, p->events);
992 } 2121 EV_FREQUENT_CHECK;
993 } 2122 }
994} 2123}
995 2124
996static void 2125#if EV_IDLE_ENABLE
2126/* make idle watchers pending. this handles the "call-idle */
2127/* only when higher priorities are idle" logic */
2128inline_size void
2129idle_reify (EV_P)
2130{
2131 if (expect_false (idleall))
2132 {
2133 int pri;
2134
2135 for (pri = NUMPRI; pri--; )
2136 {
2137 if (pendingcnt [pri])
2138 break;
2139
2140 if (idlecnt [pri])
2141 {
2142 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2143 break;
2144 }
2145 }
2146 }
2147}
2148#endif
2149
2150/* make timers pending */
2151inline_size void
997timers_reify (EV_P) 2152timers_reify (EV_P)
998{ 2153{
2154 EV_FREQUENT_CHECK;
2155
999 while (timercnt && ((WT)timers [0])->at <= mn_now) 2156 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1000 { 2157 {
1001 struct ev_timer *w = timers [0]; 2158 do
1002
1003 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1004
1005 /* first reschedule or stop timer */
1006 if (w->repeat)
1007 { 2159 {
2160 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2161
2162 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2163
2164 /* first reschedule or stop timer */
2165 if (w->repeat)
2166 {
2167 ev_at (w) += w->repeat;
2168 if (ev_at (w) < mn_now)
2169 ev_at (w) = mn_now;
2170
1008 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2171 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1009 2172
1010 ((WT)w)->at += w->repeat; 2173 ANHE_at_cache (timers [HEAP0]);
1011 if (((WT)w)->at < mn_now)
1012 ((WT)w)->at = mn_now;
1013
1014 downheap ((WT *)timers, timercnt, 0); 2174 downheap (timers, timercnt, HEAP0);
2175 }
2176 else
2177 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2178
2179 EV_FREQUENT_CHECK;
2180 feed_reverse (EV_A_ (W)w);
1015 } 2181 }
1016 else 2182 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1017 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1018 2183
1019 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2184 feed_reverse_done (EV_A_ EV_TIMER);
1020 } 2185 }
1021} 2186}
1022 2187
1023#if EV_PERIODICS 2188#if EV_PERIODIC_ENABLE
1024static void 2189/* make periodics pending */
2190inline_size void
1025periodics_reify (EV_P) 2191periodics_reify (EV_P)
1026{ 2192{
2193 EV_FREQUENT_CHECK;
2194
1027 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2195 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1028 { 2196 {
1029 struct ev_periodic *w = periodics [0]; 2197 int feed_count = 0;
1030 2198
2199 do
2200 {
2201 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2202
1031 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2203 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1032 2204
1033 /* first reschedule or stop timer */ 2205 /* first reschedule or stop timer */
2206 if (w->reschedule_cb)
2207 {
2208 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2209
2210 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2211
2212 ANHE_at_cache (periodics [HEAP0]);
2213 downheap (periodics, periodiccnt, HEAP0);
2214 }
2215 else if (w->interval)
2216 {
2217 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2218 /* if next trigger time is not sufficiently in the future, put it there */
2219 /* this might happen because of floating point inexactness */
2220 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2221 {
2222 ev_at (w) += w->interval;
2223
2224 /* if interval is unreasonably low we might still have a time in the past */
2225 /* so correct this. this will make the periodic very inexact, but the user */
2226 /* has effectively asked to get triggered more often than possible */
2227 if (ev_at (w) < ev_rt_now)
2228 ev_at (w) = ev_rt_now;
2229 }
2230
2231 ANHE_at_cache (periodics [HEAP0]);
2232 downheap (periodics, periodiccnt, HEAP0);
2233 }
2234 else
2235 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2236
2237 EV_FREQUENT_CHECK;
2238 feed_reverse (EV_A_ (W)w);
2239 }
2240 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2241
2242 feed_reverse_done (EV_A_ EV_PERIODIC);
2243 }
2244}
2245
2246/* simply recalculate all periodics */
2247/* TODO: maybe ensure that at least one event happens when jumping forward? */
2248static void noinline
2249periodics_reschedule (EV_P)
2250{
2251 int i;
2252
2253 /* adjust periodics after time jump */
2254 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2255 {
2256 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2257
1034 if (w->reschedule_cb) 2258 if (w->reschedule_cb)
2259 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2260 else if (w->interval)
2261 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2262
2263 ANHE_at_cache (periodics [i]);
2264 }
2265
2266 reheap (periodics, periodiccnt);
2267}
2268#endif
2269
2270/* adjust all timers by a given offset */
2271static void noinline
2272timers_reschedule (EV_P_ ev_tstamp adjust)
2273{
2274 int i;
2275
2276 for (i = 0; i < timercnt; ++i)
2277 {
2278 ANHE *he = timers + i + HEAP0;
2279 ANHE_w (*he)->at += adjust;
2280 ANHE_at_cache (*he);
2281 }
2282}
2283
2284/* fetch new monotonic and realtime times from the kernel */
2285/* also detect if there was a timejump, and act accordingly */
2286inline_speed void
2287time_update (EV_P_ ev_tstamp max_block)
2288{
2289#if EV_USE_MONOTONIC
2290 if (expect_true (have_monotonic))
2291 {
2292 int i;
2293 ev_tstamp odiff = rtmn_diff;
2294
2295 mn_now = get_clock ();
2296
2297 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2298 /* interpolate in the meantime */
2299 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1035 { 2300 {
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2301 ev_rt_now = rtmn_diff + mn_now;
1037 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2302 return;
1038 downheap ((WT *)periodics, periodiccnt, 0);
1039 } 2303 }
1040 else if (w->interval)
1041 {
1042 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1043 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1044 downheap ((WT *)periodics, periodiccnt, 0);
1045 }
1046 else
1047 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1048 2304
1049 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1050 }
1051}
1052
1053static void
1054periodics_reschedule (EV_P)
1055{
1056 int i;
1057
1058 /* adjust periodics after time jump */
1059 for (i = 0; i < periodiccnt; ++i)
1060 {
1061 struct ev_periodic *w = periodics [i];
1062
1063 if (w->reschedule_cb)
1064 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1065 else if (w->interval)
1066 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1067 }
1068
1069 /* now rebuild the heap */
1070 for (i = periodiccnt >> 1; i--; )
1071 downheap ((WT *)periodics, periodiccnt, i);
1072}
1073#endif
1074
1075inline int
1076time_update_monotonic (EV_P)
1077{
1078 mn_now = get_clock ();
1079
1080 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1081 {
1082 ev_rt_now = rtmn_diff + mn_now;
1083 return 0;
1084 }
1085 else
1086 {
1087 now_floor = mn_now; 2305 now_floor = mn_now;
1088 ev_rt_now = ev_time (); 2306 ev_rt_now = ev_time ();
1089 return 1;
1090 }
1091}
1092 2307
1093static void 2308 /* loop a few times, before making important decisions.
1094time_update (EV_P) 2309 * on the choice of "4": one iteration isn't enough,
1095{ 2310 * in case we get preempted during the calls to
1096 int i; 2311 * ev_time and get_clock. a second call is almost guaranteed
1097 2312 * to succeed in that case, though. and looping a few more times
1098#if EV_USE_MONOTONIC 2313 * doesn't hurt either as we only do this on time-jumps or
1099 if (expect_true (have_monotonic)) 2314 * in the unlikely event of having been preempted here.
1100 { 2315 */
1101 if (time_update_monotonic (EV_A)) 2316 for (i = 4; --i; )
1102 { 2317 {
1103 ev_tstamp odiff = rtmn_diff;
1104
1105 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1106 {
1107 rtmn_diff = ev_rt_now - mn_now; 2318 rtmn_diff = ev_rt_now - mn_now;
1108 2319
1109 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2320 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1110 return; /* all is well */ 2321 return; /* all is well */
1111 2322
1112 ev_rt_now = ev_time (); 2323 ev_rt_now = ev_time ();
1113 mn_now = get_clock (); 2324 mn_now = get_clock ();
1114 now_floor = mn_now; 2325 now_floor = mn_now;
1115 } 2326 }
1116 2327
2328 /* no timer adjustment, as the monotonic clock doesn't jump */
2329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1117# if EV_PERIODICS 2330# if EV_PERIODIC_ENABLE
2331 periodics_reschedule (EV_A);
2332# endif
2333 }
2334 else
2335#endif
2336 {
2337 ev_rt_now = ev_time ();
2338
2339 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2340 {
2341 /* adjust timers. this is easy, as the offset is the same for all of them */
2342 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2343#if EV_PERIODIC_ENABLE
1118 periodics_reschedule (EV_A); 2344 periodics_reschedule (EV_A);
1119# endif 2345#endif
1120 /* no timer adjustment, as the monotonic clock doesn't jump */
1121 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1122 } 2346 }
1123 }
1124 else
1125#endif
1126 {
1127 ev_rt_now = ev_time ();
1128
1129 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1130 {
1131#if EV_PERIODICS
1132 periodics_reschedule (EV_A);
1133#endif
1134
1135 /* adjust timers. this is easy, as the offset is the same for all */
1136 for (i = 0; i < timercnt; ++i)
1137 ((WT)timers [i])->at += ev_rt_now - mn_now;
1138 }
1139 2347
1140 mn_now = ev_rt_now; 2348 mn_now = ev_rt_now;
1141 } 2349 }
1142} 2350}
1143 2351
1144void 2352void
1145ev_ref (EV_P)
1146{
1147 ++activecnt;
1148}
1149
1150void
1151ev_unref (EV_P)
1152{
1153 --activecnt;
1154}
1155
1156static int loop_done;
1157
1158void
1159ev_loop (EV_P_ int flags) 2353ev_run (EV_P_ int flags)
1160{ 2354{
1161 double block; 2355#if EV_FEATURE_API
1162 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2356 ++loop_depth;
2357#endif
2358
2359 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2360
2361 loop_done = EVBREAK_CANCEL;
2362
2363 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1163 2364
1164 do 2365 do
1165 { 2366 {
2367#if EV_VERIFY >= 2
2368 ev_verify (EV_A);
2369#endif
2370
2371#ifndef _WIN32
2372 if (expect_false (curpid)) /* penalise the forking check even more */
2373 if (expect_false (getpid () != curpid))
2374 {
2375 curpid = getpid ();
2376 postfork = 1;
2377 }
2378#endif
2379
2380#if EV_FORK_ENABLE
2381 /* we might have forked, so queue fork handlers */
2382 if (expect_false (postfork))
2383 if (forkcnt)
2384 {
2385 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2386 EV_INVOKE_PENDING;
2387 }
2388#endif
2389
2390#if EV_PREPARE_ENABLE
1166 /* queue check watchers (and execute them) */ 2391 /* queue prepare watchers (and execute them) */
1167 if (expect_false (preparecnt)) 2392 if (expect_false (preparecnt))
1168 { 2393 {
1169 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2394 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1170 call_pending (EV_A); 2395 EV_INVOKE_PENDING;
1171 } 2396 }
2397#endif
2398
2399 if (expect_false (loop_done))
2400 break;
1172 2401
1173 /* we might have forked, so reify kernel state if necessary */ 2402 /* we might have forked, so reify kernel state if necessary */
1174 if (expect_false (postfork)) 2403 if (expect_false (postfork))
1175 loop_fork (EV_A); 2404 loop_fork (EV_A);
1176 2405
1177 /* update fd-related kernel structures */ 2406 /* update fd-related kernel structures */
1178 fd_reify (EV_A); 2407 fd_reify (EV_A);
1179 2408
1180 /* calculate blocking time */ 2409 /* calculate blocking time */
2410 {
2411 ev_tstamp waittime = 0.;
2412 ev_tstamp sleeptime = 0.;
1181 2413
1182 /* we only need this for !monotonic clock or timers, but as we basically 2414 /* remember old timestamp for io_blocktime calculation */
1183 always have timers, we just calculate it always */ 2415 ev_tstamp prev_mn_now = mn_now;
1184#if EV_USE_MONOTONIC 2416
1185 if (expect_true (have_monotonic)) 2417 /* update time to cancel out callback processing overhead */
1186 time_update_monotonic (EV_A); 2418 time_update (EV_A_ 1e100);
1187 else 2419
1188#endif 2420 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1189 { 2421 {
1190 ev_rt_now = ev_time ();
1191 mn_now = ev_rt_now;
1192 }
1193
1194 if (flags & EVLOOP_NONBLOCK || idlecnt)
1195 block = 0.;
1196 else
1197 {
1198 block = MAX_BLOCKTIME; 2422 waittime = MAX_BLOCKTIME;
1199 2423
1200 if (timercnt) 2424 if (timercnt)
1201 { 2425 {
1202 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2426 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1203 if (block > to) block = to; 2427 if (waittime > to) waittime = to;
1204 } 2428 }
1205 2429
1206#if EV_PERIODICS 2430#if EV_PERIODIC_ENABLE
1207 if (periodiccnt) 2431 if (periodiccnt)
1208 { 2432 {
1209 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2433 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1210 if (block > to) block = to; 2434 if (waittime > to) waittime = to;
1211 } 2435 }
1212#endif 2436#endif
1213 2437
1214 if (block < 0.) block = 0.; 2438 /* don't let timeouts decrease the waittime below timeout_blocktime */
2439 if (expect_false (waittime < timeout_blocktime))
2440 waittime = timeout_blocktime;
2441
2442 /* extra check because io_blocktime is commonly 0 */
2443 if (expect_false (io_blocktime))
2444 {
2445 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2446
2447 if (sleeptime > waittime - backend_fudge)
2448 sleeptime = waittime - backend_fudge;
2449
2450 if (expect_true (sleeptime > 0.))
2451 {
2452 ev_sleep (sleeptime);
2453 waittime -= sleeptime;
2454 }
2455 }
1215 } 2456 }
1216 2457
1217 method_poll (EV_A_ block); 2458#if EV_FEATURE_API
2459 ++loop_count;
2460#endif
2461 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2462 backend_poll (EV_A_ waittime);
2463 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1218 2464
1219 /* update ev_rt_now, do magic */ 2465 /* update ev_rt_now, do magic */
1220 time_update (EV_A); 2466 time_update (EV_A_ waittime + sleeptime);
2467 }
1221 2468
1222 /* queue pending timers and reschedule them */ 2469 /* queue pending timers and reschedule them */
1223 timers_reify (EV_A); /* relative timers called last */ 2470 timers_reify (EV_A); /* relative timers called last */
1224#if EV_PERIODICS 2471#if EV_PERIODIC_ENABLE
1225 periodics_reify (EV_A); /* absolute timers called first */ 2472 periodics_reify (EV_A); /* absolute timers called first */
1226#endif 2473#endif
1227 2474
2475#if EV_IDLE_ENABLE
1228 /* queue idle watchers unless io or timers are pending */ 2476 /* queue idle watchers unless other events are pending */
1229 if (idlecnt && !any_pending (EV_A)) 2477 idle_reify (EV_A);
1230 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2478#endif
1231 2479
2480#if EV_CHECK_ENABLE
1232 /* queue check watchers, to be executed first */ 2481 /* queue check watchers, to be executed first */
1233 if (checkcnt) 2482 if (expect_false (checkcnt))
1234 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2483 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2484#endif
1235 2485
1236 call_pending (EV_A); 2486 EV_INVOKE_PENDING;
1237 } 2487 }
1238 while (activecnt && !loop_done); 2488 while (expect_true (
2489 activecnt
2490 && !loop_done
2491 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2492 ));
1239 2493
1240 if (loop_done != 2) 2494 if (loop_done == EVBREAK_ONE)
1241 loop_done = 0; 2495 loop_done = EVBREAK_CANCEL;
1242}
1243 2496
2497#if EV_FEATURE_API
2498 --loop_depth;
2499#endif
2500}
2501
1244void 2502void
1245ev_unloop (EV_P_ int how) 2503ev_break (EV_P_ int how)
1246{ 2504{
1247 loop_done = how; 2505 loop_done = how;
1248} 2506}
1249 2507
2508void
2509ev_ref (EV_P)
2510{
2511 ++activecnt;
2512}
2513
2514void
2515ev_unref (EV_P)
2516{
2517 --activecnt;
2518}
2519
2520void
2521ev_now_update (EV_P)
2522{
2523 time_update (EV_A_ 1e100);
2524}
2525
2526void
2527ev_suspend (EV_P)
2528{
2529 ev_now_update (EV_A);
2530}
2531
2532void
2533ev_resume (EV_P)
2534{
2535 ev_tstamp mn_prev = mn_now;
2536
2537 ev_now_update (EV_A);
2538 timers_reschedule (EV_A_ mn_now - mn_prev);
2539#if EV_PERIODIC_ENABLE
2540 /* TODO: really do this? */
2541 periodics_reschedule (EV_A);
2542#endif
2543}
2544
1250/*****************************************************************************/ 2545/*****************************************************************************/
2546/* singly-linked list management, used when the expected list length is short */
1251 2547
1252inline void 2548inline_size void
1253wlist_add (WL *head, WL elem) 2549wlist_add (WL *head, WL elem)
1254{ 2550{
1255 elem->next = *head; 2551 elem->next = *head;
1256 *head = elem; 2552 *head = elem;
1257} 2553}
1258 2554
1259inline void 2555inline_size void
1260wlist_del (WL *head, WL elem) 2556wlist_del (WL *head, WL elem)
1261{ 2557{
1262 while (*head) 2558 while (*head)
1263 { 2559 {
1264 if (*head == elem) 2560 if (expect_true (*head == elem))
1265 { 2561 {
1266 *head = elem->next; 2562 *head = elem->next;
1267 return; 2563 break;
1268 } 2564 }
1269 2565
1270 head = &(*head)->next; 2566 head = &(*head)->next;
1271 } 2567 }
1272} 2568}
1273 2569
2570/* internal, faster, version of ev_clear_pending */
1274inline void 2571inline_speed void
1275ev_clear_pending (EV_P_ W w) 2572clear_pending (EV_P_ W w)
1276{ 2573{
1277 if (w->pending) 2574 if (w->pending)
1278 { 2575 {
1279 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2576 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1280 w->pending = 0; 2577 w->pending = 0;
1281 } 2578 }
1282} 2579}
1283 2580
2581int
2582ev_clear_pending (EV_P_ void *w)
2583{
2584 W w_ = (W)w;
2585 int pending = w_->pending;
2586
2587 if (expect_true (pending))
2588 {
2589 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2590 p->w = (W)&pending_w;
2591 w_->pending = 0;
2592 return p->events;
2593 }
2594 else
2595 return 0;
2596}
2597
1284inline void 2598inline_size void
2599pri_adjust (EV_P_ W w)
2600{
2601 int pri = ev_priority (w);
2602 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2603 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2604 ev_set_priority (w, pri);
2605}
2606
2607inline_speed void
1285ev_start (EV_P_ W w, int active) 2608ev_start (EV_P_ W w, int active)
1286{ 2609{
1287 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2610 pri_adjust (EV_A_ w);
1288 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1289
1290 w->active = active; 2611 w->active = active;
1291 ev_ref (EV_A); 2612 ev_ref (EV_A);
1292} 2613}
1293 2614
1294inline void 2615inline_size void
1295ev_stop (EV_P_ W w) 2616ev_stop (EV_P_ W w)
1296{ 2617{
1297 ev_unref (EV_A); 2618 ev_unref (EV_A);
1298 w->active = 0; 2619 w->active = 0;
1299} 2620}
1300 2621
1301/*****************************************************************************/ 2622/*****************************************************************************/
1302 2623
1303void 2624void noinline
1304ev_io_start (EV_P_ struct ev_io *w) 2625ev_io_start (EV_P_ ev_io *w)
1305{ 2626{
1306 int fd = w->fd; 2627 int fd = w->fd;
1307 2628
1308 if (ev_is_active (w)) 2629 if (expect_false (ev_is_active (w)))
1309 return; 2630 return;
1310 2631
1311 assert (("ev_io_start called with negative fd", fd >= 0)); 2632 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2633 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2634
2635 EV_FREQUENT_CHECK;
1312 2636
1313 ev_start (EV_A_ (W)w, 1); 2637 ev_start (EV_A_ (W)w, 1);
1314 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2638 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1315 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2639 wlist_add (&anfds[fd].head, (WL)w);
1316 2640
1317 fd_change (EV_A_ fd); 2641 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1318} 2642 w->events &= ~EV__IOFDSET;
1319 2643
1320void 2644 EV_FREQUENT_CHECK;
2645}
2646
2647void noinline
1321ev_io_stop (EV_P_ struct ev_io *w) 2648ev_io_stop (EV_P_ ev_io *w)
1322{ 2649{
1323 ev_clear_pending (EV_A_ (W)w); 2650 clear_pending (EV_A_ (W)w);
1324 if (!ev_is_active (w)) 2651 if (expect_false (!ev_is_active (w)))
1325 return; 2652 return;
1326 2653
1327 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2654 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1328 2655
2656 EV_FREQUENT_CHECK;
2657
1329 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2658 wlist_del (&anfds[w->fd].head, (WL)w);
1330 ev_stop (EV_A_ (W)w); 2659 ev_stop (EV_A_ (W)w);
1331 2660
1332 fd_change (EV_A_ w->fd); 2661 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1333}
1334 2662
1335void 2663 EV_FREQUENT_CHECK;
2664}
2665
2666void noinline
1336ev_timer_start (EV_P_ struct ev_timer *w) 2667ev_timer_start (EV_P_ ev_timer *w)
1337{ 2668{
1338 if (ev_is_active (w)) 2669 if (expect_false (ev_is_active (w)))
1339 return; 2670 return;
1340 2671
1341 ((WT)w)->at += mn_now; 2672 ev_at (w) += mn_now;
1342 2673
1343 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2674 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1344 2675
2676 EV_FREQUENT_CHECK;
2677
2678 ++timercnt;
1345 ev_start (EV_A_ (W)w, ++timercnt); 2679 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1346 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2680 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1347 timers [timercnt - 1] = w; 2681 ANHE_w (timers [ev_active (w)]) = (WT)w;
1348 upheap ((WT *)timers, timercnt - 1); 2682 ANHE_at_cache (timers [ev_active (w)]);
2683 upheap (timers, ev_active (w));
1349 2684
2685 EV_FREQUENT_CHECK;
2686
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2687 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1351} 2688}
1352 2689
1353void 2690void noinline
1354ev_timer_stop (EV_P_ struct ev_timer *w) 2691ev_timer_stop (EV_P_ ev_timer *w)
1355{ 2692{
1356 ev_clear_pending (EV_A_ (W)w); 2693 clear_pending (EV_A_ (W)w);
1357 if (!ev_is_active (w)) 2694 if (expect_false (!ev_is_active (w)))
1358 return; 2695 return;
1359 2696
2697 EV_FREQUENT_CHECK;
2698
2699 {
2700 int active = ev_active (w);
2701
1360 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2702 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1361 2703
1362 if (((W)w)->active < timercnt--) 2704 --timercnt;
2705
2706 if (expect_true (active < timercnt + HEAP0))
1363 { 2707 {
1364 timers [((W)w)->active - 1] = timers [timercnt]; 2708 timers [active] = timers [timercnt + HEAP0];
1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2709 adjustheap (timers, timercnt, active);
1366 } 2710 }
2711 }
1367 2712
1368 ((WT)w)->at -= mn_now; 2713 ev_at (w) -= mn_now;
1369 2714
1370 ev_stop (EV_A_ (W)w); 2715 ev_stop (EV_A_ (W)w);
1371}
1372 2716
1373void 2717 EV_FREQUENT_CHECK;
2718}
2719
2720void noinline
1374ev_timer_again (EV_P_ struct ev_timer *w) 2721ev_timer_again (EV_P_ ev_timer *w)
1375{ 2722{
2723 EV_FREQUENT_CHECK;
2724
1376 if (ev_is_active (w)) 2725 if (ev_is_active (w))
1377 { 2726 {
1378 if (w->repeat) 2727 if (w->repeat)
1379 { 2728 {
1380 ((WT)w)->at = mn_now + w->repeat; 2729 ev_at (w) = mn_now + w->repeat;
2730 ANHE_at_cache (timers [ev_active (w)]);
1381 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2731 adjustheap (timers, timercnt, ev_active (w));
1382 } 2732 }
1383 else 2733 else
1384 ev_timer_stop (EV_A_ w); 2734 ev_timer_stop (EV_A_ w);
1385 } 2735 }
1386 else if (w->repeat) 2736 else if (w->repeat)
1387 { 2737 {
1388 w->at = w->repeat; 2738 ev_at (w) = w->repeat;
1389 ev_timer_start (EV_A_ w); 2739 ev_timer_start (EV_A_ w);
1390 } 2740 }
1391}
1392 2741
2742 EV_FREQUENT_CHECK;
2743}
2744
2745ev_tstamp
2746ev_timer_remaining (EV_P_ ev_timer *w)
2747{
2748 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2749}
2750
1393#if EV_PERIODICS 2751#if EV_PERIODIC_ENABLE
1394void 2752void noinline
1395ev_periodic_start (EV_P_ struct ev_periodic *w) 2753ev_periodic_start (EV_P_ ev_periodic *w)
1396{ 2754{
1397 if (ev_is_active (w)) 2755 if (expect_false (ev_is_active (w)))
1398 return; 2756 return;
1399 2757
1400 if (w->reschedule_cb) 2758 if (w->reschedule_cb)
1401 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2759 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1402 else if (w->interval) 2760 else if (w->interval)
1403 { 2761 {
1404 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2762 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1405 /* this formula differs from the one in periodic_reify because we do not always round up */ 2763 /* this formula differs from the one in periodic_reify because we do not always round up */
1406 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2764 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1407 } 2765 }
2766 else
2767 ev_at (w) = w->offset;
1408 2768
2769 EV_FREQUENT_CHECK;
2770
2771 ++periodiccnt;
1409 ev_start (EV_A_ (W)w, ++periodiccnt); 2772 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1410 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2773 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1411 periodics [periodiccnt - 1] = w; 2774 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1412 upheap ((WT *)periodics, periodiccnt - 1); 2775 ANHE_at_cache (periodics [ev_active (w)]);
2776 upheap (periodics, ev_active (w));
1413 2777
2778 EV_FREQUENT_CHECK;
2779
1414 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2780 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1415} 2781}
1416 2782
1417void 2783void noinline
1418ev_periodic_stop (EV_P_ struct ev_periodic *w) 2784ev_periodic_stop (EV_P_ ev_periodic *w)
1419{ 2785{
1420 ev_clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
1421 if (!ev_is_active (w)) 2787 if (expect_false (!ev_is_active (w)))
1422 return; 2788 return;
1423 2789
2790 EV_FREQUENT_CHECK;
2791
2792 {
2793 int active = ev_active (w);
2794
1424 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2795 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1425 2796
1426 if (((W)w)->active < periodiccnt--) 2797 --periodiccnt;
2798
2799 if (expect_true (active < periodiccnt + HEAP0))
1427 { 2800 {
1428 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2801 periodics [active] = periodics [periodiccnt + HEAP0];
1429 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2802 adjustheap (periodics, periodiccnt, active);
1430 } 2803 }
2804 }
1431 2805
1432 ev_stop (EV_A_ (W)w); 2806 ev_stop (EV_A_ (W)w);
1433}
1434 2807
1435void 2808 EV_FREQUENT_CHECK;
2809}
2810
2811void noinline
1436ev_periodic_again (EV_P_ struct ev_periodic *w) 2812ev_periodic_again (EV_P_ ev_periodic *w)
1437{ 2813{
1438 /* TODO: use adjustheap and recalculation */ 2814 /* TODO: use adjustheap and recalculation */
1439 ev_periodic_stop (EV_A_ w); 2815 ev_periodic_stop (EV_A_ w);
1440 ev_periodic_start (EV_A_ w); 2816 ev_periodic_start (EV_A_ w);
1441} 2817}
1442#endif 2818#endif
1443 2819
1444void
1445ev_idle_start (EV_P_ struct ev_idle *w)
1446{
1447 if (ev_is_active (w))
1448 return;
1449
1450 ev_start (EV_A_ (W)w, ++idlecnt);
1451 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1452 idles [idlecnt - 1] = w;
1453}
1454
1455void
1456ev_idle_stop (EV_P_ struct ev_idle *w)
1457{
1458 ev_clear_pending (EV_A_ (W)w);
1459 if (!ev_is_active (w))
1460 return;
1461
1462 idles [((W)w)->active - 1] = idles [--idlecnt];
1463 ev_stop (EV_A_ (W)w);
1464}
1465
1466void
1467ev_prepare_start (EV_P_ struct ev_prepare *w)
1468{
1469 if (ev_is_active (w))
1470 return;
1471
1472 ev_start (EV_A_ (W)w, ++preparecnt);
1473 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1474 prepares [preparecnt - 1] = w;
1475}
1476
1477void
1478ev_prepare_stop (EV_P_ struct ev_prepare *w)
1479{
1480 ev_clear_pending (EV_A_ (W)w);
1481 if (!ev_is_active (w))
1482 return;
1483
1484 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1485 ev_stop (EV_A_ (W)w);
1486}
1487
1488void
1489ev_check_start (EV_P_ struct ev_check *w)
1490{
1491 if (ev_is_active (w))
1492 return;
1493
1494 ev_start (EV_A_ (W)w, ++checkcnt);
1495 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1496 checks [checkcnt - 1] = w;
1497}
1498
1499void
1500ev_check_stop (EV_P_ struct ev_check *w)
1501{
1502 ev_clear_pending (EV_A_ (W)w);
1503 if (!ev_is_active (w))
1504 return;
1505
1506 checks [((W)w)->active - 1] = checks [--checkcnt];
1507 ev_stop (EV_A_ (W)w);
1508}
1509
1510#ifndef SA_RESTART 2820#ifndef SA_RESTART
1511# define SA_RESTART 0 2821# define SA_RESTART 0
1512#endif 2822#endif
1513 2823
1514void 2824#if EV_SIGNAL_ENABLE
2825
2826void noinline
1515ev_signal_start (EV_P_ struct ev_signal *w) 2827ev_signal_start (EV_P_ ev_signal *w)
1516{ 2828{
2829 if (expect_false (ev_is_active (w)))
2830 return;
2831
2832 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2833
1517#if EV_MULTIPLICITY 2834#if EV_MULTIPLICITY
1518 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2835 assert (("libev: a signal must not be attached to two different loops",
2836 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2837
2838 signals [w->signum - 1].loop = EV_A;
2839#endif
2840
2841 EV_FREQUENT_CHECK;
2842
2843#if EV_USE_SIGNALFD
2844 if (sigfd == -2)
2845 {
2846 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2847 if (sigfd < 0 && errno == EINVAL)
2848 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2849
2850 if (sigfd >= 0)
2851 {
2852 fd_intern (sigfd); /* doing it twice will not hurt */
2853
2854 sigemptyset (&sigfd_set);
2855
2856 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2857 ev_set_priority (&sigfd_w, EV_MAXPRI);
2858 ev_io_start (EV_A_ &sigfd_w);
2859 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2860 }
2861 }
2862
2863 if (sigfd >= 0)
2864 {
2865 /* TODO: check .head */
2866 sigaddset (&sigfd_set, w->signum);
2867 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2868
2869 signalfd (sigfd, &sigfd_set, 0);
2870 }
2871#endif
2872
2873 ev_start (EV_A_ (W)w, 1);
2874 wlist_add (&signals [w->signum - 1].head, (WL)w);
2875
2876 if (!((WL)w)->next)
2877# if EV_USE_SIGNALFD
2878 if (sigfd < 0) /*TODO*/
1519#endif 2879# endif
1520 if (ev_is_active (w)) 2880 {
2881# ifdef _WIN32
2882 evpipe_init (EV_A);
2883
2884 signal (w->signum, ev_sighandler);
2885# else
2886 struct sigaction sa;
2887
2888 evpipe_init (EV_A);
2889
2890 sa.sa_handler = ev_sighandler;
2891 sigfillset (&sa.sa_mask);
2892 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2893 sigaction (w->signum, &sa, 0);
2894
2895 if (origflags & EVFLAG_NOSIGMASK)
2896 {
2897 sigemptyset (&sa.sa_mask);
2898 sigaddset (&sa.sa_mask, w->signum);
2899 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2900 }
2901#endif
2902 }
2903
2904 EV_FREQUENT_CHECK;
2905}
2906
2907void noinline
2908ev_signal_stop (EV_P_ ev_signal *w)
2909{
2910 clear_pending (EV_A_ (W)w);
2911 if (expect_false (!ev_is_active (w)))
1521 return; 2912 return;
1522 2913
1523 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2914 EV_FREQUENT_CHECK;
2915
2916 wlist_del (&signals [w->signum - 1].head, (WL)w);
2917 ev_stop (EV_A_ (W)w);
2918
2919 if (!signals [w->signum - 1].head)
2920 {
2921#if EV_MULTIPLICITY
2922 signals [w->signum - 1].loop = 0; /* unattach from signal */
2923#endif
2924#if EV_USE_SIGNALFD
2925 if (sigfd >= 0)
2926 {
2927 sigset_t ss;
2928
2929 sigemptyset (&ss);
2930 sigaddset (&ss, w->signum);
2931 sigdelset (&sigfd_set, w->signum);
2932
2933 signalfd (sigfd, &sigfd_set, 0);
2934 sigprocmask (SIG_UNBLOCK, &ss, 0);
2935 }
2936 else
2937#endif
2938 signal (w->signum, SIG_DFL);
2939 }
2940
2941 EV_FREQUENT_CHECK;
2942}
2943
2944#endif
2945
2946#if EV_CHILD_ENABLE
2947
2948void
2949ev_child_start (EV_P_ ev_child *w)
2950{
2951#if EV_MULTIPLICITY
2952 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2953#endif
2954 if (expect_false (ev_is_active (w)))
2955 return;
2956
2957 EV_FREQUENT_CHECK;
1524 2958
1525 ev_start (EV_A_ (W)w, 1); 2959 ev_start (EV_A_ (W)w, 1);
1526 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2960 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1527 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1528 2961
1529 if (!((WL)w)->next) 2962 EV_FREQUENT_CHECK;
2963}
2964
2965void
2966ev_child_stop (EV_P_ ev_child *w)
2967{
2968 clear_pending (EV_A_ (W)w);
2969 if (expect_false (!ev_is_active (w)))
2970 return;
2971
2972 EV_FREQUENT_CHECK;
2973
2974 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2975 ev_stop (EV_A_ (W)w);
2976
2977 EV_FREQUENT_CHECK;
2978}
2979
2980#endif
2981
2982#if EV_STAT_ENABLE
2983
2984# ifdef _WIN32
2985# undef lstat
2986# define lstat(a,b) _stati64 (a,b)
2987# endif
2988
2989#define DEF_STAT_INTERVAL 5.0074891
2990#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2991#define MIN_STAT_INTERVAL 0.1074891
2992
2993static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2994
2995#if EV_USE_INOTIFY
2996
2997/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2998# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2999
3000static void noinline
3001infy_add (EV_P_ ev_stat *w)
3002{
3003 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3004
3005 if (w->wd >= 0)
3006 {
3007 struct statfs sfs;
3008
3009 /* now local changes will be tracked by inotify, but remote changes won't */
3010 /* unless the filesystem is known to be local, we therefore still poll */
3011 /* also do poll on <2.6.25, but with normal frequency */
3012
3013 if (!fs_2625)
3014 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3015 else if (!statfs (w->path, &sfs)
3016 && (sfs.f_type == 0x1373 /* devfs */
3017 || sfs.f_type == 0xEF53 /* ext2/3 */
3018 || sfs.f_type == 0x3153464a /* jfs */
3019 || sfs.f_type == 0x52654973 /* reiser3 */
3020 || sfs.f_type == 0x01021994 /* tempfs */
3021 || sfs.f_type == 0x58465342 /* xfs */))
3022 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3023 else
3024 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1530 { 3025 }
3026 else
3027 {
3028 /* can't use inotify, continue to stat */
3029 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3030
3031 /* if path is not there, monitor some parent directory for speedup hints */
3032 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3033 /* but an efficiency issue only */
3034 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3035 {
3036 char path [4096];
3037 strcpy (path, w->path);
3038
3039 do
3040 {
3041 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3042 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3043
3044 char *pend = strrchr (path, '/');
3045
3046 if (!pend || pend == path)
3047 break;
3048
3049 *pend = 0;
3050 w->wd = inotify_add_watch (fs_fd, path, mask);
3051 }
3052 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3053 }
3054 }
3055
3056 if (w->wd >= 0)
3057 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3058
3059 /* now re-arm timer, if required */
3060 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3061 ev_timer_again (EV_A_ &w->timer);
3062 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3063}
3064
3065static void noinline
3066infy_del (EV_P_ ev_stat *w)
3067{
3068 int slot;
3069 int wd = w->wd;
3070
3071 if (wd < 0)
3072 return;
3073
3074 w->wd = -2;
3075 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3076 wlist_del (&fs_hash [slot].head, (WL)w);
3077
3078 /* remove this watcher, if others are watching it, they will rearm */
3079 inotify_rm_watch (fs_fd, wd);
3080}
3081
3082static void noinline
3083infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3084{
3085 if (slot < 0)
3086 /* overflow, need to check for all hash slots */
3087 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3088 infy_wd (EV_A_ slot, wd, ev);
3089 else
3090 {
3091 WL w_;
3092
3093 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3094 {
3095 ev_stat *w = (ev_stat *)w_;
3096 w_ = w_->next; /* lets us remove this watcher and all before it */
3097
3098 if (w->wd == wd || wd == -1)
3099 {
3100 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3101 {
3102 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3103 w->wd = -1;
3104 infy_add (EV_A_ w); /* re-add, no matter what */
3105 }
3106
3107 stat_timer_cb (EV_A_ &w->timer, 0);
3108 }
3109 }
3110 }
3111}
3112
3113static void
3114infy_cb (EV_P_ ev_io *w, int revents)
3115{
3116 char buf [EV_INOTIFY_BUFSIZE];
3117 int ofs;
3118 int len = read (fs_fd, buf, sizeof (buf));
3119
3120 for (ofs = 0; ofs < len; )
3121 {
3122 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3123 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3124 ofs += sizeof (struct inotify_event) + ev->len;
3125 }
3126}
3127
3128inline_size void
3129ev_check_2625 (EV_P)
3130{
3131 /* kernels < 2.6.25 are borked
3132 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3133 */
3134 if (ev_linux_version () < 0x020619)
3135 return;
3136
3137 fs_2625 = 1;
3138}
3139
3140inline_size int
3141infy_newfd (void)
3142{
3143#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3144 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3145 if (fd >= 0)
3146 return fd;
3147#endif
3148 return inotify_init ();
3149}
3150
3151inline_size void
3152infy_init (EV_P)
3153{
3154 if (fs_fd != -2)
3155 return;
3156
3157 fs_fd = -1;
3158
3159 ev_check_2625 (EV_A);
3160
3161 fs_fd = infy_newfd ();
3162
3163 if (fs_fd >= 0)
3164 {
3165 fd_intern (fs_fd);
3166 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3167 ev_set_priority (&fs_w, EV_MAXPRI);
3168 ev_io_start (EV_A_ &fs_w);
3169 ev_unref (EV_A);
3170 }
3171}
3172
3173inline_size void
3174infy_fork (EV_P)
3175{
3176 int slot;
3177
3178 if (fs_fd < 0)
3179 return;
3180
3181 ev_ref (EV_A);
3182 ev_io_stop (EV_A_ &fs_w);
3183 close (fs_fd);
3184 fs_fd = infy_newfd ();
3185
3186 if (fs_fd >= 0)
3187 {
3188 fd_intern (fs_fd);
3189 ev_io_set (&fs_w, fs_fd, EV_READ);
3190 ev_io_start (EV_A_ &fs_w);
3191 ev_unref (EV_A);
3192 }
3193
3194 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3195 {
3196 WL w_ = fs_hash [slot].head;
3197 fs_hash [slot].head = 0;
3198
3199 while (w_)
3200 {
3201 ev_stat *w = (ev_stat *)w_;
3202 w_ = w_->next; /* lets us add this watcher */
3203
3204 w->wd = -1;
3205
3206 if (fs_fd >= 0)
3207 infy_add (EV_A_ w); /* re-add, no matter what */
3208 else
3209 {
3210 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3211 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3212 ev_timer_again (EV_A_ &w->timer);
3213 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3214 }
3215 }
3216 }
3217}
3218
3219#endif
3220
1531#if _WIN32 3221#ifdef _WIN32
1532 signal (w->signum, sighandler); 3222# define EV_LSTAT(p,b) _stati64 (p, b)
1533#else 3223#else
1534 struct sigaction sa; 3224# define EV_LSTAT(p,b) lstat (p, b)
1535 sa.sa_handler = sighandler;
1536 sigfillset (&sa.sa_mask);
1537 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1538 sigaction (w->signum, &sa, 0);
1539#endif 3225#endif
1540 }
1541}
1542 3226
1543void 3227void
1544ev_signal_stop (EV_P_ struct ev_signal *w) 3228ev_stat_stat (EV_P_ ev_stat *w)
1545{ 3229{
1546 ev_clear_pending (EV_A_ (W)w); 3230 if (lstat (w->path, &w->attr) < 0)
1547 if (!ev_is_active (w)) 3231 w->attr.st_nlink = 0;
3232 else if (!w->attr.st_nlink)
3233 w->attr.st_nlink = 1;
3234}
3235
3236static void noinline
3237stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3238{
3239 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3240
3241 ev_statdata prev = w->attr;
3242 ev_stat_stat (EV_A_ w);
3243
3244 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3245 if (
3246 prev.st_dev != w->attr.st_dev
3247 || prev.st_ino != w->attr.st_ino
3248 || prev.st_mode != w->attr.st_mode
3249 || prev.st_nlink != w->attr.st_nlink
3250 || prev.st_uid != w->attr.st_uid
3251 || prev.st_gid != w->attr.st_gid
3252 || prev.st_rdev != w->attr.st_rdev
3253 || prev.st_size != w->attr.st_size
3254 || prev.st_atime != w->attr.st_atime
3255 || prev.st_mtime != w->attr.st_mtime
3256 || prev.st_ctime != w->attr.st_ctime
3257 ) {
3258 /* we only update w->prev on actual differences */
3259 /* in case we test more often than invoke the callback, */
3260 /* to ensure that prev is always different to attr */
3261 w->prev = prev;
3262
3263 #if EV_USE_INOTIFY
3264 if (fs_fd >= 0)
3265 {
3266 infy_del (EV_A_ w);
3267 infy_add (EV_A_ w);
3268 ev_stat_stat (EV_A_ w); /* avoid race... */
3269 }
3270 #endif
3271
3272 ev_feed_event (EV_A_ w, EV_STAT);
3273 }
3274}
3275
3276void
3277ev_stat_start (EV_P_ ev_stat *w)
3278{
3279 if (expect_false (ev_is_active (w)))
1548 return; 3280 return;
1549 3281
1550 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3282 ev_stat_stat (EV_A_ w);
3283
3284 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3285 w->interval = MIN_STAT_INTERVAL;
3286
3287 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3288 ev_set_priority (&w->timer, ev_priority (w));
3289
3290#if EV_USE_INOTIFY
3291 infy_init (EV_A);
3292
3293 if (fs_fd >= 0)
3294 infy_add (EV_A_ w);
3295 else
3296#endif
3297 {
3298 ev_timer_again (EV_A_ &w->timer);
3299 ev_unref (EV_A);
3300 }
3301
3302 ev_start (EV_A_ (W)w, 1);
3303
3304 EV_FREQUENT_CHECK;
3305}
3306
3307void
3308ev_stat_stop (EV_P_ ev_stat *w)
3309{
3310 clear_pending (EV_A_ (W)w);
3311 if (expect_false (!ev_is_active (w)))
3312 return;
3313
3314 EV_FREQUENT_CHECK;
3315
3316#if EV_USE_INOTIFY
3317 infy_del (EV_A_ w);
3318#endif
3319
3320 if (ev_is_active (&w->timer))
3321 {
3322 ev_ref (EV_A);
3323 ev_timer_stop (EV_A_ &w->timer);
3324 }
3325
1551 ev_stop (EV_A_ (W)w); 3326 ev_stop (EV_A_ (W)w);
1552 3327
1553 if (!signals [w->signum - 1].head) 3328 EV_FREQUENT_CHECK;
1554 signal (w->signum, SIG_DFL);
1555} 3329}
3330#endif
1556 3331
3332#if EV_IDLE_ENABLE
1557void 3333void
1558ev_child_start (EV_P_ struct ev_child *w) 3334ev_idle_start (EV_P_ ev_idle *w)
1559{ 3335{
1560#if EV_MULTIPLICITY
1561 assert (("child watchers are only supported in the default loop", loop == default_loop));
1562#endif
1563 if (ev_is_active (w)) 3336 if (expect_false (ev_is_active (w)))
1564 return; 3337 return;
1565 3338
3339 pri_adjust (EV_A_ (W)w);
3340
3341 EV_FREQUENT_CHECK;
3342
3343 {
3344 int active = ++idlecnt [ABSPRI (w)];
3345
3346 ++idleall;
3347 ev_start (EV_A_ (W)w, active);
3348
3349 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3350 idles [ABSPRI (w)][active - 1] = w;
3351 }
3352
3353 EV_FREQUENT_CHECK;
3354}
3355
3356void
3357ev_idle_stop (EV_P_ ev_idle *w)
3358{
3359 clear_pending (EV_A_ (W)w);
3360 if (expect_false (!ev_is_active (w)))
3361 return;
3362
3363 EV_FREQUENT_CHECK;
3364
3365 {
3366 int active = ev_active (w);
3367
3368 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3369 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3370
3371 ev_stop (EV_A_ (W)w);
3372 --idleall;
3373 }
3374
3375 EV_FREQUENT_CHECK;
3376}
3377#endif
3378
3379#if EV_PREPARE_ENABLE
3380void
3381ev_prepare_start (EV_P_ ev_prepare *w)
3382{
3383 if (expect_false (ev_is_active (w)))
3384 return;
3385
3386 EV_FREQUENT_CHECK;
3387
3388 ev_start (EV_A_ (W)w, ++preparecnt);
3389 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3390 prepares [preparecnt - 1] = w;
3391
3392 EV_FREQUENT_CHECK;
3393}
3394
3395void
3396ev_prepare_stop (EV_P_ ev_prepare *w)
3397{
3398 clear_pending (EV_A_ (W)w);
3399 if (expect_false (!ev_is_active (w)))
3400 return;
3401
3402 EV_FREQUENT_CHECK;
3403
3404 {
3405 int active = ev_active (w);
3406
3407 prepares [active - 1] = prepares [--preparecnt];
3408 ev_active (prepares [active - 1]) = active;
3409 }
3410
3411 ev_stop (EV_A_ (W)w);
3412
3413 EV_FREQUENT_CHECK;
3414}
3415#endif
3416
3417#if EV_CHECK_ENABLE
3418void
3419ev_check_start (EV_P_ ev_check *w)
3420{
3421 if (expect_false (ev_is_active (w)))
3422 return;
3423
3424 EV_FREQUENT_CHECK;
3425
3426 ev_start (EV_A_ (W)w, ++checkcnt);
3427 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3428 checks [checkcnt - 1] = w;
3429
3430 EV_FREQUENT_CHECK;
3431}
3432
3433void
3434ev_check_stop (EV_P_ ev_check *w)
3435{
3436 clear_pending (EV_A_ (W)w);
3437 if (expect_false (!ev_is_active (w)))
3438 return;
3439
3440 EV_FREQUENT_CHECK;
3441
3442 {
3443 int active = ev_active (w);
3444
3445 checks [active - 1] = checks [--checkcnt];
3446 ev_active (checks [active - 1]) = active;
3447 }
3448
3449 ev_stop (EV_A_ (W)w);
3450
3451 EV_FREQUENT_CHECK;
3452}
3453#endif
3454
3455#if EV_EMBED_ENABLE
3456void noinline
3457ev_embed_sweep (EV_P_ ev_embed *w)
3458{
3459 ev_run (w->other, EVRUN_NOWAIT);
3460}
3461
3462static void
3463embed_io_cb (EV_P_ ev_io *io, int revents)
3464{
3465 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3466
3467 if (ev_cb (w))
3468 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3469 else
3470 ev_run (w->other, EVRUN_NOWAIT);
3471}
3472
3473static void
3474embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3475{
3476 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3477
3478 {
3479 EV_P = w->other;
3480
3481 while (fdchangecnt)
3482 {
3483 fd_reify (EV_A);
3484 ev_run (EV_A_ EVRUN_NOWAIT);
3485 }
3486 }
3487}
3488
3489static void
3490embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3491{
3492 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3493
3494 ev_embed_stop (EV_A_ w);
3495
3496 {
3497 EV_P = w->other;
3498
3499 ev_loop_fork (EV_A);
3500 ev_run (EV_A_ EVRUN_NOWAIT);
3501 }
3502
3503 ev_embed_start (EV_A_ w);
3504}
3505
3506#if 0
3507static void
3508embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3509{
3510 ev_idle_stop (EV_A_ idle);
3511}
3512#endif
3513
3514void
3515ev_embed_start (EV_P_ ev_embed *w)
3516{
3517 if (expect_false (ev_is_active (w)))
3518 return;
3519
3520 {
3521 EV_P = w->other;
3522 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3523 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3524 }
3525
3526 EV_FREQUENT_CHECK;
3527
3528 ev_set_priority (&w->io, ev_priority (w));
3529 ev_io_start (EV_A_ &w->io);
3530
3531 ev_prepare_init (&w->prepare, embed_prepare_cb);
3532 ev_set_priority (&w->prepare, EV_MINPRI);
3533 ev_prepare_start (EV_A_ &w->prepare);
3534
3535 ev_fork_init (&w->fork, embed_fork_cb);
3536 ev_fork_start (EV_A_ &w->fork);
3537
3538 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3539
1566 ev_start (EV_A_ (W)w, 1); 3540 ev_start (EV_A_ (W)w, 1);
1567 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1568}
1569 3541
3542 EV_FREQUENT_CHECK;
3543}
3544
1570void 3545void
1571ev_child_stop (EV_P_ struct ev_child *w) 3546ev_embed_stop (EV_P_ ev_embed *w)
1572{ 3547{
1573 ev_clear_pending (EV_A_ (W)w); 3548 clear_pending (EV_A_ (W)w);
1574 if (!ev_is_active (w)) 3549 if (expect_false (!ev_is_active (w)))
1575 return; 3550 return;
1576 3551
1577 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3552 EV_FREQUENT_CHECK;
3553
3554 ev_io_stop (EV_A_ &w->io);
3555 ev_prepare_stop (EV_A_ &w->prepare);
3556 ev_fork_stop (EV_A_ &w->fork);
3557
1578 ev_stop (EV_A_ (W)w); 3558 ev_stop (EV_A_ (W)w);
3559
3560 EV_FREQUENT_CHECK;
1579} 3561}
3562#endif
3563
3564#if EV_FORK_ENABLE
3565void
3566ev_fork_start (EV_P_ ev_fork *w)
3567{
3568 if (expect_false (ev_is_active (w)))
3569 return;
3570
3571 EV_FREQUENT_CHECK;
3572
3573 ev_start (EV_A_ (W)w, ++forkcnt);
3574 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3575 forks [forkcnt - 1] = w;
3576
3577 EV_FREQUENT_CHECK;
3578}
3579
3580void
3581ev_fork_stop (EV_P_ ev_fork *w)
3582{
3583 clear_pending (EV_A_ (W)w);
3584 if (expect_false (!ev_is_active (w)))
3585 return;
3586
3587 EV_FREQUENT_CHECK;
3588
3589 {
3590 int active = ev_active (w);
3591
3592 forks [active - 1] = forks [--forkcnt];
3593 ev_active (forks [active - 1]) = active;
3594 }
3595
3596 ev_stop (EV_A_ (W)w);
3597
3598 EV_FREQUENT_CHECK;
3599}
3600#endif
3601
3602#if EV_CLEANUP_ENABLE
3603void
3604ev_cleanup_start (EV_P_ ev_cleanup *w)
3605{
3606 if (expect_false (ev_is_active (w)))
3607 return;
3608
3609 EV_FREQUENT_CHECK;
3610
3611 ev_start (EV_A_ (W)w, ++cleanupcnt);
3612 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3613 cleanups [cleanupcnt - 1] = w;
3614
3615 /* cleanup watchers should never keep a refcount on the loop */
3616 ev_unref (EV_A);
3617 EV_FREQUENT_CHECK;
3618}
3619
3620void
3621ev_cleanup_stop (EV_P_ ev_cleanup *w)
3622{
3623 clear_pending (EV_A_ (W)w);
3624 if (expect_false (!ev_is_active (w)))
3625 return;
3626
3627 EV_FREQUENT_CHECK;
3628 ev_ref (EV_A);
3629
3630 {
3631 int active = ev_active (w);
3632
3633 cleanups [active - 1] = cleanups [--cleanupcnt];
3634 ev_active (cleanups [active - 1]) = active;
3635 }
3636
3637 ev_stop (EV_A_ (W)w);
3638
3639 EV_FREQUENT_CHECK;
3640}
3641#endif
3642
3643#if EV_ASYNC_ENABLE
3644void
3645ev_async_start (EV_P_ ev_async *w)
3646{
3647 if (expect_false (ev_is_active (w)))
3648 return;
3649
3650 w->sent = 0;
3651
3652 evpipe_init (EV_A);
3653
3654 EV_FREQUENT_CHECK;
3655
3656 ev_start (EV_A_ (W)w, ++asynccnt);
3657 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3658 asyncs [asynccnt - 1] = w;
3659
3660 EV_FREQUENT_CHECK;
3661}
3662
3663void
3664ev_async_stop (EV_P_ ev_async *w)
3665{
3666 clear_pending (EV_A_ (W)w);
3667 if (expect_false (!ev_is_active (w)))
3668 return;
3669
3670 EV_FREQUENT_CHECK;
3671
3672 {
3673 int active = ev_active (w);
3674
3675 asyncs [active - 1] = asyncs [--asynccnt];
3676 ev_active (asyncs [active - 1]) = active;
3677 }
3678
3679 ev_stop (EV_A_ (W)w);
3680
3681 EV_FREQUENT_CHECK;
3682}
3683
3684void
3685ev_async_send (EV_P_ ev_async *w)
3686{
3687 w->sent = 1;
3688 evpipe_write (EV_A_ &async_pending);
3689}
3690#endif
1580 3691
1581/*****************************************************************************/ 3692/*****************************************************************************/
1582 3693
1583struct ev_once 3694struct ev_once
1584{ 3695{
1585 struct ev_io io; 3696 ev_io io;
1586 struct ev_timer to; 3697 ev_timer to;
1587 void (*cb)(int revents, void *arg); 3698 void (*cb)(int revents, void *arg);
1588 void *arg; 3699 void *arg;
1589}; 3700};
1590 3701
1591static void 3702static void
1592once_cb (EV_P_ struct ev_once *once, int revents) 3703once_cb (EV_P_ struct ev_once *once, int revents)
1593{ 3704{
1594 void (*cb)(int revents, void *arg) = once->cb; 3705 void (*cb)(int revents, void *arg) = once->cb;
1595 void *arg = once->arg; 3706 void *arg = once->arg;
1596 3707
1597 ev_io_stop (EV_A_ &once->io); 3708 ev_io_stop (EV_A_ &once->io);
1598 ev_timer_stop (EV_A_ &once->to); 3709 ev_timer_stop (EV_A_ &once->to);
1599 ev_free (once); 3710 ev_free (once);
1600 3711
1601 cb (revents, arg); 3712 cb (revents, arg);
1602} 3713}
1603 3714
1604static void 3715static void
1605once_cb_io (EV_P_ struct ev_io *w, int revents) 3716once_cb_io (EV_P_ ev_io *w, int revents)
1606{ 3717{
1607 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3718 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3719
3720 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1608} 3721}
1609 3722
1610static void 3723static void
1611once_cb_to (EV_P_ struct ev_timer *w, int revents) 3724once_cb_to (EV_P_ ev_timer *w, int revents)
1612{ 3725{
1613 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3726 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3727
3728 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1614} 3729}
1615 3730
1616void 3731void
1617ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3732ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1618{ 3733{
1619 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3734 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1620 3735
1621 if (!once) 3736 if (expect_false (!once))
3737 {
1622 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3738 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1623 else 3739 return;
1624 { 3740 }
3741
1625 once->cb = cb; 3742 once->cb = cb;
1626 once->arg = arg; 3743 once->arg = arg;
1627 3744
1628 ev_init (&once->io, once_cb_io); 3745 ev_init (&once->io, once_cb_io);
1629 if (fd >= 0) 3746 if (fd >= 0)
3747 {
3748 ev_io_set (&once->io, fd, events);
3749 ev_io_start (EV_A_ &once->io);
3750 }
3751
3752 ev_init (&once->to, once_cb_to);
3753 if (timeout >= 0.)
3754 {
3755 ev_timer_set (&once->to, timeout, 0.);
3756 ev_timer_start (EV_A_ &once->to);
3757 }
3758}
3759
3760/*****************************************************************************/
3761
3762#if EV_WALK_ENABLE
3763void
3764ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3765{
3766 int i, j;
3767 ev_watcher_list *wl, *wn;
3768
3769 if (types & (EV_IO | EV_EMBED))
3770 for (i = 0; i < anfdmax; ++i)
3771 for (wl = anfds [i].head; wl; )
1630 { 3772 {
1631 ev_io_set (&once->io, fd, events); 3773 wn = wl->next;
1632 ev_io_start (EV_A_ &once->io); 3774
3775#if EV_EMBED_ENABLE
3776 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3777 {
3778 if (types & EV_EMBED)
3779 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3780 }
3781 else
3782#endif
3783#if EV_USE_INOTIFY
3784 if (ev_cb ((ev_io *)wl) == infy_cb)
3785 ;
3786 else
3787#endif
3788 if ((ev_io *)wl != &pipe_w)
3789 if (types & EV_IO)
3790 cb (EV_A_ EV_IO, wl);
3791
3792 wl = wn;
1633 } 3793 }
1634 3794
1635 ev_init (&once->to, once_cb_to); 3795 if (types & (EV_TIMER | EV_STAT))
1636 if (timeout >= 0.) 3796 for (i = timercnt + HEAP0; i-- > HEAP0; )
3797#if EV_STAT_ENABLE
3798 /*TODO: timer is not always active*/
3799 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1637 { 3800 {
1638 ev_timer_set (&once->to, timeout, 0.); 3801 if (types & EV_STAT)
1639 ev_timer_start (EV_A_ &once->to); 3802 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1640 } 3803 }
1641 } 3804 else
1642} 3805#endif
3806 if (types & EV_TIMER)
3807 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1643 3808
1644#ifdef __cplusplus 3809#if EV_PERIODIC_ENABLE
1645} 3810 if (types & EV_PERIODIC)
3811 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3812 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3813#endif
3814
3815#if EV_IDLE_ENABLE
3816 if (types & EV_IDLE)
3817 for (j = NUMPRI; i--; )
3818 for (i = idlecnt [j]; i--; )
3819 cb (EV_A_ EV_IDLE, idles [j][i]);
3820#endif
3821
3822#if EV_FORK_ENABLE
3823 if (types & EV_FORK)
3824 for (i = forkcnt; i--; )
3825 if (ev_cb (forks [i]) != embed_fork_cb)
3826 cb (EV_A_ EV_FORK, forks [i]);
3827#endif
3828
3829#if EV_ASYNC_ENABLE
3830 if (types & EV_ASYNC)
3831 for (i = asynccnt; i--; )
3832 cb (EV_A_ EV_ASYNC, asyncs [i]);
3833#endif
3834
3835#if EV_PREPARE_ENABLE
3836 if (types & EV_PREPARE)
3837 for (i = preparecnt; i--; )
3838# if EV_EMBED_ENABLE
3839 if (ev_cb (prepares [i]) != embed_prepare_cb)
1646#endif 3840# endif
3841 cb (EV_A_ EV_PREPARE, prepares [i]);
3842#endif
1647 3843
3844#if EV_CHECK_ENABLE
3845 if (types & EV_CHECK)
3846 for (i = checkcnt; i--; )
3847 cb (EV_A_ EV_CHECK, checks [i]);
3848#endif
3849
3850#if EV_SIGNAL_ENABLE
3851 if (types & EV_SIGNAL)
3852 for (i = 0; i < EV_NSIG - 1; ++i)
3853 for (wl = signals [i].head; wl; )
3854 {
3855 wn = wl->next;
3856 cb (EV_A_ EV_SIGNAL, wl);
3857 wl = wn;
3858 }
3859#endif
3860
3861#if EV_CHILD_ENABLE
3862 if (types & EV_CHILD)
3863 for (i = (EV_PID_HASHSIZE); i--; )
3864 for (wl = childs [i]; wl; )
3865 {
3866 wn = wl->next;
3867 cb (EV_A_ EV_CHILD, wl);
3868 wl = wn;
3869 }
3870#endif
3871/* EV_STAT 0x00001000 /* stat data changed */
3872/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3873}
3874#endif
3875
3876#if EV_MULTIPLICITY
3877 #include "ev_wrap.h"
3878#endif
3879
3880EV_CPP(})
3881

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines