ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.71 by root, Tue Nov 6 13:17:55 2007 UTC vs.
Revision 1.116 by root, Thu Nov 15 09:19:42 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
64#include <assert.h> 73#include <assert.h>
65#include <errno.h> 74#include <errno.h>
66#include <sys/types.h> 75#include <sys/types.h>
67#include <time.h> 76#include <time.h>
68 77
69#ifndef PERL
70# include <signal.h> 78#include <signal.h>
71#endif
72 79
73#ifndef WIN32 80#ifndef _WIN32
74# include <unistd.h> 81# include <unistd.h>
75# include <sys/time.h> 82# include <sys/time.h>
76# include <sys/wait.h> 83# include <sys/wait.h>
84#else
85# define WIN32_LEAN_AND_MEAN
86# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1
77#endif 89# endif
90#endif
91
78/**/ 92/**/
79 93
80#ifndef EV_USE_MONOTONIC 94#ifndef EV_USE_MONOTONIC
81# define EV_USE_MONOTONIC 1 95# define EV_USE_MONOTONIC 1
82#endif 96#endif
83 97
84#ifndef EV_USE_SELECT 98#ifndef EV_USE_SELECT
85# define EV_USE_SELECT 1 99# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
86#endif 101#endif
87 102
88#ifndef EV_USE_POLL 103#ifndef EV_USE_POLL
89# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 104# ifdef _WIN32
105# define EV_USE_POLL 0
106# else
107# define EV_USE_POLL 1
108# endif
90#endif 109#endif
91 110
92#ifndef EV_USE_EPOLL 111#ifndef EV_USE_EPOLL
93# define EV_USE_EPOLL 0 112# define EV_USE_EPOLL 0
94#endif 113#endif
95 114
96#ifndef EV_USE_KQUEUE 115#ifndef EV_USE_KQUEUE
97# define EV_USE_KQUEUE 0 116# define EV_USE_KQUEUE 0
98#endif 117#endif
99 118
100#ifndef EV_USE_WIN32
101# ifdef WIN32
102# define EV_USE_WIN32 0 /* it does not exist, use select */
103# undef EV_USE_SELECT
104# define EV_USE_SELECT 1
105# else
106# define EV_USE_WIN32 0
107# endif
108#endif
109
110#ifndef EV_USE_REALTIME 119#ifndef EV_USE_REALTIME
111# define EV_USE_REALTIME 1 120# define EV_USE_REALTIME 1
112#endif 121#endif
113 122
114/**/ 123/**/
124
125/* darwin simply cannot be helped */
126#ifdef __APPLE__
127# undef EV_USE_POLL
128# undef EV_USE_KQUEUE
129#endif
115 130
116#ifndef CLOCK_MONOTONIC 131#ifndef CLOCK_MONOTONIC
117# undef EV_USE_MONOTONIC 132# undef EV_USE_MONOTONIC
118# define EV_USE_MONOTONIC 0 133# define EV_USE_MONOTONIC 0
119#endif 134#endif
120 135
121#ifndef CLOCK_REALTIME 136#ifndef CLOCK_REALTIME
122# undef EV_USE_REALTIME 137# undef EV_USE_REALTIME
123# define EV_USE_REALTIME 0 138# define EV_USE_REALTIME 0
139#endif
140
141#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h>
124#endif 143#endif
125 144
126/**/ 145/**/
127 146
128#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
129#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
130#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
131/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
132 151
152#ifdef EV_H
153# include EV_H
154#else
133#include "ev.h" 155# include "ev.h"
156#endif
134 157
135#if __GNUC__ >= 3 158#if __GNUC__ >= 3
136# define expect(expr,value) __builtin_expect ((expr),(value)) 159# define expect(expr,value) __builtin_expect ((expr),(value))
137# define inline inline 160# define inline inline
138#else 161#else
144#define expect_true(expr) expect ((expr) != 0, 1) 167#define expect_true(expr) expect ((expr) != 0, 1)
145 168
146#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
147#define ABSPRI(w) ((w)->priority - EV_MINPRI) 170#define ABSPRI(w) ((w)->priority - EV_MINPRI)
148 171
172#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
173#define EMPTY2(a,b) /* used to suppress some warnings */
174
149typedef struct ev_watcher *W; 175typedef struct ev_watcher *W;
150typedef struct ev_watcher_list *WL; 176typedef struct ev_watcher_list *WL;
151typedef struct ev_watcher_time *WT; 177typedef struct ev_watcher_time *WT;
152 178
153static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 179static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
154 180
155#if WIN32 181#ifdef _WIN32
156/* note: the comment below could not be substantiated, but what would I care */ 182# include "ev_win32.c"
157/* MSDN says this is required to handle SIGFPE */
158volatile double SIGFPE_REQ = 0.0f;
159#endif 183#endif
160 184
161/*****************************************************************************/ 185/*****************************************************************************/
162 186
163static void (*syserr_cb)(const char *msg); 187static void (*syserr_cb)(const char *msg);
211typedef struct 235typedef struct
212{ 236{
213 WL head; 237 WL head;
214 unsigned char events; 238 unsigned char events;
215 unsigned char reify; 239 unsigned char reify;
240#if EV_SELECT_IS_WINSOCKET
241 SOCKET handle;
242#endif
216} ANFD; 243} ANFD;
217 244
218typedef struct 245typedef struct
219{ 246{
220 W w; 247 W w;
221 int events; 248 int events;
222} ANPENDING; 249} ANPENDING;
223 250
224#if EV_MULTIPLICITY 251#if EV_MULTIPLICITY
225 252
226struct ev_loop 253 struct ev_loop
227{ 254 {
255 ev_tstamp ev_rt_now;
256 #define ev_rt_now ((loop)->ev_rt_now)
228# define VAR(name,decl) decl; 257 #define VAR(name,decl) decl;
229# include "ev_vars.h" 258 #include "ev_vars.h"
230};
231# undef VAR 259 #undef VAR
260 };
232# include "ev_wrap.h" 261 #include "ev_wrap.h"
262
263 static struct ev_loop default_loop_struct;
264 struct ev_loop *ev_default_loop_ptr;
233 265
234#else 266#else
235 267
268 ev_tstamp ev_rt_now;
236# define VAR(name,decl) static decl; 269 #define VAR(name,decl) static decl;
237# include "ev_vars.h" 270 #include "ev_vars.h"
238# undef VAR 271 #undef VAR
272
273 static int ev_default_loop_ptr;
239 274
240#endif 275#endif
241 276
242/*****************************************************************************/ 277/*****************************************************************************/
243 278
244inline ev_tstamp 279ev_tstamp
245ev_time (void) 280ev_time (void)
246{ 281{
247#if EV_USE_REALTIME 282#if EV_USE_REALTIME
248 struct timespec ts; 283 struct timespec ts;
249 clock_gettime (CLOCK_REALTIME, &ts); 284 clock_gettime (CLOCK_REALTIME, &ts);
268#endif 303#endif
269 304
270 return ev_time (); 305 return ev_time ();
271} 306}
272 307
308#if EV_MULTIPLICITY
273ev_tstamp 309ev_tstamp
274ev_now (EV_P) 310ev_now (EV_P)
275{ 311{
276 return rt_now; 312 return ev_rt_now;
277} 313}
314#endif
278 315
279#define array_roundsize(base,n) ((n) | 4 & ~3) 316#define array_roundsize(type,n) (((n) | 4) & ~3)
280 317
281#define array_needsize(base,cur,cnt,init) \ 318#define array_needsize(type,base,cur,cnt,init) \
282 if (expect_false ((cnt) > cur)) \ 319 if (expect_false ((cnt) > cur)) \
283 { \ 320 { \
284 int newcnt = cur; \ 321 int newcnt = cur; \
285 do \ 322 do \
286 { \ 323 { \
287 newcnt = array_roundsize (base, newcnt << 1); \ 324 newcnt = array_roundsize (type, newcnt << 1); \
288 } \ 325 } \
289 while ((cnt) > newcnt); \ 326 while ((cnt) > newcnt); \
290 \ 327 \
291 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 328 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
292 init (base + cur, newcnt - cur); \ 329 init (base + cur, newcnt - cur); \
293 cur = newcnt; \ 330 cur = newcnt; \
294 } 331 }
295 332
296#define array_slim(stem) \ 333#define array_slim(type,stem) \
297 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 334 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
298 { \ 335 { \
299 stem ## max = array_roundsize (stem ## cnt >> 1); \ 336 stem ## max = array_roundsize (stem ## cnt >> 1); \
300 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 337 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
301 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 338 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
302 } 339 }
303
304/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
305/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
306#define array_free_microshit(stem) \
307 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
308 340
309#define array_free(stem, idx) \ 341#define array_free(stem, idx) \
310 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 342 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
311 343
312/*****************************************************************************/ 344/*****************************************************************************/
322 354
323 ++base; 355 ++base;
324 } 356 }
325} 357}
326 358
327static void 359void
328event (EV_P_ W w, int events) 360ev_feed_event (EV_P_ void *w, int revents)
329{ 361{
362 W w_ = (W)w;
363
330 if (w->pending) 364 if (w_->pending)
331 { 365 {
332 pendings [ABSPRI (w)][w->pending - 1].events |= events; 366 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
333 return; 367 return;
334 } 368 }
335 369
336 w->pending = ++pendingcnt [ABSPRI (w)]; 370 w_->pending = ++pendingcnt [ABSPRI (w_)];
337 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 371 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
338 pendings [ABSPRI (w)][w->pending - 1].w = w; 372 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
339 pendings [ABSPRI (w)][w->pending - 1].events = events; 373 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
340} 374}
341 375
342static void 376static void
343queue_events (EV_P_ W *events, int eventcnt, int type) 377queue_events (EV_P_ W *events, int eventcnt, int type)
344{ 378{
345 int i; 379 int i;
346 380
347 for (i = 0; i < eventcnt; ++i) 381 for (i = 0; i < eventcnt; ++i)
348 event (EV_A_ events [i], type); 382 ev_feed_event (EV_A_ events [i], type);
349} 383}
350 384
351static void 385inline void
352fd_event (EV_P_ int fd, int events) 386fd_event (EV_P_ int fd, int revents)
353{ 387{
354 ANFD *anfd = anfds + fd; 388 ANFD *anfd = anfds + fd;
355 struct ev_io *w; 389 struct ev_io *w;
356 390
357 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 391 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
358 { 392 {
359 int ev = w->events & events; 393 int ev = w->events & revents;
360 394
361 if (ev) 395 if (ev)
362 event (EV_A_ (W)w, ev); 396 ev_feed_event (EV_A_ (W)w, ev);
363 } 397 }
398}
399
400void
401ev_feed_fd_event (EV_P_ int fd, int revents)
402{
403 fd_event (EV_A_ fd, revents);
364} 404}
365 405
366/*****************************************************************************/ 406/*****************************************************************************/
367 407
368static void 408static void
379 int events = 0; 419 int events = 0;
380 420
381 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 421 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
382 events |= w->events; 422 events |= w->events;
383 423
424#if EV_SELECT_IS_WINSOCKET
425 if (events)
426 {
427 unsigned long argp;
428 anfd->handle = _get_osfhandle (fd);
429 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
430 }
431#endif
432
384 anfd->reify = 0; 433 anfd->reify = 0;
385 434
386 method_modify (EV_A_ fd, anfd->events, events); 435 method_modify (EV_A_ fd, anfd->events, events);
387 anfd->events = events; 436 anfd->events = events;
388 } 437 }
397 return; 446 return;
398 447
399 anfds [fd].reify = 1; 448 anfds [fd].reify = 1;
400 449
401 ++fdchangecnt; 450 ++fdchangecnt;
402 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 451 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
403 fdchanges [fdchangecnt - 1] = fd; 452 fdchanges [fdchangecnt - 1] = fd;
404} 453}
405 454
406static void 455static void
407fd_kill (EV_P_ int fd) 456fd_kill (EV_P_ int fd)
409 struct ev_io *w; 458 struct ev_io *w;
410 459
411 while ((w = (struct ev_io *)anfds [fd].head)) 460 while ((w = (struct ev_io *)anfds [fd].head))
412 { 461 {
413 ev_io_stop (EV_A_ w); 462 ev_io_stop (EV_A_ w);
414 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 463 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
415 } 464 }
416} 465}
417 466
418static int 467static int
419fd_valid (int fd) 468fd_valid (int fd)
420{ 469{
421#ifdef WIN32 470#ifdef _WIN32
422 return !!win32_get_osfhandle (fd); 471 return _get_osfhandle (fd) != -1;
423#else 472#else
424 return fcntl (fd, F_GETFD) != -1; 473 return fcntl (fd, F_GETFD) != -1;
425#endif 474#endif
426} 475}
427 476
507 556
508 heap [k] = w; 557 heap [k] = w;
509 ((W)heap [k])->active = k + 1; 558 ((W)heap [k])->active = k + 1;
510} 559}
511 560
561inline void
562adjustheap (WT *heap, int N, int k)
563{
564 upheap (heap, k);
565 downheap (heap, N, k);
566}
567
512/*****************************************************************************/ 568/*****************************************************************************/
513 569
514typedef struct 570typedef struct
515{ 571{
516 WL head; 572 WL head;
537} 593}
538 594
539static void 595static void
540sighandler (int signum) 596sighandler (int signum)
541{ 597{
542#if WIN32 598#if _WIN32
543 signal (signum, sighandler); 599 signal (signum, sighandler);
544#endif 600#endif
545 601
546 signals [signum - 1].gotsig = 1; 602 signals [signum - 1].gotsig = 1;
547 603
552 write (sigpipe [1], &signum, 1); 608 write (sigpipe [1], &signum, 1);
553 errno = old_errno; 609 errno = old_errno;
554 } 610 }
555} 611}
556 612
613void
614ev_feed_signal_event (EV_P_ int signum)
615{
616 WL w;
617
618#if EV_MULTIPLICITY
619 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
620#endif
621
622 --signum;
623
624 if (signum < 0 || signum >= signalmax)
625 return;
626
627 signals [signum].gotsig = 0;
628
629 for (w = signals [signum].head; w; w = w->next)
630 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
631}
632
557static void 633static void
558sigcb (EV_P_ struct ev_io *iow, int revents) 634sigcb (EV_P_ struct ev_io *iow, int revents)
559{ 635{
560 WL w;
561 int signum; 636 int signum;
562 637
563 read (sigpipe [0], &revents, 1); 638 read (sigpipe [0], &revents, 1);
564 gotsig = 0; 639 gotsig = 0;
565 640
566 for (signum = signalmax; signum--; ) 641 for (signum = signalmax; signum--; )
567 if (signals [signum].gotsig) 642 if (signals [signum].gotsig)
568 { 643 ev_feed_signal_event (EV_A_ signum + 1);
569 signals [signum].gotsig = 0; 644}
570 645
571 for (w = signals [signum].head; w; w = w->next) 646inline void
572 event (EV_A_ (W)w, EV_SIGNAL); 647fd_intern (int fd)
573 } 648{
649#ifdef _WIN32
650 int arg = 1;
651 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
652#else
653 fcntl (fd, F_SETFD, FD_CLOEXEC);
654 fcntl (fd, F_SETFL, O_NONBLOCK);
655#endif
574} 656}
575 657
576static void 658static void
577siginit (EV_P) 659siginit (EV_P)
578{ 660{
579#ifndef WIN32 661 fd_intern (sigpipe [0]);
580 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 662 fd_intern (sigpipe [1]);
581 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
582
583 /* rather than sort out wether we really need nb, set it */
584 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
585 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
586#endif
587 663
588 ev_io_set (&sigev, sigpipe [0], EV_READ); 664 ev_io_set (&sigev, sigpipe [0], EV_READ);
589 ev_io_start (EV_A_ &sigev); 665 ev_io_start (EV_A_ &sigev);
590 ev_unref (EV_A); /* child watcher should not keep loop alive */ 666 ev_unref (EV_A); /* child watcher should not keep loop alive */
591} 667}
592 668
593/*****************************************************************************/ 669/*****************************************************************************/
594 670
595static struct ev_child *childs [PID_HASHSIZE]; 671static struct ev_child *childs [PID_HASHSIZE];
596 672
597#ifndef WIN32 673#ifndef _WIN32
598 674
599static struct ev_signal childev; 675static struct ev_signal childev;
600 676
601#ifndef WCONTINUED 677#ifndef WCONTINUED
602# define WCONTINUED 0 678# define WCONTINUED 0
611 if (w->pid == pid || !w->pid) 687 if (w->pid == pid || !w->pid)
612 { 688 {
613 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 689 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
614 w->rpid = pid; 690 w->rpid = pid;
615 w->rstatus = status; 691 w->rstatus = status;
616 event (EV_A_ (W)w, EV_CHILD); 692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
617 } 693 }
618} 694}
619 695
620static void 696static void
621childcb (EV_P_ struct ev_signal *sw, int revents) 697childcb (EV_P_ struct ev_signal *sw, int revents)
623 int pid, status; 699 int pid, status;
624 700
625 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 701 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
626 { 702 {
627 /* make sure we are called again until all childs have been reaped */ 703 /* make sure we are called again until all childs have been reaped */
628 event (EV_A_ (W)sw, EV_SIGNAL); 704 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
629 705
630 child_reap (EV_A_ sw, pid, pid, status); 706 child_reap (EV_A_ sw, pid, pid, status);
631 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 707 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
632 } 708 }
633} 709}
663 739
664/* return true if we are running with elevated privileges and should ignore env variables */ 740/* return true if we are running with elevated privileges and should ignore env variables */
665static int 741static int
666enable_secure (void) 742enable_secure (void)
667{ 743{
668#ifdef WIN32 744#ifdef _WIN32
669 return 0; 745 return 0;
670#else 746#else
671 return getuid () != geteuid () 747 return getuid () != geteuid ()
672 || getgid () != getegid (); 748 || getgid () != getegid ();
673#endif 749#endif
674} 750}
675 751
676int 752unsigned int
677ev_method (EV_P) 753ev_method (EV_P)
678{ 754{
679 return method; 755 return method;
680} 756}
681 757
682static void 758static void
683loop_init (EV_P_ int methods) 759loop_init (EV_P_ unsigned int flags)
684{ 760{
685 if (!method) 761 if (!method)
686 { 762 {
687#if EV_USE_MONOTONIC 763#if EV_USE_MONOTONIC
688 { 764 {
690 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 766 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
691 have_monotonic = 1; 767 have_monotonic = 1;
692 } 768 }
693#endif 769#endif
694 770
695 rt_now = ev_time (); 771 ev_rt_now = ev_time ();
696 mn_now = get_clock (); 772 mn_now = get_clock ();
697 now_floor = mn_now; 773 now_floor = mn_now;
698 rtmn_diff = rt_now - mn_now; 774 rtmn_diff = ev_rt_now - mn_now;
699 775
700 if (methods == EVMETHOD_AUTO) 776 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
701 if (!enable_secure () && getenv ("LIBEV_METHODS"))
702 methods = atoi (getenv ("LIBEV_METHODS")); 777 flags = atoi (getenv ("LIBEV_FLAGS"));
703 else 778
704 methods = EVMETHOD_ANY; 779 if (!(flags & 0x0000ffff))
780 flags |= 0x0000ffff;
705 781
706 method = 0; 782 method = 0;
707#if EV_USE_WIN32
708 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
709#endif
710#if EV_USE_KQUEUE 783#if EV_USE_KQUEUE
711 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 784 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
712#endif 785#endif
713#if EV_USE_EPOLL 786#if EV_USE_EPOLL
714 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 787 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
715#endif 788#endif
716#if EV_USE_POLL 789#if EV_USE_POLL
717 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 790 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
718#endif 791#endif
719#if EV_USE_SELECT 792#if EV_USE_SELECT
720 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 793 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
721#endif 794#endif
722 795
723 ev_watcher_init (&sigev, sigcb); 796 ev_init (&sigev, sigcb);
724 ev_set_priority (&sigev, EV_MAXPRI); 797 ev_set_priority (&sigev, EV_MAXPRI);
725 } 798 }
726} 799}
727 800
728void 801void
729loop_destroy (EV_P) 802loop_destroy (EV_P)
730{ 803{
731 int i; 804 int i;
732 805
733#if EV_USE_WIN32
734 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
735#endif
736#if EV_USE_KQUEUE 806#if EV_USE_KQUEUE
737 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 807 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
738#endif 808#endif
739#if EV_USE_EPOLL 809#if EV_USE_EPOLL
740 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 810 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
748 818
749 for (i = NUMPRI; i--; ) 819 for (i = NUMPRI; i--; )
750 array_free (pending, [i]); 820 array_free (pending, [i]);
751 821
752 /* have to use the microsoft-never-gets-it-right macro */ 822 /* have to use the microsoft-never-gets-it-right macro */
753 array_free_microshit (fdchange); 823 array_free (fdchange, EMPTY0);
754 array_free_microshit (timer); 824 array_free (timer, EMPTY0);
755 array_free_microshit (periodic); 825#if EV_PERIODICS
756 array_free_microshit (idle); 826 array_free (periodic, EMPTY0);
757 array_free_microshit (prepare); 827#endif
758 array_free_microshit (check); 828 array_free (idle, EMPTY0);
829 array_free (prepare, EMPTY0);
830 array_free (check, EMPTY0);
759 831
760 method = 0; 832 method = 0;
761} 833}
762 834
763static void 835static void
788 postfork = 0; 860 postfork = 0;
789} 861}
790 862
791#if EV_MULTIPLICITY 863#if EV_MULTIPLICITY
792struct ev_loop * 864struct ev_loop *
793ev_loop_new (int methods) 865ev_loop_new (unsigned int flags)
794{ 866{
795 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 867 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
796 868
797 memset (loop, 0, sizeof (struct ev_loop)); 869 memset (loop, 0, sizeof (struct ev_loop));
798 870
799 loop_init (EV_A_ methods); 871 loop_init (EV_A_ flags);
800 872
801 if (ev_method (EV_A)) 873 if (ev_method (EV_A))
802 return loop; 874 return loop;
803 875
804 return 0; 876 return 0;
818} 890}
819 891
820#endif 892#endif
821 893
822#if EV_MULTIPLICITY 894#if EV_MULTIPLICITY
823struct ev_loop default_loop_struct;
824static struct ev_loop *default_loop;
825
826struct ev_loop * 895struct ev_loop *
896ev_default_loop_ (unsigned int flags)
827#else 897#else
828static int default_loop;
829
830int 898int
899ev_default_loop (unsigned int flags)
831#endif 900#endif
832ev_default_loop (int methods)
833{ 901{
834 if (sigpipe [0] == sigpipe [1]) 902 if (sigpipe [0] == sigpipe [1])
835 if (pipe (sigpipe)) 903 if (pipe (sigpipe))
836 return 0; 904 return 0;
837 905
838 if (!default_loop) 906 if (!ev_default_loop_ptr)
839 { 907 {
840#if EV_MULTIPLICITY 908#if EV_MULTIPLICITY
841 struct ev_loop *loop = default_loop = &default_loop_struct; 909 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
842#else 910#else
843 default_loop = 1; 911 ev_default_default_loop_ptr = 1;
844#endif 912#endif
845 913
846 loop_init (EV_A_ methods); 914 loop_init (EV_A_ flags);
847 915
848 if (ev_method (EV_A)) 916 if (ev_method (EV_A))
849 { 917 {
850 siginit (EV_A); 918 siginit (EV_A);
851 919
852#ifndef WIN32 920#ifndef _WIN32
853 ev_signal_init (&childev, childcb, SIGCHLD); 921 ev_signal_init (&childev, childcb, SIGCHLD);
854 ev_set_priority (&childev, EV_MAXPRI); 922 ev_set_priority (&childev, EV_MAXPRI);
855 ev_signal_start (EV_A_ &childev); 923 ev_signal_start (EV_A_ &childev);
856 ev_unref (EV_A); /* child watcher should not keep loop alive */ 924 ev_unref (EV_A); /* child watcher should not keep loop alive */
857#endif 925#endif
858 } 926 }
859 else 927 else
860 default_loop = 0; 928 ev_default_loop_ptr = 0;
861 } 929 }
862 930
863 return default_loop; 931 return ev_default_loop_ptr;
864} 932}
865 933
866void 934void
867ev_default_destroy (void) 935ev_default_destroy (void)
868{ 936{
869#if EV_MULTIPLICITY 937#if EV_MULTIPLICITY
870 struct ev_loop *loop = default_loop; 938 struct ev_loop *loop = ev_default_loop_ptr;
871#endif 939#endif
872 940
873#ifndef WIN32 941#ifndef _WIN32
874 ev_ref (EV_A); /* child watcher */ 942 ev_ref (EV_A); /* child watcher */
875 ev_signal_stop (EV_A_ &childev); 943 ev_signal_stop (EV_A_ &childev);
876#endif 944#endif
877 945
878 ev_ref (EV_A); /* signal watcher */ 946 ev_ref (EV_A); /* signal watcher */
886 954
887void 955void
888ev_default_fork (void) 956ev_default_fork (void)
889{ 957{
890#if EV_MULTIPLICITY 958#if EV_MULTIPLICITY
891 struct ev_loop *loop = default_loop; 959 struct ev_loop *loop = ev_default_loop_ptr;
892#endif 960#endif
893 961
894 if (method) 962 if (method)
895 postfork = 1; 963 postfork = 1;
896} 964}
897 965
898/*****************************************************************************/ 966/*****************************************************************************/
967
968static int
969any_pending (EV_P)
970{
971 int pri;
972
973 for (pri = NUMPRI; pri--; )
974 if (pendingcnt [pri])
975 return 1;
976
977 return 0;
978}
899 979
900static void 980static void
901call_pending (EV_P) 981call_pending (EV_P)
902{ 982{
903 int pri; 983 int pri;
908 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 988 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
909 989
910 if (p->w) 990 if (p->w)
911 { 991 {
912 p->w->pending = 0; 992 p->w->pending = 0;
913 p->w->cb (EV_A_ p->w, p->events); 993 EV_CB_INVOKE (p->w, p->events);
914 } 994 }
915 } 995 }
916} 996}
917 997
918static void 998static void
926 1006
927 /* first reschedule or stop timer */ 1007 /* first reschedule or stop timer */
928 if (w->repeat) 1008 if (w->repeat)
929 { 1009 {
930 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1010 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1011
931 ((WT)w)->at = mn_now + w->repeat; 1012 ((WT)w)->at += w->repeat;
1013 if (((WT)w)->at < mn_now)
1014 ((WT)w)->at = mn_now;
1015
932 downheap ((WT *)timers, timercnt, 0); 1016 downheap ((WT *)timers, timercnt, 0);
933 } 1017 }
934 else 1018 else
935 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1019 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
936 1020
937 event (EV_A_ (W)w, EV_TIMEOUT); 1021 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
938 } 1022 }
939} 1023}
940 1024
1025#if EV_PERIODICS
941static void 1026static void
942periodics_reify (EV_P) 1027periodics_reify (EV_P)
943{ 1028{
944 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1029 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
945 { 1030 {
946 struct ev_periodic *w = periodics [0]; 1031 struct ev_periodic *w = periodics [0];
947 1032
948 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1033 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
949 1034
950 /* first reschedule or stop timer */ 1035 /* first reschedule or stop timer */
951 if (w->interval) 1036 if (w->reschedule_cb)
952 { 1037 {
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1039 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1040 downheap ((WT *)periodics, periodiccnt, 0);
1041 }
1042 else if (w->interval)
1043 {
953 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1044 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
954 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1045 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
955 downheap ((WT *)periodics, periodiccnt, 0); 1046 downheap ((WT *)periodics, periodiccnt, 0);
956 } 1047 }
957 else 1048 else
958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1049 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
959 1050
960 event (EV_A_ (W)w, EV_PERIODIC); 1051 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
961 } 1052 }
962} 1053}
963 1054
964static void 1055static void
965periodics_reschedule (EV_P) 1056periodics_reschedule (EV_P)
969 /* adjust periodics after time jump */ 1060 /* adjust periodics after time jump */
970 for (i = 0; i < periodiccnt; ++i) 1061 for (i = 0; i < periodiccnt; ++i)
971 { 1062 {
972 struct ev_periodic *w = periodics [i]; 1063 struct ev_periodic *w = periodics [i];
973 1064
1065 if (w->reschedule_cb)
1066 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
974 if (w->interval) 1067 else if (w->interval)
975 {
976 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1068 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
977
978 if (fabs (diff) >= 1e-4)
979 {
980 ev_periodic_stop (EV_A_ w);
981 ev_periodic_start (EV_A_ w);
982
983 i = 0; /* restart loop, inefficient, but time jumps should be rare */
984 }
985 }
986 } 1069 }
1070
1071 /* now rebuild the heap */
1072 for (i = periodiccnt >> 1; i--; )
1073 downheap ((WT *)periodics, periodiccnt, i);
987} 1074}
1075#endif
988 1076
989inline int 1077inline int
990time_update_monotonic (EV_P) 1078time_update_monotonic (EV_P)
991{ 1079{
992 mn_now = get_clock (); 1080 mn_now = get_clock ();
993 1081
994 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1082 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
995 { 1083 {
996 rt_now = rtmn_diff + mn_now; 1084 ev_rt_now = rtmn_diff + mn_now;
997 return 0; 1085 return 0;
998 } 1086 }
999 else 1087 else
1000 { 1088 {
1001 now_floor = mn_now; 1089 now_floor = mn_now;
1002 rt_now = ev_time (); 1090 ev_rt_now = ev_time ();
1003 return 1; 1091 return 1;
1004 } 1092 }
1005} 1093}
1006 1094
1007static void 1095static void
1016 { 1104 {
1017 ev_tstamp odiff = rtmn_diff; 1105 ev_tstamp odiff = rtmn_diff;
1018 1106
1019 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1107 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1020 { 1108 {
1021 rtmn_diff = rt_now - mn_now; 1109 rtmn_diff = ev_rt_now - mn_now;
1022 1110
1023 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1111 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1024 return; /* all is well */ 1112 return; /* all is well */
1025 1113
1026 rt_now = ev_time (); 1114 ev_rt_now = ev_time ();
1027 mn_now = get_clock (); 1115 mn_now = get_clock ();
1028 now_floor = mn_now; 1116 now_floor = mn_now;
1029 } 1117 }
1030 1118
1119# if EV_PERIODICS
1031 periodics_reschedule (EV_A); 1120 periodics_reschedule (EV_A);
1121# endif
1032 /* no timer adjustment, as the monotonic clock doesn't jump */ 1122 /* no timer adjustment, as the monotonic clock doesn't jump */
1033 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1123 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1034 } 1124 }
1035 } 1125 }
1036 else 1126 else
1037#endif 1127#endif
1038 { 1128 {
1039 rt_now = ev_time (); 1129 ev_rt_now = ev_time ();
1040 1130
1041 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1131 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1042 { 1132 {
1133#if EV_PERIODICS
1043 periodics_reschedule (EV_A); 1134 periodics_reschedule (EV_A);
1135#endif
1044 1136
1045 /* adjust timers. this is easy, as the offset is the same for all */ 1137 /* adjust timers. this is easy, as the offset is the same for all */
1046 for (i = 0; i < timercnt; ++i) 1138 for (i = 0; i < timercnt; ++i)
1047 ((WT)timers [i])->at += rt_now - mn_now; 1139 ((WT)timers [i])->at += ev_rt_now - mn_now;
1048 } 1140 }
1049 1141
1050 mn_now = rt_now; 1142 mn_now = ev_rt_now;
1051 } 1143 }
1052} 1144}
1053 1145
1054void 1146void
1055ev_ref (EV_P) 1147ev_ref (EV_P)
1069ev_loop (EV_P_ int flags) 1161ev_loop (EV_P_ int flags)
1070{ 1162{
1071 double block; 1163 double block;
1072 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1164 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1073 1165
1074 do 1166 while (activecnt)
1075 { 1167 {
1076 /* queue check watchers (and execute them) */ 1168 /* queue check watchers (and execute them) */
1077 if (expect_false (preparecnt)) 1169 if (expect_false (preparecnt))
1078 { 1170 {
1079 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1171 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1087 /* update fd-related kernel structures */ 1179 /* update fd-related kernel structures */
1088 fd_reify (EV_A); 1180 fd_reify (EV_A);
1089 1181
1090 /* calculate blocking time */ 1182 /* calculate blocking time */
1091 1183
1092 /* we only need this for !monotonic clockor timers, but as we basically 1184 /* we only need this for !monotonic clock or timers, but as we basically
1093 always have timers, we just calculate it always */ 1185 always have timers, we just calculate it always */
1094#if EV_USE_MONOTONIC 1186#if EV_USE_MONOTONIC
1095 if (expect_true (have_monotonic)) 1187 if (expect_true (have_monotonic))
1096 time_update_monotonic (EV_A); 1188 time_update_monotonic (EV_A);
1097 else 1189 else
1098#endif 1190#endif
1099 { 1191 {
1100 rt_now = ev_time (); 1192 ev_rt_now = ev_time ();
1101 mn_now = rt_now; 1193 mn_now = ev_rt_now;
1102 } 1194 }
1103 1195
1104 if (flags & EVLOOP_NONBLOCK || idlecnt) 1196 if (flags & EVLOOP_NONBLOCK || idlecnt)
1105 block = 0.; 1197 block = 0.;
1106 else 1198 else
1111 { 1203 {
1112 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1204 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1113 if (block > to) block = to; 1205 if (block > to) block = to;
1114 } 1206 }
1115 1207
1208#if EV_PERIODICS
1116 if (periodiccnt) 1209 if (periodiccnt)
1117 { 1210 {
1118 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1211 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1119 if (block > to) block = to; 1212 if (block > to) block = to;
1120 } 1213 }
1214#endif
1121 1215
1122 if (block < 0.) block = 0.; 1216 if (block < 0.) block = 0.;
1123 } 1217 }
1124 1218
1125 method_poll (EV_A_ block); 1219 method_poll (EV_A_ block);
1126 1220
1127 /* update rt_now, do magic */ 1221 /* update ev_rt_now, do magic */
1128 time_update (EV_A); 1222 time_update (EV_A);
1129 1223
1130 /* queue pending timers and reschedule them */ 1224 /* queue pending timers and reschedule them */
1131 timers_reify (EV_A); /* relative timers called last */ 1225 timers_reify (EV_A); /* relative timers called last */
1226#if EV_PERIODICS
1132 periodics_reify (EV_A); /* absolute timers called first */ 1227 periodics_reify (EV_A); /* absolute timers called first */
1228#endif
1133 1229
1134 /* queue idle watchers unless io or timers are pending */ 1230 /* queue idle watchers unless io or timers are pending */
1135 if (!pendingcnt) 1231 if (idlecnt && !any_pending (EV_A))
1136 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1232 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1137 1233
1138 /* queue check watchers, to be executed first */ 1234 /* queue check watchers, to be executed first */
1139 if (checkcnt) 1235 if (checkcnt)
1140 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1236 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1141 1237
1142 call_pending (EV_A); 1238 call_pending (EV_A);
1239
1240 if (loop_done)
1241 break;
1143 } 1242 }
1144 while (activecnt && !loop_done);
1145 1243
1146 if (loop_done != 2) 1244 if (loop_done != 2)
1147 loop_done = 0; 1245 loop_done = 0;
1148} 1246}
1149 1247
1215 return; 1313 return;
1216 1314
1217 assert (("ev_io_start called with negative fd", fd >= 0)); 1315 assert (("ev_io_start called with negative fd", fd >= 0));
1218 1316
1219 ev_start (EV_A_ (W)w, 1); 1317 ev_start (EV_A_ (W)w, 1);
1220 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1318 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1221 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1319 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1222 1320
1223 fd_change (EV_A_ fd); 1321 fd_change (EV_A_ fd);
1224} 1322}
1225 1323
1228{ 1326{
1229 ev_clear_pending (EV_A_ (W)w); 1327 ev_clear_pending (EV_A_ (W)w);
1230 if (!ev_is_active (w)) 1328 if (!ev_is_active (w))
1231 return; 1329 return;
1232 1330
1331 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1332
1233 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1333 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1234 ev_stop (EV_A_ (W)w); 1334 ev_stop (EV_A_ (W)w);
1235 1335
1236 fd_change (EV_A_ w->fd); 1336 fd_change (EV_A_ w->fd);
1237} 1337}
1245 ((WT)w)->at += mn_now; 1345 ((WT)w)->at += mn_now;
1246 1346
1247 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1347 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1248 1348
1249 ev_start (EV_A_ (W)w, ++timercnt); 1349 ev_start (EV_A_ (W)w, ++timercnt);
1250 array_needsize (timers, timermax, timercnt, (void)); 1350 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1251 timers [timercnt - 1] = w; 1351 timers [timercnt - 1] = w;
1252 upheap ((WT *)timers, timercnt - 1); 1352 upheap ((WT *)timers, timercnt - 1);
1253 1353
1254 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1354 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1255} 1355}
1264 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1364 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1265 1365
1266 if (((W)w)->active < timercnt--) 1366 if (((W)w)->active < timercnt--)
1267 { 1367 {
1268 timers [((W)w)->active - 1] = timers [timercnt]; 1368 timers [((W)w)->active - 1] = timers [timercnt];
1269 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1270 } 1370 }
1271 1371
1272 ((WT)w)->at = w->repeat; 1372 ((WT)w)->at -= mn_now;
1273 1373
1274 ev_stop (EV_A_ (W)w); 1374 ev_stop (EV_A_ (W)w);
1275} 1375}
1276 1376
1277void 1377void
1280 if (ev_is_active (w)) 1380 if (ev_is_active (w))
1281 { 1381 {
1282 if (w->repeat) 1382 if (w->repeat)
1283 { 1383 {
1284 ((WT)w)->at = mn_now + w->repeat; 1384 ((WT)w)->at = mn_now + w->repeat;
1285 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1385 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1286 } 1386 }
1287 else 1387 else
1288 ev_timer_stop (EV_A_ w); 1388 ev_timer_stop (EV_A_ w);
1289 } 1389 }
1290 else if (w->repeat) 1390 else if (w->repeat)
1391 {
1392 w->at = w->repeat;
1291 ev_timer_start (EV_A_ w); 1393 ev_timer_start (EV_A_ w);
1394 }
1292} 1395}
1293 1396
1397#if EV_PERIODICS
1294void 1398void
1295ev_periodic_start (EV_P_ struct ev_periodic *w) 1399ev_periodic_start (EV_P_ struct ev_periodic *w)
1296{ 1400{
1297 if (ev_is_active (w)) 1401 if (ev_is_active (w))
1298 return; 1402 return;
1299 1403
1404 if (w->reschedule_cb)
1405 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1406 else if (w->interval)
1407 {
1300 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1408 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1301
1302 /* this formula differs from the one in periodic_reify because we do not always round up */ 1409 /* this formula differs from the one in periodic_reify because we do not always round up */
1303 if (w->interval)
1304 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1410 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1411 }
1305 1412
1306 ev_start (EV_A_ (W)w, ++periodiccnt); 1413 ev_start (EV_A_ (W)w, ++periodiccnt);
1307 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1414 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1308 periodics [periodiccnt - 1] = w; 1415 periodics [periodiccnt - 1] = w;
1309 upheap ((WT *)periodics, periodiccnt - 1); 1416 upheap ((WT *)periodics, periodiccnt - 1);
1310 1417
1311 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1418 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1312} 1419}
1321 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1428 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1322 1429
1323 if (((W)w)->active < periodiccnt--) 1430 if (((W)w)->active < periodiccnt--)
1324 { 1431 {
1325 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1432 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1326 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1433 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1327 } 1434 }
1328 1435
1329 ev_stop (EV_A_ (W)w); 1436 ev_stop (EV_A_ (W)w);
1330} 1437}
1331 1438
1332void 1439void
1440ev_periodic_again (EV_P_ struct ev_periodic *w)
1441{
1442 /* TODO: use adjustheap and recalculation */
1443 ev_periodic_stop (EV_A_ w);
1444 ev_periodic_start (EV_A_ w);
1445}
1446#endif
1447
1448void
1333ev_idle_start (EV_P_ struct ev_idle *w) 1449ev_idle_start (EV_P_ struct ev_idle *w)
1334{ 1450{
1335 if (ev_is_active (w)) 1451 if (ev_is_active (w))
1336 return; 1452 return;
1337 1453
1338 ev_start (EV_A_ (W)w, ++idlecnt); 1454 ev_start (EV_A_ (W)w, ++idlecnt);
1339 array_needsize (idles, idlemax, idlecnt, (void)); 1455 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1340 idles [idlecnt - 1] = w; 1456 idles [idlecnt - 1] = w;
1341} 1457}
1342 1458
1343void 1459void
1344ev_idle_stop (EV_P_ struct ev_idle *w) 1460ev_idle_stop (EV_P_ struct ev_idle *w)
1345{ 1461{
1346 ev_clear_pending (EV_A_ (W)w); 1462 ev_clear_pending (EV_A_ (W)w);
1347 if (ev_is_active (w)) 1463 if (!ev_is_active (w))
1348 return; 1464 return;
1349 1465
1350 idles [((W)w)->active - 1] = idles [--idlecnt]; 1466 idles [((W)w)->active - 1] = idles [--idlecnt];
1351 ev_stop (EV_A_ (W)w); 1467 ev_stop (EV_A_ (W)w);
1352} 1468}
1356{ 1472{
1357 if (ev_is_active (w)) 1473 if (ev_is_active (w))
1358 return; 1474 return;
1359 1475
1360 ev_start (EV_A_ (W)w, ++preparecnt); 1476 ev_start (EV_A_ (W)w, ++preparecnt);
1361 array_needsize (prepares, preparemax, preparecnt, (void)); 1477 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1362 prepares [preparecnt - 1] = w; 1478 prepares [preparecnt - 1] = w;
1363} 1479}
1364 1480
1365void 1481void
1366ev_prepare_stop (EV_P_ struct ev_prepare *w) 1482ev_prepare_stop (EV_P_ struct ev_prepare *w)
1367{ 1483{
1368 ev_clear_pending (EV_A_ (W)w); 1484 ev_clear_pending (EV_A_ (W)w);
1369 if (ev_is_active (w)) 1485 if (!ev_is_active (w))
1370 return; 1486 return;
1371 1487
1372 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1488 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1373 ev_stop (EV_A_ (W)w); 1489 ev_stop (EV_A_ (W)w);
1374} 1490}
1378{ 1494{
1379 if (ev_is_active (w)) 1495 if (ev_is_active (w))
1380 return; 1496 return;
1381 1497
1382 ev_start (EV_A_ (W)w, ++checkcnt); 1498 ev_start (EV_A_ (W)w, ++checkcnt);
1383 array_needsize (checks, checkmax, checkcnt, (void)); 1499 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1384 checks [checkcnt - 1] = w; 1500 checks [checkcnt - 1] = w;
1385} 1501}
1386 1502
1387void 1503void
1388ev_check_stop (EV_P_ struct ev_check *w) 1504ev_check_stop (EV_P_ struct ev_check *w)
1389{ 1505{
1390 ev_clear_pending (EV_A_ (W)w); 1506 ev_clear_pending (EV_A_ (W)w);
1391 if (ev_is_active (w)) 1507 if (!ev_is_active (w))
1392 return; 1508 return;
1393 1509
1394 checks [((W)w)->active - 1] = checks [--checkcnt]; 1510 checks [((W)w)->active - 1] = checks [--checkcnt];
1395 ev_stop (EV_A_ (W)w); 1511 ev_stop (EV_A_ (W)w);
1396} 1512}
1401 1517
1402void 1518void
1403ev_signal_start (EV_P_ struct ev_signal *w) 1519ev_signal_start (EV_P_ struct ev_signal *w)
1404{ 1520{
1405#if EV_MULTIPLICITY 1521#if EV_MULTIPLICITY
1406 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1522 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1407#endif 1523#endif
1408 if (ev_is_active (w)) 1524 if (ev_is_active (w))
1409 return; 1525 return;
1410 1526
1411 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1527 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1412 1528
1413 ev_start (EV_A_ (W)w, 1); 1529 ev_start (EV_A_ (W)w, 1);
1414 array_needsize (signals, signalmax, w->signum, signals_init); 1530 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1415 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1531 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1416 1532
1417 if (!((WL)w)->next) 1533 if (!((WL)w)->next)
1418 { 1534 {
1419#if WIN32 1535#if _WIN32
1420 signal (w->signum, sighandler); 1536 signal (w->signum, sighandler);
1421#else 1537#else
1422 struct sigaction sa; 1538 struct sigaction sa;
1423 sa.sa_handler = sighandler; 1539 sa.sa_handler = sighandler;
1424 sigfillset (&sa.sa_mask); 1540 sigfillset (&sa.sa_mask);
1444 1560
1445void 1561void
1446ev_child_start (EV_P_ struct ev_child *w) 1562ev_child_start (EV_P_ struct ev_child *w)
1447{ 1563{
1448#if EV_MULTIPLICITY 1564#if EV_MULTIPLICITY
1449 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1565 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1450#endif 1566#endif
1451 if (ev_is_active (w)) 1567 if (ev_is_active (w))
1452 return; 1568 return;
1453 1569
1454 ev_start (EV_A_ (W)w, 1); 1570 ev_start (EV_A_ (W)w, 1);
1457 1573
1458void 1574void
1459ev_child_stop (EV_P_ struct ev_child *w) 1575ev_child_stop (EV_P_ struct ev_child *w)
1460{ 1576{
1461 ev_clear_pending (EV_A_ (W)w); 1577 ev_clear_pending (EV_A_ (W)w);
1462 if (ev_is_active (w)) 1578 if (!ev_is_active (w))
1463 return; 1579 return;
1464 1580
1465 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1581 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1466 ev_stop (EV_A_ (W)w); 1582 ev_stop (EV_A_ (W)w);
1467} 1583}
1502} 1618}
1503 1619
1504void 1620void
1505ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1621ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1506{ 1622{
1507 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1623 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1508 1624
1509 if (!once) 1625 if (!once)
1510 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1511 else 1627 else
1512 { 1628 {
1513 once->cb = cb; 1629 once->cb = cb;
1514 once->arg = arg; 1630 once->arg = arg;
1515 1631
1516 ev_watcher_init (&once->io, once_cb_io); 1632 ev_init (&once->io, once_cb_io);
1517 if (fd >= 0) 1633 if (fd >= 0)
1518 { 1634 {
1519 ev_io_set (&once->io, fd, events); 1635 ev_io_set (&once->io, fd, events);
1520 ev_io_start (EV_A_ &once->io); 1636 ev_io_start (EV_A_ &once->io);
1521 } 1637 }
1522 1638
1523 ev_watcher_init (&once->to, once_cb_to); 1639 ev_init (&once->to, once_cb_to);
1524 if (timeout >= 0.) 1640 if (timeout >= 0.)
1525 { 1641 {
1526 ev_timer_set (&once->to, timeout, 0.); 1642 ev_timer_set (&once->to, timeout, 0.);
1527 ev_timer_start (EV_A_ &once->to); 1643 ev_timer_start (EV_A_ &once->to);
1528 } 1644 }
1529 } 1645 }
1530} 1646}
1531 1647
1648#ifdef __cplusplus
1649}
1650#endif
1651

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines