ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.116 by root, Thu Nov 15 09:19:42 2007 UTC vs.
Revision 1.289 by root, Sat Jun 6 11:13:16 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
38 63
39# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
42# endif 67# endif
43# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
70# endif
71# else
72# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0
74# endif
75# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0
45# endif 77# endif
46# endif 78# endif
47 79
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
85# endif
50# endif 86# endif
51 87
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 88# ifndef EV_USE_SELECT
89# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif
54# endif 94# endif
55 95
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 98# define EV_USE_POLL 1
99# else
100# define EV_USE_POLL 0
101# endif
58# endif 102# endif
59 103
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 106# define EV_USE_EPOLL 1
107# else
108# define EV_USE_EPOLL 0
109# endif
62# endif 110# endif
111
112# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif
118# endif
119
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1
123# else
124# define EV_USE_PORT 0
125# endif
126# endif
63 127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
64#endif 144#endif
65 145
66#include <math.h> 146#include <math.h>
67#include <stdlib.h> 147#include <stdlib.h>
68#include <fcntl.h> 148#include <fcntl.h>
75#include <sys/types.h> 155#include <sys/types.h>
76#include <time.h> 156#include <time.h>
77 157
78#include <signal.h> 158#include <signal.h>
79 159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
80#ifndef _WIN32 166#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 167# include <sys/time.h>
83# include <sys/wait.h> 168# include <sys/wait.h>
169# include <unistd.h>
84#else 170#else
171# include <io.h>
85# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 173# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
89# endif 176# endif
90#endif 177#endif
91 178
92/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
93 188
94#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
95# define EV_USE_MONOTONIC 1 191# define EV_USE_MONOTONIC 1
192# else
193# define EV_USE_MONOTONIC 0
194# endif
195#endif
196
197#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
96#endif 207#endif
97 208
98#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 211#endif
102 212
103#ifndef EV_USE_POLL 213#ifndef EV_USE_POLL
104# ifdef _WIN32 214# ifdef _WIN32
105# define EV_USE_POLL 0 215# define EV_USE_POLL 0
107# define EV_USE_POLL 1 217# define EV_USE_POLL 1
108# endif 218# endif
109#endif 219#endif
110 220
111#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
112# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
113#endif 227#endif
114 228
115#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
117#endif 231#endif
118 232
119#ifndef EV_USE_REALTIME 233#ifndef EV_USE_PORT
234# define EV_USE_PORT 0
235#endif
236
237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
120# define EV_USE_REALTIME 1 239# define EV_USE_INOTIFY 1
240# else
241# define EV_USE_INOTIFY 0
121#endif 242# endif
243#endif
122 244
123/**/ 245#ifndef EV_PID_HASHSIZE
124 246# if EV_MINIMAL
125/* darwin simply cannot be helped */ 247# define EV_PID_HASHSIZE 1
126#ifdef __APPLE__ 248# else
127# undef EV_USE_POLL 249# define EV_PID_HASHSIZE 16
128# undef EV_USE_KQUEUE
129#endif 250# endif
251#endif
252
253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
130 288
131#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
134#endif 292#endif
136#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
139#endif 297#endif
140 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
141#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h> 322# include <winsock.h>
143#endif 323#endif
144 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
145/**/ 346/**/
146 347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
151 367
152#ifdef EV_H
153# include EV_H
154#else
155# include "ev.h"
156#endif
157
158#if __GNUC__ >= 3 368#if __GNUC__ >= 4
159# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
160# define inline inline 370# define noinline __attribute__ ((noinline))
161#else 371#else
162# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
163# define inline static 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
164#endif 377#endif
165 378
166#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
168 388
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
171 391
172#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
173#define EMPTY2(a,b) /* used to suppress some warnings */ 393#define EMPTY2(a,b) /* used to suppress some warnings */
174 394
175typedef struct ev_watcher *W; 395typedef ev_watcher *W;
176typedef struct ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
177typedef struct ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
178 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
179static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
180 411
181#ifdef _WIN32 412#ifdef _WIN32
182# include "ev_win32.c" 413# include "ev_win32.c"
183#endif 414#endif
184 415
185/*****************************************************************************/ 416/*****************************************************************************/
186 417
187static void (*syserr_cb)(const char *msg); 418static void (*syserr_cb)(const char *msg);
188 419
420void
189void ev_set_syserr_cb (void (*cb)(const char *msg)) 421ev_set_syserr_cb (void (*cb)(const char *msg))
190{ 422{
191 syserr_cb = cb; 423 syserr_cb = cb;
192} 424}
193 425
194static void 426static void noinline
195syserr (const char *msg) 427ev_syserr (const char *msg)
196{ 428{
197 if (!msg) 429 if (!msg)
198 msg = "(libev) system error"; 430 msg = "(libev) system error";
199 431
200 if (syserr_cb) 432 if (syserr_cb)
204 perror (msg); 436 perror (msg);
205 abort (); 437 abort ();
206 } 438 }
207} 439}
208 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
209static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
210 457
458void
211void ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
212{ 460{
213 alloc = cb; 461 alloc = cb;
214} 462}
215 463
216static void * 464inline_speed void *
217ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
218{ 466{
219 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
220 468
221 if (!ptr && size) 469 if (!ptr && size)
222 { 470 {
223 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
224 abort (); 472 abort ();
230#define ev_malloc(size) ev_realloc (0, (size)) 478#define ev_malloc(size) ev_realloc (0, (size))
231#define ev_free(ptr) ev_realloc ((ptr), 0) 479#define ev_free(ptr) ev_realloc ((ptr), 0)
232 480
233/*****************************************************************************/ 481/*****************************************************************************/
234 482
483/* file descriptor info structure */
235typedef struct 484typedef struct
236{ 485{
237 WL head; 486 WL head;
238 unsigned char events; 487 unsigned char events; /* the events watched for */
488 unsigned char reify; /* flag set when this ANFD needs reification */
489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
239 unsigned char reify; 490 unsigned char unused;
491#if EV_USE_EPOLL
492 unsigned int egen; /* generation counter to counter epoll bugs */
493#endif
240#if EV_SELECT_IS_WINSOCKET 494#if EV_SELECT_IS_WINSOCKET
241 SOCKET handle; 495 SOCKET handle;
242#endif 496#endif
243} ANFD; 497} ANFD;
244 498
499/* stores the pending event set for a given watcher */
245typedef struct 500typedef struct
246{ 501{
247 W w; 502 W w;
248 int events; 503 int events; /* the pending event set for the given watcher */
249} ANPENDING; 504} ANPENDING;
505
506#if EV_USE_INOTIFY
507/* hash table entry per inotify-id */
508typedef struct
509{
510 WL head;
511} ANFS;
512#endif
513
514/* Heap Entry */
515#if EV_HEAP_CACHE_AT
516 /* a heap element */
517 typedef struct {
518 ev_tstamp at;
519 WT w;
520 } ANHE;
521
522 #define ANHE_w(he) (he).w /* access watcher, read-write */
523 #define ANHE_at(he) (he).at /* access cached at, read-only */
524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
525#else
526 /* a heap element */
527 typedef WT ANHE;
528
529 #define ANHE_w(he) (he)
530 #define ANHE_at(he) (he)->at
531 #define ANHE_at_cache(he)
532#endif
250 533
251#if EV_MULTIPLICITY 534#if EV_MULTIPLICITY
252 535
253 struct ev_loop 536 struct ev_loop
254 { 537 {
278 561
279ev_tstamp 562ev_tstamp
280ev_time (void) 563ev_time (void)
281{ 564{
282#if EV_USE_REALTIME 565#if EV_USE_REALTIME
566 if (expect_true (have_realtime))
567 {
283 struct timespec ts; 568 struct timespec ts;
284 clock_gettime (CLOCK_REALTIME, &ts); 569 clock_gettime (CLOCK_REALTIME, &ts);
285 return ts.tv_sec + ts.tv_nsec * 1e-9; 570 return ts.tv_sec + ts.tv_nsec * 1e-9;
286#else 571 }
572#endif
573
287 struct timeval tv; 574 struct timeval tv;
288 gettimeofday (&tv, 0); 575 gettimeofday (&tv, 0);
289 return tv.tv_sec + tv.tv_usec * 1e-6; 576 return tv.tv_sec + tv.tv_usec * 1e-6;
290#endif
291} 577}
292 578
293inline ev_tstamp 579inline_size ev_tstamp
294get_clock (void) 580get_clock (void)
295{ 581{
296#if EV_USE_MONOTONIC 582#if EV_USE_MONOTONIC
297 if (expect_true (have_monotonic)) 583 if (expect_true (have_monotonic))
298 { 584 {
311{ 597{
312 return ev_rt_now; 598 return ev_rt_now;
313} 599}
314#endif 600#endif
315 601
316#define array_roundsize(type,n) (((n) | 4) & ~3) 602void
603ev_sleep (ev_tstamp delay)
604{
605 if (delay > 0.)
606 {
607#if EV_USE_NANOSLEEP
608 struct timespec ts;
609
610 ts.tv_sec = (time_t)delay;
611 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
612
613 nanosleep (&ts, 0);
614#elif defined(_WIN32)
615 Sleep ((unsigned long)(delay * 1e3));
616#else
617 struct timeval tv;
618
619 tv.tv_sec = (time_t)delay;
620 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
621
622 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
623 /* somehting nto guaranteed by newer posix versions, but guaranteed */
624 /* by older ones */
625 select (0, 0, 0, 0, &tv);
626#endif
627 }
628}
629
630/*****************************************************************************/
631
632#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
633
634/* find a suitable new size for the given array, */
635/* hopefully by rounding to a ncie-to-malloc size */
636inline_size int
637array_nextsize (int elem, int cur, int cnt)
638{
639 int ncur = cur + 1;
640
641 do
642 ncur <<= 1;
643 while (cnt > ncur);
644
645 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
646 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
647 {
648 ncur *= elem;
649 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
650 ncur = ncur - sizeof (void *) * 4;
651 ncur /= elem;
652 }
653
654 return ncur;
655}
656
657static noinline void *
658array_realloc (int elem, void *base, int *cur, int cnt)
659{
660 *cur = array_nextsize (elem, *cur, cnt);
661 return ev_realloc (base, elem * *cur);
662}
663
664#define array_init_zero(base,count) \
665 memset ((void *)(base), 0, sizeof (*(base)) * (count))
317 666
318#define array_needsize(type,base,cur,cnt,init) \ 667#define array_needsize(type,base,cur,cnt,init) \
319 if (expect_false ((cnt) > cur)) \ 668 if (expect_false ((cnt) > (cur))) \
320 { \ 669 { \
321 int newcnt = cur; \ 670 int ocur_ = (cur); \
322 do \ 671 (base) = (type *)array_realloc \
323 { \ 672 (sizeof (type), (base), &(cur), (cnt)); \
324 newcnt = array_roundsize (type, newcnt << 1); \ 673 init ((base) + (ocur_), (cur) - ocur_); \
325 } \
326 while ((cnt) > newcnt); \
327 \
328 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
329 init (base + cur, newcnt - cur); \
330 cur = newcnt; \
331 } 674 }
332 675
676#if 0
333#define array_slim(type,stem) \ 677#define array_slim(type,stem) \
334 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 678 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
335 { \ 679 { \
336 stem ## max = array_roundsize (stem ## cnt >> 1); \ 680 stem ## max = array_roundsize (stem ## cnt >> 1); \
337 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 681 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
338 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 682 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
339 } 683 }
684#endif
340 685
341#define array_free(stem, idx) \ 686#define array_free(stem, idx) \
342 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
343 688
344/*****************************************************************************/ 689/*****************************************************************************/
345 690
346static void 691/* dummy callback for pending events */
347anfds_init (ANFD *base, int count) 692static void noinline
693pendingcb (EV_P_ ev_prepare *w, int revents)
348{ 694{
349 while (count--)
350 {
351 base->head = 0;
352 base->events = EV_NONE;
353 base->reify = 0;
354
355 ++base;
356 }
357} 695}
358 696
359void 697void noinline
360ev_feed_event (EV_P_ void *w, int revents) 698ev_feed_event (EV_P_ void *w, int revents)
361{ 699{
362 W w_ = (W)w; 700 W w_ = (W)w;
701 int pri = ABSPRI (w_);
363 702
364 if (w_->pending) 703 if (expect_false (w_->pending))
704 pendings [pri][w_->pending - 1].events |= revents;
705 else
365 { 706 {
707 w_->pending = ++pendingcnt [pri];
708 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
709 pendings [pri][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 710 pendings [pri][w_->pending - 1].events = revents;
367 return;
368 } 711 }
369
370 w_->pending = ++pendingcnt [ABSPRI (w_)];
371 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
372 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
374} 712}
375 713
376static void 714inline_speed void
715feed_reverse (EV_P_ W w)
716{
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719}
720
721inline_size void
722feed_reverse_done (EV_P_ int revents)
723{
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727}
728
729inline_speed void
377queue_events (EV_P_ W *events, int eventcnt, int type) 730queue_events (EV_P_ W *events, int eventcnt, int type)
378{ 731{
379 int i; 732 int i;
380 733
381 for (i = 0; i < eventcnt; ++i) 734 for (i = 0; i < eventcnt; ++i)
382 ev_feed_event (EV_A_ events [i], type); 735 ev_feed_event (EV_A_ events [i], type);
383} 736}
384 737
738/*****************************************************************************/
739
385inline void 740inline_speed void
386fd_event (EV_P_ int fd, int revents) 741fd_event (EV_P_ int fd, int revents)
387{ 742{
388 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
389 struct ev_io *w; 744 ev_io *w;
390 745
391 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 746 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
392 { 747 {
393 int ev = w->events & revents; 748 int ev = w->events & revents;
394 749
395 if (ev) 750 if (ev)
396 ev_feed_event (EV_A_ (W)w, ev); 751 ev_feed_event (EV_A_ (W)w, ev);
398} 753}
399 754
400void 755void
401ev_feed_fd_event (EV_P_ int fd, int revents) 756ev_feed_fd_event (EV_P_ int fd, int revents)
402{ 757{
758 if (fd >= 0 && fd < anfdmax)
403 fd_event (EV_A_ fd, revents); 759 fd_event (EV_A_ fd, revents);
404} 760}
405 761
406/*****************************************************************************/ 762/* make sure the external fd watch events are in-sync */
407 763/* with the kernel/libev internal state */
408static void 764inline_size void
409fd_reify (EV_P) 765fd_reify (EV_P)
410{ 766{
411 int i; 767 int i;
412 768
413 for (i = 0; i < fdchangecnt; ++i) 769 for (i = 0; i < fdchangecnt; ++i)
414 { 770 {
415 int fd = fdchanges [i]; 771 int fd = fdchanges [i];
416 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 773 ev_io *w;
418 774
419 int events = 0; 775 unsigned char events = 0;
420 776
421 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 777 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
422 events |= w->events; 778 events |= (unsigned char)w->events;
423 779
424#if EV_SELECT_IS_WINSOCKET 780#if EV_SELECT_IS_WINSOCKET
425 if (events) 781 if (events)
426 { 782 {
427 unsigned long argp; 783 unsigned long arg;
784 #ifdef EV_FD_TO_WIN32_HANDLE
785 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
786 #else
428 anfd->handle = _get_osfhandle (fd); 787 anfd->handle = _get_osfhandle (fd);
788 #endif
429 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 789 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
430 } 790 }
431#endif 791#endif
432 792
793 {
794 unsigned char o_events = anfd->events;
795 unsigned char o_reify = anfd->reify;
796
433 anfd->reify = 0; 797 anfd->reify = 0;
434
435 method_modify (EV_A_ fd, anfd->events, events);
436 anfd->events = events; 798 anfd->events = events;
799
800 if (o_events != events || o_reify & EV__IOFDSET)
801 backend_modify (EV_A_ fd, o_events, events);
802 }
437 } 803 }
438 804
439 fdchangecnt = 0; 805 fdchangecnt = 0;
440} 806}
441 807
442static void 808/* something about the given fd changed */
809inline_size void
443fd_change (EV_P_ int fd) 810fd_change (EV_P_ int fd, int flags)
444{ 811{
445 if (anfds [fd].reify) 812 unsigned char reify = anfds [fd].reify;
446 return;
447
448 anfds [fd].reify = 1; 813 anfds [fd].reify |= flags;
449 814
815 if (expect_true (!reify))
816 {
450 ++fdchangecnt; 817 ++fdchangecnt;
451 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
452 fdchanges [fdchangecnt - 1] = fd; 819 fdchanges [fdchangecnt - 1] = fd;
820 }
453} 821}
454 822
455static void 823/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824inline_speed void
456fd_kill (EV_P_ int fd) 825fd_kill (EV_P_ int fd)
457{ 826{
458 struct ev_io *w; 827 ev_io *w;
459 828
460 while ((w = (struct ev_io *)anfds [fd].head)) 829 while ((w = (ev_io *)anfds [fd].head))
461 { 830 {
462 ev_io_stop (EV_A_ w); 831 ev_io_stop (EV_A_ w);
463 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
464 } 833 }
465} 834}
466 835
467static int 836/* check whether the given fd is atcually valid, for error recovery */
837inline_size int
468fd_valid (int fd) 838fd_valid (int fd)
469{ 839{
470#ifdef _WIN32 840#ifdef _WIN32
471 return _get_osfhandle (fd) != -1; 841 return _get_osfhandle (fd) != -1;
472#else 842#else
473 return fcntl (fd, F_GETFD) != -1; 843 return fcntl (fd, F_GETFD) != -1;
474#endif 844#endif
475} 845}
476 846
477/* called on EBADF to verify fds */ 847/* called on EBADF to verify fds */
478static void 848static void noinline
479fd_ebadf (EV_P) 849fd_ebadf (EV_P)
480{ 850{
481 int fd; 851 int fd;
482 852
483 for (fd = 0; fd < anfdmax; ++fd) 853 for (fd = 0; fd < anfdmax; ++fd)
484 if (anfds [fd].events) 854 if (anfds [fd].events)
485 if (!fd_valid (fd) == -1 && errno == EBADF) 855 if (!fd_valid (fd) && errno == EBADF)
486 fd_kill (EV_A_ fd); 856 fd_kill (EV_A_ fd);
487} 857}
488 858
489/* called on ENOMEM in select/poll to kill some fds and retry */ 859/* called on ENOMEM in select/poll to kill some fds and retry */
490static void 860static void noinline
491fd_enomem (EV_P) 861fd_enomem (EV_P)
492{ 862{
493 int fd; 863 int fd;
494 864
495 for (fd = anfdmax; fd--; ) 865 for (fd = anfdmax; fd--; )
498 fd_kill (EV_A_ fd); 868 fd_kill (EV_A_ fd);
499 return; 869 return;
500 } 870 }
501} 871}
502 872
503/* usually called after fork if method needs to re-arm all fds from scratch */ 873/* usually called after fork if backend needs to re-arm all fds from scratch */
504static void 874static void noinline
505fd_rearm_all (EV_P) 875fd_rearm_all (EV_P)
506{ 876{
507 int fd; 877 int fd;
508 878
509 /* this should be highly optimised to not do anything but set a flag */
510 for (fd = 0; fd < anfdmax; ++fd) 879 for (fd = 0; fd < anfdmax; ++fd)
511 if (anfds [fd].events) 880 if (anfds [fd].events)
512 { 881 {
513 anfds [fd].events = 0; 882 anfds [fd].events = 0;
883 anfds [fd].emask = 0;
514 fd_change (EV_A_ fd); 884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
515 } 885 }
516} 886}
517 887
518/*****************************************************************************/ 888/*****************************************************************************/
519 889
520static void 890/*
521upheap (WT *heap, int k) 891 * the heap functions want a real array index. array index 0 uis guaranteed to not
522{ 892 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
523 WT w = heap [k]; 893 * the branching factor of the d-tree.
894 */
524 895
525 while (k && heap [k >> 1]->at > w->at) 896/*
526 { 897 * at the moment we allow libev the luxury of two heaps,
527 heap [k] = heap [k >> 1]; 898 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
528 ((W)heap [k])->active = k + 1; 899 * which is more cache-efficient.
529 k >>= 1; 900 * the difference is about 5% with 50000+ watchers.
530 } 901 */
902#if EV_USE_4HEAP
531 903
532 heap [k] = w; 904#define DHEAP 4
533 ((W)heap [k])->active = k + 1; 905#define HEAP0 (DHEAP - 1) /* index of first element in heap */
906#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
907#define UPHEAP_DONE(p,k) ((p) == (k))
534 908
535} 909/* away from the root */
536 910inline_speed void
537static void
538downheap (WT *heap, int N, int k) 911downheap (ANHE *heap, int N, int k)
539{ 912{
540 WT w = heap [k]; 913 ANHE he = heap [k];
914 ANHE *E = heap + N + HEAP0;
541 915
542 while (k < (N >> 1)) 916 for (;;)
543 { 917 {
544 int j = k << 1; 918 ev_tstamp minat;
919 ANHE *minpos;
920 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
545 921
546 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 922 /* find minimum child */
923 if (expect_true (pos + DHEAP - 1 < E))
547 ++j; 924 {
548 925 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
549 if (w->at <= heap [j]->at) 926 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
927 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
928 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
929 }
930 else if (pos < E)
931 {
932 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
933 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else
550 break; 938 break;
551 939
940 if (ANHE_at (he) <= minat)
941 break;
942
943 heap [k] = *minpos;
944 ev_active (ANHE_w (*minpos)) = k;
945
946 k = minpos - heap;
947 }
948
949 heap [k] = he;
950 ev_active (ANHE_w (he)) = k;
951}
952
953#else /* 4HEAP */
954
955#define HEAP0 1
956#define HPARENT(k) ((k) >> 1)
957#define UPHEAP_DONE(p,k) (!(p))
958
959/* away from the root */
960inline_speed void
961downheap (ANHE *heap, int N, int k)
962{
963 ANHE he = heap [k];
964
965 for (;;)
966 {
967 int c = k << 1;
968
969 if (c > N + HEAP0 - 1)
970 break;
971
972 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
973 ? 1 : 0;
974
975 if (ANHE_at (he) <= ANHE_at (heap [c]))
976 break;
977
552 heap [k] = heap [j]; 978 heap [k] = heap [c];
553 ((W)heap [k])->active = k + 1; 979 ev_active (ANHE_w (heap [k])) = k;
980
554 k = j; 981 k = c;
555 } 982 }
556 983
557 heap [k] = w; 984 heap [k] = he;
558 ((W)heap [k])->active = k + 1; 985 ev_active (ANHE_w (he)) = k;
559} 986}
987#endif
560 988
989/* towards the root */
990inline_speed void
991upheap (ANHE *heap, int k)
992{
993 ANHE he = heap [k];
994
995 for (;;)
996 {
997 int p = HPARENT (k);
998
999 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1000 break;
1001
1002 heap [k] = heap [p];
1003 ev_active (ANHE_w (heap [k])) = k;
1004 k = p;
1005 }
1006
1007 heap [k] = he;
1008 ev_active (ANHE_w (he)) = k;
1009}
1010
1011/* move an element suitably so it is in a correct place */
561inline void 1012inline_size void
562adjustheap (WT *heap, int N, int k) 1013adjustheap (ANHE *heap, int N, int k)
563{ 1014{
1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
564 upheap (heap, k); 1016 upheap (heap, k);
1017 else
565 downheap (heap, N, k); 1018 downheap (heap, N, k);
1019}
1020
1021/* rebuild the heap: this function is used only once and executed rarely */
1022inline_size void
1023reheap (ANHE *heap, int N)
1024{
1025 int i;
1026
1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1028 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1029 for (i = 0; i < N; ++i)
1030 upheap (heap, i + HEAP0);
566} 1031}
567 1032
568/*****************************************************************************/ 1033/*****************************************************************************/
569 1034
1035/* associate signal watchers to a signal signal */
570typedef struct 1036typedef struct
571{ 1037{
572 WL head; 1038 WL head;
573 sig_atomic_t volatile gotsig; 1039 EV_ATOMIC_T gotsig;
574} ANSIG; 1040} ANSIG;
575 1041
576static ANSIG *signals; 1042static ANSIG *signals;
577static int signalmax; 1043static int signalmax;
578 1044
579static int sigpipe [2]; 1045static EV_ATOMIC_T gotsig;
580static sig_atomic_t volatile gotsig;
581static struct ev_io sigev;
582 1046
583static void 1047/*****************************************************************************/
584signals_init (ANSIG *base, int count)
585{
586 while (count--)
587 {
588 base->head = 0;
589 base->gotsig = 0;
590 1048
591 ++base; 1049/* used to prepare libev internal fd's */
592 } 1050/* this is not fork-safe */
593}
594
595static void
596sighandler (int signum)
597{
598#if _WIN32
599 signal (signum, sighandler);
600#endif
601
602 signals [signum - 1].gotsig = 1;
603
604 if (!gotsig)
605 {
606 int old_errno = errno;
607 gotsig = 1;
608 write (sigpipe [1], &signum, 1);
609 errno = old_errno;
610 }
611}
612
613void
614ev_feed_signal_event (EV_P_ int signum)
615{
616 WL w;
617
618#if EV_MULTIPLICITY
619 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
620#endif
621
622 --signum;
623
624 if (signum < 0 || signum >= signalmax)
625 return;
626
627 signals [signum].gotsig = 0;
628
629 for (w = signals [signum].head; w; w = w->next)
630 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
631}
632
633static void
634sigcb (EV_P_ struct ev_io *iow, int revents)
635{
636 int signum;
637
638 read (sigpipe [0], &revents, 1);
639 gotsig = 0;
640
641 for (signum = signalmax; signum--; )
642 if (signals [signum].gotsig)
643 ev_feed_signal_event (EV_A_ signum + 1);
644}
645
646inline void 1051inline_speed void
647fd_intern (int fd) 1052fd_intern (int fd)
648{ 1053{
649#ifdef _WIN32 1054#ifdef _WIN32
650 int arg = 1; 1055 unsigned long arg = 1;
651 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
652#else 1057#else
653 fcntl (fd, F_SETFD, FD_CLOEXEC); 1058 fcntl (fd, F_SETFD, FD_CLOEXEC);
654 fcntl (fd, F_SETFL, O_NONBLOCK); 1059 fcntl (fd, F_SETFL, O_NONBLOCK);
655#endif 1060#endif
656} 1061}
657 1062
1063static void noinline
1064evpipe_init (EV_P)
1065{
1066 if (!ev_is_active (&pipe_w))
1067 {
1068#if EV_USE_EVENTFD
1069 if ((evfd = eventfd (0, 0)) >= 0)
1070 {
1071 evpipe [0] = -1;
1072 fd_intern (evfd);
1073 ev_io_set (&pipe_w, evfd, EV_READ);
1074 }
1075 else
1076#endif
1077 {
1078 while (pipe (evpipe))
1079 ev_syserr ("(libev) error creating signal/async pipe");
1080
1081 fd_intern (evpipe [0]);
1082 fd_intern (evpipe [1]);
1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1084 }
1085
1086 ev_io_start (EV_A_ &pipe_w);
1087 ev_unref (EV_A); /* watcher should not keep loop alive */
1088 }
1089}
1090
1091inline_size void
1092evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1093{
1094 if (!*flag)
1095 {
1096 int old_errno = errno; /* save errno because write might clobber it */
1097
1098 *flag = 1;
1099
1100#if EV_USE_EVENTFD
1101 if (evfd >= 0)
1102 {
1103 uint64_t counter = 1;
1104 write (evfd, &counter, sizeof (uint64_t));
1105 }
1106 else
1107#endif
1108 write (evpipe [1], &old_errno, 1);
1109
1110 errno = old_errno;
1111 }
1112}
1113
1114/* called whenever the libev signal pipe */
1115/* got some events (signal, async) */
658static void 1116static void
659siginit (EV_P) 1117pipecb (EV_P_ ev_io *iow, int revents)
660{ 1118{
661 fd_intern (sigpipe [0]); 1119#if EV_USE_EVENTFD
662 fd_intern (sigpipe [1]); 1120 if (evfd >= 0)
1121 {
1122 uint64_t counter;
1123 read (evfd, &counter, sizeof (uint64_t));
1124 }
1125 else
1126#endif
1127 {
1128 char dummy;
1129 read (evpipe [0], &dummy, 1);
1130 }
663 1131
664 ev_io_set (&sigev, sigpipe [0], EV_READ); 1132 if (gotsig && ev_is_default_loop (EV_A))
665 ev_io_start (EV_A_ &sigev); 1133 {
666 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1134 int signum;
1135 gotsig = 0;
1136
1137 for (signum = signalmax; signum--; )
1138 if (signals [signum].gotsig)
1139 ev_feed_signal_event (EV_A_ signum + 1);
1140 }
1141
1142#if EV_ASYNC_ENABLE
1143 if (gotasync)
1144 {
1145 int i;
1146 gotasync = 0;
1147
1148 for (i = asynccnt; i--; )
1149 if (asyncs [i]->sent)
1150 {
1151 asyncs [i]->sent = 0;
1152 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1153 }
1154 }
1155#endif
667} 1156}
668 1157
669/*****************************************************************************/ 1158/*****************************************************************************/
670 1159
671static struct ev_child *childs [PID_HASHSIZE]; 1160static void
1161ev_sighandler (int signum)
1162{
1163#if EV_MULTIPLICITY
1164 struct ev_loop *loop = &default_loop_struct;
1165#endif
1166
1167#if _WIN32
1168 signal (signum, ev_sighandler);
1169#endif
1170
1171 signals [signum - 1].gotsig = 1;
1172 evpipe_write (EV_A_ &gotsig);
1173}
1174
1175void noinline
1176ev_feed_signal_event (EV_P_ int signum)
1177{
1178 WL w;
1179
1180#if EV_MULTIPLICITY
1181 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1182#endif
1183
1184 --signum;
1185
1186 if (signum < 0 || signum >= signalmax)
1187 return;
1188
1189 signals [signum].gotsig = 0;
1190
1191 for (w = signals [signum].head; w; w = w->next)
1192 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1193}
1194
1195/*****************************************************************************/
1196
1197static WL childs [EV_PID_HASHSIZE];
672 1198
673#ifndef _WIN32 1199#ifndef _WIN32
674 1200
675static struct ev_signal childev; 1201static ev_signal childev;
1202
1203#ifndef WIFCONTINUED
1204# define WIFCONTINUED(status) 0
1205#endif
1206
1207/* handle a single child status event */
1208inline_speed void
1209child_reap (EV_P_ int chain, int pid, int status)
1210{
1211 ev_child *w;
1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1213
1214 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1215 {
1216 if ((w->pid == pid || !w->pid)
1217 && (!traced || (w->flags & 1)))
1218 {
1219 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1220 w->rpid = pid;
1221 w->rstatus = status;
1222 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1223 }
1224 }
1225}
676 1226
677#ifndef WCONTINUED 1227#ifndef WCONTINUED
678# define WCONTINUED 0 1228# define WCONTINUED 0
679#endif 1229#endif
680 1230
1231/* called on sigchld etc., calls waitpid */
681static void 1232static void
682child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
683{
684 struct ev_child *w;
685
686 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
687 if (w->pid == pid || !w->pid)
688 {
689 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
690 w->rpid = pid;
691 w->rstatus = status;
692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
693 }
694}
695
696static void
697childcb (EV_P_ struct ev_signal *sw, int revents) 1233childcb (EV_P_ ev_signal *sw, int revents)
698{ 1234{
699 int pid, status; 1235 int pid, status;
700 1236
1237 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
701 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1238 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
702 { 1239 if (!WCONTINUED
1240 || errno != EINVAL
1241 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1242 return;
1243
703 /* make sure we are called again until all childs have been reaped */ 1244 /* make sure we are called again until all children have been reaped */
1245 /* we need to do it this way so that the callback gets called before we continue */
704 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1246 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
705 1247
706 child_reap (EV_A_ sw, pid, pid, status); 1248 child_reap (EV_A_ pid, pid, status);
1249 if (EV_PID_HASHSIZE > 1)
707 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1250 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
708 }
709} 1251}
710 1252
711#endif 1253#endif
712 1254
713/*****************************************************************************/ 1255/*****************************************************************************/
714 1256
1257#if EV_USE_PORT
1258# include "ev_port.c"
1259#endif
715#if EV_USE_KQUEUE 1260#if EV_USE_KQUEUE
716# include "ev_kqueue.c" 1261# include "ev_kqueue.c"
717#endif 1262#endif
718#if EV_USE_EPOLL 1263#if EV_USE_EPOLL
719# include "ev_epoll.c" 1264# include "ev_epoll.c"
736{ 1281{
737 return EV_VERSION_MINOR; 1282 return EV_VERSION_MINOR;
738} 1283}
739 1284
740/* return true if we are running with elevated privileges and should ignore env variables */ 1285/* return true if we are running with elevated privileges and should ignore env variables */
741static int 1286int inline_size
742enable_secure (void) 1287enable_secure (void)
743{ 1288{
744#ifdef _WIN32 1289#ifdef _WIN32
745 return 0; 1290 return 0;
746#else 1291#else
748 || getgid () != getegid (); 1293 || getgid () != getegid ();
749#endif 1294#endif
750} 1295}
751 1296
752unsigned int 1297unsigned int
753ev_method (EV_P) 1298ev_supported_backends (void)
754{ 1299{
755 return method; 1300 unsigned int flags = 0;
756}
757 1301
758static void 1302 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1303 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1304 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1305 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1306 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1307
1308 return flags;
1309}
1310
1311unsigned int
1312ev_recommended_backends (void)
1313{
1314 unsigned int flags = ev_supported_backends ();
1315
1316#ifndef __NetBSD__
1317 /* kqueue is borked on everything but netbsd apparently */
1318 /* it usually doesn't work correctly on anything but sockets and pipes */
1319 flags &= ~EVBACKEND_KQUEUE;
1320#endif
1321#ifdef __APPLE__
1322 /* only select works correctly on that "unix-certified" platform */
1323 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1324 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1325#endif
1326
1327 return flags;
1328}
1329
1330unsigned int
1331ev_embeddable_backends (void)
1332{
1333 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1334
1335 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1336 /* please fix it and tell me how to detect the fix */
1337 flags &= ~EVBACKEND_EPOLL;
1338
1339 return flags;
1340}
1341
1342unsigned int
1343ev_backend (EV_P)
1344{
1345 return backend;
1346}
1347
1348unsigned int
1349ev_loop_count (EV_P)
1350{
1351 return loop_count;
1352}
1353
1354void
1355ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1356{
1357 io_blocktime = interval;
1358}
1359
1360void
1361ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1362{
1363 timeout_blocktime = interval;
1364}
1365
1366/* initialise a loop structure, must be zero-initialised */
1367static void noinline
759loop_init (EV_P_ unsigned int flags) 1368loop_init (EV_P_ unsigned int flags)
760{ 1369{
761 if (!method) 1370 if (!backend)
762 { 1371 {
1372#if EV_USE_REALTIME
1373 if (!have_realtime)
1374 {
1375 struct timespec ts;
1376
1377 if (!clock_gettime (CLOCK_REALTIME, &ts))
1378 have_realtime = 1;
1379 }
1380#endif
1381
763#if EV_USE_MONOTONIC 1382#if EV_USE_MONOTONIC
1383 if (!have_monotonic)
1384 {
1385 struct timespec ts;
1386
1387 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1388 have_monotonic = 1;
1389 }
1390#endif
1391
1392 ev_rt_now = ev_time ();
1393 mn_now = get_clock ();
1394 now_floor = mn_now;
1395 rtmn_diff = ev_rt_now - mn_now;
1396
1397 io_blocktime = 0.;
1398 timeout_blocktime = 0.;
1399 backend = 0;
1400 backend_fd = -1;
1401 gotasync = 0;
1402#if EV_USE_INOTIFY
1403 fs_fd = -2;
1404#endif
1405
1406 /* pid check not overridable via env */
1407#ifndef _WIN32
1408 if (flags & EVFLAG_FORKCHECK)
1409 curpid = getpid ();
1410#endif
1411
1412 if (!(flags & EVFLAG_NOENV)
1413 && !enable_secure ()
1414 && getenv ("LIBEV_FLAGS"))
1415 flags = atoi (getenv ("LIBEV_FLAGS"));
1416
1417 if (!(flags & 0x0000ffffU))
1418 flags |= ev_recommended_backends ();
1419
1420#if EV_USE_PORT
1421 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1422#endif
1423#if EV_USE_KQUEUE
1424 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1425#endif
1426#if EV_USE_EPOLL
1427 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1428#endif
1429#if EV_USE_POLL
1430 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1431#endif
1432#if EV_USE_SELECT
1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1434#endif
1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
1438 ev_init (&pipe_w, pipecb);
1439 ev_set_priority (&pipe_w, EV_MAXPRI);
1440 }
1441}
1442
1443/* free up a loop structure */
1444static void noinline
1445loop_destroy (EV_P)
1446{
1447 int i;
1448
1449 if (ev_is_active (&pipe_w))
1450 {
1451 ev_ref (EV_A); /* signal watcher */
1452 ev_io_stop (EV_A_ &pipe_w);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1461 close (evpipe [0]);
1462 close (evpipe [1]);
1463 }
1464 }
1465
1466#if EV_USE_INOTIFY
1467 if (fs_fd >= 0)
1468 close (fs_fd);
1469#endif
1470
1471 if (backend_fd >= 0)
1472 close (backend_fd);
1473
1474#if EV_USE_PORT
1475 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1476#endif
1477#if EV_USE_KQUEUE
1478 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1479#endif
1480#if EV_USE_EPOLL
1481 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1482#endif
1483#if EV_USE_POLL
1484 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1485#endif
1486#if EV_USE_SELECT
1487 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1488#endif
1489
1490 for (i = NUMPRI; i--; )
1491 {
1492 array_free (pending, [i]);
1493#if EV_IDLE_ENABLE
1494 array_free (idle, [i]);
1495#endif
1496 }
1497
1498 ev_free (anfds); anfdmax = 0;
1499
1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
1502 array_free (fdchange, EMPTY);
1503 array_free (timer, EMPTY);
1504#if EV_PERIODIC_ENABLE
1505 array_free (periodic, EMPTY);
1506#endif
1507#if EV_FORK_ENABLE
1508 array_free (fork, EMPTY);
1509#endif
1510 array_free (prepare, EMPTY);
1511 array_free (check, EMPTY);
1512#if EV_ASYNC_ENABLE
1513 array_free (async, EMPTY);
1514#endif
1515
1516 backend = 0;
1517}
1518
1519#if EV_USE_INOTIFY
1520inline_size void infy_fork (EV_P);
1521#endif
1522
1523inline_size void
1524loop_fork (EV_P)
1525{
1526#if EV_USE_PORT
1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1528#endif
1529#if EV_USE_KQUEUE
1530 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1531#endif
1532#if EV_USE_EPOLL
1533 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1534#endif
1535#if EV_USE_INOTIFY
1536 infy_fork (EV_A);
1537#endif
1538
1539 if (ev_is_active (&pipe_w))
1540 {
1541 /* this "locks" the handlers against writing to the pipe */
1542 /* while we modify the fd vars */
1543 gotsig = 1;
1544#if EV_ASYNC_ENABLE
1545 gotasync = 1;
1546#endif
1547
1548 ev_ref (EV_A);
1549 ev_io_stop (EV_A_ &pipe_w);
1550
1551#if EV_USE_EVENTFD
1552 if (evfd >= 0)
1553 close (evfd);
1554#endif
1555
1556 if (evpipe [0] >= 0)
1557 {
1558 close (evpipe [0]);
1559 close (evpipe [1]);
1560 }
1561
1562 evpipe_init (EV_A);
1563 /* now iterate over everything, in case we missed something */
1564 pipecb (EV_A_ &pipe_w, EV_READ);
1565 }
1566
1567 postfork = 0;
1568}
1569
1570#if EV_MULTIPLICITY
1571
1572struct ev_loop *
1573ev_loop_new (unsigned int flags)
1574{
1575 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1576
1577 memset (loop, 0, sizeof (struct ev_loop));
1578
1579 loop_init (EV_A_ flags);
1580
1581 if (ev_backend (EV_A))
1582 return loop;
1583
1584 return 0;
1585}
1586
1587void
1588ev_loop_destroy (EV_P)
1589{
1590 loop_destroy (EV_A);
1591 ev_free (loop);
1592}
1593
1594void
1595ev_loop_fork (EV_P)
1596{
1597 postfork = 1; /* must be in line with ev_default_fork */
1598}
1599
1600#if EV_VERIFY
1601static void noinline
1602verify_watcher (EV_P_ W w)
1603{
1604 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1605
1606 if (w->pending)
1607 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1608}
1609
1610static void noinline
1611verify_heap (EV_P_ ANHE *heap, int N)
1612{
1613 int i;
1614
1615 for (i = HEAP0; i < N + HEAP0; ++i)
1616 {
1617 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1618 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1619 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1620
1621 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1622 }
1623}
1624
1625static void noinline
1626array_verify (EV_P_ W *ws, int cnt)
1627{
1628 while (cnt--)
1629 {
1630 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1631 verify_watcher (EV_A_ ws [cnt]);
1632 }
1633}
1634#endif
1635
1636void
1637ev_loop_verify (EV_P)
1638{
1639#if EV_VERIFY
1640 int i;
1641 WL w;
1642
1643 assert (activecnt >= -1);
1644
1645 assert (fdchangemax >= fdchangecnt);
1646 for (i = 0; i < fdchangecnt; ++i)
1647 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1648
1649 assert (anfdmax >= 0);
1650 for (i = 0; i < anfdmax; ++i)
1651 for (w = anfds [i].head; w; w = w->next)
764 { 1652 {
765 struct timespec ts; 1653 verify_watcher (EV_A_ (W)w);
766 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1654 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
767 have_monotonic = 1; 1655 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
768 } 1656 }
769#endif
770 1657
771 ev_rt_now = ev_time (); 1658 assert (timermax >= timercnt);
772 mn_now = get_clock (); 1659 verify_heap (EV_A_ timers, timercnt);
773 now_floor = mn_now;
774 rtmn_diff = ev_rt_now - mn_now;
775 1660
776 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1661#if EV_PERIODIC_ENABLE
777 flags = atoi (getenv ("LIBEV_FLAGS")); 1662 assert (periodicmax >= periodiccnt);
778 1663 verify_heap (EV_A_ periodics, periodiccnt);
779 if (!(flags & 0x0000ffff))
780 flags |= 0x0000ffff;
781
782 method = 0;
783#if EV_USE_KQUEUE
784 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
785#endif
786#if EV_USE_EPOLL
787 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
788#endif
789#if EV_USE_POLL
790 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
791#endif
792#if EV_USE_SELECT
793 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
794#endif
795
796 ev_init (&sigev, sigcb);
797 ev_set_priority (&sigev, EV_MAXPRI);
798 }
799}
800
801void
802loop_destroy (EV_P)
803{
804 int i;
805
806#if EV_USE_KQUEUE
807 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
808#endif
809#if EV_USE_EPOLL
810 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
811#endif
812#if EV_USE_POLL
813 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
814#endif
815#if EV_USE_SELECT
816 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
817#endif 1664#endif
818 1665
819 for (i = NUMPRI; i--; ) 1666 for (i = NUMPRI; i--; )
820 array_free (pending, [i]); 1667 {
1668 assert (pendingmax [i] >= pendingcnt [i]);
1669#if EV_IDLE_ENABLE
1670 assert (idleall >= 0);
1671 assert (idlemax [i] >= idlecnt [i]);
1672 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1673#endif
1674 }
821 1675
822 /* have to use the microsoft-never-gets-it-right macro */ 1676#if EV_FORK_ENABLE
823 array_free (fdchange, EMPTY0); 1677 assert (forkmax >= forkcnt);
824 array_free (timer, EMPTY0); 1678 array_verify (EV_A_ (W *)forks, forkcnt);
825#if EV_PERIODICS 1679#endif
826 array_free (periodic, EMPTY0); 1680
1681#if EV_ASYNC_ENABLE
1682 assert (asyncmax >= asynccnt);
1683 array_verify (EV_A_ (W *)asyncs, asynccnt);
1684#endif
1685
1686 assert (preparemax >= preparecnt);
1687 array_verify (EV_A_ (W *)prepares, preparecnt);
1688
1689 assert (checkmax >= checkcnt);
1690 array_verify (EV_A_ (W *)checks, checkcnt);
1691
1692# if 0
1693 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1694 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
827#endif 1695# endif
828 array_free (idle, EMPTY0);
829 array_free (prepare, EMPTY0);
830 array_free (check, EMPTY0);
831
832 method = 0;
833}
834
835static void
836loop_fork (EV_P)
837{
838#if EV_USE_EPOLL
839 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
840#endif 1696#endif
841#if EV_USE_KQUEUE
842 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
843#endif
844
845 if (ev_is_active (&sigev))
846 {
847 /* default loop */
848
849 ev_ref (EV_A);
850 ev_io_stop (EV_A_ &sigev);
851 close (sigpipe [0]);
852 close (sigpipe [1]);
853
854 while (pipe (sigpipe))
855 syserr ("(libev) error creating pipe");
856
857 siginit (EV_A);
858 }
859
860 postfork = 0;
861} 1697}
1698
1699#endif /* multiplicity */
862 1700
863#if EV_MULTIPLICITY 1701#if EV_MULTIPLICITY
864struct ev_loop * 1702struct ev_loop *
865ev_loop_new (unsigned int flags)
866{
867 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
868
869 memset (loop, 0, sizeof (struct ev_loop));
870
871 loop_init (EV_A_ flags);
872
873 if (ev_method (EV_A))
874 return loop;
875
876 return 0;
877}
878
879void
880ev_loop_destroy (EV_P)
881{
882 loop_destroy (EV_A);
883 ev_free (loop);
884}
885
886void
887ev_loop_fork (EV_P)
888{
889 postfork = 1;
890}
891
892#endif
893
894#if EV_MULTIPLICITY
895struct ev_loop *
896ev_default_loop_ (unsigned int flags) 1703ev_default_loop_init (unsigned int flags)
897#else 1704#else
898int 1705int
899ev_default_loop (unsigned int flags) 1706ev_default_loop (unsigned int flags)
900#endif 1707#endif
901{ 1708{
902 if (sigpipe [0] == sigpipe [1])
903 if (pipe (sigpipe))
904 return 0;
905
906 if (!ev_default_loop_ptr) 1709 if (!ev_default_loop_ptr)
907 { 1710 {
908#if EV_MULTIPLICITY 1711#if EV_MULTIPLICITY
909 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1712 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
910#else 1713#else
911 ev_default_default_loop_ptr = 1; 1714 ev_default_loop_ptr = 1;
912#endif 1715#endif
913 1716
914 loop_init (EV_A_ flags); 1717 loop_init (EV_A_ flags);
915 1718
916 if (ev_method (EV_A)) 1719 if (ev_backend (EV_A))
917 { 1720 {
918 siginit (EV_A);
919
920#ifndef _WIN32 1721#ifndef _WIN32
921 ev_signal_init (&childev, childcb, SIGCHLD); 1722 ev_signal_init (&childev, childcb, SIGCHLD);
922 ev_set_priority (&childev, EV_MAXPRI); 1723 ev_set_priority (&childev, EV_MAXPRI);
923 ev_signal_start (EV_A_ &childev); 1724 ev_signal_start (EV_A_ &childev);
924 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1725 ev_unref (EV_A); /* child watcher should not keep loop alive */
936{ 1737{
937#if EV_MULTIPLICITY 1738#if EV_MULTIPLICITY
938 struct ev_loop *loop = ev_default_loop_ptr; 1739 struct ev_loop *loop = ev_default_loop_ptr;
939#endif 1740#endif
940 1741
1742 ev_default_loop_ptr = 0;
1743
941#ifndef _WIN32 1744#ifndef _WIN32
942 ev_ref (EV_A); /* child watcher */ 1745 ev_ref (EV_A); /* child watcher */
943 ev_signal_stop (EV_A_ &childev); 1746 ev_signal_stop (EV_A_ &childev);
944#endif 1747#endif
945 1748
946 ev_ref (EV_A); /* signal watcher */
947 ev_io_stop (EV_A_ &sigev);
948
949 close (sigpipe [0]); sigpipe [0] = 0;
950 close (sigpipe [1]); sigpipe [1] = 0;
951
952 loop_destroy (EV_A); 1749 loop_destroy (EV_A);
953} 1750}
954 1751
955void 1752void
956ev_default_fork (void) 1753ev_default_fork (void)
957{ 1754{
958#if EV_MULTIPLICITY 1755#if EV_MULTIPLICITY
959 struct ev_loop *loop = ev_default_loop_ptr; 1756 struct ev_loop *loop = ev_default_loop_ptr;
960#endif 1757#endif
961 1758
962 if (method) 1759 postfork = 1; /* must be in line with ev_loop_fork */
963 postfork = 1;
964} 1760}
965 1761
966/*****************************************************************************/ 1762/*****************************************************************************/
967 1763
968static int 1764void
969any_pending (EV_P) 1765ev_invoke (EV_P_ void *w, int revents)
970{ 1766{
971 int pri; 1767 EV_CB_INVOKE ((W)w, revents);
972
973 for (pri = NUMPRI; pri--; )
974 if (pendingcnt [pri])
975 return 1;
976
977 return 0;
978} 1768}
979 1769
980static void 1770inline_speed void
981call_pending (EV_P) 1771call_pending (EV_P)
982{ 1772{
983 int pri; 1773 int pri;
984 1774
985 for (pri = NUMPRI; pri--; ) 1775 for (pri = NUMPRI; pri--; )
986 while (pendingcnt [pri]) 1776 while (pendingcnt [pri])
987 { 1777 {
988 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
989 1779
990 if (p->w) 1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
991 { 1781 /* ^ this is no longer true, as pending_w could be here */
1782
992 p->w->pending = 0; 1783 p->w->pending = 0;
993 EV_CB_INVOKE (p->w, p->events); 1784 EV_CB_INVOKE (p->w, p->events);
994 } 1785 EV_FREQUENT_CHECK;
995 } 1786 }
996} 1787}
997 1788
998static void 1789#if EV_IDLE_ENABLE
1790/* make idle watchers pending. this handles the "call-idle */
1791/* only when higher priorities are idle" logic */
1792inline_size void
1793idle_reify (EV_P)
1794{
1795 if (expect_false (idleall))
1796 {
1797 int pri;
1798
1799 for (pri = NUMPRI; pri--; )
1800 {
1801 if (pendingcnt [pri])
1802 break;
1803
1804 if (idlecnt [pri])
1805 {
1806 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1807 break;
1808 }
1809 }
1810 }
1811}
1812#endif
1813
1814/* make timers pending */
1815inline_size void
999timers_reify (EV_P) 1816timers_reify (EV_P)
1000{ 1817{
1818 EV_FREQUENT_CHECK;
1819
1001 while (timercnt && ((WT)timers [0])->at <= mn_now) 1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1002 { 1821 {
1003 struct ev_timer *w = timers [0]; 1822 do
1004
1005 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1006
1007 /* first reschedule or stop timer */
1008 if (w->repeat)
1009 { 1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1831 ev_at (w) += w->repeat;
1832 if (ev_at (w) < mn_now)
1833 ev_at (w) = mn_now;
1834
1010 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1011 1836
1012 ((WT)w)->at += w->repeat; 1837 ANHE_at_cache (timers [HEAP0]);
1013 if (((WT)w)->at < mn_now)
1014 ((WT)w)->at = mn_now;
1015
1016 downheap ((WT *)timers, timercnt, 0); 1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
1017 } 1845 }
1018 else 1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1019 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1020 1847
1021 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
1022 } 1849 }
1023} 1850}
1024 1851
1025#if EV_PERIODICS 1852#if EV_PERIODIC_ENABLE
1026static void 1853/* make periodics pending */
1854inline_size void
1027periodics_reify (EV_P) 1855periodics_reify (EV_P)
1028{ 1856{
1857 EV_FREQUENT_CHECK;
1858
1029 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1030 { 1860 {
1031 struct ev_periodic *w = periodics [0]; 1861 int feed_count = 0;
1032 1862
1863 do
1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
1033 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1034 1868
1035 /* first reschedule or stop timer */ 1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1873
1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1875
1876 ANHE_at_cache (periodics [HEAP0]);
1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1903 }
1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1905
1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1907 }
1908}
1909
1910/* simply recalculate all periodics */
1911/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1912static void noinline
1913periodics_reschedule (EV_P)
1914{
1915 int i;
1916
1917 /* adjust periodics after time jump */
1918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1919 {
1920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1921
1036 if (w->reschedule_cb) 1922 if (w->reschedule_cb)
1923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1924 else if (w->interval)
1925 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1926
1927 ANHE_at_cache (periodics [i]);
1928 }
1929
1930 reheap (periodics, periodiccnt);
1931}
1932#endif
1933
1934/* adjust all timers by a given offset */
1935static void noinline
1936timers_reschedule (EV_P_ ev_tstamp adjust)
1937{
1938 int i;
1939
1940 for (i = 0; i < timercnt; ++i)
1941 {
1942 ANHE *he = timers + i + HEAP0;
1943 ANHE_w (*he)->at += adjust;
1944 ANHE_at_cache (*he);
1945 }
1946}
1947
1948/* fetch new monotonic and realtime times from the kernel */
1949/* also detetc if there was a timejump, and act accordingly */
1950inline_speed void
1951time_update (EV_P_ ev_tstamp max_block)
1952{
1953#if EV_USE_MONOTONIC
1954 if (expect_true (have_monotonic))
1955 {
1956 int i;
1957 ev_tstamp odiff = rtmn_diff;
1958
1959 mn_now = get_clock ();
1960
1961 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1962 /* interpolate in the meantime */
1963 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1037 { 1964 {
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1965 ev_rt_now = rtmn_diff + mn_now;
1039 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1966 return;
1040 downheap ((WT *)periodics, periodiccnt, 0);
1041 } 1967 }
1042 else if (w->interval)
1043 {
1044 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1045 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1046 downheap ((WT *)periodics, periodiccnt, 0);
1047 }
1048 else
1049 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1050 1968
1051 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1052 }
1053}
1054
1055static void
1056periodics_reschedule (EV_P)
1057{
1058 int i;
1059
1060 /* adjust periodics after time jump */
1061 for (i = 0; i < periodiccnt; ++i)
1062 {
1063 struct ev_periodic *w = periodics [i];
1064
1065 if (w->reschedule_cb)
1066 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1067 else if (w->interval)
1068 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1069 }
1070
1071 /* now rebuild the heap */
1072 for (i = periodiccnt >> 1; i--; )
1073 downheap ((WT *)periodics, periodiccnt, i);
1074}
1075#endif
1076
1077inline int
1078time_update_monotonic (EV_P)
1079{
1080 mn_now = get_clock ();
1081
1082 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 {
1084 ev_rt_now = rtmn_diff + mn_now;
1085 return 0;
1086 }
1087 else
1088 {
1089 now_floor = mn_now; 1969 now_floor = mn_now;
1090 ev_rt_now = ev_time (); 1970 ev_rt_now = ev_time ();
1091 return 1;
1092 }
1093}
1094 1971
1095static void 1972 /* loop a few times, before making important decisions.
1096time_update (EV_P) 1973 * on the choice of "4": one iteration isn't enough,
1097{ 1974 * in case we get preempted during the calls to
1098 int i; 1975 * ev_time and get_clock. a second call is almost guaranteed
1099 1976 * to succeed in that case, though. and looping a few more times
1100#if EV_USE_MONOTONIC 1977 * doesn't hurt either as we only do this on time-jumps or
1101 if (expect_true (have_monotonic)) 1978 * in the unlikely event of having been preempted here.
1102 { 1979 */
1103 if (time_update_monotonic (EV_A)) 1980 for (i = 4; --i; )
1104 { 1981 {
1105 ev_tstamp odiff = rtmn_diff;
1106
1107 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1108 {
1109 rtmn_diff = ev_rt_now - mn_now; 1982 rtmn_diff = ev_rt_now - mn_now;
1110 1983
1111 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1984 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1112 return; /* all is well */ 1985 return; /* all is well */
1113 1986
1114 ev_rt_now = ev_time (); 1987 ev_rt_now = ev_time ();
1115 mn_now = get_clock (); 1988 mn_now = get_clock ();
1116 now_floor = mn_now; 1989 now_floor = mn_now;
1117 } 1990 }
1118 1991
1992 /* no timer adjustment, as the monotonic clock doesn't jump */
1993 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1119# if EV_PERIODICS 1994# if EV_PERIODIC_ENABLE
1995 periodics_reschedule (EV_A);
1996# endif
1997 }
1998 else
1999#endif
2000 {
2001 ev_rt_now = ev_time ();
2002
2003 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2004 {
2005 /* adjust timers. this is easy, as the offset is the same for all of them */
2006 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2007#if EV_PERIODIC_ENABLE
1120 periodics_reschedule (EV_A); 2008 periodics_reschedule (EV_A);
1121# endif 2009#endif
1122 /* no timer adjustment, as the monotonic clock doesn't jump */
1123 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1124 } 2010 }
1125 }
1126 else
1127#endif
1128 {
1129 ev_rt_now = ev_time ();
1130
1131 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1132 {
1133#if EV_PERIODICS
1134 periodics_reschedule (EV_A);
1135#endif
1136
1137 /* adjust timers. this is easy, as the offset is the same for all */
1138 for (i = 0; i < timercnt; ++i)
1139 ((WT)timers [i])->at += ev_rt_now - mn_now;
1140 }
1141 2011
1142 mn_now = ev_rt_now; 2012 mn_now = ev_rt_now;
1143 } 2013 }
1144} 2014}
1145 2015
1146void
1147ev_ref (EV_P)
1148{
1149 ++activecnt;
1150}
1151
1152void
1153ev_unref (EV_P)
1154{
1155 --activecnt;
1156}
1157
1158static int loop_done; 2016static int loop_done;
1159 2017
1160void 2018void
1161ev_loop (EV_P_ int flags) 2019ev_loop (EV_P_ int flags)
1162{ 2020{
1163 double block; 2021 loop_done = EVUNLOOP_CANCEL;
1164 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1165 2022
1166 while (activecnt) 2023 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
2024
2025 do
1167 { 2026 {
2027#if EV_VERIFY >= 2
2028 ev_loop_verify (EV_A);
2029#endif
2030
2031#ifndef _WIN32
2032 if (expect_false (curpid)) /* penalise the forking check even more */
2033 if (expect_false (getpid () != curpid))
2034 {
2035 curpid = getpid ();
2036 postfork = 1;
2037 }
2038#endif
2039
2040#if EV_FORK_ENABLE
2041 /* we might have forked, so queue fork handlers */
2042 if (expect_false (postfork))
2043 if (forkcnt)
2044 {
2045 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2046 call_pending (EV_A);
2047 }
2048#endif
2049
1168 /* queue check watchers (and execute them) */ 2050 /* queue prepare watchers (and execute them) */
1169 if (expect_false (preparecnt)) 2051 if (expect_false (preparecnt))
1170 { 2052 {
1171 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2053 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1172 call_pending (EV_A); 2054 call_pending (EV_A);
1173 } 2055 }
1178 2060
1179 /* update fd-related kernel structures */ 2061 /* update fd-related kernel structures */
1180 fd_reify (EV_A); 2062 fd_reify (EV_A);
1181 2063
1182 /* calculate blocking time */ 2064 /* calculate blocking time */
2065 {
2066 ev_tstamp waittime = 0.;
2067 ev_tstamp sleeptime = 0.;
1183 2068
1184 /* we only need this for !monotonic clock or timers, but as we basically 2069 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1185 always have timers, we just calculate it always */
1186#if EV_USE_MONOTONIC
1187 if (expect_true (have_monotonic))
1188 time_update_monotonic (EV_A);
1189 else
1190#endif
1191 { 2070 {
1192 ev_rt_now = ev_time (); 2071 /* update time to cancel out callback processing overhead */
1193 mn_now = ev_rt_now; 2072 time_update (EV_A_ 1e100);
1194 }
1195 2073
1196 if (flags & EVLOOP_NONBLOCK || idlecnt)
1197 block = 0.;
1198 else
1199 {
1200 block = MAX_BLOCKTIME; 2074 waittime = MAX_BLOCKTIME;
1201 2075
1202 if (timercnt) 2076 if (timercnt)
1203 { 2077 {
1204 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2078 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1205 if (block > to) block = to; 2079 if (waittime > to) waittime = to;
1206 } 2080 }
1207 2081
1208#if EV_PERIODICS 2082#if EV_PERIODIC_ENABLE
1209 if (periodiccnt) 2083 if (periodiccnt)
1210 { 2084 {
1211 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2085 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1212 if (block > to) block = to; 2086 if (waittime > to) waittime = to;
1213 } 2087 }
1214#endif 2088#endif
1215 2089
1216 if (block < 0.) block = 0.; 2090 if (expect_false (waittime < timeout_blocktime))
2091 waittime = timeout_blocktime;
2092
2093 sleeptime = waittime - backend_fudge;
2094
2095 if (expect_true (sleeptime > io_blocktime))
2096 sleeptime = io_blocktime;
2097
2098 if (sleeptime)
2099 {
2100 ev_sleep (sleeptime);
2101 waittime -= sleeptime;
2102 }
1217 } 2103 }
1218 2104
1219 method_poll (EV_A_ block); 2105 ++loop_count;
2106 backend_poll (EV_A_ waittime);
1220 2107
1221 /* update ev_rt_now, do magic */ 2108 /* update ev_rt_now, do magic */
1222 time_update (EV_A); 2109 time_update (EV_A_ waittime + sleeptime);
2110 }
1223 2111
1224 /* queue pending timers and reschedule them */ 2112 /* queue pending timers and reschedule them */
1225 timers_reify (EV_A); /* relative timers called last */ 2113 timers_reify (EV_A); /* relative timers called last */
1226#if EV_PERIODICS 2114#if EV_PERIODIC_ENABLE
1227 periodics_reify (EV_A); /* absolute timers called first */ 2115 periodics_reify (EV_A); /* absolute timers called first */
1228#endif 2116#endif
1229 2117
2118#if EV_IDLE_ENABLE
1230 /* queue idle watchers unless io or timers are pending */ 2119 /* queue idle watchers unless other events are pending */
1231 if (idlecnt && !any_pending (EV_A)) 2120 idle_reify (EV_A);
1232 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2121#endif
1233 2122
1234 /* queue check watchers, to be executed first */ 2123 /* queue check watchers, to be executed first */
1235 if (checkcnt) 2124 if (expect_false (checkcnt))
1236 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2125 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1237 2126
1238 call_pending (EV_A); 2127 call_pending (EV_A);
1239
1240 if (loop_done)
1241 break;
1242 } 2128 }
2129 while (expect_true (
2130 activecnt
2131 && !loop_done
2132 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2133 ));
1243 2134
1244 if (loop_done != 2) 2135 if (loop_done == EVUNLOOP_ONE)
1245 loop_done = 0; 2136 loop_done = EVUNLOOP_CANCEL;
1246} 2137}
1247 2138
1248void 2139void
1249ev_unloop (EV_P_ int how) 2140ev_unloop (EV_P_ int how)
1250{ 2141{
1251 loop_done = how; 2142 loop_done = how;
1252} 2143}
1253 2144
2145void
2146ev_ref (EV_P)
2147{
2148 ++activecnt;
2149}
2150
2151void
2152ev_unref (EV_P)
2153{
2154 --activecnt;
2155}
2156
2157void
2158ev_now_update (EV_P)
2159{
2160 time_update (EV_A_ 1e100);
2161}
2162
2163void
2164ev_suspend (EV_P)
2165{
2166 ev_now_update (EV_A);
2167}
2168
2169void
2170ev_resume (EV_P)
2171{
2172 ev_tstamp mn_prev = mn_now;
2173
2174 ev_now_update (EV_A);
2175 timers_reschedule (EV_A_ mn_now - mn_prev);
2176#if EV_PERIODIC_ENABLE
2177 /* TODO: really do this? */
2178 periodics_reschedule (EV_A);
2179#endif
2180}
2181
1254/*****************************************************************************/ 2182/*****************************************************************************/
2183/* singly-linked list management, used when the expected list length is short */
1255 2184
1256inline void 2185inline_size void
1257wlist_add (WL *head, WL elem) 2186wlist_add (WL *head, WL elem)
1258{ 2187{
1259 elem->next = *head; 2188 elem->next = *head;
1260 *head = elem; 2189 *head = elem;
1261} 2190}
1262 2191
1263inline void 2192inline_size void
1264wlist_del (WL *head, WL elem) 2193wlist_del (WL *head, WL elem)
1265{ 2194{
1266 while (*head) 2195 while (*head)
1267 { 2196 {
1268 if (*head == elem) 2197 if (*head == elem)
1273 2202
1274 head = &(*head)->next; 2203 head = &(*head)->next;
1275 } 2204 }
1276} 2205}
1277 2206
2207/* internal, faster, version of ev_clear_pending */
1278inline void 2208inline_speed void
1279ev_clear_pending (EV_P_ W w) 2209clear_pending (EV_P_ W w)
1280{ 2210{
1281 if (w->pending) 2211 if (w->pending)
1282 { 2212 {
1283 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2213 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1284 w->pending = 0; 2214 w->pending = 0;
1285 } 2215 }
1286} 2216}
1287 2217
2218int
2219ev_clear_pending (EV_P_ void *w)
2220{
2221 W w_ = (W)w;
2222 int pending = w_->pending;
2223
2224 if (expect_true (pending))
2225 {
2226 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2227 p->w = (W)&pending_w;
2228 w_->pending = 0;
2229 return p->events;
2230 }
2231 else
2232 return 0;
2233}
2234
1288inline void 2235inline_size void
2236pri_adjust (EV_P_ W w)
2237{
2238 int pri = w->priority;
2239 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2240 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2241 w->priority = pri;
2242}
2243
2244inline_speed void
1289ev_start (EV_P_ W w, int active) 2245ev_start (EV_P_ W w, int active)
1290{ 2246{
1291 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2247 pri_adjust (EV_A_ w);
1292 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1293
1294 w->active = active; 2248 w->active = active;
1295 ev_ref (EV_A); 2249 ev_ref (EV_A);
1296} 2250}
1297 2251
1298inline void 2252inline_size void
1299ev_stop (EV_P_ W w) 2253ev_stop (EV_P_ W w)
1300{ 2254{
1301 ev_unref (EV_A); 2255 ev_unref (EV_A);
1302 w->active = 0; 2256 w->active = 0;
1303} 2257}
1304 2258
1305/*****************************************************************************/ 2259/*****************************************************************************/
1306 2260
1307void 2261void noinline
1308ev_io_start (EV_P_ struct ev_io *w) 2262ev_io_start (EV_P_ ev_io *w)
1309{ 2263{
1310 int fd = w->fd; 2264 int fd = w->fd;
1311 2265
1312 if (ev_is_active (w)) 2266 if (expect_false (ev_is_active (w)))
1313 return; 2267 return;
1314 2268
1315 assert (("ev_io_start called with negative fd", fd >= 0)); 2269 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2270 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2271
2272 EV_FREQUENT_CHECK;
1316 2273
1317 ev_start (EV_A_ (W)w, 1); 2274 ev_start (EV_A_ (W)w, 1);
1318 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2275 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1319 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2276 wlist_add (&anfds[fd].head, (WL)w);
1320 2277
1321 fd_change (EV_A_ fd); 2278 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1322} 2279 w->events &= ~EV__IOFDSET;
1323 2280
1324void 2281 EV_FREQUENT_CHECK;
2282}
2283
2284void noinline
1325ev_io_stop (EV_P_ struct ev_io *w) 2285ev_io_stop (EV_P_ ev_io *w)
1326{ 2286{
1327 ev_clear_pending (EV_A_ (W)w); 2287 clear_pending (EV_A_ (W)w);
1328 if (!ev_is_active (w)) 2288 if (expect_false (!ev_is_active (w)))
1329 return; 2289 return;
1330 2290
1331 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2291 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1332 2292
2293 EV_FREQUENT_CHECK;
2294
1333 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2295 wlist_del (&anfds[w->fd].head, (WL)w);
1334 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1335 2297
1336 fd_change (EV_A_ w->fd); 2298 fd_change (EV_A_ w->fd, 1);
1337}
1338 2299
1339void 2300 EV_FREQUENT_CHECK;
2301}
2302
2303void noinline
1340ev_timer_start (EV_P_ struct ev_timer *w) 2304ev_timer_start (EV_P_ ev_timer *w)
1341{ 2305{
1342 if (ev_is_active (w)) 2306 if (expect_false (ev_is_active (w)))
1343 return; 2307 return;
1344 2308
1345 ((WT)w)->at += mn_now; 2309 ev_at (w) += mn_now;
1346 2310
1347 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2311 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1348 2312
2313 EV_FREQUENT_CHECK;
2314
2315 ++timercnt;
1349 ev_start (EV_A_ (W)w, ++timercnt); 2316 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1350 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2317 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1351 timers [timercnt - 1] = w; 2318 ANHE_w (timers [ev_active (w)]) = (WT)w;
1352 upheap ((WT *)timers, timercnt - 1); 2319 ANHE_at_cache (timers [ev_active (w)]);
2320 upheap (timers, ev_active (w));
1353 2321
2322 EV_FREQUENT_CHECK;
2323
1354 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2324 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1355} 2325}
1356 2326
1357void 2327void noinline
1358ev_timer_stop (EV_P_ struct ev_timer *w) 2328ev_timer_stop (EV_P_ ev_timer *w)
1359{ 2329{
1360 ev_clear_pending (EV_A_ (W)w); 2330 clear_pending (EV_A_ (W)w);
1361 if (!ev_is_active (w)) 2331 if (expect_false (!ev_is_active (w)))
1362 return; 2332 return;
1363 2333
2334 EV_FREQUENT_CHECK;
2335
2336 {
2337 int active = ev_active (w);
2338
1364 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2339 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1365 2340
1366 if (((W)w)->active < timercnt--) 2341 --timercnt;
2342
2343 if (expect_true (active < timercnt + HEAP0))
1367 { 2344 {
1368 timers [((W)w)->active - 1] = timers [timercnt]; 2345 timers [active] = timers [timercnt + HEAP0];
1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2346 adjustheap (timers, timercnt, active);
1370 } 2347 }
2348 }
1371 2349
1372 ((WT)w)->at -= mn_now; 2350 EV_FREQUENT_CHECK;
2351
2352 ev_at (w) -= mn_now;
1373 2353
1374 ev_stop (EV_A_ (W)w); 2354 ev_stop (EV_A_ (W)w);
1375} 2355}
1376 2356
1377void 2357void noinline
1378ev_timer_again (EV_P_ struct ev_timer *w) 2358ev_timer_again (EV_P_ ev_timer *w)
1379{ 2359{
2360 EV_FREQUENT_CHECK;
2361
1380 if (ev_is_active (w)) 2362 if (ev_is_active (w))
1381 { 2363 {
1382 if (w->repeat) 2364 if (w->repeat)
1383 { 2365 {
1384 ((WT)w)->at = mn_now + w->repeat; 2366 ev_at (w) = mn_now + w->repeat;
2367 ANHE_at_cache (timers [ev_active (w)]);
1385 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2368 adjustheap (timers, timercnt, ev_active (w));
1386 } 2369 }
1387 else 2370 else
1388 ev_timer_stop (EV_A_ w); 2371 ev_timer_stop (EV_A_ w);
1389 } 2372 }
1390 else if (w->repeat) 2373 else if (w->repeat)
1391 { 2374 {
1392 w->at = w->repeat; 2375 ev_at (w) = w->repeat;
1393 ev_timer_start (EV_A_ w); 2376 ev_timer_start (EV_A_ w);
1394 } 2377 }
1395}
1396 2378
2379 EV_FREQUENT_CHECK;
2380}
2381
1397#if EV_PERIODICS 2382#if EV_PERIODIC_ENABLE
1398void 2383void noinline
1399ev_periodic_start (EV_P_ struct ev_periodic *w) 2384ev_periodic_start (EV_P_ ev_periodic *w)
1400{ 2385{
1401 if (ev_is_active (w)) 2386 if (expect_false (ev_is_active (w)))
1402 return; 2387 return;
1403 2388
1404 if (w->reschedule_cb) 2389 if (w->reschedule_cb)
1405 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2390 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1406 else if (w->interval) 2391 else if (w->interval)
1407 { 2392 {
1408 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2393 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1409 /* this formula differs from the one in periodic_reify because we do not always round up */ 2394 /* this formula differs from the one in periodic_reify because we do not always round up */
1410 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2395 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1411 } 2396 }
2397 else
2398 ev_at (w) = w->offset;
1412 2399
2400 EV_FREQUENT_CHECK;
2401
2402 ++periodiccnt;
1413 ev_start (EV_A_ (W)w, ++periodiccnt); 2403 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1414 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2404 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1415 periodics [periodiccnt - 1] = w; 2405 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1416 upheap ((WT *)periodics, periodiccnt - 1); 2406 ANHE_at_cache (periodics [ev_active (w)]);
2407 upheap (periodics, ev_active (w));
1417 2408
2409 EV_FREQUENT_CHECK;
2410
1418 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2411 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1419} 2412}
1420 2413
1421void 2414void noinline
1422ev_periodic_stop (EV_P_ struct ev_periodic *w) 2415ev_periodic_stop (EV_P_ ev_periodic *w)
1423{ 2416{
1424 ev_clear_pending (EV_A_ (W)w); 2417 clear_pending (EV_A_ (W)w);
1425 if (!ev_is_active (w)) 2418 if (expect_false (!ev_is_active (w)))
1426 return; 2419 return;
1427 2420
2421 EV_FREQUENT_CHECK;
2422
2423 {
2424 int active = ev_active (w);
2425
1428 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2426 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1429 2427
1430 if (((W)w)->active < periodiccnt--) 2428 --periodiccnt;
2429
2430 if (expect_true (active < periodiccnt + HEAP0))
1431 { 2431 {
1432 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2432 periodics [active] = periodics [periodiccnt + HEAP0];
1433 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2433 adjustheap (periodics, periodiccnt, active);
1434 } 2434 }
2435 }
2436
2437 EV_FREQUENT_CHECK;
1435 2438
1436 ev_stop (EV_A_ (W)w); 2439 ev_stop (EV_A_ (W)w);
1437} 2440}
1438 2441
1439void 2442void noinline
1440ev_periodic_again (EV_P_ struct ev_periodic *w) 2443ev_periodic_again (EV_P_ ev_periodic *w)
1441{ 2444{
1442 /* TODO: use adjustheap and recalculation */ 2445 /* TODO: use adjustheap and recalculation */
1443 ev_periodic_stop (EV_A_ w); 2446 ev_periodic_stop (EV_A_ w);
1444 ev_periodic_start (EV_A_ w); 2447 ev_periodic_start (EV_A_ w);
1445} 2448}
1446#endif 2449#endif
1447 2450
1448void
1449ev_idle_start (EV_P_ struct ev_idle *w)
1450{
1451 if (ev_is_active (w))
1452 return;
1453
1454 ev_start (EV_A_ (W)w, ++idlecnt);
1455 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1456 idles [idlecnt - 1] = w;
1457}
1458
1459void
1460ev_idle_stop (EV_P_ struct ev_idle *w)
1461{
1462 ev_clear_pending (EV_A_ (W)w);
1463 if (!ev_is_active (w))
1464 return;
1465
1466 idles [((W)w)->active - 1] = idles [--idlecnt];
1467 ev_stop (EV_A_ (W)w);
1468}
1469
1470void
1471ev_prepare_start (EV_P_ struct ev_prepare *w)
1472{
1473 if (ev_is_active (w))
1474 return;
1475
1476 ev_start (EV_A_ (W)w, ++preparecnt);
1477 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1478 prepares [preparecnt - 1] = w;
1479}
1480
1481void
1482ev_prepare_stop (EV_P_ struct ev_prepare *w)
1483{
1484 ev_clear_pending (EV_A_ (W)w);
1485 if (!ev_is_active (w))
1486 return;
1487
1488 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1489 ev_stop (EV_A_ (W)w);
1490}
1491
1492void
1493ev_check_start (EV_P_ struct ev_check *w)
1494{
1495 if (ev_is_active (w))
1496 return;
1497
1498 ev_start (EV_A_ (W)w, ++checkcnt);
1499 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1500 checks [checkcnt - 1] = w;
1501}
1502
1503void
1504ev_check_stop (EV_P_ struct ev_check *w)
1505{
1506 ev_clear_pending (EV_A_ (W)w);
1507 if (!ev_is_active (w))
1508 return;
1509
1510 checks [((W)w)->active - 1] = checks [--checkcnt];
1511 ev_stop (EV_A_ (W)w);
1512}
1513
1514#ifndef SA_RESTART 2451#ifndef SA_RESTART
1515# define SA_RESTART 0 2452# define SA_RESTART 0
1516#endif 2453#endif
1517 2454
1518void 2455void noinline
1519ev_signal_start (EV_P_ struct ev_signal *w) 2456ev_signal_start (EV_P_ ev_signal *w)
1520{ 2457{
1521#if EV_MULTIPLICITY 2458#if EV_MULTIPLICITY
1522 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2459 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1523#endif 2460#endif
1524 if (ev_is_active (w)) 2461 if (expect_false (ev_is_active (w)))
1525 return; 2462 return;
1526 2463
1527 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2464 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2465
2466 evpipe_init (EV_A);
2467
2468 EV_FREQUENT_CHECK;
2469
2470 {
2471#ifndef _WIN32
2472 sigset_t full, prev;
2473 sigfillset (&full);
2474 sigprocmask (SIG_SETMASK, &full, &prev);
2475#endif
2476
2477 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2478
2479#ifndef _WIN32
2480 sigprocmask (SIG_SETMASK, &prev, 0);
2481#endif
2482 }
1528 2483
1529 ev_start (EV_A_ (W)w, 1); 2484 ev_start (EV_A_ (W)w, 1);
1530 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1531 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2485 wlist_add (&signals [w->signum - 1].head, (WL)w);
1532 2486
1533 if (!((WL)w)->next) 2487 if (!((WL)w)->next)
1534 { 2488 {
1535#if _WIN32 2489#if _WIN32
1536 signal (w->signum, sighandler); 2490 signal (w->signum, ev_sighandler);
1537#else 2491#else
1538 struct sigaction sa; 2492 struct sigaction sa;
1539 sa.sa_handler = sighandler; 2493 sa.sa_handler = ev_sighandler;
1540 sigfillset (&sa.sa_mask); 2494 sigfillset (&sa.sa_mask);
1541 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2495 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1542 sigaction (w->signum, &sa, 0); 2496 sigaction (w->signum, &sa, 0);
1543#endif 2497#endif
1544 } 2498 }
1545}
1546 2499
1547void 2500 EV_FREQUENT_CHECK;
2501}
2502
2503void noinline
1548ev_signal_stop (EV_P_ struct ev_signal *w) 2504ev_signal_stop (EV_P_ ev_signal *w)
1549{ 2505{
1550 ev_clear_pending (EV_A_ (W)w); 2506 clear_pending (EV_A_ (W)w);
1551 if (!ev_is_active (w)) 2507 if (expect_false (!ev_is_active (w)))
1552 return; 2508 return;
1553 2509
2510 EV_FREQUENT_CHECK;
2511
1554 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2512 wlist_del (&signals [w->signum - 1].head, (WL)w);
1555 ev_stop (EV_A_ (W)w); 2513 ev_stop (EV_A_ (W)w);
1556 2514
1557 if (!signals [w->signum - 1].head) 2515 if (!signals [w->signum - 1].head)
1558 signal (w->signum, SIG_DFL); 2516 signal (w->signum, SIG_DFL);
1559}
1560 2517
2518 EV_FREQUENT_CHECK;
2519}
2520
1561void 2521void
1562ev_child_start (EV_P_ struct ev_child *w) 2522ev_child_start (EV_P_ ev_child *w)
1563{ 2523{
1564#if EV_MULTIPLICITY 2524#if EV_MULTIPLICITY
1565 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2525 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1566#endif 2526#endif
1567 if (ev_is_active (w)) 2527 if (expect_false (ev_is_active (w)))
1568 return; 2528 return;
1569 2529
2530 EV_FREQUENT_CHECK;
2531
1570 ev_start (EV_A_ (W)w, 1); 2532 ev_start (EV_A_ (W)w, 1);
1571 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2533 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1572}
1573 2534
2535 EV_FREQUENT_CHECK;
2536}
2537
1574void 2538void
1575ev_child_stop (EV_P_ struct ev_child *w) 2539ev_child_stop (EV_P_ ev_child *w)
1576{ 2540{
1577 ev_clear_pending (EV_A_ (W)w); 2541 clear_pending (EV_A_ (W)w);
1578 if (!ev_is_active (w)) 2542 if (expect_false (!ev_is_active (w)))
1579 return; 2543 return;
1580 2544
2545 EV_FREQUENT_CHECK;
2546
1581 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2547 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1582 ev_stop (EV_A_ (W)w); 2548 ev_stop (EV_A_ (W)w);
2549
2550 EV_FREQUENT_CHECK;
1583} 2551}
2552
2553#if EV_STAT_ENABLE
2554
2555# ifdef _WIN32
2556# undef lstat
2557# define lstat(a,b) _stati64 (a,b)
2558# endif
2559
2560#define DEF_STAT_INTERVAL 5.0074891
2561#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2562#define MIN_STAT_INTERVAL 0.1074891
2563
2564static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2565
2566#if EV_USE_INOTIFY
2567# define EV_INOTIFY_BUFSIZE 8192
2568
2569static void noinline
2570infy_add (EV_P_ ev_stat *w)
2571{
2572 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2573
2574 if (w->wd < 0)
2575 {
2576 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2577 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2578
2579 /* monitor some parent directory for speedup hints */
2580 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2581 /* but an efficiency issue only */
2582 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2583 {
2584 char path [4096];
2585 strcpy (path, w->path);
2586
2587 do
2588 {
2589 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2590 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2591
2592 char *pend = strrchr (path, '/');
2593
2594 if (!pend || pend == path)
2595 break;
2596
2597 *pend = 0;
2598 w->wd = inotify_add_watch (fs_fd, path, mask);
2599 }
2600 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2601 }
2602 }
2603
2604 if (w->wd >= 0)
2605 {
2606 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2607
2608 /* now local changes will be tracked by inotify, but remote changes won't */
2609 /* unless the filesystem it known to be local, we therefore still poll */
2610 /* also do poll on <2.6.25, but with normal frequency */
2611 struct statfs sfs;
2612
2613 if (fs_2625 && !statfs (w->path, &sfs))
2614 if (sfs.f_type == 0x1373 /* devfs */
2615 || sfs.f_type == 0xEF53 /* ext2/3 */
2616 || sfs.f_type == 0x3153464a /* jfs */
2617 || sfs.f_type == 0x52654973 /* reiser3 */
2618 || sfs.f_type == 0x01021994 /* tempfs */
2619 || sfs.f_type == 0x58465342 /* xfs */)
2620 return;
2621
2622 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2623 ev_timer_again (EV_A_ &w->timer);
2624 }
2625}
2626
2627static void noinline
2628infy_del (EV_P_ ev_stat *w)
2629{
2630 int slot;
2631 int wd = w->wd;
2632
2633 if (wd < 0)
2634 return;
2635
2636 w->wd = -2;
2637 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2638 wlist_del (&fs_hash [slot].head, (WL)w);
2639
2640 /* remove this watcher, if others are watching it, they will rearm */
2641 inotify_rm_watch (fs_fd, wd);
2642}
2643
2644static void noinline
2645infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2646{
2647 if (slot < 0)
2648 /* overflow, need to check for all hash slots */
2649 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2650 infy_wd (EV_A_ slot, wd, ev);
2651 else
2652 {
2653 WL w_;
2654
2655 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2656 {
2657 ev_stat *w = (ev_stat *)w_;
2658 w_ = w_->next; /* lets us remove this watcher and all before it */
2659
2660 if (w->wd == wd || wd == -1)
2661 {
2662 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2663 {
2664 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2665 w->wd = -1;
2666 infy_add (EV_A_ w); /* re-add, no matter what */
2667 }
2668
2669 stat_timer_cb (EV_A_ &w->timer, 0);
2670 }
2671 }
2672 }
2673}
2674
2675static void
2676infy_cb (EV_P_ ev_io *w, int revents)
2677{
2678 char buf [EV_INOTIFY_BUFSIZE];
2679 struct inotify_event *ev = (struct inotify_event *)buf;
2680 int ofs;
2681 int len = read (fs_fd, buf, sizeof (buf));
2682
2683 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2684 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2685}
2686
2687inline_size void
2688check_2625 (EV_P)
2689{
2690 /* kernels < 2.6.25 are borked
2691 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2692 */
2693 struct utsname buf;
2694 int major, minor, micro;
2695
2696 if (uname (&buf))
2697 return;
2698
2699 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2700 return;
2701
2702 if (major < 2
2703 || (major == 2 && minor < 6)
2704 || (major == 2 && minor == 6 && micro < 25))
2705 return;
2706
2707 fs_2625 = 1;
2708}
2709
2710inline_size void
2711infy_init (EV_P)
2712{
2713 if (fs_fd != -2)
2714 return;
2715
2716 fs_fd = -1;
2717
2718 check_2625 (EV_A);
2719
2720 fs_fd = inotify_init ();
2721
2722 if (fs_fd >= 0)
2723 {
2724 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2725 ev_set_priority (&fs_w, EV_MAXPRI);
2726 ev_io_start (EV_A_ &fs_w);
2727 }
2728}
2729
2730inline_size void
2731infy_fork (EV_P)
2732{
2733 int slot;
2734
2735 if (fs_fd < 0)
2736 return;
2737
2738 close (fs_fd);
2739 fs_fd = inotify_init ();
2740
2741 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2742 {
2743 WL w_ = fs_hash [slot].head;
2744 fs_hash [slot].head = 0;
2745
2746 while (w_)
2747 {
2748 ev_stat *w = (ev_stat *)w_;
2749 w_ = w_->next; /* lets us add this watcher */
2750
2751 w->wd = -1;
2752
2753 if (fs_fd >= 0)
2754 infy_add (EV_A_ w); /* re-add, no matter what */
2755 else
2756 ev_timer_again (EV_A_ &w->timer);
2757 }
2758 }
2759}
2760
2761#endif
2762
2763#ifdef _WIN32
2764# define EV_LSTAT(p,b) _stati64 (p, b)
2765#else
2766# define EV_LSTAT(p,b) lstat (p, b)
2767#endif
2768
2769void
2770ev_stat_stat (EV_P_ ev_stat *w)
2771{
2772 if (lstat (w->path, &w->attr) < 0)
2773 w->attr.st_nlink = 0;
2774 else if (!w->attr.st_nlink)
2775 w->attr.st_nlink = 1;
2776}
2777
2778static void noinline
2779stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2780{
2781 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2782
2783 /* we copy this here each the time so that */
2784 /* prev has the old value when the callback gets invoked */
2785 w->prev = w->attr;
2786 ev_stat_stat (EV_A_ w);
2787
2788 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2789 if (
2790 w->prev.st_dev != w->attr.st_dev
2791 || w->prev.st_ino != w->attr.st_ino
2792 || w->prev.st_mode != w->attr.st_mode
2793 || w->prev.st_nlink != w->attr.st_nlink
2794 || w->prev.st_uid != w->attr.st_uid
2795 || w->prev.st_gid != w->attr.st_gid
2796 || w->prev.st_rdev != w->attr.st_rdev
2797 || w->prev.st_size != w->attr.st_size
2798 || w->prev.st_atime != w->attr.st_atime
2799 || w->prev.st_mtime != w->attr.st_mtime
2800 || w->prev.st_ctime != w->attr.st_ctime
2801 ) {
2802 #if EV_USE_INOTIFY
2803 if (fs_fd >= 0)
2804 {
2805 infy_del (EV_A_ w);
2806 infy_add (EV_A_ w);
2807 ev_stat_stat (EV_A_ w); /* avoid race... */
2808 }
2809 #endif
2810
2811 ev_feed_event (EV_A_ w, EV_STAT);
2812 }
2813}
2814
2815void
2816ev_stat_start (EV_P_ ev_stat *w)
2817{
2818 if (expect_false (ev_is_active (w)))
2819 return;
2820
2821 ev_stat_stat (EV_A_ w);
2822
2823 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2824 w->interval = MIN_STAT_INTERVAL;
2825
2826 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2827 ev_set_priority (&w->timer, ev_priority (w));
2828
2829#if EV_USE_INOTIFY
2830 infy_init (EV_A);
2831
2832 if (fs_fd >= 0)
2833 infy_add (EV_A_ w);
2834 else
2835#endif
2836 ev_timer_again (EV_A_ &w->timer);
2837
2838 ev_start (EV_A_ (W)w, 1);
2839
2840 EV_FREQUENT_CHECK;
2841}
2842
2843void
2844ev_stat_stop (EV_P_ ev_stat *w)
2845{
2846 clear_pending (EV_A_ (W)w);
2847 if (expect_false (!ev_is_active (w)))
2848 return;
2849
2850 EV_FREQUENT_CHECK;
2851
2852#if EV_USE_INOTIFY
2853 infy_del (EV_A_ w);
2854#endif
2855 ev_timer_stop (EV_A_ &w->timer);
2856
2857 ev_stop (EV_A_ (W)w);
2858
2859 EV_FREQUENT_CHECK;
2860}
2861#endif
2862
2863#if EV_IDLE_ENABLE
2864void
2865ev_idle_start (EV_P_ ev_idle *w)
2866{
2867 if (expect_false (ev_is_active (w)))
2868 return;
2869
2870 pri_adjust (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2873
2874 {
2875 int active = ++idlecnt [ABSPRI (w)];
2876
2877 ++idleall;
2878 ev_start (EV_A_ (W)w, active);
2879
2880 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2881 idles [ABSPRI (w)][active - 1] = w;
2882 }
2883
2884 EV_FREQUENT_CHECK;
2885}
2886
2887void
2888ev_idle_stop (EV_P_ ev_idle *w)
2889{
2890 clear_pending (EV_A_ (W)w);
2891 if (expect_false (!ev_is_active (w)))
2892 return;
2893
2894 EV_FREQUENT_CHECK;
2895
2896 {
2897 int active = ev_active (w);
2898
2899 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2900 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2901
2902 ev_stop (EV_A_ (W)w);
2903 --idleall;
2904 }
2905
2906 EV_FREQUENT_CHECK;
2907}
2908#endif
2909
2910void
2911ev_prepare_start (EV_P_ ev_prepare *w)
2912{
2913 if (expect_false (ev_is_active (w)))
2914 return;
2915
2916 EV_FREQUENT_CHECK;
2917
2918 ev_start (EV_A_ (W)w, ++preparecnt);
2919 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2920 prepares [preparecnt - 1] = w;
2921
2922 EV_FREQUENT_CHECK;
2923}
2924
2925void
2926ev_prepare_stop (EV_P_ ev_prepare *w)
2927{
2928 clear_pending (EV_A_ (W)w);
2929 if (expect_false (!ev_is_active (w)))
2930 return;
2931
2932 EV_FREQUENT_CHECK;
2933
2934 {
2935 int active = ev_active (w);
2936
2937 prepares [active - 1] = prepares [--preparecnt];
2938 ev_active (prepares [active - 1]) = active;
2939 }
2940
2941 ev_stop (EV_A_ (W)w);
2942
2943 EV_FREQUENT_CHECK;
2944}
2945
2946void
2947ev_check_start (EV_P_ ev_check *w)
2948{
2949 if (expect_false (ev_is_active (w)))
2950 return;
2951
2952 EV_FREQUENT_CHECK;
2953
2954 ev_start (EV_A_ (W)w, ++checkcnt);
2955 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2956 checks [checkcnt - 1] = w;
2957
2958 EV_FREQUENT_CHECK;
2959}
2960
2961void
2962ev_check_stop (EV_P_ ev_check *w)
2963{
2964 clear_pending (EV_A_ (W)w);
2965 if (expect_false (!ev_is_active (w)))
2966 return;
2967
2968 EV_FREQUENT_CHECK;
2969
2970 {
2971 int active = ev_active (w);
2972
2973 checks [active - 1] = checks [--checkcnt];
2974 ev_active (checks [active - 1]) = active;
2975 }
2976
2977 ev_stop (EV_A_ (W)w);
2978
2979 EV_FREQUENT_CHECK;
2980}
2981
2982#if EV_EMBED_ENABLE
2983void noinline
2984ev_embed_sweep (EV_P_ ev_embed *w)
2985{
2986 ev_loop (w->other, EVLOOP_NONBLOCK);
2987}
2988
2989static void
2990embed_io_cb (EV_P_ ev_io *io, int revents)
2991{
2992 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2993
2994 if (ev_cb (w))
2995 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2996 else
2997 ev_loop (w->other, EVLOOP_NONBLOCK);
2998}
2999
3000static void
3001embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3002{
3003 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3004
3005 {
3006 struct ev_loop *loop = w->other;
3007
3008 while (fdchangecnt)
3009 {
3010 fd_reify (EV_A);
3011 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3012 }
3013 }
3014}
3015
3016static void
3017embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3018{
3019 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3020
3021 ev_embed_stop (EV_A_ w);
3022
3023 {
3024 struct ev_loop *loop = w->other;
3025
3026 ev_loop_fork (EV_A);
3027 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3028 }
3029
3030 ev_embed_start (EV_A_ w);
3031}
3032
3033#if 0
3034static void
3035embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3036{
3037 ev_idle_stop (EV_A_ idle);
3038}
3039#endif
3040
3041void
3042ev_embed_start (EV_P_ ev_embed *w)
3043{
3044 if (expect_false (ev_is_active (w)))
3045 return;
3046
3047 {
3048 struct ev_loop *loop = w->other;
3049 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3050 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3051 }
3052
3053 EV_FREQUENT_CHECK;
3054
3055 ev_set_priority (&w->io, ev_priority (w));
3056 ev_io_start (EV_A_ &w->io);
3057
3058 ev_prepare_init (&w->prepare, embed_prepare_cb);
3059 ev_set_priority (&w->prepare, EV_MINPRI);
3060 ev_prepare_start (EV_A_ &w->prepare);
3061
3062 ev_fork_init (&w->fork, embed_fork_cb);
3063 ev_fork_start (EV_A_ &w->fork);
3064
3065 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3066
3067 ev_start (EV_A_ (W)w, 1);
3068
3069 EV_FREQUENT_CHECK;
3070}
3071
3072void
3073ev_embed_stop (EV_P_ ev_embed *w)
3074{
3075 clear_pending (EV_A_ (W)w);
3076 if (expect_false (!ev_is_active (w)))
3077 return;
3078
3079 EV_FREQUENT_CHECK;
3080
3081 ev_io_stop (EV_A_ &w->io);
3082 ev_prepare_stop (EV_A_ &w->prepare);
3083 ev_fork_stop (EV_A_ &w->fork);
3084
3085 EV_FREQUENT_CHECK;
3086}
3087#endif
3088
3089#if EV_FORK_ENABLE
3090void
3091ev_fork_start (EV_P_ ev_fork *w)
3092{
3093 if (expect_false (ev_is_active (w)))
3094 return;
3095
3096 EV_FREQUENT_CHECK;
3097
3098 ev_start (EV_A_ (W)w, ++forkcnt);
3099 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3100 forks [forkcnt - 1] = w;
3101
3102 EV_FREQUENT_CHECK;
3103}
3104
3105void
3106ev_fork_stop (EV_P_ ev_fork *w)
3107{
3108 clear_pending (EV_A_ (W)w);
3109 if (expect_false (!ev_is_active (w)))
3110 return;
3111
3112 EV_FREQUENT_CHECK;
3113
3114 {
3115 int active = ev_active (w);
3116
3117 forks [active - 1] = forks [--forkcnt];
3118 ev_active (forks [active - 1]) = active;
3119 }
3120
3121 ev_stop (EV_A_ (W)w);
3122
3123 EV_FREQUENT_CHECK;
3124}
3125#endif
3126
3127#if EV_ASYNC_ENABLE
3128void
3129ev_async_start (EV_P_ ev_async *w)
3130{
3131 if (expect_false (ev_is_active (w)))
3132 return;
3133
3134 evpipe_init (EV_A);
3135
3136 EV_FREQUENT_CHECK;
3137
3138 ev_start (EV_A_ (W)w, ++asynccnt);
3139 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3140 asyncs [asynccnt - 1] = w;
3141
3142 EV_FREQUENT_CHECK;
3143}
3144
3145void
3146ev_async_stop (EV_P_ ev_async *w)
3147{
3148 clear_pending (EV_A_ (W)w);
3149 if (expect_false (!ev_is_active (w)))
3150 return;
3151
3152 EV_FREQUENT_CHECK;
3153
3154 {
3155 int active = ev_active (w);
3156
3157 asyncs [active - 1] = asyncs [--asynccnt];
3158 ev_active (asyncs [active - 1]) = active;
3159 }
3160
3161 ev_stop (EV_A_ (W)w);
3162
3163 EV_FREQUENT_CHECK;
3164}
3165
3166void
3167ev_async_send (EV_P_ ev_async *w)
3168{
3169 w->sent = 1;
3170 evpipe_write (EV_A_ &gotasync);
3171}
3172#endif
1584 3173
1585/*****************************************************************************/ 3174/*****************************************************************************/
1586 3175
1587struct ev_once 3176struct ev_once
1588{ 3177{
1589 struct ev_io io; 3178 ev_io io;
1590 struct ev_timer to; 3179 ev_timer to;
1591 void (*cb)(int revents, void *arg); 3180 void (*cb)(int revents, void *arg);
1592 void *arg; 3181 void *arg;
1593}; 3182};
1594 3183
1595static void 3184static void
1596once_cb (EV_P_ struct ev_once *once, int revents) 3185once_cb (EV_P_ struct ev_once *once, int revents)
1597{ 3186{
1598 void (*cb)(int revents, void *arg) = once->cb; 3187 void (*cb)(int revents, void *arg) = once->cb;
1599 void *arg = once->arg; 3188 void *arg = once->arg;
1600 3189
1601 ev_io_stop (EV_A_ &once->io); 3190 ev_io_stop (EV_A_ &once->io);
1602 ev_timer_stop (EV_A_ &once->to); 3191 ev_timer_stop (EV_A_ &once->to);
1603 ev_free (once); 3192 ev_free (once);
1604 3193
1605 cb (revents, arg); 3194 cb (revents, arg);
1606} 3195}
1607 3196
1608static void 3197static void
1609once_cb_io (EV_P_ struct ev_io *w, int revents) 3198once_cb_io (EV_P_ ev_io *w, int revents)
1610{ 3199{
1611 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3200 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3201
3202 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1612} 3203}
1613 3204
1614static void 3205static void
1615once_cb_to (EV_P_ struct ev_timer *w, int revents) 3206once_cb_to (EV_P_ ev_timer *w, int revents)
1616{ 3207{
1617 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3208 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3209
3210 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1618} 3211}
1619 3212
1620void 3213void
1621ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3214ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1622{ 3215{
1623 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3216 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1624 3217
1625 if (!once) 3218 if (expect_false (!once))
3219 {
1626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3220 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1627 else 3221 return;
1628 { 3222 }
3223
1629 once->cb = cb; 3224 once->cb = cb;
1630 once->arg = arg; 3225 once->arg = arg;
1631 3226
1632 ev_init (&once->io, once_cb_io); 3227 ev_init (&once->io, once_cb_io);
1633 if (fd >= 0) 3228 if (fd >= 0)
3229 {
3230 ev_io_set (&once->io, fd, events);
3231 ev_io_start (EV_A_ &once->io);
3232 }
3233
3234 ev_init (&once->to, once_cb_to);
3235 if (timeout >= 0.)
3236 {
3237 ev_timer_set (&once->to, timeout, 0.);
3238 ev_timer_start (EV_A_ &once->to);
3239 }
3240}
3241
3242/*****************************************************************************/
3243
3244#if EV_WALK_ENABLE
3245void
3246ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3247{
3248 int i, j;
3249 ev_watcher_list *wl, *wn;
3250
3251 if (types & (EV_IO | EV_EMBED))
3252 for (i = 0; i < anfdmax; ++i)
3253 for (wl = anfds [i].head; wl; )
1634 { 3254 {
1635 ev_io_set (&once->io, fd, events); 3255 wn = wl->next;
1636 ev_io_start (EV_A_ &once->io); 3256
3257#if EV_EMBED_ENABLE
3258 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3259 {
3260 if (types & EV_EMBED)
3261 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3262 }
3263 else
3264#endif
3265#if EV_USE_INOTIFY
3266 if (ev_cb ((ev_io *)wl) == infy_cb)
3267 ;
3268 else
3269#endif
3270 if ((ev_io *)wl != &pipe_w)
3271 if (types & EV_IO)
3272 cb (EV_A_ EV_IO, wl);
3273
3274 wl = wn;
1637 } 3275 }
1638 3276
1639 ev_init (&once->to, once_cb_to); 3277 if (types & (EV_TIMER | EV_STAT))
1640 if (timeout >= 0.) 3278 for (i = timercnt + HEAP0; i-- > HEAP0; )
3279#if EV_STAT_ENABLE
3280 /*TODO: timer is not always active*/
3281 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1641 { 3282 {
1642 ev_timer_set (&once->to, timeout, 0.); 3283 if (types & EV_STAT)
1643 ev_timer_start (EV_A_ &once->to); 3284 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1644 } 3285 }
1645 } 3286 else
3287#endif
3288 if (types & EV_TIMER)
3289 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3290
3291#if EV_PERIODIC_ENABLE
3292 if (types & EV_PERIODIC)
3293 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3294 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3295#endif
3296
3297#if EV_IDLE_ENABLE
3298 if (types & EV_IDLE)
3299 for (j = NUMPRI; i--; )
3300 for (i = idlecnt [j]; i--; )
3301 cb (EV_A_ EV_IDLE, idles [j][i]);
3302#endif
3303
3304#if EV_FORK_ENABLE
3305 if (types & EV_FORK)
3306 for (i = forkcnt; i--; )
3307 if (ev_cb (forks [i]) != embed_fork_cb)
3308 cb (EV_A_ EV_FORK, forks [i]);
3309#endif
3310
3311#if EV_ASYNC_ENABLE
3312 if (types & EV_ASYNC)
3313 for (i = asynccnt; i--; )
3314 cb (EV_A_ EV_ASYNC, asyncs [i]);
3315#endif
3316
3317 if (types & EV_PREPARE)
3318 for (i = preparecnt; i--; )
3319#if EV_EMBED_ENABLE
3320 if (ev_cb (prepares [i]) != embed_prepare_cb)
3321#endif
3322 cb (EV_A_ EV_PREPARE, prepares [i]);
3323
3324 if (types & EV_CHECK)
3325 for (i = checkcnt; i--; )
3326 cb (EV_A_ EV_CHECK, checks [i]);
3327
3328 if (types & EV_SIGNAL)
3329 for (i = 0; i < signalmax; ++i)
3330 for (wl = signals [i].head; wl; )
3331 {
3332 wn = wl->next;
3333 cb (EV_A_ EV_SIGNAL, wl);
3334 wl = wn;
3335 }
3336
3337 if (types & EV_CHILD)
3338 for (i = EV_PID_HASHSIZE; i--; )
3339 for (wl = childs [i]; wl; )
3340 {
3341 wn = wl->next;
3342 cb (EV_A_ EV_CHILD, wl);
3343 wl = wn;
3344 }
3345/* EV_STAT 0x00001000 /* stat data changed */
3346/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1646} 3347}
3348#endif
3349
3350#if EV_MULTIPLICITY
3351 #include "ev_wrap.h"
3352#endif
1647 3353
1648#ifdef __cplusplus 3354#ifdef __cplusplus
1649} 3355}
1650#endif 3356#endif
1651 3357

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines