ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.117 by ayin, Thu Nov 15 17:15:56 2007 UTC vs.
Revision 1.212 by root, Tue Feb 19 19:01:13 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
36#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
37# include "config.h" 48# include "config.h"
49# endif
38 50
39# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 52# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
42# endif 54# endif
43# ifndef EV_USE_REALTIME 55# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 56# define EV_USE_REALTIME 1
45# endif 57# endif
58# else
59# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0
61# endif
62# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0
64# endif
46# endif 65# endif
47 66
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
72# endif
50# endif 73# endif
51 74
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 75# ifndef EV_USE_SELECT
76# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif
54# endif 81# endif
55 82
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 85# define EV_USE_POLL 1
86# else
87# define EV_USE_POLL 0
88# endif
58# endif 89# endif
59 90
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1
94# else
95# define EV_USE_EPOLL 0
96# endif
97# endif
98
99# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif
105# endif
106
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1
110# else
111# define EV_USE_PORT 0
112# endif
113# endif
114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
62# endif 121# endif
63 122
64#endif 123#endif
65 124
66#include <math.h> 125#include <math.h>
75#include <sys/types.h> 134#include <sys/types.h>
76#include <time.h> 135#include <time.h>
77 136
78#include <signal.h> 137#include <signal.h>
79 138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
80#ifndef _WIN32 145#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 146# include <sys/time.h>
83# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
84#else 149#else
85# define WIN32_LEAN_AND_MEAN 150# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 151# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 152# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 153# define EV_SELECT_IS_WINSOCKET 1
90#endif 155#endif
91 156
92/**/ 157/**/
93 158
94#ifndef EV_USE_MONOTONIC 159#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 160# define EV_USE_MONOTONIC 0
161#endif
162
163#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0
165#endif
166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
96#endif 169#endif
97 170
98#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 173#endif
102 174
103#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
104# ifdef _WIN32 176# ifdef _WIN32
105# define EV_USE_POLL 0 177# define EV_USE_POLL 0
114 186
115#ifndef EV_USE_KQUEUE 187#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 188# define EV_USE_KQUEUE 0
117#endif 189#endif
118 190
119#ifndef EV_USE_REALTIME 191#ifndef EV_USE_PORT
120# define EV_USE_REALTIME 1 192# define EV_USE_PORT 0
193#endif
194
195#ifndef EV_USE_INOTIFY
196# define EV_USE_INOTIFY 0
197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
202# else
203# define EV_PID_HASHSIZE 16
204# endif
205#endif
206
207#ifndef EV_INOTIFY_HASHSIZE
208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
121#endif 213#endif
122 214
123/**/ 215/**/
124
125/* darwin simply cannot be helped */
126#ifdef __APPLE__
127# undef EV_USE_POLL
128# undef EV_USE_KQUEUE
129#endif
130 216
131#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 218# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 219# define EV_USE_MONOTONIC 0
134#endif 220#endif
136#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
139#endif 225#endif
140 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
141#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h> 243# include <winsock.h>
143#endif 244#endif
144 245
145/**/ 246/**/
146 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
151 261
152#ifdef EV_H
153# include EV_H
154#else
155# include "ev.h"
156#endif
157
158#if __GNUC__ >= 3 262#if __GNUC__ >= 4
159# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
160# define inline inline 264# define noinline __attribute__ ((noinline))
161#else 265#else
162# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
163# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
164#endif 271#endif
165 272
166#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
168 282
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
171 285
172#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
173#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
174 288
175typedef struct ev_watcher *W; 289typedef ev_watcher *W;
176typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
177typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
178 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
179static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
180 298
181#ifdef _WIN32 299#ifdef _WIN32
182# include "ev_win32.c" 300# include "ev_win32.c"
183#endif 301#endif
184 302
185/*****************************************************************************/ 303/*****************************************************************************/
186 304
187static void (*syserr_cb)(const char *msg); 305static void (*syserr_cb)(const char *msg);
188 306
307void
189void ev_set_syserr_cb (void (*cb)(const char *msg)) 308ev_set_syserr_cb (void (*cb)(const char *msg))
190{ 309{
191 syserr_cb = cb; 310 syserr_cb = cb;
192} 311}
193 312
194static void 313static void noinline
195syserr (const char *msg) 314syserr (const char *msg)
196{ 315{
197 if (!msg) 316 if (!msg)
198 msg = "(libev) system error"; 317 msg = "(libev) system error";
199 318
206 } 325 }
207} 326}
208 327
209static void *(*alloc)(void *ptr, long size); 328static void *(*alloc)(void *ptr, long size);
210 329
330void
211void ev_set_allocator (void *(*cb)(void *ptr, long size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
212{ 332{
213 alloc = cb; 333 alloc = cb;
214} 334}
215 335
216static void * 336inline_speed void *
217ev_realloc (void *ptr, long size) 337ev_realloc (void *ptr, long size)
218{ 338{
219 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
220 340
221 if (!ptr && size) 341 if (!ptr && size)
245typedef struct 365typedef struct
246{ 366{
247 W w; 367 W w;
248 int events; 368 int events;
249} ANPENDING; 369} ANPENDING;
370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
250 377
251#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
252 379
253 struct ev_loop 380 struct ev_loop
254 { 381 {
288 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
289 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
290#endif 417#endif
291} 418}
292 419
293inline ev_tstamp 420ev_tstamp inline_size
294get_clock (void) 421get_clock (void)
295{ 422{
296#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
297 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
298 { 425 {
311{ 438{
312 return ev_rt_now; 439 return ev_rt_now;
313} 440}
314#endif 441#endif
315 442
316#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
317 497
318#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
319 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
320 { \ 500 { \
321 int newcnt = cur; \ 501 int ocur_ = (cur); \
322 do \ 502 (base) = (type *)array_realloc \
323 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
324 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
325 } \
326 while ((cnt) > newcnt); \
327 \
328 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
329 init (base + cur, newcnt - cur); \
330 cur = newcnt; \
331 } 505 }
332 506
507#if 0
333#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
334 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
335 { \ 510 { \
336 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
337 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
338 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
339 } 514 }
515#endif
340 516
341#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
342 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
343 519
344/*****************************************************************************/ 520/*****************************************************************************/
345 521
346static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
347anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
348{ 552{
349 while (count--) 553 while (count--)
350 { 554 {
351 base->head = 0; 555 base->head = 0;
354 558
355 ++base; 559 ++base;
356 } 560 }
357} 561}
358 562
359void 563void inline_speed
360ev_feed_event (EV_P_ void *w, int revents)
361{
362 W w_ = (W)w;
363
364 if (w_->pending)
365 {
366 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
367 return;
368 }
369
370 w_->pending = ++pendingcnt [ABSPRI (w_)];
371 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
372 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
374}
375
376static void
377queue_events (EV_P_ W *events, int eventcnt, int type)
378{
379 int i;
380
381 for (i = 0; i < eventcnt; ++i)
382 ev_feed_event (EV_A_ events [i], type);
383}
384
385inline void
386fd_event (EV_P_ int fd, int revents) 564fd_event (EV_P_ int fd, int revents)
387{ 565{
388 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
389 struct ev_io *w; 567 ev_io *w;
390 568
391 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
392 { 570 {
393 int ev = w->events & revents; 571 int ev = w->events & revents;
394 572
395 if (ev) 573 if (ev)
396 ev_feed_event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
398} 576}
399 577
400void 578void
401ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
402{ 580{
581 if (fd >= 0 && fd < anfdmax)
403 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
404} 583}
405 584
406/*****************************************************************************/ 585void inline_size
407
408static void
409fd_reify (EV_P) 586fd_reify (EV_P)
410{ 587{
411 int i; 588 int i;
412 589
413 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
414 { 591 {
415 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
416 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 594 ev_io *w;
418 595
419 int events = 0; 596 unsigned char events = 0;
420 597
421 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
422 events |= w->events; 599 events |= (unsigned char)w->events;
423 600
424#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
425 if (events) 602 if (events)
426 { 603 {
427 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
428 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
429 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
430 } 611 }
431#endif 612#endif
432 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
433 anfd->reify = 0; 618 anfd->reify = 0;
434
435 method_modify (EV_A_ fd, anfd->events, events);
436 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
437 } 624 }
438 625
439 fdchangecnt = 0; 626 fdchangecnt = 0;
440} 627}
441 628
442static void 629void inline_size
443fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
444{ 631{
445 if (anfds [fd].reify) 632 unsigned char reify = anfds [fd].reify;
446 return;
447
448 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
449 634
635 if (expect_true (!reify))
636 {
450 ++fdchangecnt; 637 ++fdchangecnt;
451 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
452 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
453} 641}
454 642
455static void 643void inline_speed
456fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
457{ 645{
458 struct ev_io *w; 646 ev_io *w;
459 647
460 while ((w = (struct ev_io *)anfds [fd].head)) 648 while ((w = (ev_io *)anfds [fd].head))
461 { 649 {
462 ev_io_stop (EV_A_ w); 650 ev_io_stop (EV_A_ w);
463 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
464 } 652 }
465} 653}
466 654
467static int 655int inline_size
468fd_valid (int fd) 656fd_valid (int fd)
469{ 657{
470#ifdef _WIN32 658#ifdef _WIN32
471 return _get_osfhandle (fd) != -1; 659 return _get_osfhandle (fd) != -1;
472#else 660#else
473 return fcntl (fd, F_GETFD) != -1; 661 return fcntl (fd, F_GETFD) != -1;
474#endif 662#endif
475} 663}
476 664
477/* called on EBADF to verify fds */ 665/* called on EBADF to verify fds */
478static void 666static void noinline
479fd_ebadf (EV_P) 667fd_ebadf (EV_P)
480{ 668{
481 int fd; 669 int fd;
482 670
483 for (fd = 0; fd < anfdmax; ++fd) 671 for (fd = 0; fd < anfdmax; ++fd)
485 if (!fd_valid (fd) == -1 && errno == EBADF) 673 if (!fd_valid (fd) == -1 && errno == EBADF)
486 fd_kill (EV_A_ fd); 674 fd_kill (EV_A_ fd);
487} 675}
488 676
489/* called on ENOMEM in select/poll to kill some fds and retry */ 677/* called on ENOMEM in select/poll to kill some fds and retry */
490static void 678static void noinline
491fd_enomem (EV_P) 679fd_enomem (EV_P)
492{ 680{
493 int fd; 681 int fd;
494 682
495 for (fd = anfdmax; fd--; ) 683 for (fd = anfdmax; fd--; )
498 fd_kill (EV_A_ fd); 686 fd_kill (EV_A_ fd);
499 return; 687 return;
500 } 688 }
501} 689}
502 690
503/* usually called after fork if method needs to re-arm all fds from scratch */ 691/* usually called after fork if backend needs to re-arm all fds from scratch */
504static void 692static void noinline
505fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
506{ 694{
507 int fd; 695 int fd;
508 696
509 /* this should be highly optimised to not do anything but set a flag */
510 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
511 if (anfds [fd].events) 698 if (anfds [fd].events)
512 { 699 {
513 anfds [fd].events = 0; 700 anfds [fd].events = 0;
514 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
515 } 702 }
516} 703}
517 704
518/*****************************************************************************/ 705/*****************************************************************************/
519 706
520static void 707void inline_speed
521upheap (WT *heap, int k) 708upheap (WT *heap, int k)
522{ 709{
523 WT w = heap [k]; 710 WT w = heap [k];
524 711
525 while (k && heap [k >> 1]->at > w->at) 712 while (k)
526 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
527 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
528 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
529 k >>= 1; 721 k = p;
530 } 722 }
531 723
532 heap [k] = w; 724 heap [k] = w;
533 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
534
535} 726}
536 727
537static void 728void inline_speed
538downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
539{ 730{
540 WT w = heap [k]; 731 WT w = heap [k];
541 732
542 while (k < (N >> 1)) 733 for (;;)
543 { 734 {
544 int j = k << 1; 735 int c = (k << 1) + 1;
545 736
546 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
547 ++j;
548
549 if (w->at <= heap [j]->at)
550 break; 738 break;
551 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
552 heap [k] = heap [j]; 746 heap [k] = heap [c];
553 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
554 k = j; 749 k = c;
555 } 750 }
556 751
557 heap [k] = w; 752 heap [k] = w;
558 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
559} 754}
560 755
561inline void 756void inline_size
562adjustheap (WT *heap, int N, int k) 757adjustheap (WT *heap, int N, int k)
563{ 758{
564 upheap (heap, k); 759 upheap (heap, k);
565 downheap (heap, N, k); 760 downheap (heap, N, k);
566} 761}
568/*****************************************************************************/ 763/*****************************************************************************/
569 764
570typedef struct 765typedef struct
571{ 766{
572 WL head; 767 WL head;
573 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
574} ANSIG; 769} ANSIG;
575 770
576static ANSIG *signals; 771static ANSIG *signals;
577static int signalmax; 772static int signalmax;
578 773
579static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
580static sig_atomic_t volatile gotsig;
581static struct ev_io sigev;
582 775
583static void 776void inline_size
584signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
585{ 778{
586 while (count--) 779 while (count--)
587 { 780 {
588 base->head = 0; 781 base->head = 0;
590 783
591 ++base; 784 ++base;
592 } 785 }
593} 786}
594 787
595static void 788/*****************************************************************************/
596sighandler (int signum)
597{
598#if _WIN32
599 signal (signum, sighandler);
600#endif
601 789
602 signals [signum - 1].gotsig = 1; 790void inline_speed
603
604 if (!gotsig)
605 {
606 int old_errno = errno;
607 gotsig = 1;
608 write (sigpipe [1], &signum, 1);
609 errno = old_errno;
610 }
611}
612
613void
614ev_feed_signal_event (EV_P_ int signum)
615{
616 WL w;
617
618#if EV_MULTIPLICITY
619 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
620#endif
621
622 --signum;
623
624 if (signum < 0 || signum >= signalmax)
625 return;
626
627 signals [signum].gotsig = 0;
628
629 for (w = signals [signum].head; w; w = w->next)
630 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
631}
632
633static void
634sigcb (EV_P_ struct ev_io *iow, int revents)
635{
636 int signum;
637
638 read (sigpipe [0], &revents, 1);
639 gotsig = 0;
640
641 for (signum = signalmax; signum--; )
642 if (signals [signum].gotsig)
643 ev_feed_signal_event (EV_A_ signum + 1);
644}
645
646inline void
647fd_intern (int fd) 791fd_intern (int fd)
648{ 792{
649#ifdef _WIN32 793#ifdef _WIN32
650 int arg = 1; 794 int arg = 1;
651 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
653 fcntl (fd, F_SETFD, FD_CLOEXEC); 797 fcntl (fd, F_SETFD, FD_CLOEXEC);
654 fcntl (fd, F_SETFL, O_NONBLOCK); 798 fcntl (fd, F_SETFL, O_NONBLOCK);
655#endif 799#endif
656} 800}
657 801
802static void noinline
803evpipe_init (EV_P)
804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
810 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ);
814 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 {
824 int old_errno = errno; /* save errno becaue write might clobber it */
825
826 if (sig) gotsig = 1;
827 if (async) gotasync = 1;
828
829 write (evpipe [1], &old_errno, 1);
830
831 errno = old_errno;
832 }
833}
834
658static void 835static void
659siginit (EV_P) 836pipecb (EV_P_ ev_io *iow, int revents)
660{ 837{
661 fd_intern (sigpipe [0]); 838 {
662 fd_intern (sigpipe [1]); 839 int dummy;
840 read (evpipe [0], &dummy, 1);
841 }
663 842
664 ev_io_set (&sigev, sigpipe [0], EV_READ); 843 if (gotsig && ev_is_default_loop (EV_A))
665 ev_io_start (EV_A_ &sigev); 844 {
666 ev_unref (EV_A); /* child watcher should not keep loop alive */ 845 int signum;
846 gotsig = 0;
847
848 for (signum = signalmax; signum--; )
849 if (signals [signum].gotsig)
850 ev_feed_signal_event (EV_A_ signum + 1);
851 }
852
853#if EV_ASYNC_ENABLE
854 if (gotasync)
855 {
856 int i;
857 gotasync = 0;
858
859 for (i = asynccnt; i--; )
860 if (asyncs [i]->sent)
861 {
862 asyncs [i]->sent = 0;
863 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
864 }
865 }
866#endif
667} 867}
668 868
669/*****************************************************************************/ 869/*****************************************************************************/
670 870
671static struct ev_child *childs [PID_HASHSIZE]; 871static void
872sighandler (int signum)
873{
874#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct;
876#endif
877
878#if _WIN32
879 signal (signum, sighandler);
880#endif
881
882 signals [signum - 1].gotsig = 1;
883 evpipe_write (EV_A_ 1, 0);
884}
885
886void noinline
887ev_feed_signal_event (EV_P_ int signum)
888{
889 WL w;
890
891#if EV_MULTIPLICITY
892 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
893#endif
894
895 --signum;
896
897 if (signum < 0 || signum >= signalmax)
898 return;
899
900 signals [signum].gotsig = 0;
901
902 for (w = signals [signum].head; w; w = w->next)
903 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
904}
905
906/*****************************************************************************/
907
908static WL childs [EV_PID_HASHSIZE];
672 909
673#ifndef _WIN32 910#ifndef _WIN32
674 911
675static struct ev_signal childev; 912static ev_signal childev;
913
914#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0
916#endif
917
918void inline_speed
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
920{
921 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 {
926 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1)))
928 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
930 w->rpid = pid;
931 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 }
934 }
935}
676 936
677#ifndef WCONTINUED 937#ifndef WCONTINUED
678# define WCONTINUED 0 938# define WCONTINUED 0
679#endif 939#endif
680 940
681static void 941static void
682child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
683{
684 struct ev_child *w;
685
686 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
687 if (w->pid == pid || !w->pid)
688 {
689 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
690 w->rpid = pid;
691 w->rstatus = status;
692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
693 }
694}
695
696static void
697childcb (EV_P_ struct ev_signal *sw, int revents) 942childcb (EV_P_ ev_signal *sw, int revents)
698{ 943{
699 int pid, status; 944 int pid, status;
700 945
946 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
701 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 947 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
702 { 948 if (!WCONTINUED
949 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return;
952
703 /* make sure we are called again until all childs have been reaped */ 953 /* make sure we are called again until all childs have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */
704 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
705 956
706 child_reap (EV_A_ sw, pid, pid, status); 957 child_reap (EV_A_ sw, pid, pid, status);
958 if (EV_PID_HASHSIZE > 1)
707 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
708 }
709} 960}
710 961
711#endif 962#endif
712 963
713/*****************************************************************************/ 964/*****************************************************************************/
714 965
966#if EV_USE_PORT
967# include "ev_port.c"
968#endif
715#if EV_USE_KQUEUE 969#if EV_USE_KQUEUE
716# include "ev_kqueue.c" 970# include "ev_kqueue.c"
717#endif 971#endif
718#if EV_USE_EPOLL 972#if EV_USE_EPOLL
719# include "ev_epoll.c" 973# include "ev_epoll.c"
736{ 990{
737 return EV_VERSION_MINOR; 991 return EV_VERSION_MINOR;
738} 992}
739 993
740/* return true if we are running with elevated privileges and should ignore env variables */ 994/* return true if we are running with elevated privileges and should ignore env variables */
741static int 995int inline_size
742enable_secure (void) 996enable_secure (void)
743{ 997{
744#ifdef _WIN32 998#ifdef _WIN32
745 return 0; 999 return 0;
746#else 1000#else
748 || getgid () != getegid (); 1002 || getgid () != getegid ();
749#endif 1003#endif
750} 1004}
751 1005
752unsigned int 1006unsigned int
753ev_method (EV_P) 1007ev_supported_backends (void)
754{ 1008{
755 return method; 1009 unsigned int flags = 0;
756}
757 1010
758static void 1011 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1012 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1013 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1014 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1015 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1016
1017 return flags;
1018}
1019
1020unsigned int
1021ev_recommended_backends (void)
1022{
1023 unsigned int flags = ev_supported_backends ();
1024
1025#ifndef __NetBSD__
1026 /* kqueue is borked on everything but netbsd apparently */
1027 /* it usually doesn't work correctly on anything but sockets and pipes */
1028 flags &= ~EVBACKEND_KQUEUE;
1029#endif
1030#ifdef __APPLE__
1031 // flags &= ~EVBACKEND_KQUEUE; for documentation
1032 flags &= ~EVBACKEND_POLL;
1033#endif
1034
1035 return flags;
1036}
1037
1038unsigned int
1039ev_embeddable_backends (void)
1040{
1041 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1042
1043 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1044 /* please fix it and tell me how to detect the fix */
1045 flags &= ~EVBACKEND_EPOLL;
1046
1047 return flags;
1048}
1049
1050unsigned int
1051ev_backend (EV_P)
1052{
1053 return backend;
1054}
1055
1056unsigned int
1057ev_loop_count (EV_P)
1058{
1059 return loop_count;
1060}
1061
1062void
1063ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1064{
1065 io_blocktime = interval;
1066}
1067
1068void
1069ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1070{
1071 timeout_blocktime = interval;
1072}
1073
1074static void noinline
759loop_init (EV_P_ unsigned int flags) 1075loop_init (EV_P_ unsigned int flags)
760{ 1076{
761 if (!method) 1077 if (!backend)
762 { 1078 {
763#if EV_USE_MONOTONIC 1079#if EV_USE_MONOTONIC
764 { 1080 {
765 struct timespec ts; 1081 struct timespec ts;
766 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1082 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
767 have_monotonic = 1; 1083 have_monotonic = 1;
768 } 1084 }
769#endif 1085#endif
770 1086
771 ev_rt_now = ev_time (); 1087 ev_rt_now = ev_time ();
772 mn_now = get_clock (); 1088 mn_now = get_clock ();
773 now_floor = mn_now; 1089 now_floor = mn_now;
774 rtmn_diff = ev_rt_now - mn_now; 1090 rtmn_diff = ev_rt_now - mn_now;
775 1091
776 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1092 io_blocktime = 0.;
1093 timeout_blocktime = 0.;
1094 backend = 0;
1095 backend_fd = -1;
1096 gotasync = 0;
1097#if EV_USE_INOTIFY
1098 fs_fd = -2;
1099#endif
1100
1101 /* pid check not overridable via env */
1102#ifndef _WIN32
1103 if (flags & EVFLAG_FORKCHECK)
1104 curpid = getpid ();
1105#endif
1106
1107 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS"))
777 flags = atoi (getenv ("LIBEV_FLAGS")); 1110 flags = atoi (getenv ("LIBEV_FLAGS"));
778 1111
779 if (!(flags & 0x0000ffff)) 1112 if (!(flags & 0x0000ffffUL))
780 flags |= 0x0000ffff; 1113 flags |= ev_recommended_backends ();
781 1114
782 method = 0; 1115#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1117#endif
783#if EV_USE_KQUEUE 1118#if EV_USE_KQUEUE
784 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1119 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
785#endif 1120#endif
786#if EV_USE_EPOLL 1121#if EV_USE_EPOLL
787 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1122 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
788#endif 1123#endif
789#if EV_USE_POLL 1124#if EV_USE_POLL
790 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1125 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
791#endif 1126#endif
792#if EV_USE_SELECT 1127#if EV_USE_SELECT
793 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1128 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
794#endif 1129#endif
795 1130
796 ev_init (&sigev, sigcb); 1131 ev_init (&pipeev, pipecb);
797 ev_set_priority (&sigev, EV_MAXPRI); 1132 ev_set_priority (&pipeev, EV_MAXPRI);
798 } 1133 }
799} 1134}
800 1135
801void 1136static void noinline
802loop_destroy (EV_P) 1137loop_destroy (EV_P)
803{ 1138{
804 int i; 1139 int i;
805 1140
1141 if (ev_is_active (&pipeev))
1142 {
1143 ev_ref (EV_A); /* signal watcher */
1144 ev_io_stop (EV_A_ &pipeev);
1145
1146 close (evpipe [0]); evpipe [0] = 0;
1147 close (evpipe [1]); evpipe [1] = 0;
1148 }
1149
1150#if EV_USE_INOTIFY
1151 if (fs_fd >= 0)
1152 close (fs_fd);
1153#endif
1154
1155 if (backend_fd >= 0)
1156 close (backend_fd);
1157
1158#if EV_USE_PORT
1159 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1160#endif
806#if EV_USE_KQUEUE 1161#if EV_USE_KQUEUE
807 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1162 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
808#endif 1163#endif
809#if EV_USE_EPOLL 1164#if EV_USE_EPOLL
810 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1165 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
811#endif 1166#endif
812#if EV_USE_POLL 1167#if EV_USE_POLL
813 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1168 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
814#endif 1169#endif
815#if EV_USE_SELECT 1170#if EV_USE_SELECT
816 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1171 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
817#endif 1172#endif
818 1173
819 for (i = NUMPRI; i--; ) 1174 for (i = NUMPRI; i--; )
1175 {
820 array_free (pending, [i]); 1176 array_free (pending, [i]);
1177#if EV_IDLE_ENABLE
1178 array_free (idle, [i]);
1179#endif
1180 }
1181
1182 ev_free (anfds); anfdmax = 0;
821 1183
822 /* have to use the microsoft-never-gets-it-right macro */ 1184 /* have to use the microsoft-never-gets-it-right macro */
823 array_free (fdchange, EMPTY0); 1185 array_free (fdchange, EMPTY);
824 array_free (timer, EMPTY0); 1186 array_free (timer, EMPTY);
825#if EV_PERIODICS 1187#if EV_PERIODIC_ENABLE
826 array_free (periodic, EMPTY0); 1188 array_free (periodic, EMPTY);
827#endif 1189#endif
1190#if EV_FORK_ENABLE
828 array_free (idle, EMPTY0); 1191 array_free (fork, EMPTY);
1192#endif
829 array_free (prepare, EMPTY0); 1193 array_free (prepare, EMPTY);
830 array_free (check, EMPTY0); 1194 array_free (check, EMPTY);
1195#if EV_ASYNC_ENABLE
1196 array_free (async, EMPTY);
1197#endif
831 1198
832 method = 0; 1199 backend = 0;
833} 1200}
834 1201
835static void 1202void inline_size infy_fork (EV_P);
1203
1204void inline_size
836loop_fork (EV_P) 1205loop_fork (EV_P)
837{ 1206{
1207#if EV_USE_PORT
1208 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1209#endif
1210#if EV_USE_KQUEUE
1211 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1212#endif
838#if EV_USE_EPOLL 1213#if EV_USE_EPOLL
839 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1214 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
840#endif 1215#endif
841#if EV_USE_KQUEUE 1216#if EV_USE_INOTIFY
842 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1217 infy_fork (EV_A);
843#endif 1218#endif
844 1219
845 if (ev_is_active (&sigev)) 1220 if (ev_is_active (&pipeev))
846 { 1221 {
847 /* default loop */ 1222 /* this "locks" the handlers against writing to the pipe */
1223 /* while we modify the fd vars */
1224 gotsig = 1;
1225#if EV_ASYNC_ENABLE
1226 gotasync = 1;
1227#endif
848 1228
849 ev_ref (EV_A); 1229 ev_ref (EV_A);
850 ev_io_stop (EV_A_ &sigev); 1230 ev_io_stop (EV_A_ &pipeev);
851 close (sigpipe [0]); 1231 close (evpipe [0]);
852 close (sigpipe [1]); 1232 close (evpipe [1]);
853 1233
854 while (pipe (sigpipe))
855 syserr ("(libev) error creating pipe");
856
857 siginit (EV_A); 1234 evpipe_init (EV_A);
1235 /* now iterate over everything, in case we missed something */
1236 pipecb (EV_A_ &pipeev, EV_READ);
858 } 1237 }
859 1238
860 postfork = 0; 1239 postfork = 0;
861} 1240}
862 1241
868 1247
869 memset (loop, 0, sizeof (struct ev_loop)); 1248 memset (loop, 0, sizeof (struct ev_loop));
870 1249
871 loop_init (EV_A_ flags); 1250 loop_init (EV_A_ flags);
872 1251
873 if (ev_method (EV_A)) 1252 if (ev_backend (EV_A))
874 return loop; 1253 return loop;
875 1254
876 return 0; 1255 return 0;
877} 1256}
878 1257
884} 1263}
885 1264
886void 1265void
887ev_loop_fork (EV_P) 1266ev_loop_fork (EV_P)
888{ 1267{
889 postfork = 1; 1268 postfork = 1; /* must be in line with ev_default_fork */
890} 1269}
891 1270
892#endif 1271#endif
893 1272
894#if EV_MULTIPLICITY 1273#if EV_MULTIPLICITY
895struct ev_loop * 1274struct ev_loop *
896ev_default_loop_ (unsigned int flags) 1275ev_default_loop_init (unsigned int flags)
897#else 1276#else
898int 1277int
899ev_default_loop (unsigned int flags) 1278ev_default_loop (unsigned int flags)
900#endif 1279#endif
901{ 1280{
902 if (sigpipe [0] == sigpipe [1])
903 if (pipe (sigpipe))
904 return 0;
905
906 if (!ev_default_loop_ptr) 1281 if (!ev_default_loop_ptr)
907 { 1282 {
908#if EV_MULTIPLICITY 1283#if EV_MULTIPLICITY
909 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1284 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
910#else 1285#else
911 ev_default_loop_ptr = 1; 1286 ev_default_loop_ptr = 1;
912#endif 1287#endif
913 1288
914 loop_init (EV_A_ flags); 1289 loop_init (EV_A_ flags);
915 1290
916 if (ev_method (EV_A)) 1291 if (ev_backend (EV_A))
917 { 1292 {
918 siginit (EV_A);
919
920#ifndef _WIN32 1293#ifndef _WIN32
921 ev_signal_init (&childev, childcb, SIGCHLD); 1294 ev_signal_init (&childev, childcb, SIGCHLD);
922 ev_set_priority (&childev, EV_MAXPRI); 1295 ev_set_priority (&childev, EV_MAXPRI);
923 ev_signal_start (EV_A_ &childev); 1296 ev_signal_start (EV_A_ &childev);
924 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1297 ev_unref (EV_A); /* child watcher should not keep loop alive */
941#ifndef _WIN32 1314#ifndef _WIN32
942 ev_ref (EV_A); /* child watcher */ 1315 ev_ref (EV_A); /* child watcher */
943 ev_signal_stop (EV_A_ &childev); 1316 ev_signal_stop (EV_A_ &childev);
944#endif 1317#endif
945 1318
946 ev_ref (EV_A); /* signal watcher */
947 ev_io_stop (EV_A_ &sigev);
948
949 close (sigpipe [0]); sigpipe [0] = 0;
950 close (sigpipe [1]); sigpipe [1] = 0;
951
952 loop_destroy (EV_A); 1319 loop_destroy (EV_A);
953} 1320}
954 1321
955void 1322void
956ev_default_fork (void) 1323ev_default_fork (void)
957{ 1324{
958#if EV_MULTIPLICITY 1325#if EV_MULTIPLICITY
959 struct ev_loop *loop = ev_default_loop_ptr; 1326 struct ev_loop *loop = ev_default_loop_ptr;
960#endif 1327#endif
961 1328
962 if (method) 1329 if (backend)
963 postfork = 1; 1330 postfork = 1; /* must be in line with ev_loop_fork */
964} 1331}
965 1332
966/*****************************************************************************/ 1333/*****************************************************************************/
967 1334
968static int 1335void
969any_pending (EV_P) 1336ev_invoke (EV_P_ void *w, int revents)
970{ 1337{
971 int pri; 1338 EV_CB_INVOKE ((W)w, revents);
972
973 for (pri = NUMPRI; pri--; )
974 if (pendingcnt [pri])
975 return 1;
976
977 return 0;
978} 1339}
979 1340
980static void 1341void inline_speed
981call_pending (EV_P) 1342call_pending (EV_P)
982{ 1343{
983 int pri; 1344 int pri;
984 1345
985 for (pri = NUMPRI; pri--; ) 1346 for (pri = NUMPRI; pri--; )
986 while (pendingcnt [pri]) 1347 while (pendingcnt [pri])
987 { 1348 {
988 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1349 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
989 1350
990 if (p->w) 1351 if (expect_true (p->w))
991 { 1352 {
1353 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1354
992 p->w->pending = 0; 1355 p->w->pending = 0;
993 EV_CB_INVOKE (p->w, p->events); 1356 EV_CB_INVOKE (p->w, p->events);
994 } 1357 }
995 } 1358 }
996} 1359}
997 1360
998static void 1361void inline_size
999timers_reify (EV_P) 1362timers_reify (EV_P)
1000{ 1363{
1001 while (timercnt && ((WT)timers [0])->at <= mn_now) 1364 while (timercnt && ((WT)timers [0])->at <= mn_now)
1002 { 1365 {
1003 struct ev_timer *w = timers [0]; 1366 ev_timer *w = (ev_timer *)timers [0];
1004 1367
1005 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1368 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1006 1369
1007 /* first reschedule or stop timer */ 1370 /* first reschedule or stop timer */
1008 if (w->repeat) 1371 if (w->repeat)
1009 { 1372 {
1010 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1373 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1011 1374
1012 ((WT)w)->at += w->repeat; 1375 ((WT)w)->at += w->repeat;
1013 if (((WT)w)->at < mn_now) 1376 if (((WT)w)->at < mn_now)
1014 ((WT)w)->at = mn_now; 1377 ((WT)w)->at = mn_now;
1015 1378
1016 downheap ((WT *)timers, timercnt, 0); 1379 downheap (timers, timercnt, 0);
1017 } 1380 }
1018 else 1381 else
1019 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1382 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1020 1383
1021 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1384 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1022 } 1385 }
1023} 1386}
1024 1387
1025#if EV_PERIODICS 1388#if EV_PERIODIC_ENABLE
1026static void 1389void inline_size
1027periodics_reify (EV_P) 1390periodics_reify (EV_P)
1028{ 1391{
1029 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1392 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1030 { 1393 {
1031 struct ev_periodic *w = periodics [0]; 1394 ev_periodic *w = (ev_periodic *)periodics [0];
1032 1395
1033 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1396 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1034 1397
1035 /* first reschedule or stop timer */ 1398 /* first reschedule or stop timer */
1036 if (w->reschedule_cb) 1399 if (w->reschedule_cb)
1037 { 1400 {
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1401 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1039 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1402 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1040 downheap ((WT *)periodics, periodiccnt, 0); 1403 downheap (periodics, periodiccnt, 0);
1041 } 1404 }
1042 else if (w->interval) 1405 else if (w->interval)
1043 { 1406 {
1044 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1407 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1408 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1045 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1409 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1046 downheap ((WT *)periodics, periodiccnt, 0); 1410 downheap (periodics, periodiccnt, 0);
1047 } 1411 }
1048 else 1412 else
1049 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1413 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1050 1414
1051 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1415 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1052 } 1416 }
1053} 1417}
1054 1418
1055static void 1419static void noinline
1056periodics_reschedule (EV_P) 1420periodics_reschedule (EV_P)
1057{ 1421{
1058 int i; 1422 int i;
1059 1423
1060 /* adjust periodics after time jump */ 1424 /* adjust periodics after time jump */
1061 for (i = 0; i < periodiccnt; ++i) 1425 for (i = 0; i < periodiccnt; ++i)
1062 { 1426 {
1063 struct ev_periodic *w = periodics [i]; 1427 ev_periodic *w = (ev_periodic *)periodics [i];
1064 1428
1065 if (w->reschedule_cb) 1429 if (w->reschedule_cb)
1066 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1430 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1067 else if (w->interval) 1431 else if (w->interval)
1068 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1432 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1069 } 1433 }
1070 1434
1071 /* now rebuild the heap */ 1435 /* now rebuild the heap */
1072 for (i = periodiccnt >> 1; i--; ) 1436 for (i = periodiccnt >> 1; i--; )
1073 downheap ((WT *)periodics, periodiccnt, i); 1437 downheap (periodics, periodiccnt, i);
1074} 1438}
1075#endif 1439#endif
1076 1440
1077inline int 1441#if EV_IDLE_ENABLE
1078time_update_monotonic (EV_P) 1442void inline_size
1443idle_reify (EV_P)
1079{ 1444{
1445 if (expect_false (idleall))
1446 {
1447 int pri;
1448
1449 for (pri = NUMPRI; pri--; )
1450 {
1451 if (pendingcnt [pri])
1452 break;
1453
1454 if (idlecnt [pri])
1455 {
1456 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1457 break;
1458 }
1459 }
1460 }
1461}
1462#endif
1463
1464void inline_speed
1465time_update (EV_P_ ev_tstamp max_block)
1466{
1467 int i;
1468
1469#if EV_USE_MONOTONIC
1470 if (expect_true (have_monotonic))
1471 {
1472 ev_tstamp odiff = rtmn_diff;
1473
1080 mn_now = get_clock (); 1474 mn_now = get_clock ();
1081 1475
1476 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1477 /* interpolate in the meantime */
1082 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1478 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 { 1479 {
1084 ev_rt_now = rtmn_diff + mn_now; 1480 ev_rt_now = rtmn_diff + mn_now;
1085 return 0; 1481 return;
1086 } 1482 }
1087 else 1483
1088 {
1089 now_floor = mn_now; 1484 now_floor = mn_now;
1090 ev_rt_now = ev_time (); 1485 ev_rt_now = ev_time ();
1091 return 1;
1092 }
1093}
1094 1486
1095static void 1487 /* loop a few times, before making important decisions.
1096time_update (EV_P) 1488 * on the choice of "4": one iteration isn't enough,
1097{ 1489 * in case we get preempted during the calls to
1098 int i; 1490 * ev_time and get_clock. a second call is almost guaranteed
1099 1491 * to succeed in that case, though. and looping a few more times
1100#if EV_USE_MONOTONIC 1492 * doesn't hurt either as we only do this on time-jumps or
1101 if (expect_true (have_monotonic)) 1493 * in the unlikely event of having been preempted here.
1102 { 1494 */
1103 if (time_update_monotonic (EV_A)) 1495 for (i = 4; --i; )
1104 { 1496 {
1105 ev_tstamp odiff = rtmn_diff;
1106
1107 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1108 {
1109 rtmn_diff = ev_rt_now - mn_now; 1497 rtmn_diff = ev_rt_now - mn_now;
1110 1498
1111 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1499 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1112 return; /* all is well */ 1500 return; /* all is well */
1113 1501
1114 ev_rt_now = ev_time (); 1502 ev_rt_now = ev_time ();
1115 mn_now = get_clock (); 1503 mn_now = get_clock ();
1116 now_floor = mn_now; 1504 now_floor = mn_now;
1117 } 1505 }
1118 1506
1119# if EV_PERIODICS 1507# if EV_PERIODIC_ENABLE
1508 periodics_reschedule (EV_A);
1509# endif
1510 /* no timer adjustment, as the monotonic clock doesn't jump */
1511 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1512 }
1513 else
1514#endif
1515 {
1516 ev_rt_now = ev_time ();
1517
1518 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1519 {
1520#if EV_PERIODIC_ENABLE
1120 periodics_reschedule (EV_A); 1521 periodics_reschedule (EV_A);
1121# endif 1522#endif
1122 /* no timer adjustment, as the monotonic clock doesn't jump */
1123 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1124 }
1125 }
1126 else
1127#endif
1128 {
1129 ev_rt_now = ev_time ();
1130
1131 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1132 {
1133#if EV_PERIODICS
1134 periodics_reschedule (EV_A);
1135#endif
1136
1137 /* adjust timers. this is easy, as the offset is the same for all */ 1523 /* adjust timers. this is easy, as the offset is the same for all of them */
1138 for (i = 0; i < timercnt; ++i) 1524 for (i = 0; i < timercnt; ++i)
1139 ((WT)timers [i])->at += ev_rt_now - mn_now; 1525 ((WT)timers [i])->at += ev_rt_now - mn_now;
1140 } 1526 }
1141 1527
1142 mn_now = ev_rt_now; 1528 mn_now = ev_rt_now;
1158static int loop_done; 1544static int loop_done;
1159 1545
1160void 1546void
1161ev_loop (EV_P_ int flags) 1547ev_loop (EV_P_ int flags)
1162{ 1548{
1163 double block;
1164 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1549 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1550 ? EVUNLOOP_ONE
1551 : EVUNLOOP_CANCEL;
1165 1552
1166 while (activecnt) 1553 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1554
1555 do
1167 { 1556 {
1557#ifndef _WIN32
1558 if (expect_false (curpid)) /* penalise the forking check even more */
1559 if (expect_false (getpid () != curpid))
1560 {
1561 curpid = getpid ();
1562 postfork = 1;
1563 }
1564#endif
1565
1566#if EV_FORK_ENABLE
1567 /* we might have forked, so queue fork handlers */
1568 if (expect_false (postfork))
1569 if (forkcnt)
1570 {
1571 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1572 call_pending (EV_A);
1573 }
1574#endif
1575
1168 /* queue check watchers (and execute them) */ 1576 /* queue prepare watchers (and execute them) */
1169 if (expect_false (preparecnt)) 1577 if (expect_false (preparecnt))
1170 { 1578 {
1171 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1579 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1172 call_pending (EV_A); 1580 call_pending (EV_A);
1173 } 1581 }
1174 1582
1583 if (expect_false (!activecnt))
1584 break;
1585
1175 /* we might have forked, so reify kernel state if necessary */ 1586 /* we might have forked, so reify kernel state if necessary */
1176 if (expect_false (postfork)) 1587 if (expect_false (postfork))
1177 loop_fork (EV_A); 1588 loop_fork (EV_A);
1178 1589
1179 /* update fd-related kernel structures */ 1590 /* update fd-related kernel structures */
1180 fd_reify (EV_A); 1591 fd_reify (EV_A);
1181 1592
1182 /* calculate blocking time */ 1593 /* calculate blocking time */
1594 {
1595 ev_tstamp waittime = 0.;
1596 ev_tstamp sleeptime = 0.;
1183 1597
1184 /* we only need this for !monotonic clock or timers, but as we basically 1598 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1185 always have timers, we just calculate it always */
1186#if EV_USE_MONOTONIC
1187 if (expect_true (have_monotonic))
1188 time_update_monotonic (EV_A);
1189 else
1190#endif
1191 { 1599 {
1192 ev_rt_now = ev_time (); 1600 /* update time to cancel out callback processing overhead */
1193 mn_now = ev_rt_now; 1601 time_update (EV_A_ 1e100);
1194 }
1195 1602
1196 if (flags & EVLOOP_NONBLOCK || idlecnt)
1197 block = 0.;
1198 else
1199 {
1200 block = MAX_BLOCKTIME; 1603 waittime = MAX_BLOCKTIME;
1201 1604
1202 if (timercnt) 1605 if (timercnt)
1203 { 1606 {
1204 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1607 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1205 if (block > to) block = to; 1608 if (waittime > to) waittime = to;
1206 } 1609 }
1207 1610
1208#if EV_PERIODICS 1611#if EV_PERIODIC_ENABLE
1209 if (periodiccnt) 1612 if (periodiccnt)
1210 { 1613 {
1211 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1614 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1212 if (block > to) block = to; 1615 if (waittime > to) waittime = to;
1213 } 1616 }
1214#endif 1617#endif
1215 1618
1216 if (block < 0.) block = 0.; 1619 if (expect_false (waittime < timeout_blocktime))
1620 waittime = timeout_blocktime;
1621
1622 sleeptime = waittime - backend_fudge;
1623
1624 if (expect_true (sleeptime > io_blocktime))
1625 sleeptime = io_blocktime;
1626
1627 if (sleeptime)
1628 {
1629 ev_sleep (sleeptime);
1630 waittime -= sleeptime;
1631 }
1217 } 1632 }
1218 1633
1219 method_poll (EV_A_ block); 1634 ++loop_count;
1635 backend_poll (EV_A_ waittime);
1220 1636
1221 /* update ev_rt_now, do magic */ 1637 /* update ev_rt_now, do magic */
1222 time_update (EV_A); 1638 time_update (EV_A_ waittime + sleeptime);
1639 }
1223 1640
1224 /* queue pending timers and reschedule them */ 1641 /* queue pending timers and reschedule them */
1225 timers_reify (EV_A); /* relative timers called last */ 1642 timers_reify (EV_A); /* relative timers called last */
1226#if EV_PERIODICS 1643#if EV_PERIODIC_ENABLE
1227 periodics_reify (EV_A); /* absolute timers called first */ 1644 periodics_reify (EV_A); /* absolute timers called first */
1228#endif 1645#endif
1229 1646
1647#if EV_IDLE_ENABLE
1230 /* queue idle watchers unless io or timers are pending */ 1648 /* queue idle watchers unless other events are pending */
1231 if (idlecnt && !any_pending (EV_A)) 1649 idle_reify (EV_A);
1232 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1650#endif
1233 1651
1234 /* queue check watchers, to be executed first */ 1652 /* queue check watchers, to be executed first */
1235 if (checkcnt) 1653 if (expect_false (checkcnt))
1236 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1654 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1237 1655
1238 call_pending (EV_A); 1656 call_pending (EV_A);
1239 1657
1240 if (loop_done)
1241 break;
1242 } 1658 }
1659 while (expect_true (activecnt && !loop_done));
1243 1660
1244 if (loop_done != 2) 1661 if (loop_done == EVUNLOOP_ONE)
1245 loop_done = 0; 1662 loop_done = EVUNLOOP_CANCEL;
1246} 1663}
1247 1664
1248void 1665void
1249ev_unloop (EV_P_ int how) 1666ev_unloop (EV_P_ int how)
1250{ 1667{
1251 loop_done = how; 1668 loop_done = how;
1252} 1669}
1253 1670
1254/*****************************************************************************/ 1671/*****************************************************************************/
1255 1672
1256inline void 1673void inline_size
1257wlist_add (WL *head, WL elem) 1674wlist_add (WL *head, WL elem)
1258{ 1675{
1259 elem->next = *head; 1676 elem->next = *head;
1260 *head = elem; 1677 *head = elem;
1261} 1678}
1262 1679
1263inline void 1680void inline_size
1264wlist_del (WL *head, WL elem) 1681wlist_del (WL *head, WL elem)
1265{ 1682{
1266 while (*head) 1683 while (*head)
1267 { 1684 {
1268 if (*head == elem) 1685 if (*head == elem)
1273 1690
1274 head = &(*head)->next; 1691 head = &(*head)->next;
1275 } 1692 }
1276} 1693}
1277 1694
1278inline void 1695void inline_speed
1279ev_clear_pending (EV_P_ W w) 1696clear_pending (EV_P_ W w)
1280{ 1697{
1281 if (w->pending) 1698 if (w->pending)
1282 { 1699 {
1283 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1700 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1284 w->pending = 0; 1701 w->pending = 0;
1285 } 1702 }
1286} 1703}
1287 1704
1288inline void 1705int
1706ev_clear_pending (EV_P_ void *w)
1707{
1708 W w_ = (W)w;
1709 int pending = w_->pending;
1710
1711 if (expect_true (pending))
1712 {
1713 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1714 w_->pending = 0;
1715 p->w = 0;
1716 return p->events;
1717 }
1718 else
1719 return 0;
1720}
1721
1722void inline_size
1723pri_adjust (EV_P_ W w)
1724{
1725 int pri = w->priority;
1726 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1727 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1728 w->priority = pri;
1729}
1730
1731void inline_speed
1289ev_start (EV_P_ W w, int active) 1732ev_start (EV_P_ W w, int active)
1290{ 1733{
1291 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1734 pri_adjust (EV_A_ w);
1292 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1293
1294 w->active = active; 1735 w->active = active;
1295 ev_ref (EV_A); 1736 ev_ref (EV_A);
1296} 1737}
1297 1738
1298inline void 1739void inline_size
1299ev_stop (EV_P_ W w) 1740ev_stop (EV_P_ W w)
1300{ 1741{
1301 ev_unref (EV_A); 1742 ev_unref (EV_A);
1302 w->active = 0; 1743 w->active = 0;
1303} 1744}
1304 1745
1305/*****************************************************************************/ 1746/*****************************************************************************/
1306 1747
1307void 1748void noinline
1308ev_io_start (EV_P_ struct ev_io *w) 1749ev_io_start (EV_P_ ev_io *w)
1309{ 1750{
1310 int fd = w->fd; 1751 int fd = w->fd;
1311 1752
1312 if (ev_is_active (w)) 1753 if (expect_false (ev_is_active (w)))
1313 return; 1754 return;
1314 1755
1315 assert (("ev_io_start called with negative fd", fd >= 0)); 1756 assert (("ev_io_start called with negative fd", fd >= 0));
1316 1757
1317 ev_start (EV_A_ (W)w, 1); 1758 ev_start (EV_A_ (W)w, 1);
1318 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1759 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1319 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1760 wlist_add (&anfds[fd].head, (WL)w);
1320 1761
1321 fd_change (EV_A_ fd); 1762 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1763 w->events &= ~EV_IOFDSET;
1322} 1764}
1323 1765
1324void 1766void noinline
1325ev_io_stop (EV_P_ struct ev_io *w) 1767ev_io_stop (EV_P_ ev_io *w)
1326{ 1768{
1327 ev_clear_pending (EV_A_ (W)w); 1769 clear_pending (EV_A_ (W)w);
1328 if (!ev_is_active (w)) 1770 if (expect_false (!ev_is_active (w)))
1329 return; 1771 return;
1330 1772
1331 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1773 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1332 1774
1333 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1775 wlist_del (&anfds[w->fd].head, (WL)w);
1334 ev_stop (EV_A_ (W)w); 1776 ev_stop (EV_A_ (W)w);
1335 1777
1336 fd_change (EV_A_ w->fd); 1778 fd_change (EV_A_ w->fd, 1);
1337} 1779}
1338 1780
1339void 1781void noinline
1340ev_timer_start (EV_P_ struct ev_timer *w) 1782ev_timer_start (EV_P_ ev_timer *w)
1341{ 1783{
1342 if (ev_is_active (w)) 1784 if (expect_false (ev_is_active (w)))
1343 return; 1785 return;
1344 1786
1345 ((WT)w)->at += mn_now; 1787 ((WT)w)->at += mn_now;
1346 1788
1347 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1789 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1348 1790
1349 ev_start (EV_A_ (W)w, ++timercnt); 1791 ev_start (EV_A_ (W)w, ++timercnt);
1350 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1792 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1351 timers [timercnt - 1] = w; 1793 timers [timercnt - 1] = (WT)w;
1352 upheap ((WT *)timers, timercnt - 1); 1794 upheap (timers, timercnt - 1);
1353 1795
1354 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1796 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1355} 1797}
1356 1798
1357void 1799void noinline
1358ev_timer_stop (EV_P_ struct ev_timer *w) 1800ev_timer_stop (EV_P_ ev_timer *w)
1359{ 1801{
1360 ev_clear_pending (EV_A_ (W)w); 1802 clear_pending (EV_A_ (W)w);
1361 if (!ev_is_active (w)) 1803 if (expect_false (!ev_is_active (w)))
1362 return; 1804 return;
1363 1805
1364 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1806 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1365 1807
1366 if (((W)w)->active < timercnt--) 1808 {
1809 int active = ((W)w)->active;
1810
1811 if (expect_true (--active < --timercnt))
1367 { 1812 {
1368 timers [((W)w)->active - 1] = timers [timercnt]; 1813 timers [active] = timers [timercnt];
1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1814 adjustheap (timers, timercnt, active);
1370 } 1815 }
1816 }
1371 1817
1372 ((WT)w)->at -= mn_now; 1818 ((WT)w)->at -= mn_now;
1373 1819
1374 ev_stop (EV_A_ (W)w); 1820 ev_stop (EV_A_ (W)w);
1375} 1821}
1376 1822
1377void 1823void noinline
1378ev_timer_again (EV_P_ struct ev_timer *w) 1824ev_timer_again (EV_P_ ev_timer *w)
1379{ 1825{
1380 if (ev_is_active (w)) 1826 if (ev_is_active (w))
1381 { 1827 {
1382 if (w->repeat) 1828 if (w->repeat)
1383 { 1829 {
1384 ((WT)w)->at = mn_now + w->repeat; 1830 ((WT)w)->at = mn_now + w->repeat;
1385 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1831 adjustheap (timers, timercnt, ((W)w)->active - 1);
1386 } 1832 }
1387 else 1833 else
1388 ev_timer_stop (EV_A_ w); 1834 ev_timer_stop (EV_A_ w);
1389 } 1835 }
1390 else if (w->repeat) 1836 else if (w->repeat)
1392 w->at = w->repeat; 1838 w->at = w->repeat;
1393 ev_timer_start (EV_A_ w); 1839 ev_timer_start (EV_A_ w);
1394 } 1840 }
1395} 1841}
1396 1842
1397#if EV_PERIODICS 1843#if EV_PERIODIC_ENABLE
1398void 1844void noinline
1399ev_periodic_start (EV_P_ struct ev_periodic *w) 1845ev_periodic_start (EV_P_ ev_periodic *w)
1400{ 1846{
1401 if (ev_is_active (w)) 1847 if (expect_false (ev_is_active (w)))
1402 return; 1848 return;
1403 1849
1404 if (w->reschedule_cb) 1850 if (w->reschedule_cb)
1405 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1851 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1406 else if (w->interval) 1852 else if (w->interval)
1407 { 1853 {
1408 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1854 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1409 /* this formula differs from the one in periodic_reify because we do not always round up */ 1855 /* this formula differs from the one in periodic_reify because we do not always round up */
1410 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1856 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1411 } 1857 }
1858 else
1859 ((WT)w)->at = w->offset;
1412 1860
1413 ev_start (EV_A_ (W)w, ++periodiccnt); 1861 ev_start (EV_A_ (W)w, ++periodiccnt);
1414 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1862 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1415 periodics [periodiccnt - 1] = w; 1863 periodics [periodiccnt - 1] = (WT)w;
1416 upheap ((WT *)periodics, periodiccnt - 1); 1864 upheap (periodics, periodiccnt - 1);
1417 1865
1418 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1866 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1419} 1867}
1420 1868
1421void 1869void noinline
1422ev_periodic_stop (EV_P_ struct ev_periodic *w) 1870ev_periodic_stop (EV_P_ ev_periodic *w)
1423{ 1871{
1424 ev_clear_pending (EV_A_ (W)w); 1872 clear_pending (EV_A_ (W)w);
1425 if (!ev_is_active (w)) 1873 if (expect_false (!ev_is_active (w)))
1426 return; 1874 return;
1427 1875
1428 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1876 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1429 1877
1430 if (((W)w)->active < periodiccnt--) 1878 {
1879 int active = ((W)w)->active;
1880
1881 if (expect_true (--active < --periodiccnt))
1431 { 1882 {
1432 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1883 periodics [active] = periodics [periodiccnt];
1433 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1884 adjustheap (periodics, periodiccnt, active);
1434 } 1885 }
1886 }
1435 1887
1436 ev_stop (EV_A_ (W)w); 1888 ev_stop (EV_A_ (W)w);
1437} 1889}
1438 1890
1439void 1891void noinline
1440ev_periodic_again (EV_P_ struct ev_periodic *w) 1892ev_periodic_again (EV_P_ ev_periodic *w)
1441{ 1893{
1442 /* TODO: use adjustheap and recalculation */ 1894 /* TODO: use adjustheap and recalculation */
1443 ev_periodic_stop (EV_A_ w); 1895 ev_periodic_stop (EV_A_ w);
1444 ev_periodic_start (EV_A_ w); 1896 ev_periodic_start (EV_A_ w);
1445} 1897}
1446#endif 1898#endif
1447 1899
1448void
1449ev_idle_start (EV_P_ struct ev_idle *w)
1450{
1451 if (ev_is_active (w))
1452 return;
1453
1454 ev_start (EV_A_ (W)w, ++idlecnt);
1455 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1456 idles [idlecnt - 1] = w;
1457}
1458
1459void
1460ev_idle_stop (EV_P_ struct ev_idle *w)
1461{
1462 ev_clear_pending (EV_A_ (W)w);
1463 if (!ev_is_active (w))
1464 return;
1465
1466 idles [((W)w)->active - 1] = idles [--idlecnt];
1467 ev_stop (EV_A_ (W)w);
1468}
1469
1470void
1471ev_prepare_start (EV_P_ struct ev_prepare *w)
1472{
1473 if (ev_is_active (w))
1474 return;
1475
1476 ev_start (EV_A_ (W)w, ++preparecnt);
1477 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1478 prepares [preparecnt - 1] = w;
1479}
1480
1481void
1482ev_prepare_stop (EV_P_ struct ev_prepare *w)
1483{
1484 ev_clear_pending (EV_A_ (W)w);
1485 if (!ev_is_active (w))
1486 return;
1487
1488 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1489 ev_stop (EV_A_ (W)w);
1490}
1491
1492void
1493ev_check_start (EV_P_ struct ev_check *w)
1494{
1495 if (ev_is_active (w))
1496 return;
1497
1498 ev_start (EV_A_ (W)w, ++checkcnt);
1499 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1500 checks [checkcnt - 1] = w;
1501}
1502
1503void
1504ev_check_stop (EV_P_ struct ev_check *w)
1505{
1506 ev_clear_pending (EV_A_ (W)w);
1507 if (!ev_is_active (w))
1508 return;
1509
1510 checks [((W)w)->active - 1] = checks [--checkcnt];
1511 ev_stop (EV_A_ (W)w);
1512}
1513
1514#ifndef SA_RESTART 1900#ifndef SA_RESTART
1515# define SA_RESTART 0 1901# define SA_RESTART 0
1516#endif 1902#endif
1517 1903
1518void 1904void noinline
1519ev_signal_start (EV_P_ struct ev_signal *w) 1905ev_signal_start (EV_P_ ev_signal *w)
1520{ 1906{
1521#if EV_MULTIPLICITY 1907#if EV_MULTIPLICITY
1522 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1908 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1523#endif 1909#endif
1524 if (ev_is_active (w)) 1910 if (expect_false (ev_is_active (w)))
1525 return; 1911 return;
1526 1912
1527 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1913 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1528 1914
1915 evpipe_init (EV_A);
1916
1917 {
1918#ifndef _WIN32
1919 sigset_t full, prev;
1920 sigfillset (&full);
1921 sigprocmask (SIG_SETMASK, &full, &prev);
1922#endif
1923
1924 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1925
1926#ifndef _WIN32
1927 sigprocmask (SIG_SETMASK, &prev, 0);
1928#endif
1929 }
1930
1529 ev_start (EV_A_ (W)w, 1); 1931 ev_start (EV_A_ (W)w, 1);
1530 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1531 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1932 wlist_add (&signals [w->signum - 1].head, (WL)w);
1532 1933
1533 if (!((WL)w)->next) 1934 if (!((WL)w)->next)
1534 { 1935 {
1535#if _WIN32 1936#if _WIN32
1536 signal (w->signum, sighandler); 1937 signal (w->signum, sighandler);
1542 sigaction (w->signum, &sa, 0); 1943 sigaction (w->signum, &sa, 0);
1543#endif 1944#endif
1544 } 1945 }
1545} 1946}
1546 1947
1547void 1948void noinline
1548ev_signal_stop (EV_P_ struct ev_signal *w) 1949ev_signal_stop (EV_P_ ev_signal *w)
1549{ 1950{
1550 ev_clear_pending (EV_A_ (W)w); 1951 clear_pending (EV_A_ (W)w);
1551 if (!ev_is_active (w)) 1952 if (expect_false (!ev_is_active (w)))
1552 return; 1953 return;
1553 1954
1554 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1955 wlist_del (&signals [w->signum - 1].head, (WL)w);
1555 ev_stop (EV_A_ (W)w); 1956 ev_stop (EV_A_ (W)w);
1556 1957
1557 if (!signals [w->signum - 1].head) 1958 if (!signals [w->signum - 1].head)
1558 signal (w->signum, SIG_DFL); 1959 signal (w->signum, SIG_DFL);
1559} 1960}
1560 1961
1561void 1962void
1562ev_child_start (EV_P_ struct ev_child *w) 1963ev_child_start (EV_P_ ev_child *w)
1563{ 1964{
1564#if EV_MULTIPLICITY 1965#if EV_MULTIPLICITY
1565 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1966 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1566#endif 1967#endif
1567 if (ev_is_active (w)) 1968 if (expect_false (ev_is_active (w)))
1568 return; 1969 return;
1569 1970
1570 ev_start (EV_A_ (W)w, 1); 1971 ev_start (EV_A_ (W)w, 1);
1571 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1972 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1572} 1973}
1573 1974
1574void 1975void
1575ev_child_stop (EV_P_ struct ev_child *w) 1976ev_child_stop (EV_P_ ev_child *w)
1576{ 1977{
1577 ev_clear_pending (EV_A_ (W)w); 1978 clear_pending (EV_A_ (W)w);
1578 if (!ev_is_active (w)) 1979 if (expect_false (!ev_is_active (w)))
1579 return; 1980 return;
1580 1981
1581 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1982 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1582 ev_stop (EV_A_ (W)w); 1983 ev_stop (EV_A_ (W)w);
1583} 1984}
1584 1985
1986#if EV_STAT_ENABLE
1987
1988# ifdef _WIN32
1989# undef lstat
1990# define lstat(a,b) _stati64 (a,b)
1991# endif
1992
1993#define DEF_STAT_INTERVAL 5.0074891
1994#define MIN_STAT_INTERVAL 0.1074891
1995
1996static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1997
1998#if EV_USE_INOTIFY
1999# define EV_INOTIFY_BUFSIZE 8192
2000
2001static void noinline
2002infy_add (EV_P_ ev_stat *w)
2003{
2004 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2005
2006 if (w->wd < 0)
2007 {
2008 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2009
2010 /* monitor some parent directory for speedup hints */
2011 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2012 {
2013 char path [4096];
2014 strcpy (path, w->path);
2015
2016 do
2017 {
2018 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2019 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2020
2021 char *pend = strrchr (path, '/');
2022
2023 if (!pend)
2024 break; /* whoops, no '/', complain to your admin */
2025
2026 *pend = 0;
2027 w->wd = inotify_add_watch (fs_fd, path, mask);
2028 }
2029 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2030 }
2031 }
2032 else
2033 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2034
2035 if (w->wd >= 0)
2036 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2037}
2038
2039static void noinline
2040infy_del (EV_P_ ev_stat *w)
2041{
2042 int slot;
2043 int wd = w->wd;
2044
2045 if (wd < 0)
2046 return;
2047
2048 w->wd = -2;
2049 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2050 wlist_del (&fs_hash [slot].head, (WL)w);
2051
2052 /* remove this watcher, if others are watching it, they will rearm */
2053 inotify_rm_watch (fs_fd, wd);
2054}
2055
2056static void noinline
2057infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2058{
2059 if (slot < 0)
2060 /* overflow, need to check for all hahs slots */
2061 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2062 infy_wd (EV_A_ slot, wd, ev);
2063 else
2064 {
2065 WL w_;
2066
2067 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2068 {
2069 ev_stat *w = (ev_stat *)w_;
2070 w_ = w_->next; /* lets us remove this watcher and all before it */
2071
2072 if (w->wd == wd || wd == -1)
2073 {
2074 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2075 {
2076 w->wd = -1;
2077 infy_add (EV_A_ w); /* re-add, no matter what */
2078 }
2079
2080 stat_timer_cb (EV_A_ &w->timer, 0);
2081 }
2082 }
2083 }
2084}
2085
2086static void
2087infy_cb (EV_P_ ev_io *w, int revents)
2088{
2089 char buf [EV_INOTIFY_BUFSIZE];
2090 struct inotify_event *ev = (struct inotify_event *)buf;
2091 int ofs;
2092 int len = read (fs_fd, buf, sizeof (buf));
2093
2094 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2095 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2096}
2097
2098void inline_size
2099infy_init (EV_P)
2100{
2101 if (fs_fd != -2)
2102 return;
2103
2104 fs_fd = inotify_init ();
2105
2106 if (fs_fd >= 0)
2107 {
2108 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2109 ev_set_priority (&fs_w, EV_MAXPRI);
2110 ev_io_start (EV_A_ &fs_w);
2111 }
2112}
2113
2114void inline_size
2115infy_fork (EV_P)
2116{
2117 int slot;
2118
2119 if (fs_fd < 0)
2120 return;
2121
2122 close (fs_fd);
2123 fs_fd = inotify_init ();
2124
2125 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2126 {
2127 WL w_ = fs_hash [slot].head;
2128 fs_hash [slot].head = 0;
2129
2130 while (w_)
2131 {
2132 ev_stat *w = (ev_stat *)w_;
2133 w_ = w_->next; /* lets us add this watcher */
2134
2135 w->wd = -1;
2136
2137 if (fs_fd >= 0)
2138 infy_add (EV_A_ w); /* re-add, no matter what */
2139 else
2140 ev_timer_start (EV_A_ &w->timer);
2141 }
2142
2143 }
2144}
2145
2146#endif
2147
2148void
2149ev_stat_stat (EV_P_ ev_stat *w)
2150{
2151 if (lstat (w->path, &w->attr) < 0)
2152 w->attr.st_nlink = 0;
2153 else if (!w->attr.st_nlink)
2154 w->attr.st_nlink = 1;
2155}
2156
2157static void noinline
2158stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2159{
2160 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2161
2162 /* we copy this here each the time so that */
2163 /* prev has the old value when the callback gets invoked */
2164 w->prev = w->attr;
2165 ev_stat_stat (EV_A_ w);
2166
2167 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2168 if (
2169 w->prev.st_dev != w->attr.st_dev
2170 || w->prev.st_ino != w->attr.st_ino
2171 || w->prev.st_mode != w->attr.st_mode
2172 || w->prev.st_nlink != w->attr.st_nlink
2173 || w->prev.st_uid != w->attr.st_uid
2174 || w->prev.st_gid != w->attr.st_gid
2175 || w->prev.st_rdev != w->attr.st_rdev
2176 || w->prev.st_size != w->attr.st_size
2177 || w->prev.st_atime != w->attr.st_atime
2178 || w->prev.st_mtime != w->attr.st_mtime
2179 || w->prev.st_ctime != w->attr.st_ctime
2180 ) {
2181 #if EV_USE_INOTIFY
2182 infy_del (EV_A_ w);
2183 infy_add (EV_A_ w);
2184 ev_stat_stat (EV_A_ w); /* avoid race... */
2185 #endif
2186
2187 ev_feed_event (EV_A_ w, EV_STAT);
2188 }
2189}
2190
2191void
2192ev_stat_start (EV_P_ ev_stat *w)
2193{
2194 if (expect_false (ev_is_active (w)))
2195 return;
2196
2197 /* since we use memcmp, we need to clear any padding data etc. */
2198 memset (&w->prev, 0, sizeof (ev_statdata));
2199 memset (&w->attr, 0, sizeof (ev_statdata));
2200
2201 ev_stat_stat (EV_A_ w);
2202
2203 if (w->interval < MIN_STAT_INTERVAL)
2204 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2205
2206 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2207 ev_set_priority (&w->timer, ev_priority (w));
2208
2209#if EV_USE_INOTIFY
2210 infy_init (EV_A);
2211
2212 if (fs_fd >= 0)
2213 infy_add (EV_A_ w);
2214 else
2215#endif
2216 ev_timer_start (EV_A_ &w->timer);
2217
2218 ev_start (EV_A_ (W)w, 1);
2219}
2220
2221void
2222ev_stat_stop (EV_P_ ev_stat *w)
2223{
2224 clear_pending (EV_A_ (W)w);
2225 if (expect_false (!ev_is_active (w)))
2226 return;
2227
2228#if EV_USE_INOTIFY
2229 infy_del (EV_A_ w);
2230#endif
2231 ev_timer_stop (EV_A_ &w->timer);
2232
2233 ev_stop (EV_A_ (W)w);
2234}
2235#endif
2236
2237#if EV_IDLE_ENABLE
2238void
2239ev_idle_start (EV_P_ ev_idle *w)
2240{
2241 if (expect_false (ev_is_active (w)))
2242 return;
2243
2244 pri_adjust (EV_A_ (W)w);
2245
2246 {
2247 int active = ++idlecnt [ABSPRI (w)];
2248
2249 ++idleall;
2250 ev_start (EV_A_ (W)w, active);
2251
2252 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2253 idles [ABSPRI (w)][active - 1] = w;
2254 }
2255}
2256
2257void
2258ev_idle_stop (EV_P_ ev_idle *w)
2259{
2260 clear_pending (EV_A_ (W)w);
2261 if (expect_false (!ev_is_active (w)))
2262 return;
2263
2264 {
2265 int active = ((W)w)->active;
2266
2267 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2268 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2269
2270 ev_stop (EV_A_ (W)w);
2271 --idleall;
2272 }
2273}
2274#endif
2275
2276void
2277ev_prepare_start (EV_P_ ev_prepare *w)
2278{
2279 if (expect_false (ev_is_active (w)))
2280 return;
2281
2282 ev_start (EV_A_ (W)w, ++preparecnt);
2283 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2284 prepares [preparecnt - 1] = w;
2285}
2286
2287void
2288ev_prepare_stop (EV_P_ ev_prepare *w)
2289{
2290 clear_pending (EV_A_ (W)w);
2291 if (expect_false (!ev_is_active (w)))
2292 return;
2293
2294 {
2295 int active = ((W)w)->active;
2296 prepares [active - 1] = prepares [--preparecnt];
2297 ((W)prepares [active - 1])->active = active;
2298 }
2299
2300 ev_stop (EV_A_ (W)w);
2301}
2302
2303void
2304ev_check_start (EV_P_ ev_check *w)
2305{
2306 if (expect_false (ev_is_active (w)))
2307 return;
2308
2309 ev_start (EV_A_ (W)w, ++checkcnt);
2310 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2311 checks [checkcnt - 1] = w;
2312}
2313
2314void
2315ev_check_stop (EV_P_ ev_check *w)
2316{
2317 clear_pending (EV_A_ (W)w);
2318 if (expect_false (!ev_is_active (w)))
2319 return;
2320
2321 {
2322 int active = ((W)w)->active;
2323 checks [active - 1] = checks [--checkcnt];
2324 ((W)checks [active - 1])->active = active;
2325 }
2326
2327 ev_stop (EV_A_ (W)w);
2328}
2329
2330#if EV_EMBED_ENABLE
2331void noinline
2332ev_embed_sweep (EV_P_ ev_embed *w)
2333{
2334 ev_loop (w->other, EVLOOP_NONBLOCK);
2335}
2336
2337static void
2338embed_io_cb (EV_P_ ev_io *io, int revents)
2339{
2340 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2341
2342 if (ev_cb (w))
2343 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2344 else
2345 ev_loop (w->other, EVLOOP_NONBLOCK);
2346}
2347
2348static void
2349embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2350{
2351 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2352
2353 {
2354 struct ev_loop *loop = w->other;
2355
2356 while (fdchangecnt)
2357 {
2358 fd_reify (EV_A);
2359 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2360 }
2361 }
2362}
2363
2364#if 0
2365static void
2366embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2367{
2368 ev_idle_stop (EV_A_ idle);
2369}
2370#endif
2371
2372void
2373ev_embed_start (EV_P_ ev_embed *w)
2374{
2375 if (expect_false (ev_is_active (w)))
2376 return;
2377
2378 {
2379 struct ev_loop *loop = w->other;
2380 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2381 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2382 }
2383
2384 ev_set_priority (&w->io, ev_priority (w));
2385 ev_io_start (EV_A_ &w->io);
2386
2387 ev_prepare_init (&w->prepare, embed_prepare_cb);
2388 ev_set_priority (&w->prepare, EV_MINPRI);
2389 ev_prepare_start (EV_A_ &w->prepare);
2390
2391 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2392
2393 ev_start (EV_A_ (W)w, 1);
2394}
2395
2396void
2397ev_embed_stop (EV_P_ ev_embed *w)
2398{
2399 clear_pending (EV_A_ (W)w);
2400 if (expect_false (!ev_is_active (w)))
2401 return;
2402
2403 ev_io_stop (EV_A_ &w->io);
2404 ev_prepare_stop (EV_A_ &w->prepare);
2405
2406 ev_stop (EV_A_ (W)w);
2407}
2408#endif
2409
2410#if EV_FORK_ENABLE
2411void
2412ev_fork_start (EV_P_ ev_fork *w)
2413{
2414 if (expect_false (ev_is_active (w)))
2415 return;
2416
2417 ev_start (EV_A_ (W)w, ++forkcnt);
2418 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2419 forks [forkcnt - 1] = w;
2420}
2421
2422void
2423ev_fork_stop (EV_P_ ev_fork *w)
2424{
2425 clear_pending (EV_A_ (W)w);
2426 if (expect_false (!ev_is_active (w)))
2427 return;
2428
2429 {
2430 int active = ((W)w)->active;
2431 forks [active - 1] = forks [--forkcnt];
2432 ((W)forks [active - 1])->active = active;
2433 }
2434
2435 ev_stop (EV_A_ (W)w);
2436}
2437#endif
2438
2439#if EV_ASYNC_ENABLE
2440void
2441ev_async_start (EV_P_ ev_async *w)
2442{
2443 if (expect_false (ev_is_active (w)))
2444 return;
2445
2446 evpipe_init (EV_A);
2447
2448 ev_start (EV_A_ (W)w, ++asynccnt);
2449 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2450 asyncs [asynccnt - 1] = w;
2451}
2452
2453void
2454ev_async_stop (EV_P_ ev_async *w)
2455{
2456 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w)))
2458 return;
2459
2460 {
2461 int active = ((W)w)->active;
2462 asyncs [active - 1] = asyncs [--asynccnt];
2463 ((W)asyncs [active - 1])->active = active;
2464 }
2465
2466 ev_stop (EV_A_ (W)w);
2467}
2468
2469void
2470ev_async_send (EV_P_ ev_async *w)
2471{
2472 w->sent = 1;
2473 evpipe_write (EV_A_ 0, 1);
2474}
2475#endif
2476
1585/*****************************************************************************/ 2477/*****************************************************************************/
1586 2478
1587struct ev_once 2479struct ev_once
1588{ 2480{
1589 struct ev_io io; 2481 ev_io io;
1590 struct ev_timer to; 2482 ev_timer to;
1591 void (*cb)(int revents, void *arg); 2483 void (*cb)(int revents, void *arg);
1592 void *arg; 2484 void *arg;
1593}; 2485};
1594 2486
1595static void 2487static void
1604 2496
1605 cb (revents, arg); 2497 cb (revents, arg);
1606} 2498}
1607 2499
1608static void 2500static void
1609once_cb_io (EV_P_ struct ev_io *w, int revents) 2501once_cb_io (EV_P_ ev_io *w, int revents)
1610{ 2502{
1611 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2503 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1612} 2504}
1613 2505
1614static void 2506static void
1615once_cb_to (EV_P_ struct ev_timer *w, int revents) 2507once_cb_to (EV_P_ ev_timer *w, int revents)
1616{ 2508{
1617 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2509 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1618} 2510}
1619 2511
1620void 2512void
1621ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2513ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1622{ 2514{
1623 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2515 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1624 2516
1625 if (!once) 2517 if (expect_false (!once))
2518 {
1626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2519 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1627 else 2520 return;
1628 { 2521 }
2522
1629 once->cb = cb; 2523 once->cb = cb;
1630 once->arg = arg; 2524 once->arg = arg;
1631 2525
1632 ev_init (&once->io, once_cb_io); 2526 ev_init (&once->io, once_cb_io);
1633 if (fd >= 0) 2527 if (fd >= 0)
1634 { 2528 {
1635 ev_io_set (&once->io, fd, events); 2529 ev_io_set (&once->io, fd, events);
1636 ev_io_start (EV_A_ &once->io); 2530 ev_io_start (EV_A_ &once->io);
1637 } 2531 }
1638 2532
1639 ev_init (&once->to, once_cb_to); 2533 ev_init (&once->to, once_cb_to);
1640 if (timeout >= 0.) 2534 if (timeout >= 0.)
1641 { 2535 {
1642 ev_timer_set (&once->to, timeout, 0.); 2536 ev_timer_set (&once->to, timeout, 0.);
1643 ev_timer_start (EV_A_ &once->to); 2537 ev_timer_start (EV_A_ &once->to);
1644 }
1645 } 2538 }
1646} 2539}
2540
2541#if EV_MULTIPLICITY
2542 #include "ev_wrap.h"
2543#endif
1647 2544
1648#ifdef __cplusplus 2545#ifdef __cplusplus
1649} 2546}
1650#endif 2547#endif
1651 2548

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines