ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.117 by ayin, Thu Nov 15 17:15:56 2007 UTC vs.
Revision 1.296 by root, Thu Jul 9 09:11:20 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
45# endif 79# endif
46# endif 80# endif
47 81
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
50# endif 88# endif
51 89
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
54# endif 96# endif
55 97
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
58# endif 104# endif
59 105
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
62# endif 112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
63 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
64#endif 146#endif
65 147
66#include <math.h> 148#include <math.h>
67#include <stdlib.h> 149#include <stdlib.h>
68#include <fcntl.h> 150#include <fcntl.h>
75#include <sys/types.h> 157#include <sys/types.h>
76#include <time.h> 158#include <time.h>
77 159
78#include <signal.h> 160#include <signal.h>
79 161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
80#ifndef _WIN32 168#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 169# include <sys/time.h>
83# include <sys/wait.h> 170# include <sys/wait.h>
171# include <unistd.h>
84#else 172#else
173# include <io.h>
85# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 175# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
89# endif 178# endif
90#endif 179#endif
91 180
92/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
93 190
94#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
95# define EV_USE_MONOTONIC 1 193# define EV_USE_MONOTONIC 1
194# else
195# define EV_USE_MONOTONIC 0
196# endif
197#endif
198
199#ifndef EV_USE_REALTIME
200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
96#endif 209#endif
97 210
98#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 213#endif
102 214
103#ifndef EV_USE_POLL 215#ifndef EV_USE_POLL
104# ifdef _WIN32 216# ifdef _WIN32
105# define EV_USE_POLL 0 217# define EV_USE_POLL 0
107# define EV_USE_POLL 1 219# define EV_USE_POLL 1
108# endif 220# endif
109#endif 221#endif
110 222
111#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
112# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
113#endif 229#endif
114 230
115#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
117#endif 233#endif
118 234
119#ifndef EV_USE_REALTIME 235#ifndef EV_USE_PORT
236# define EV_USE_PORT 0
237#endif
238
239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
120# define EV_USE_REALTIME 1 241# define EV_USE_INOTIFY 1
242# else
243# define EV_USE_INOTIFY 0
121#endif 244# endif
245#endif
122 246
123/**/ 247#ifndef EV_PID_HASHSIZE
124 248# if EV_MINIMAL
125/* darwin simply cannot be helped */ 249# define EV_PID_HASHSIZE 1
126#ifdef __APPLE__ 250# else
127# undef EV_USE_POLL 251# define EV_PID_HASHSIZE 16
128# undef EV_USE_KQUEUE
129#endif 252# endif
253#endif
254
255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
130 304
131#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
134#endif 308#endif
136#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
139#endif 313#endif
140 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
141#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h> 338# include <winsock.h>
143#endif 339#endif
144 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
145/**/ 353/**/
146 354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
151 374
152#ifdef EV_H
153# include EV_H
154#else
155# include "ev.h"
156#endif
157
158#if __GNUC__ >= 3 375#if __GNUC__ >= 4
159# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
160# define inline inline 377# define noinline __attribute__ ((noinline))
161#else 378#else
162# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
163# define inline static 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
164#endif 384#endif
165 385
166#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
168 389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
395
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
171 403
172#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
173#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
174 406
175typedef struct ev_watcher *W; 407typedef ev_watcher *W;
176typedef struct ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
177typedef struct ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
178 410
411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
179static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422#endif
180 423
181#ifdef _WIN32 424#ifdef _WIN32
182# include "ev_win32.c" 425# include "ev_win32.c"
183#endif 426#endif
184 427
185/*****************************************************************************/ 428/*****************************************************************************/
186 429
187static void (*syserr_cb)(const char *msg); 430static void (*syserr_cb)(const char *msg);
188 431
432void
189void ev_set_syserr_cb (void (*cb)(const char *msg)) 433ev_set_syserr_cb (void (*cb)(const char *msg))
190{ 434{
191 syserr_cb = cb; 435 syserr_cb = cb;
192} 436}
193 437
194static void 438static void noinline
195syserr (const char *msg) 439ev_syserr (const char *msg)
196{ 440{
197 if (!msg) 441 if (!msg)
198 msg = "(libev) system error"; 442 msg = "(libev) system error";
199 443
200 if (syserr_cb) 444 if (syserr_cb)
204 perror (msg); 448 perror (msg);
205 abort (); 449 abort ();
206 } 450 }
207} 451}
208 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
209static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
210 469
470void
211void ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
212{ 472{
213 alloc = cb; 473 alloc = cb;
214} 474}
215 475
216static void * 476inline_speed void *
217ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
218{ 478{
219 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
220 480
221 if (!ptr && size) 481 if (!ptr && size)
222 { 482 {
223 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
224 abort (); 484 abort ();
230#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
231#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
232 492
233/*****************************************************************************/ 493/*****************************************************************************/
234 494
495/* file descriptor info structure */
235typedef struct 496typedef struct
236{ 497{
237 WL head; 498 WL head;
238 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
239 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
240#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
241 SOCKET handle; 507 SOCKET handle;
242#endif 508#endif
243} ANFD; 509} ANFD;
244 510
511/* stores the pending event set for a given watcher */
245typedef struct 512typedef struct
246{ 513{
247 W w; 514 W w;
248 int events; 515 int events; /* the pending event set for the given watcher */
249} ANPENDING; 516} ANPENDING;
517
518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
520typedef struct
521{
522 WL head;
523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
544#endif
250 545
251#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
252 547
253 struct ev_loop 548 struct ev_loop
254 { 549 {
274 569
275#endif 570#endif
276 571
277/*****************************************************************************/ 572/*****************************************************************************/
278 573
574#ifndef EV_HAVE_EV_TIME
279ev_tstamp 575ev_tstamp
280ev_time (void) 576ev_time (void)
281{ 577{
282#if EV_USE_REALTIME 578#if EV_USE_REALTIME
579 if (expect_true (have_realtime))
580 {
283 struct timespec ts; 581 struct timespec ts;
284 clock_gettime (CLOCK_REALTIME, &ts); 582 clock_gettime (CLOCK_REALTIME, &ts);
285 return ts.tv_sec + ts.tv_nsec * 1e-9; 583 return ts.tv_sec + ts.tv_nsec * 1e-9;
286#else 584 }
585#endif
586
287 struct timeval tv; 587 struct timeval tv;
288 gettimeofday (&tv, 0); 588 gettimeofday (&tv, 0);
289 return tv.tv_sec + tv.tv_usec * 1e-6; 589 return tv.tv_sec + tv.tv_usec * 1e-6;
290#endif
291} 590}
591#endif
292 592
293inline ev_tstamp 593inline_size ev_tstamp
294get_clock (void) 594get_clock (void)
295{ 595{
296#if EV_USE_MONOTONIC 596#if EV_USE_MONOTONIC
297 if (expect_true (have_monotonic)) 597 if (expect_true (have_monotonic))
298 { 598 {
311{ 611{
312 return ev_rt_now; 612 return ev_rt_now;
313} 613}
314#endif 614#endif
315 615
316#define array_roundsize(type,n) (((n) | 4) & ~3) 616void
617ev_sleep (ev_tstamp delay)
618{
619 if (delay > 0.)
620 {
621#if EV_USE_NANOSLEEP
622 struct timespec ts;
623
624 ts.tv_sec = (time_t)delay;
625 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
626
627 nanosleep (&ts, 0);
628#elif defined(_WIN32)
629 Sleep ((unsigned long)(delay * 1e3));
630#else
631 struct timeval tv;
632
633 tv.tv_sec = (time_t)delay;
634 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
635
636 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
637 /* somehting not guaranteed by newer posix versions, but guaranteed */
638 /* by older ones */
639 select (0, 0, 0, 0, &tv);
640#endif
641 }
642}
643
644/*****************************************************************************/
645
646#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
647
648/* find a suitable new size for the given array, */
649/* hopefully by rounding to a ncie-to-malloc size */
650inline_size int
651array_nextsize (int elem, int cur, int cnt)
652{
653 int ncur = cur + 1;
654
655 do
656 ncur <<= 1;
657 while (cnt > ncur);
658
659 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
660 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
661 {
662 ncur *= elem;
663 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
664 ncur = ncur - sizeof (void *) * 4;
665 ncur /= elem;
666 }
667
668 return ncur;
669}
670
671static noinline void *
672array_realloc (int elem, void *base, int *cur, int cnt)
673{
674 *cur = array_nextsize (elem, *cur, cnt);
675 return ev_realloc (base, elem * *cur);
676}
677
678#define array_init_zero(base,count) \
679 memset ((void *)(base), 0, sizeof (*(base)) * (count))
317 680
318#define array_needsize(type,base,cur,cnt,init) \ 681#define array_needsize(type,base,cur,cnt,init) \
319 if (expect_false ((cnt) > cur)) \ 682 if (expect_false ((cnt) > (cur))) \
320 { \ 683 { \
321 int newcnt = cur; \ 684 int ocur_ = (cur); \
322 do \ 685 (base) = (type *)array_realloc \
323 { \ 686 (sizeof (type), (base), &(cur), (cnt)); \
324 newcnt = array_roundsize (type, newcnt << 1); \ 687 init ((base) + (ocur_), (cur) - ocur_); \
325 } \
326 while ((cnt) > newcnt); \
327 \
328 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
329 init (base + cur, newcnt - cur); \
330 cur = newcnt; \
331 } 688 }
332 689
690#if 0
333#define array_slim(type,stem) \ 691#define array_slim(type,stem) \
334 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 692 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
335 { \ 693 { \
336 stem ## max = array_roundsize (stem ## cnt >> 1); \ 694 stem ## max = array_roundsize (stem ## cnt >> 1); \
337 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 695 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
338 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 696 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
339 } 697 }
698#endif
340 699
341#define array_free(stem, idx) \ 700#define array_free(stem, idx) \
342 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 701 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
343 702
344/*****************************************************************************/ 703/*****************************************************************************/
345 704
346static void 705/* dummy callback for pending events */
347anfds_init (ANFD *base, int count) 706static void noinline
707pendingcb (EV_P_ ev_prepare *w, int revents)
348{ 708{
349 while (count--)
350 {
351 base->head = 0;
352 base->events = EV_NONE;
353 base->reify = 0;
354
355 ++base;
356 }
357} 709}
358 710
359void 711void noinline
360ev_feed_event (EV_P_ void *w, int revents) 712ev_feed_event (EV_P_ void *w, int revents)
361{ 713{
362 W w_ = (W)w; 714 W w_ = (W)w;
715 int pri = ABSPRI (w_);
363 716
364 if (w_->pending) 717 if (expect_false (w_->pending))
718 pendings [pri][w_->pending - 1].events |= revents;
719 else
365 { 720 {
721 w_->pending = ++pendingcnt [pri];
722 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
723 pendings [pri][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 724 pendings [pri][w_->pending - 1].events = revents;
367 return;
368 } 725 }
369
370 w_->pending = ++pendingcnt [ABSPRI (w_)];
371 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
372 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
374} 726}
375 727
376static void 728inline_speed void
729feed_reverse (EV_P_ W w)
730{
731 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
732 rfeeds [rfeedcnt++] = w;
733}
734
735inline_size void
736feed_reverse_done (EV_P_ int revents)
737{
738 do
739 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
740 while (rfeedcnt);
741}
742
743inline_speed void
377queue_events (EV_P_ W *events, int eventcnt, int type) 744queue_events (EV_P_ W *events, int eventcnt, int type)
378{ 745{
379 int i; 746 int i;
380 747
381 for (i = 0; i < eventcnt; ++i) 748 for (i = 0; i < eventcnt; ++i)
382 ev_feed_event (EV_A_ events [i], type); 749 ev_feed_event (EV_A_ events [i], type);
383} 750}
384 751
752/*****************************************************************************/
753
385inline void 754inline_speed void
386fd_event (EV_P_ int fd, int revents) 755fd_event (EV_P_ int fd, int revents)
387{ 756{
388 ANFD *anfd = anfds + fd; 757 ANFD *anfd = anfds + fd;
389 struct ev_io *w; 758 ev_io *w;
390 759
391 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 760 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
392 { 761 {
393 int ev = w->events & revents; 762 int ev = w->events & revents;
394 763
395 if (ev) 764 if (ev)
396 ev_feed_event (EV_A_ (W)w, ev); 765 ev_feed_event (EV_A_ (W)w, ev);
398} 767}
399 768
400void 769void
401ev_feed_fd_event (EV_P_ int fd, int revents) 770ev_feed_fd_event (EV_P_ int fd, int revents)
402{ 771{
772 if (fd >= 0 && fd < anfdmax)
403 fd_event (EV_A_ fd, revents); 773 fd_event (EV_A_ fd, revents);
404} 774}
405 775
406/*****************************************************************************/ 776/* make sure the external fd watch events are in-sync */
407 777/* with the kernel/libev internal state */
408static void 778inline_size void
409fd_reify (EV_P) 779fd_reify (EV_P)
410{ 780{
411 int i; 781 int i;
412 782
413 for (i = 0; i < fdchangecnt; ++i) 783 for (i = 0; i < fdchangecnt; ++i)
414 { 784 {
415 int fd = fdchanges [i]; 785 int fd = fdchanges [i];
416 ANFD *anfd = anfds + fd; 786 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 787 ev_io *w;
418 788
419 int events = 0; 789 unsigned char events = 0;
420 790
421 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 791 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
422 events |= w->events; 792 events |= (unsigned char)w->events;
423 793
424#if EV_SELECT_IS_WINSOCKET 794#if EV_SELECT_IS_WINSOCKET
425 if (events) 795 if (events)
426 { 796 {
427 unsigned long argp; 797 unsigned long arg;
798 #ifdef EV_FD_TO_WIN32_HANDLE
799 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
800 #else
428 anfd->handle = _get_osfhandle (fd); 801 anfd->handle = _get_osfhandle (fd);
802 #endif
429 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 803 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
430 } 804 }
431#endif 805#endif
432 806
807 {
808 unsigned char o_events = anfd->events;
809 unsigned char o_reify = anfd->reify;
810
433 anfd->reify = 0; 811 anfd->reify = 0;
434
435 method_modify (EV_A_ fd, anfd->events, events);
436 anfd->events = events; 812 anfd->events = events;
813
814 if (o_events != events || o_reify & EV__IOFDSET)
815 backend_modify (EV_A_ fd, o_events, events);
816 }
437 } 817 }
438 818
439 fdchangecnt = 0; 819 fdchangecnt = 0;
440} 820}
441 821
442static void 822/* something about the given fd changed */
823inline_size void
443fd_change (EV_P_ int fd) 824fd_change (EV_P_ int fd, int flags)
444{ 825{
445 if (anfds [fd].reify) 826 unsigned char reify = anfds [fd].reify;
446 return;
447
448 anfds [fd].reify = 1; 827 anfds [fd].reify |= flags;
449 828
829 if (expect_true (!reify))
830 {
450 ++fdchangecnt; 831 ++fdchangecnt;
451 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 832 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
452 fdchanges [fdchangecnt - 1] = fd; 833 fdchanges [fdchangecnt - 1] = fd;
834 }
453} 835}
454 836
455static void 837/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
838inline_speed void
456fd_kill (EV_P_ int fd) 839fd_kill (EV_P_ int fd)
457{ 840{
458 struct ev_io *w; 841 ev_io *w;
459 842
460 while ((w = (struct ev_io *)anfds [fd].head)) 843 while ((w = (ev_io *)anfds [fd].head))
461 { 844 {
462 ev_io_stop (EV_A_ w); 845 ev_io_stop (EV_A_ w);
463 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 846 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
464 } 847 }
465} 848}
466 849
467static int 850/* check whether the given fd is atcually valid, for error recovery */
851inline_size int
468fd_valid (int fd) 852fd_valid (int fd)
469{ 853{
470#ifdef _WIN32 854#ifdef _WIN32
471 return _get_osfhandle (fd) != -1; 855 return _get_osfhandle (fd) != -1;
472#else 856#else
473 return fcntl (fd, F_GETFD) != -1; 857 return fcntl (fd, F_GETFD) != -1;
474#endif 858#endif
475} 859}
476 860
477/* called on EBADF to verify fds */ 861/* called on EBADF to verify fds */
478static void 862static void noinline
479fd_ebadf (EV_P) 863fd_ebadf (EV_P)
480{ 864{
481 int fd; 865 int fd;
482 866
483 for (fd = 0; fd < anfdmax; ++fd) 867 for (fd = 0; fd < anfdmax; ++fd)
484 if (anfds [fd].events) 868 if (anfds [fd].events)
485 if (!fd_valid (fd) == -1 && errno == EBADF) 869 if (!fd_valid (fd) && errno == EBADF)
486 fd_kill (EV_A_ fd); 870 fd_kill (EV_A_ fd);
487} 871}
488 872
489/* called on ENOMEM in select/poll to kill some fds and retry */ 873/* called on ENOMEM in select/poll to kill some fds and retry */
490static void 874static void noinline
491fd_enomem (EV_P) 875fd_enomem (EV_P)
492{ 876{
493 int fd; 877 int fd;
494 878
495 for (fd = anfdmax; fd--; ) 879 for (fd = anfdmax; fd--; )
498 fd_kill (EV_A_ fd); 882 fd_kill (EV_A_ fd);
499 return; 883 return;
500 } 884 }
501} 885}
502 886
503/* usually called after fork if method needs to re-arm all fds from scratch */ 887/* usually called after fork if backend needs to re-arm all fds from scratch */
504static void 888static void noinline
505fd_rearm_all (EV_P) 889fd_rearm_all (EV_P)
506{ 890{
507 int fd; 891 int fd;
508 892
509 /* this should be highly optimised to not do anything but set a flag */
510 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
511 if (anfds [fd].events) 894 if (anfds [fd].events)
512 { 895 {
513 anfds [fd].events = 0; 896 anfds [fd].events = 0;
897 anfds [fd].emask = 0;
514 fd_change (EV_A_ fd); 898 fd_change (EV_A_ fd, EV__IOFDSET | 1);
515 } 899 }
516} 900}
517 901
518/*****************************************************************************/ 902/*****************************************************************************/
519 903
520static void 904/*
521upheap (WT *heap, int k) 905 * the heap functions want a real array index. array index 0 uis guaranteed to not
522{ 906 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
523 WT w = heap [k]; 907 * the branching factor of the d-tree.
908 */
524 909
525 while (k && heap [k >> 1]->at > w->at) 910/*
526 { 911 * at the moment we allow libev the luxury of two heaps,
527 heap [k] = heap [k >> 1]; 912 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
528 ((W)heap [k])->active = k + 1; 913 * which is more cache-efficient.
529 k >>= 1; 914 * the difference is about 5% with 50000+ watchers.
530 } 915 */
916#if EV_USE_4HEAP
531 917
532 heap [k] = w; 918#define DHEAP 4
533 ((W)heap [k])->active = k + 1; 919#define HEAP0 (DHEAP - 1) /* index of first element in heap */
920#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
921#define UPHEAP_DONE(p,k) ((p) == (k))
534 922
535} 923/* away from the root */
536 924inline_speed void
537static void
538downheap (WT *heap, int N, int k) 925downheap (ANHE *heap, int N, int k)
539{ 926{
540 WT w = heap [k]; 927 ANHE he = heap [k];
928 ANHE *E = heap + N + HEAP0;
541 929
542 while (k < (N >> 1)) 930 for (;;)
543 { 931 {
544 int j = k << 1; 932 ev_tstamp minat;
933 ANHE *minpos;
934 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
545 935
546 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 936 /* find minimum child */
937 if (expect_true (pos + DHEAP - 1 < E))
547 ++j; 938 {
548 939 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
549 if (w->at <= heap [j]->at) 940 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
941 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
942 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
943 }
944 else if (pos < E)
945 {
946 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
947 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
948 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
949 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
950 }
951 else
550 break; 952 break;
551 953
954 if (ANHE_at (he) <= minat)
955 break;
956
957 heap [k] = *minpos;
958 ev_active (ANHE_w (*minpos)) = k;
959
960 k = minpos - heap;
961 }
962
963 heap [k] = he;
964 ev_active (ANHE_w (he)) = k;
965}
966
967#else /* 4HEAP */
968
969#define HEAP0 1
970#define HPARENT(k) ((k) >> 1)
971#define UPHEAP_DONE(p,k) (!(p))
972
973/* away from the root */
974inline_speed void
975downheap (ANHE *heap, int N, int k)
976{
977 ANHE he = heap [k];
978
979 for (;;)
980 {
981 int c = k << 1;
982
983 if (c > N + HEAP0 - 1)
984 break;
985
986 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
987 ? 1 : 0;
988
989 if (ANHE_at (he) <= ANHE_at (heap [c]))
990 break;
991
552 heap [k] = heap [j]; 992 heap [k] = heap [c];
553 ((W)heap [k])->active = k + 1; 993 ev_active (ANHE_w (heap [k])) = k;
994
554 k = j; 995 k = c;
555 } 996 }
556 997
557 heap [k] = w; 998 heap [k] = he;
558 ((W)heap [k])->active = k + 1; 999 ev_active (ANHE_w (he)) = k;
559} 1000}
1001#endif
560 1002
1003/* towards the root */
1004inline_speed void
1005upheap (ANHE *heap, int k)
1006{
1007 ANHE he = heap [k];
1008
1009 for (;;)
1010 {
1011 int p = HPARENT (k);
1012
1013 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1014 break;
1015
1016 heap [k] = heap [p];
1017 ev_active (ANHE_w (heap [k])) = k;
1018 k = p;
1019 }
1020
1021 heap [k] = he;
1022 ev_active (ANHE_w (he)) = k;
1023}
1024
1025/* move an element suitably so it is in a correct place */
561inline void 1026inline_size void
562adjustheap (WT *heap, int N, int k) 1027adjustheap (ANHE *heap, int N, int k)
563{ 1028{
1029 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
564 upheap (heap, k); 1030 upheap (heap, k);
1031 else
565 downheap (heap, N, k); 1032 downheap (heap, N, k);
1033}
1034
1035/* rebuild the heap: this function is used only once and executed rarely */
1036inline_size void
1037reheap (ANHE *heap, int N)
1038{
1039 int i;
1040
1041 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1042 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1043 for (i = 0; i < N; ++i)
1044 upheap (heap, i + HEAP0);
566} 1045}
567 1046
568/*****************************************************************************/ 1047/*****************************************************************************/
569 1048
1049/* associate signal watchers to a signal signal */
570typedef struct 1050typedef struct
571{ 1051{
572 WL head; 1052 WL head;
573 sig_atomic_t volatile gotsig; 1053 EV_ATOMIC_T gotsig;
574} ANSIG; 1054} ANSIG;
575 1055
576static ANSIG *signals; 1056static ANSIG *signals;
577static int signalmax; 1057static int signalmax;
578 1058
579static int sigpipe [2]; 1059static EV_ATOMIC_T gotsig;
580static sig_atomic_t volatile gotsig;
581static struct ev_io sigev;
582 1060
583static void 1061/*****************************************************************************/
584signals_init (ANSIG *base, int count)
585{
586 while (count--)
587 {
588 base->head = 0;
589 base->gotsig = 0;
590 1062
591 ++base; 1063/* used to prepare libev internal fd's */
592 } 1064/* this is not fork-safe */
593}
594
595static void
596sighandler (int signum)
597{
598#if _WIN32
599 signal (signum, sighandler);
600#endif
601
602 signals [signum - 1].gotsig = 1;
603
604 if (!gotsig)
605 {
606 int old_errno = errno;
607 gotsig = 1;
608 write (sigpipe [1], &signum, 1);
609 errno = old_errno;
610 }
611}
612
613void
614ev_feed_signal_event (EV_P_ int signum)
615{
616 WL w;
617
618#if EV_MULTIPLICITY
619 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
620#endif
621
622 --signum;
623
624 if (signum < 0 || signum >= signalmax)
625 return;
626
627 signals [signum].gotsig = 0;
628
629 for (w = signals [signum].head; w; w = w->next)
630 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
631}
632
633static void
634sigcb (EV_P_ struct ev_io *iow, int revents)
635{
636 int signum;
637
638 read (sigpipe [0], &revents, 1);
639 gotsig = 0;
640
641 for (signum = signalmax; signum--; )
642 if (signals [signum].gotsig)
643 ev_feed_signal_event (EV_A_ signum + 1);
644}
645
646inline void 1065inline_speed void
647fd_intern (int fd) 1066fd_intern (int fd)
648{ 1067{
649#ifdef _WIN32 1068#ifdef _WIN32
650 int arg = 1; 1069 unsigned long arg = 1;
651 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1070 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
652#else 1071#else
653 fcntl (fd, F_SETFD, FD_CLOEXEC); 1072 fcntl (fd, F_SETFD, FD_CLOEXEC);
654 fcntl (fd, F_SETFL, O_NONBLOCK); 1073 fcntl (fd, F_SETFL, O_NONBLOCK);
655#endif 1074#endif
656} 1075}
657 1076
1077static void noinline
1078evpipe_init (EV_P)
1079{
1080 if (!ev_is_active (&pipe_w))
1081 {
1082#if EV_USE_EVENTFD
1083 if ((evfd = eventfd (0, 0)) >= 0)
1084 {
1085 evpipe [0] = -1;
1086 fd_intern (evfd);
1087 ev_io_set (&pipe_w, evfd, EV_READ);
1088 }
1089 else
1090#endif
1091 {
1092 while (pipe (evpipe))
1093 ev_syserr ("(libev) error creating signal/async pipe");
1094
1095 fd_intern (evpipe [0]);
1096 fd_intern (evpipe [1]);
1097 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1098 }
1099
1100 ev_io_start (EV_A_ &pipe_w);
1101 ev_unref (EV_A); /* watcher should not keep loop alive */
1102 }
1103}
1104
1105inline_size void
1106evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1107{
1108 if (!*flag)
1109 {
1110 int old_errno = errno; /* save errno because write might clobber it */
1111
1112 *flag = 1;
1113
1114#if EV_USE_EVENTFD
1115 if (evfd >= 0)
1116 {
1117 uint64_t counter = 1;
1118 write (evfd, &counter, sizeof (uint64_t));
1119 }
1120 else
1121#endif
1122 write (evpipe [1], &old_errno, 1);
1123
1124 errno = old_errno;
1125 }
1126}
1127
1128/* called whenever the libev signal pipe */
1129/* got some events (signal, async) */
658static void 1130static void
659siginit (EV_P) 1131pipecb (EV_P_ ev_io *iow, int revents)
660{ 1132{
661 fd_intern (sigpipe [0]); 1133#if EV_USE_EVENTFD
662 fd_intern (sigpipe [1]); 1134 if (evfd >= 0)
1135 {
1136 uint64_t counter;
1137 read (evfd, &counter, sizeof (uint64_t));
1138 }
1139 else
1140#endif
1141 {
1142 char dummy;
1143 read (evpipe [0], &dummy, 1);
1144 }
663 1145
664 ev_io_set (&sigev, sigpipe [0], EV_READ); 1146 if (gotsig && ev_is_default_loop (EV_A))
665 ev_io_start (EV_A_ &sigev); 1147 {
666 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1148 int signum;
1149 gotsig = 0;
1150
1151 for (signum = signalmax; signum--; )
1152 if (signals [signum].gotsig)
1153 ev_feed_signal_event (EV_A_ signum + 1);
1154 }
1155
1156#if EV_ASYNC_ENABLE
1157 if (gotasync)
1158 {
1159 int i;
1160 gotasync = 0;
1161
1162 for (i = asynccnt; i--; )
1163 if (asyncs [i]->sent)
1164 {
1165 asyncs [i]->sent = 0;
1166 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1167 }
1168 }
1169#endif
667} 1170}
668 1171
669/*****************************************************************************/ 1172/*****************************************************************************/
670 1173
671static struct ev_child *childs [PID_HASHSIZE]; 1174static void
1175ev_sighandler (int signum)
1176{
1177#if EV_MULTIPLICITY
1178 struct ev_loop *loop = &default_loop_struct;
1179#endif
1180
1181#if _WIN32
1182 signal (signum, ev_sighandler);
1183#endif
1184
1185 signals [signum - 1].gotsig = 1;
1186 evpipe_write (EV_A_ &gotsig);
1187}
1188
1189void noinline
1190ev_feed_signal_event (EV_P_ int signum)
1191{
1192 WL w;
1193
1194#if EV_MULTIPLICITY
1195 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1196#endif
1197
1198 --signum;
1199
1200 if (signum < 0 || signum >= signalmax)
1201 return;
1202
1203 signals [signum].gotsig = 0;
1204
1205 for (w = signals [signum].head; w; w = w->next)
1206 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1207}
1208
1209/*****************************************************************************/
1210
1211static WL childs [EV_PID_HASHSIZE];
672 1212
673#ifndef _WIN32 1213#ifndef _WIN32
674 1214
675static struct ev_signal childev; 1215static ev_signal childev;
1216
1217#ifndef WIFCONTINUED
1218# define WIFCONTINUED(status) 0
1219#endif
1220
1221/* handle a single child status event */
1222inline_speed void
1223child_reap (EV_P_ int chain, int pid, int status)
1224{
1225 ev_child *w;
1226 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1227
1228 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1229 {
1230 if ((w->pid == pid || !w->pid)
1231 && (!traced || (w->flags & 1)))
1232 {
1233 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1234 w->rpid = pid;
1235 w->rstatus = status;
1236 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1237 }
1238 }
1239}
676 1240
677#ifndef WCONTINUED 1241#ifndef WCONTINUED
678# define WCONTINUED 0 1242# define WCONTINUED 0
679#endif 1243#endif
680 1244
1245/* called on sigchld etc., calls waitpid */
681static void 1246static void
682child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
683{
684 struct ev_child *w;
685
686 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
687 if (w->pid == pid || !w->pid)
688 {
689 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
690 w->rpid = pid;
691 w->rstatus = status;
692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
693 }
694}
695
696static void
697childcb (EV_P_ struct ev_signal *sw, int revents) 1247childcb (EV_P_ ev_signal *sw, int revents)
698{ 1248{
699 int pid, status; 1249 int pid, status;
700 1250
1251 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
701 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1252 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
702 { 1253 if (!WCONTINUED
1254 || errno != EINVAL
1255 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1256 return;
1257
703 /* make sure we are called again until all childs have been reaped */ 1258 /* make sure we are called again until all children have been reaped */
1259 /* we need to do it this way so that the callback gets called before we continue */
704 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1260 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
705 1261
706 child_reap (EV_A_ sw, pid, pid, status); 1262 child_reap (EV_A_ pid, pid, status);
1263 if (EV_PID_HASHSIZE > 1)
707 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1264 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
708 }
709} 1265}
710 1266
711#endif 1267#endif
712 1268
713/*****************************************************************************/ 1269/*****************************************************************************/
714 1270
1271#if EV_USE_PORT
1272# include "ev_port.c"
1273#endif
715#if EV_USE_KQUEUE 1274#if EV_USE_KQUEUE
716# include "ev_kqueue.c" 1275# include "ev_kqueue.c"
717#endif 1276#endif
718#if EV_USE_EPOLL 1277#if EV_USE_EPOLL
719# include "ev_epoll.c" 1278# include "ev_epoll.c"
736{ 1295{
737 return EV_VERSION_MINOR; 1296 return EV_VERSION_MINOR;
738} 1297}
739 1298
740/* return true if we are running with elevated privileges and should ignore env variables */ 1299/* return true if we are running with elevated privileges and should ignore env variables */
741static int 1300int inline_size
742enable_secure (void) 1301enable_secure (void)
743{ 1302{
744#ifdef _WIN32 1303#ifdef _WIN32
745 return 0; 1304 return 0;
746#else 1305#else
748 || getgid () != getegid (); 1307 || getgid () != getegid ();
749#endif 1308#endif
750} 1309}
751 1310
752unsigned int 1311unsigned int
753ev_method (EV_P) 1312ev_supported_backends (void)
754{ 1313{
755 return method; 1314 unsigned int flags = 0;
756}
757 1315
758static void 1316 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1317 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1318 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1319 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1320 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1321
1322 return flags;
1323}
1324
1325unsigned int
1326ev_recommended_backends (void)
1327{
1328 unsigned int flags = ev_supported_backends ();
1329
1330#ifndef __NetBSD__
1331 /* kqueue is borked on everything but netbsd apparently */
1332 /* it usually doesn't work correctly on anything but sockets and pipes */
1333 flags &= ~EVBACKEND_KQUEUE;
1334#endif
1335#ifdef __APPLE__
1336 /* only select works correctly on that "unix-certified" platform */
1337 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1338 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1339#endif
1340
1341 return flags;
1342}
1343
1344unsigned int
1345ev_embeddable_backends (void)
1346{
1347 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1348
1349 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1350 /* please fix it and tell me how to detect the fix */
1351 flags &= ~EVBACKEND_EPOLL;
1352
1353 return flags;
1354}
1355
1356unsigned int
1357ev_backend (EV_P)
1358{
1359 return backend;
1360}
1361
1362unsigned int
1363ev_loop_count (EV_P)
1364{
1365 return loop_count;
1366}
1367
1368unsigned int
1369ev_loop_depth (EV_P)
1370{
1371 return loop_depth;
1372}
1373
1374void
1375ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1376{
1377 io_blocktime = interval;
1378}
1379
1380void
1381ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1382{
1383 timeout_blocktime = interval;
1384}
1385
1386/* initialise a loop structure, must be zero-initialised */
1387static void noinline
759loop_init (EV_P_ unsigned int flags) 1388loop_init (EV_P_ unsigned int flags)
760{ 1389{
761 if (!method) 1390 if (!backend)
762 { 1391 {
1392#if EV_USE_REALTIME
1393 if (!have_realtime)
1394 {
1395 struct timespec ts;
1396
1397 if (!clock_gettime (CLOCK_REALTIME, &ts))
1398 have_realtime = 1;
1399 }
1400#endif
1401
763#if EV_USE_MONOTONIC 1402#if EV_USE_MONOTONIC
1403 if (!have_monotonic)
1404 {
1405 struct timespec ts;
1406
1407 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1408 have_monotonic = 1;
1409 }
1410#endif
1411
1412 ev_rt_now = ev_time ();
1413 mn_now = get_clock ();
1414 now_floor = mn_now;
1415 rtmn_diff = ev_rt_now - mn_now;
1416 invoke_cb = ev_invoke_pending;
1417
1418 io_blocktime = 0.;
1419 timeout_blocktime = 0.;
1420 backend = 0;
1421 backend_fd = -1;
1422 gotasync = 0;
1423#if EV_USE_INOTIFY
1424 fs_fd = -2;
1425#endif
1426
1427 /* pid check not overridable via env */
1428#ifndef _WIN32
1429 if (flags & EVFLAG_FORKCHECK)
1430 curpid = getpid ();
1431#endif
1432
1433 if (!(flags & EVFLAG_NOENV)
1434 && !enable_secure ()
1435 && getenv ("LIBEV_FLAGS"))
1436 flags = atoi (getenv ("LIBEV_FLAGS"));
1437
1438 if (!(flags & 0x0000ffffU))
1439 flags |= ev_recommended_backends ();
1440
1441#if EV_USE_PORT
1442 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1443#endif
1444#if EV_USE_KQUEUE
1445 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1446#endif
1447#if EV_USE_EPOLL
1448 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1449#endif
1450#if EV_USE_POLL
1451 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1452#endif
1453#if EV_USE_SELECT
1454 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1455#endif
1456
1457 ev_prepare_init (&pending_w, pendingcb);
1458
1459 ev_init (&pipe_w, pipecb);
1460 ev_set_priority (&pipe_w, EV_MAXPRI);
1461 }
1462}
1463
1464/* free up a loop structure */
1465static void noinline
1466loop_destroy (EV_P)
1467{
1468 int i;
1469
1470 if (ev_is_active (&pipe_w))
1471 {
1472 ev_ref (EV_A); /* signal watcher */
1473 ev_io_stop (EV_A_ &pipe_w);
1474
1475#if EV_USE_EVENTFD
1476 if (evfd >= 0)
1477 close (evfd);
1478#endif
1479
1480 if (evpipe [0] >= 0)
1481 {
1482 close (evpipe [0]);
1483 close (evpipe [1]);
1484 }
1485 }
1486
1487#if EV_USE_INOTIFY
1488 if (fs_fd >= 0)
1489 close (fs_fd);
1490#endif
1491
1492 if (backend_fd >= 0)
1493 close (backend_fd);
1494
1495#if EV_USE_PORT
1496 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1497#endif
1498#if EV_USE_KQUEUE
1499 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1500#endif
1501#if EV_USE_EPOLL
1502 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1503#endif
1504#if EV_USE_POLL
1505 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1506#endif
1507#if EV_USE_SELECT
1508 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1509#endif
1510
1511 for (i = NUMPRI; i--; )
1512 {
1513 array_free (pending, [i]);
1514#if EV_IDLE_ENABLE
1515 array_free (idle, [i]);
1516#endif
1517 }
1518
1519 ev_free (anfds); anfdmax = 0;
1520
1521 /* have to use the microsoft-never-gets-it-right macro */
1522 array_free (rfeed, EMPTY);
1523 array_free (fdchange, EMPTY);
1524 array_free (timer, EMPTY);
1525#if EV_PERIODIC_ENABLE
1526 array_free (periodic, EMPTY);
1527#endif
1528#if EV_FORK_ENABLE
1529 array_free (fork, EMPTY);
1530#endif
1531 array_free (prepare, EMPTY);
1532 array_free (check, EMPTY);
1533#if EV_ASYNC_ENABLE
1534 array_free (async, EMPTY);
1535#endif
1536
1537 backend = 0;
1538}
1539
1540#if EV_USE_INOTIFY
1541inline_size void infy_fork (EV_P);
1542#endif
1543
1544inline_size void
1545loop_fork (EV_P)
1546{
1547#if EV_USE_PORT
1548 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1549#endif
1550#if EV_USE_KQUEUE
1551 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1552#endif
1553#if EV_USE_EPOLL
1554 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1555#endif
1556#if EV_USE_INOTIFY
1557 infy_fork (EV_A);
1558#endif
1559
1560 if (ev_is_active (&pipe_w))
1561 {
1562 /* this "locks" the handlers against writing to the pipe */
1563 /* while we modify the fd vars */
1564 gotsig = 1;
1565#if EV_ASYNC_ENABLE
1566 gotasync = 1;
1567#endif
1568
1569 ev_ref (EV_A);
1570 ev_io_stop (EV_A_ &pipe_w);
1571
1572#if EV_USE_EVENTFD
1573 if (evfd >= 0)
1574 close (evfd);
1575#endif
1576
1577 if (evpipe [0] >= 0)
1578 {
1579 close (evpipe [0]);
1580 close (evpipe [1]);
1581 }
1582
1583 evpipe_init (EV_A);
1584 /* now iterate over everything, in case we missed something */
1585 pipecb (EV_A_ &pipe_w, EV_READ);
1586 }
1587
1588 postfork = 0;
1589}
1590
1591#if EV_MULTIPLICITY
1592
1593struct ev_loop *
1594ev_loop_new (unsigned int flags)
1595{
1596 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1597
1598 memset (loop, 0, sizeof (struct ev_loop));
1599
1600 loop_init (EV_A_ flags);
1601
1602 if (ev_backend (EV_A))
1603 return loop;
1604
1605 return 0;
1606}
1607
1608void
1609ev_loop_destroy (EV_P)
1610{
1611 loop_destroy (EV_A);
1612 ev_free (loop);
1613}
1614
1615void
1616ev_loop_fork (EV_P)
1617{
1618 postfork = 1; /* must be in line with ev_default_fork */
1619}
1620
1621#if EV_VERIFY
1622static void noinline
1623verify_watcher (EV_P_ W w)
1624{
1625 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1626
1627 if (w->pending)
1628 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1629}
1630
1631static void noinline
1632verify_heap (EV_P_ ANHE *heap, int N)
1633{
1634 int i;
1635
1636 for (i = HEAP0; i < N + HEAP0; ++i)
1637 {
1638 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1639 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1640 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1641
1642 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1643 }
1644}
1645
1646static void noinline
1647array_verify (EV_P_ W *ws, int cnt)
1648{
1649 while (cnt--)
1650 {
1651 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1652 verify_watcher (EV_A_ ws [cnt]);
1653 }
1654}
1655#endif
1656
1657void
1658ev_loop_verify (EV_P)
1659{
1660#if EV_VERIFY
1661 int i;
1662 WL w;
1663
1664 assert (activecnt >= -1);
1665
1666 assert (fdchangemax >= fdchangecnt);
1667 for (i = 0; i < fdchangecnt; ++i)
1668 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1669
1670 assert (anfdmax >= 0);
1671 for (i = 0; i < anfdmax; ++i)
1672 for (w = anfds [i].head; w; w = w->next)
764 { 1673 {
765 struct timespec ts; 1674 verify_watcher (EV_A_ (W)w);
766 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1675 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
767 have_monotonic = 1; 1676 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
768 } 1677 }
769#endif
770 1678
771 ev_rt_now = ev_time (); 1679 assert (timermax >= timercnt);
772 mn_now = get_clock (); 1680 verify_heap (EV_A_ timers, timercnt);
773 now_floor = mn_now;
774 rtmn_diff = ev_rt_now - mn_now;
775 1681
776 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1682#if EV_PERIODIC_ENABLE
777 flags = atoi (getenv ("LIBEV_FLAGS")); 1683 assert (periodicmax >= periodiccnt);
778 1684 verify_heap (EV_A_ periodics, periodiccnt);
779 if (!(flags & 0x0000ffff))
780 flags |= 0x0000ffff;
781
782 method = 0;
783#if EV_USE_KQUEUE
784 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
785#endif
786#if EV_USE_EPOLL
787 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
788#endif
789#if EV_USE_POLL
790 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
791#endif
792#if EV_USE_SELECT
793 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
794#endif
795
796 ev_init (&sigev, sigcb);
797 ev_set_priority (&sigev, EV_MAXPRI);
798 }
799}
800
801void
802loop_destroy (EV_P)
803{
804 int i;
805
806#if EV_USE_KQUEUE
807 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
808#endif
809#if EV_USE_EPOLL
810 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
811#endif
812#if EV_USE_POLL
813 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
814#endif
815#if EV_USE_SELECT
816 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
817#endif 1685#endif
818 1686
819 for (i = NUMPRI; i--; ) 1687 for (i = NUMPRI; i--; )
820 array_free (pending, [i]); 1688 {
1689 assert (pendingmax [i] >= pendingcnt [i]);
1690#if EV_IDLE_ENABLE
1691 assert (idleall >= 0);
1692 assert (idlemax [i] >= idlecnt [i]);
1693 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1694#endif
1695 }
821 1696
822 /* have to use the microsoft-never-gets-it-right macro */ 1697#if EV_FORK_ENABLE
823 array_free (fdchange, EMPTY0); 1698 assert (forkmax >= forkcnt);
824 array_free (timer, EMPTY0); 1699 array_verify (EV_A_ (W *)forks, forkcnt);
825#if EV_PERIODICS 1700#endif
826 array_free (periodic, EMPTY0); 1701
1702#if EV_ASYNC_ENABLE
1703 assert (asyncmax >= asynccnt);
1704 array_verify (EV_A_ (W *)asyncs, asynccnt);
1705#endif
1706
1707 assert (preparemax >= preparecnt);
1708 array_verify (EV_A_ (W *)prepares, preparecnt);
1709
1710 assert (checkmax >= checkcnt);
1711 array_verify (EV_A_ (W *)checks, checkcnt);
1712
1713# if 0
1714 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1715 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
827#endif 1716# endif
828 array_free (idle, EMPTY0);
829 array_free (prepare, EMPTY0);
830 array_free (check, EMPTY0);
831
832 method = 0;
833}
834
835static void
836loop_fork (EV_P)
837{
838#if EV_USE_EPOLL
839 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
840#endif 1717#endif
841#if EV_USE_KQUEUE
842 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
843#endif
844
845 if (ev_is_active (&sigev))
846 {
847 /* default loop */
848
849 ev_ref (EV_A);
850 ev_io_stop (EV_A_ &sigev);
851 close (sigpipe [0]);
852 close (sigpipe [1]);
853
854 while (pipe (sigpipe))
855 syserr ("(libev) error creating pipe");
856
857 siginit (EV_A);
858 }
859
860 postfork = 0;
861} 1718}
1719
1720#endif /* multiplicity */
862 1721
863#if EV_MULTIPLICITY 1722#if EV_MULTIPLICITY
864struct ev_loop * 1723struct ev_loop *
865ev_loop_new (unsigned int flags)
866{
867 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
868
869 memset (loop, 0, sizeof (struct ev_loop));
870
871 loop_init (EV_A_ flags);
872
873 if (ev_method (EV_A))
874 return loop;
875
876 return 0;
877}
878
879void
880ev_loop_destroy (EV_P)
881{
882 loop_destroy (EV_A);
883 ev_free (loop);
884}
885
886void
887ev_loop_fork (EV_P)
888{
889 postfork = 1;
890}
891
892#endif
893
894#if EV_MULTIPLICITY
895struct ev_loop *
896ev_default_loop_ (unsigned int flags) 1724ev_default_loop_init (unsigned int flags)
897#else 1725#else
898int 1726int
899ev_default_loop (unsigned int flags) 1727ev_default_loop (unsigned int flags)
900#endif 1728#endif
901{ 1729{
902 if (sigpipe [0] == sigpipe [1])
903 if (pipe (sigpipe))
904 return 0;
905
906 if (!ev_default_loop_ptr) 1730 if (!ev_default_loop_ptr)
907 { 1731 {
908#if EV_MULTIPLICITY 1732#if EV_MULTIPLICITY
909 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1733 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
910#else 1734#else
911 ev_default_loop_ptr = 1; 1735 ev_default_loop_ptr = 1;
912#endif 1736#endif
913 1737
914 loop_init (EV_A_ flags); 1738 loop_init (EV_A_ flags);
915 1739
916 if (ev_method (EV_A)) 1740 if (ev_backend (EV_A))
917 { 1741 {
918 siginit (EV_A);
919
920#ifndef _WIN32 1742#ifndef _WIN32
921 ev_signal_init (&childev, childcb, SIGCHLD); 1743 ev_signal_init (&childev, childcb, SIGCHLD);
922 ev_set_priority (&childev, EV_MAXPRI); 1744 ev_set_priority (&childev, EV_MAXPRI);
923 ev_signal_start (EV_A_ &childev); 1745 ev_signal_start (EV_A_ &childev);
924 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1746 ev_unref (EV_A); /* child watcher should not keep loop alive */
936{ 1758{
937#if EV_MULTIPLICITY 1759#if EV_MULTIPLICITY
938 struct ev_loop *loop = ev_default_loop_ptr; 1760 struct ev_loop *loop = ev_default_loop_ptr;
939#endif 1761#endif
940 1762
1763 ev_default_loop_ptr = 0;
1764
941#ifndef _WIN32 1765#ifndef _WIN32
942 ev_ref (EV_A); /* child watcher */ 1766 ev_ref (EV_A); /* child watcher */
943 ev_signal_stop (EV_A_ &childev); 1767 ev_signal_stop (EV_A_ &childev);
944#endif 1768#endif
945 1769
946 ev_ref (EV_A); /* signal watcher */
947 ev_io_stop (EV_A_ &sigev);
948
949 close (sigpipe [0]); sigpipe [0] = 0;
950 close (sigpipe [1]); sigpipe [1] = 0;
951
952 loop_destroy (EV_A); 1770 loop_destroy (EV_A);
953} 1771}
954 1772
955void 1773void
956ev_default_fork (void) 1774ev_default_fork (void)
957{ 1775{
958#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
959 struct ev_loop *loop = ev_default_loop_ptr; 1777 struct ev_loop *loop = ev_default_loop_ptr;
960#endif 1778#endif
961 1779
962 if (method) 1780 postfork = 1; /* must be in line with ev_loop_fork */
963 postfork = 1;
964} 1781}
965 1782
966/*****************************************************************************/ 1783/*****************************************************************************/
967 1784
968static int 1785void
1786ev_invoke (EV_P_ void *w, int revents)
1787{
1788 EV_CB_INVOKE ((W)w, revents);
1789}
1790
1791void
969any_pending (EV_P) 1792ev_invoke_pending (EV_P)
970{
971 int pri;
972
973 for (pri = NUMPRI; pri--; )
974 if (pendingcnt [pri])
975 return 1;
976
977 return 0;
978}
979
980static void
981call_pending (EV_P)
982{ 1793{
983 int pri; 1794 int pri;
984 1795
985 for (pri = NUMPRI; pri--; ) 1796 for (pri = NUMPRI; pri--; )
986 while (pendingcnt [pri]) 1797 while (pendingcnt [pri])
987 { 1798 {
988 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1799 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
989 1800
990 if (p->w) 1801 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
991 { 1802 /* ^ this is no longer true, as pending_w could be here */
1803
992 p->w->pending = 0; 1804 p->w->pending = 0;
993 EV_CB_INVOKE (p->w, p->events); 1805 EV_CB_INVOKE (p->w, p->events);
994 } 1806 EV_FREQUENT_CHECK;
995 } 1807 }
996} 1808}
997 1809
998static void 1810#if EV_IDLE_ENABLE
1811/* make idle watchers pending. this handles the "call-idle */
1812/* only when higher priorities are idle" logic */
1813inline_size void
1814idle_reify (EV_P)
1815{
1816 if (expect_false (idleall))
1817 {
1818 int pri;
1819
1820 for (pri = NUMPRI; pri--; )
1821 {
1822 if (pendingcnt [pri])
1823 break;
1824
1825 if (idlecnt [pri])
1826 {
1827 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1828 break;
1829 }
1830 }
1831 }
1832}
1833#endif
1834
1835/* make timers pending */
1836inline_size void
999timers_reify (EV_P) 1837timers_reify (EV_P)
1000{ 1838{
1839 EV_FREQUENT_CHECK;
1840
1001 while (timercnt && ((WT)timers [0])->at <= mn_now) 1841 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1002 { 1842 {
1003 struct ev_timer *w = timers [0]; 1843 do
1004
1005 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1006
1007 /* first reschedule or stop timer */
1008 if (w->repeat)
1009 { 1844 {
1845 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1846
1847 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1848
1849 /* first reschedule or stop timer */
1850 if (w->repeat)
1851 {
1852 ev_at (w) += w->repeat;
1853 if (ev_at (w) < mn_now)
1854 ev_at (w) = mn_now;
1855
1010 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1856 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1011 1857
1012 ((WT)w)->at += w->repeat; 1858 ANHE_at_cache (timers [HEAP0]);
1013 if (((WT)w)->at < mn_now)
1014 ((WT)w)->at = mn_now;
1015
1016 downheap ((WT *)timers, timercnt, 0); 1859 downheap (timers, timercnt, HEAP0);
1860 }
1861 else
1862 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1863
1864 EV_FREQUENT_CHECK;
1865 feed_reverse (EV_A_ (W)w);
1017 } 1866 }
1018 else 1867 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1019 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1020 1868
1021 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1869 feed_reverse_done (EV_A_ EV_TIMEOUT);
1022 } 1870 }
1023} 1871}
1024 1872
1025#if EV_PERIODICS 1873#if EV_PERIODIC_ENABLE
1026static void 1874/* make periodics pending */
1875inline_size void
1027periodics_reify (EV_P) 1876periodics_reify (EV_P)
1028{ 1877{
1878 EV_FREQUENT_CHECK;
1879
1029 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1880 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1030 { 1881 {
1031 struct ev_periodic *w = periodics [0]; 1882 int feed_count = 0;
1032 1883
1884 do
1885 {
1886 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1887
1033 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1888 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1034 1889
1035 /* first reschedule or stop timer */ 1890 /* first reschedule or stop timer */
1891 if (w->reschedule_cb)
1892 {
1893 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1894
1895 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1896
1897 ANHE_at_cache (periodics [HEAP0]);
1898 downheap (periodics, periodiccnt, HEAP0);
1899 }
1900 else if (w->interval)
1901 {
1902 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1903 /* if next trigger time is not sufficiently in the future, put it there */
1904 /* this might happen because of floating point inexactness */
1905 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1906 {
1907 ev_at (w) += w->interval;
1908
1909 /* if interval is unreasonably low we might still have a time in the past */
1910 /* so correct this. this will make the periodic very inexact, but the user */
1911 /* has effectively asked to get triggered more often than possible */
1912 if (ev_at (w) < ev_rt_now)
1913 ev_at (w) = ev_rt_now;
1914 }
1915
1916 ANHE_at_cache (periodics [HEAP0]);
1917 downheap (periodics, periodiccnt, HEAP0);
1918 }
1919 else
1920 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1921
1922 EV_FREQUENT_CHECK;
1923 feed_reverse (EV_A_ (W)w);
1924 }
1925 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1926
1927 feed_reverse_done (EV_A_ EV_PERIODIC);
1928 }
1929}
1930
1931/* simply recalculate all periodics */
1932/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1933static void noinline
1934periodics_reschedule (EV_P)
1935{
1936 int i;
1937
1938 /* adjust periodics after time jump */
1939 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1940 {
1941 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1942
1036 if (w->reschedule_cb) 1943 if (w->reschedule_cb)
1944 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1945 else if (w->interval)
1946 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1947
1948 ANHE_at_cache (periodics [i]);
1949 }
1950
1951 reheap (periodics, periodiccnt);
1952}
1953#endif
1954
1955/* adjust all timers by a given offset */
1956static void noinline
1957timers_reschedule (EV_P_ ev_tstamp adjust)
1958{
1959 int i;
1960
1961 for (i = 0; i < timercnt; ++i)
1962 {
1963 ANHE *he = timers + i + HEAP0;
1964 ANHE_w (*he)->at += adjust;
1965 ANHE_at_cache (*he);
1966 }
1967}
1968
1969/* fetch new monotonic and realtime times from the kernel */
1970/* also detetc if there was a timejump, and act accordingly */
1971inline_speed void
1972time_update (EV_P_ ev_tstamp max_block)
1973{
1974#if EV_USE_MONOTONIC
1975 if (expect_true (have_monotonic))
1976 {
1977 int i;
1978 ev_tstamp odiff = rtmn_diff;
1979
1980 mn_now = get_clock ();
1981
1982 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1983 /* interpolate in the meantime */
1984 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1037 { 1985 {
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1986 ev_rt_now = rtmn_diff + mn_now;
1039 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1987 return;
1040 downheap ((WT *)periodics, periodiccnt, 0);
1041 } 1988 }
1042 else if (w->interval)
1043 {
1044 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1045 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1046 downheap ((WT *)periodics, periodiccnt, 0);
1047 }
1048 else
1049 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1050 1989
1051 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1052 }
1053}
1054
1055static void
1056periodics_reschedule (EV_P)
1057{
1058 int i;
1059
1060 /* adjust periodics after time jump */
1061 for (i = 0; i < periodiccnt; ++i)
1062 {
1063 struct ev_periodic *w = periodics [i];
1064
1065 if (w->reschedule_cb)
1066 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1067 else if (w->interval)
1068 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1069 }
1070
1071 /* now rebuild the heap */
1072 for (i = periodiccnt >> 1; i--; )
1073 downheap ((WT *)periodics, periodiccnt, i);
1074}
1075#endif
1076
1077inline int
1078time_update_monotonic (EV_P)
1079{
1080 mn_now = get_clock ();
1081
1082 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 {
1084 ev_rt_now = rtmn_diff + mn_now;
1085 return 0;
1086 }
1087 else
1088 {
1089 now_floor = mn_now; 1990 now_floor = mn_now;
1090 ev_rt_now = ev_time (); 1991 ev_rt_now = ev_time ();
1091 return 1;
1092 }
1093}
1094 1992
1095static void 1993 /* loop a few times, before making important decisions.
1096time_update (EV_P) 1994 * on the choice of "4": one iteration isn't enough,
1097{ 1995 * in case we get preempted during the calls to
1098 int i; 1996 * ev_time and get_clock. a second call is almost guaranteed
1099 1997 * to succeed in that case, though. and looping a few more times
1100#if EV_USE_MONOTONIC 1998 * doesn't hurt either as we only do this on time-jumps or
1101 if (expect_true (have_monotonic)) 1999 * in the unlikely event of having been preempted here.
1102 { 2000 */
1103 if (time_update_monotonic (EV_A)) 2001 for (i = 4; --i; )
1104 { 2002 {
1105 ev_tstamp odiff = rtmn_diff;
1106
1107 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1108 {
1109 rtmn_diff = ev_rt_now - mn_now; 2003 rtmn_diff = ev_rt_now - mn_now;
1110 2004
1111 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2005 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1112 return; /* all is well */ 2006 return; /* all is well */
1113 2007
1114 ev_rt_now = ev_time (); 2008 ev_rt_now = ev_time ();
1115 mn_now = get_clock (); 2009 mn_now = get_clock ();
1116 now_floor = mn_now; 2010 now_floor = mn_now;
1117 } 2011 }
1118 2012
2013 /* no timer adjustment, as the monotonic clock doesn't jump */
2014 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1119# if EV_PERIODICS 2015# if EV_PERIODIC_ENABLE
2016 periodics_reschedule (EV_A);
2017# endif
2018 }
2019 else
2020#endif
2021 {
2022 ev_rt_now = ev_time ();
2023
2024 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2025 {
2026 /* adjust timers. this is easy, as the offset is the same for all of them */
2027 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2028#if EV_PERIODIC_ENABLE
1120 periodics_reschedule (EV_A); 2029 periodics_reschedule (EV_A);
1121# endif 2030#endif
1122 /* no timer adjustment, as the monotonic clock doesn't jump */
1123 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1124 } 2031 }
1125 }
1126 else
1127#endif
1128 {
1129 ev_rt_now = ev_time ();
1130
1131 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1132 {
1133#if EV_PERIODICS
1134 periodics_reschedule (EV_A);
1135#endif
1136
1137 /* adjust timers. this is easy, as the offset is the same for all */
1138 for (i = 0; i < timercnt; ++i)
1139 ((WT)timers [i])->at += ev_rt_now - mn_now;
1140 }
1141 2032
1142 mn_now = ev_rt_now; 2033 mn_now = ev_rt_now;
1143 } 2034 }
1144} 2035}
1145 2036
1146void 2037void
1147ev_ref (EV_P)
1148{
1149 ++activecnt;
1150}
1151
1152void
1153ev_unref (EV_P)
1154{
1155 --activecnt;
1156}
1157
1158static int loop_done;
1159
1160void
1161ev_loop (EV_P_ int flags) 2038ev_loop (EV_P_ int flags)
1162{ 2039{
1163 double block; 2040 ++loop_depth;
1164 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1165 2041
1166 while (activecnt) 2042 loop_done = EVUNLOOP_CANCEL;
2043
2044 invoke_cb (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
2045
2046 do
1167 { 2047 {
2048#if EV_VERIFY >= 2
2049 ev_loop_verify (EV_A);
2050#endif
2051
2052#ifndef _WIN32
2053 if (expect_false (curpid)) /* penalise the forking check even more */
2054 if (expect_false (getpid () != curpid))
2055 {
2056 curpid = getpid ();
2057 postfork = 1;
2058 }
2059#endif
2060
2061#if EV_FORK_ENABLE
2062 /* we might have forked, so queue fork handlers */
2063 if (expect_false (postfork))
2064 if (forkcnt)
2065 {
2066 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2067 invoke_cb (EV_A);
2068 }
2069#endif
2070
1168 /* queue check watchers (and execute them) */ 2071 /* queue prepare watchers (and execute them) */
1169 if (expect_false (preparecnt)) 2072 if (expect_false (preparecnt))
1170 { 2073 {
1171 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2074 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1172 call_pending (EV_A); 2075 invoke_cb (EV_A);
1173 } 2076 }
1174 2077
1175 /* we might have forked, so reify kernel state if necessary */ 2078 /* we might have forked, so reify kernel state if necessary */
1176 if (expect_false (postfork)) 2079 if (expect_false (postfork))
1177 loop_fork (EV_A); 2080 loop_fork (EV_A);
1178 2081
1179 /* update fd-related kernel structures */ 2082 /* update fd-related kernel structures */
1180 fd_reify (EV_A); 2083 fd_reify (EV_A);
1181 2084
1182 /* calculate blocking time */ 2085 /* calculate blocking time */
2086 {
2087 ev_tstamp waittime = 0.;
2088 ev_tstamp sleeptime = 0.;
1183 2089
1184 /* we only need this for !monotonic clock or timers, but as we basically 2090 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1185 always have timers, we just calculate it always */
1186#if EV_USE_MONOTONIC
1187 if (expect_true (have_monotonic))
1188 time_update_monotonic (EV_A);
1189 else
1190#endif
1191 { 2091 {
1192 ev_rt_now = ev_time (); 2092 /* remember old timestamp for io_blocktime calculation */
1193 mn_now = ev_rt_now; 2093 ev_tstamp prev_mn_now = mn_now;
1194 }
1195 2094
1196 if (flags & EVLOOP_NONBLOCK || idlecnt) 2095 /* update time to cancel out callback processing overhead */
1197 block = 0.; 2096 time_update (EV_A_ 1e100);
1198 else 2097
1199 {
1200 block = MAX_BLOCKTIME; 2098 waittime = MAX_BLOCKTIME;
1201 2099
1202 if (timercnt) 2100 if (timercnt)
1203 { 2101 {
1204 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2102 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1205 if (block > to) block = to; 2103 if (waittime > to) waittime = to;
1206 } 2104 }
1207 2105
1208#if EV_PERIODICS 2106#if EV_PERIODIC_ENABLE
1209 if (periodiccnt) 2107 if (periodiccnt)
1210 { 2108 {
1211 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2109 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1212 if (block > to) block = to; 2110 if (waittime > to) waittime = to;
1213 } 2111 }
1214#endif 2112#endif
1215 2113
1216 if (block < 0.) block = 0.; 2114 /* don't let timeouts decrease the waittime below timeout_blocktime */
2115 if (expect_false (waittime < timeout_blocktime))
2116 waittime = timeout_blocktime;
2117
2118 /* extra check because io_blocktime is commonly 0 */
2119 if (expect_false (io_blocktime))
2120 {
2121 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2122
2123 if (sleeptime > waittime - backend_fudge)
2124 sleeptime = waittime - backend_fudge;
2125
2126 if (expect_true (sleeptime > 0.))
2127 {
2128 ev_sleep (sleeptime);
2129 waittime -= sleeptime;
2130 }
2131 }
1217 } 2132 }
1218 2133
1219 method_poll (EV_A_ block); 2134 ++loop_count;
2135 backend_poll (EV_A_ waittime);
1220 2136
1221 /* update ev_rt_now, do magic */ 2137 /* update ev_rt_now, do magic */
1222 time_update (EV_A); 2138 time_update (EV_A_ waittime + sleeptime);
2139 }
1223 2140
1224 /* queue pending timers and reschedule them */ 2141 /* queue pending timers and reschedule them */
1225 timers_reify (EV_A); /* relative timers called last */ 2142 timers_reify (EV_A); /* relative timers called last */
1226#if EV_PERIODICS 2143#if EV_PERIODIC_ENABLE
1227 periodics_reify (EV_A); /* absolute timers called first */ 2144 periodics_reify (EV_A); /* absolute timers called first */
1228#endif 2145#endif
1229 2146
2147#if EV_IDLE_ENABLE
1230 /* queue idle watchers unless io or timers are pending */ 2148 /* queue idle watchers unless other events are pending */
1231 if (idlecnt && !any_pending (EV_A)) 2149 idle_reify (EV_A);
1232 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2150#endif
1233 2151
1234 /* queue check watchers, to be executed first */ 2152 /* queue check watchers, to be executed first */
1235 if (checkcnt) 2153 if (expect_false (checkcnt))
1236 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2154 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1237 2155
1238 call_pending (EV_A); 2156 invoke_cb (EV_A);
1239
1240 if (loop_done)
1241 break;
1242 } 2157 }
2158 while (expect_true (
2159 activecnt
2160 && !loop_done
2161 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2162 ));
1243 2163
1244 if (loop_done != 2) 2164 if (loop_done == EVUNLOOP_ONE)
1245 loop_done = 0; 2165 loop_done = EVUNLOOP_CANCEL;
2166
2167 --loop_depth;
1246} 2168}
1247 2169
1248void 2170void
1249ev_unloop (EV_P_ int how) 2171ev_unloop (EV_P_ int how)
1250{ 2172{
1251 loop_done = how; 2173 loop_done = how;
1252} 2174}
1253 2175
2176void
2177ev_ref (EV_P)
2178{
2179 ++activecnt;
2180}
2181
2182void
2183ev_unref (EV_P)
2184{
2185 --activecnt;
2186}
2187
2188void
2189ev_now_update (EV_P)
2190{
2191 time_update (EV_A_ 1e100);
2192}
2193
2194void
2195ev_suspend (EV_P)
2196{
2197 ev_now_update (EV_A);
2198}
2199
2200void
2201ev_resume (EV_P)
2202{
2203 ev_tstamp mn_prev = mn_now;
2204
2205 ev_now_update (EV_A);
2206 timers_reschedule (EV_A_ mn_now - mn_prev);
2207#if EV_PERIODIC_ENABLE
2208 /* TODO: really do this? */
2209 periodics_reschedule (EV_A);
2210#endif
2211}
2212
1254/*****************************************************************************/ 2213/*****************************************************************************/
2214/* singly-linked list management, used when the expected list length is short */
1255 2215
1256inline void 2216inline_size void
1257wlist_add (WL *head, WL elem) 2217wlist_add (WL *head, WL elem)
1258{ 2218{
1259 elem->next = *head; 2219 elem->next = *head;
1260 *head = elem; 2220 *head = elem;
1261} 2221}
1262 2222
1263inline void 2223inline_size void
1264wlist_del (WL *head, WL elem) 2224wlist_del (WL *head, WL elem)
1265{ 2225{
1266 while (*head) 2226 while (*head)
1267 { 2227 {
1268 if (*head == elem) 2228 if (*head == elem)
1273 2233
1274 head = &(*head)->next; 2234 head = &(*head)->next;
1275 } 2235 }
1276} 2236}
1277 2237
2238/* internal, faster, version of ev_clear_pending */
1278inline void 2239inline_speed void
1279ev_clear_pending (EV_P_ W w) 2240clear_pending (EV_P_ W w)
1280{ 2241{
1281 if (w->pending) 2242 if (w->pending)
1282 { 2243 {
1283 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2244 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1284 w->pending = 0; 2245 w->pending = 0;
1285 } 2246 }
1286} 2247}
1287 2248
2249int
2250ev_clear_pending (EV_P_ void *w)
2251{
2252 W w_ = (W)w;
2253 int pending = w_->pending;
2254
2255 if (expect_true (pending))
2256 {
2257 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2258 p->w = (W)&pending_w;
2259 w_->pending = 0;
2260 return p->events;
2261 }
2262 else
2263 return 0;
2264}
2265
1288inline void 2266inline_size void
2267pri_adjust (EV_P_ W w)
2268{
2269 int pri = ev_priority (w);
2270 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2271 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2272 ev_set_priority (w, pri);
2273}
2274
2275inline_speed void
1289ev_start (EV_P_ W w, int active) 2276ev_start (EV_P_ W w, int active)
1290{ 2277{
1291 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2278 pri_adjust (EV_A_ w);
1292 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1293
1294 w->active = active; 2279 w->active = active;
1295 ev_ref (EV_A); 2280 ev_ref (EV_A);
1296} 2281}
1297 2282
1298inline void 2283inline_size void
1299ev_stop (EV_P_ W w) 2284ev_stop (EV_P_ W w)
1300{ 2285{
1301 ev_unref (EV_A); 2286 ev_unref (EV_A);
1302 w->active = 0; 2287 w->active = 0;
1303} 2288}
1304 2289
1305/*****************************************************************************/ 2290/*****************************************************************************/
1306 2291
1307void 2292void noinline
1308ev_io_start (EV_P_ struct ev_io *w) 2293ev_io_start (EV_P_ ev_io *w)
1309{ 2294{
1310 int fd = w->fd; 2295 int fd = w->fd;
1311 2296
1312 if (ev_is_active (w)) 2297 if (expect_false (ev_is_active (w)))
1313 return; 2298 return;
1314 2299
1315 assert (("ev_io_start called with negative fd", fd >= 0)); 2300 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2301 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2302
2303 EV_FREQUENT_CHECK;
1316 2304
1317 ev_start (EV_A_ (W)w, 1); 2305 ev_start (EV_A_ (W)w, 1);
1318 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2306 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1319 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2307 wlist_add (&anfds[fd].head, (WL)w);
1320 2308
1321 fd_change (EV_A_ fd); 2309 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1322} 2310 w->events &= ~EV__IOFDSET;
1323 2311
1324void 2312 EV_FREQUENT_CHECK;
2313}
2314
2315void noinline
1325ev_io_stop (EV_P_ struct ev_io *w) 2316ev_io_stop (EV_P_ ev_io *w)
1326{ 2317{
1327 ev_clear_pending (EV_A_ (W)w); 2318 clear_pending (EV_A_ (W)w);
1328 if (!ev_is_active (w)) 2319 if (expect_false (!ev_is_active (w)))
1329 return; 2320 return;
1330 2321
1331 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2322 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1332 2323
2324 EV_FREQUENT_CHECK;
2325
1333 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2326 wlist_del (&anfds[w->fd].head, (WL)w);
1334 ev_stop (EV_A_ (W)w); 2327 ev_stop (EV_A_ (W)w);
1335 2328
1336 fd_change (EV_A_ w->fd); 2329 fd_change (EV_A_ w->fd, 1);
1337}
1338 2330
1339void 2331 EV_FREQUENT_CHECK;
2332}
2333
2334void noinline
1340ev_timer_start (EV_P_ struct ev_timer *w) 2335ev_timer_start (EV_P_ ev_timer *w)
1341{ 2336{
1342 if (ev_is_active (w)) 2337 if (expect_false (ev_is_active (w)))
1343 return; 2338 return;
1344 2339
1345 ((WT)w)->at += mn_now; 2340 ev_at (w) += mn_now;
1346 2341
1347 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2342 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1348 2343
2344 EV_FREQUENT_CHECK;
2345
2346 ++timercnt;
1349 ev_start (EV_A_ (W)w, ++timercnt); 2347 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1350 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2348 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1351 timers [timercnt - 1] = w; 2349 ANHE_w (timers [ev_active (w)]) = (WT)w;
1352 upheap ((WT *)timers, timercnt - 1); 2350 ANHE_at_cache (timers [ev_active (w)]);
2351 upheap (timers, ev_active (w));
1353 2352
2353 EV_FREQUENT_CHECK;
2354
1354 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2355 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1355} 2356}
1356 2357
1357void 2358void noinline
1358ev_timer_stop (EV_P_ struct ev_timer *w) 2359ev_timer_stop (EV_P_ ev_timer *w)
1359{ 2360{
1360 ev_clear_pending (EV_A_ (W)w); 2361 clear_pending (EV_A_ (W)w);
1361 if (!ev_is_active (w)) 2362 if (expect_false (!ev_is_active (w)))
1362 return; 2363 return;
1363 2364
2365 EV_FREQUENT_CHECK;
2366
2367 {
2368 int active = ev_active (w);
2369
1364 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2370 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1365 2371
1366 if (((W)w)->active < timercnt--) 2372 --timercnt;
2373
2374 if (expect_true (active < timercnt + HEAP0))
1367 { 2375 {
1368 timers [((W)w)->active - 1] = timers [timercnt]; 2376 timers [active] = timers [timercnt + HEAP0];
1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2377 adjustheap (timers, timercnt, active);
1370 } 2378 }
2379 }
1371 2380
1372 ((WT)w)->at -= mn_now; 2381 EV_FREQUENT_CHECK;
2382
2383 ev_at (w) -= mn_now;
1373 2384
1374 ev_stop (EV_A_ (W)w); 2385 ev_stop (EV_A_ (W)w);
1375} 2386}
1376 2387
1377void 2388void noinline
1378ev_timer_again (EV_P_ struct ev_timer *w) 2389ev_timer_again (EV_P_ ev_timer *w)
1379{ 2390{
2391 EV_FREQUENT_CHECK;
2392
1380 if (ev_is_active (w)) 2393 if (ev_is_active (w))
1381 { 2394 {
1382 if (w->repeat) 2395 if (w->repeat)
1383 { 2396 {
1384 ((WT)w)->at = mn_now + w->repeat; 2397 ev_at (w) = mn_now + w->repeat;
2398 ANHE_at_cache (timers [ev_active (w)]);
1385 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2399 adjustheap (timers, timercnt, ev_active (w));
1386 } 2400 }
1387 else 2401 else
1388 ev_timer_stop (EV_A_ w); 2402 ev_timer_stop (EV_A_ w);
1389 } 2403 }
1390 else if (w->repeat) 2404 else if (w->repeat)
1391 { 2405 {
1392 w->at = w->repeat; 2406 ev_at (w) = w->repeat;
1393 ev_timer_start (EV_A_ w); 2407 ev_timer_start (EV_A_ w);
1394 } 2408 }
1395}
1396 2409
2410 EV_FREQUENT_CHECK;
2411}
2412
1397#if EV_PERIODICS 2413#if EV_PERIODIC_ENABLE
1398void 2414void noinline
1399ev_periodic_start (EV_P_ struct ev_periodic *w) 2415ev_periodic_start (EV_P_ ev_periodic *w)
1400{ 2416{
1401 if (ev_is_active (w)) 2417 if (expect_false (ev_is_active (w)))
1402 return; 2418 return;
1403 2419
1404 if (w->reschedule_cb) 2420 if (w->reschedule_cb)
1405 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2421 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1406 else if (w->interval) 2422 else if (w->interval)
1407 { 2423 {
1408 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2424 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1409 /* this formula differs from the one in periodic_reify because we do not always round up */ 2425 /* this formula differs from the one in periodic_reify because we do not always round up */
1410 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2426 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1411 } 2427 }
2428 else
2429 ev_at (w) = w->offset;
1412 2430
2431 EV_FREQUENT_CHECK;
2432
2433 ++periodiccnt;
1413 ev_start (EV_A_ (W)w, ++periodiccnt); 2434 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1414 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2435 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1415 periodics [periodiccnt - 1] = w; 2436 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1416 upheap ((WT *)periodics, periodiccnt - 1); 2437 ANHE_at_cache (periodics [ev_active (w)]);
2438 upheap (periodics, ev_active (w));
1417 2439
2440 EV_FREQUENT_CHECK;
2441
1418 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2442 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1419} 2443}
1420 2444
1421void 2445void noinline
1422ev_periodic_stop (EV_P_ struct ev_periodic *w) 2446ev_periodic_stop (EV_P_ ev_periodic *w)
1423{ 2447{
1424 ev_clear_pending (EV_A_ (W)w); 2448 clear_pending (EV_A_ (W)w);
1425 if (!ev_is_active (w)) 2449 if (expect_false (!ev_is_active (w)))
1426 return; 2450 return;
1427 2451
2452 EV_FREQUENT_CHECK;
2453
2454 {
2455 int active = ev_active (w);
2456
1428 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2457 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1429 2458
1430 if (((W)w)->active < periodiccnt--) 2459 --periodiccnt;
2460
2461 if (expect_true (active < periodiccnt + HEAP0))
1431 { 2462 {
1432 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2463 periodics [active] = periodics [periodiccnt + HEAP0];
1433 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2464 adjustheap (periodics, periodiccnt, active);
1434 } 2465 }
2466 }
2467
2468 EV_FREQUENT_CHECK;
1435 2469
1436 ev_stop (EV_A_ (W)w); 2470 ev_stop (EV_A_ (W)w);
1437} 2471}
1438 2472
1439void 2473void noinline
1440ev_periodic_again (EV_P_ struct ev_periodic *w) 2474ev_periodic_again (EV_P_ ev_periodic *w)
1441{ 2475{
1442 /* TODO: use adjustheap and recalculation */ 2476 /* TODO: use adjustheap and recalculation */
1443 ev_periodic_stop (EV_A_ w); 2477 ev_periodic_stop (EV_A_ w);
1444 ev_periodic_start (EV_A_ w); 2478 ev_periodic_start (EV_A_ w);
1445} 2479}
1446#endif 2480#endif
1447 2481
1448void
1449ev_idle_start (EV_P_ struct ev_idle *w)
1450{
1451 if (ev_is_active (w))
1452 return;
1453
1454 ev_start (EV_A_ (W)w, ++idlecnt);
1455 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1456 idles [idlecnt - 1] = w;
1457}
1458
1459void
1460ev_idle_stop (EV_P_ struct ev_idle *w)
1461{
1462 ev_clear_pending (EV_A_ (W)w);
1463 if (!ev_is_active (w))
1464 return;
1465
1466 idles [((W)w)->active - 1] = idles [--idlecnt];
1467 ev_stop (EV_A_ (W)w);
1468}
1469
1470void
1471ev_prepare_start (EV_P_ struct ev_prepare *w)
1472{
1473 if (ev_is_active (w))
1474 return;
1475
1476 ev_start (EV_A_ (W)w, ++preparecnt);
1477 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1478 prepares [preparecnt - 1] = w;
1479}
1480
1481void
1482ev_prepare_stop (EV_P_ struct ev_prepare *w)
1483{
1484 ev_clear_pending (EV_A_ (W)w);
1485 if (!ev_is_active (w))
1486 return;
1487
1488 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1489 ev_stop (EV_A_ (W)w);
1490}
1491
1492void
1493ev_check_start (EV_P_ struct ev_check *w)
1494{
1495 if (ev_is_active (w))
1496 return;
1497
1498 ev_start (EV_A_ (W)w, ++checkcnt);
1499 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1500 checks [checkcnt - 1] = w;
1501}
1502
1503void
1504ev_check_stop (EV_P_ struct ev_check *w)
1505{
1506 ev_clear_pending (EV_A_ (W)w);
1507 if (!ev_is_active (w))
1508 return;
1509
1510 checks [((W)w)->active - 1] = checks [--checkcnt];
1511 ev_stop (EV_A_ (W)w);
1512}
1513
1514#ifndef SA_RESTART 2482#ifndef SA_RESTART
1515# define SA_RESTART 0 2483# define SA_RESTART 0
1516#endif 2484#endif
1517 2485
1518void 2486void noinline
1519ev_signal_start (EV_P_ struct ev_signal *w) 2487ev_signal_start (EV_P_ ev_signal *w)
1520{ 2488{
1521#if EV_MULTIPLICITY 2489#if EV_MULTIPLICITY
1522 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2490 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1523#endif 2491#endif
1524 if (ev_is_active (w)) 2492 if (expect_false (ev_is_active (w)))
1525 return; 2493 return;
1526 2494
1527 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2495 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2496
2497 evpipe_init (EV_A);
2498
2499 EV_FREQUENT_CHECK;
2500
2501 {
2502#ifndef _WIN32
2503 sigset_t full, prev;
2504 sigfillset (&full);
2505 sigprocmask (SIG_SETMASK, &full, &prev);
2506#endif
2507
2508 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2509
2510#ifndef _WIN32
2511 sigprocmask (SIG_SETMASK, &prev, 0);
2512#endif
2513 }
1528 2514
1529 ev_start (EV_A_ (W)w, 1); 2515 ev_start (EV_A_ (W)w, 1);
1530 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1531 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2516 wlist_add (&signals [w->signum - 1].head, (WL)w);
1532 2517
1533 if (!((WL)w)->next) 2518 if (!((WL)w)->next)
1534 { 2519 {
1535#if _WIN32 2520#if _WIN32
1536 signal (w->signum, sighandler); 2521 signal (w->signum, ev_sighandler);
1537#else 2522#else
1538 struct sigaction sa; 2523 struct sigaction sa;
1539 sa.sa_handler = sighandler; 2524 sa.sa_handler = ev_sighandler;
1540 sigfillset (&sa.sa_mask); 2525 sigfillset (&sa.sa_mask);
1541 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2526 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1542 sigaction (w->signum, &sa, 0); 2527 sigaction (w->signum, &sa, 0);
1543#endif 2528#endif
1544 } 2529 }
1545}
1546 2530
1547void 2531 EV_FREQUENT_CHECK;
2532}
2533
2534void noinline
1548ev_signal_stop (EV_P_ struct ev_signal *w) 2535ev_signal_stop (EV_P_ ev_signal *w)
1549{ 2536{
1550 ev_clear_pending (EV_A_ (W)w); 2537 clear_pending (EV_A_ (W)w);
1551 if (!ev_is_active (w)) 2538 if (expect_false (!ev_is_active (w)))
1552 return; 2539 return;
1553 2540
2541 EV_FREQUENT_CHECK;
2542
1554 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2543 wlist_del (&signals [w->signum - 1].head, (WL)w);
1555 ev_stop (EV_A_ (W)w); 2544 ev_stop (EV_A_ (W)w);
1556 2545
1557 if (!signals [w->signum - 1].head) 2546 if (!signals [w->signum - 1].head)
1558 signal (w->signum, SIG_DFL); 2547 signal (w->signum, SIG_DFL);
1559}
1560 2548
2549 EV_FREQUENT_CHECK;
2550}
2551
1561void 2552void
1562ev_child_start (EV_P_ struct ev_child *w) 2553ev_child_start (EV_P_ ev_child *w)
1563{ 2554{
1564#if EV_MULTIPLICITY 2555#if EV_MULTIPLICITY
1565 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2556 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1566#endif 2557#endif
1567 if (ev_is_active (w)) 2558 if (expect_false (ev_is_active (w)))
1568 return; 2559 return;
1569 2560
2561 EV_FREQUENT_CHECK;
2562
1570 ev_start (EV_A_ (W)w, 1); 2563 ev_start (EV_A_ (W)w, 1);
1571 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2564 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1572}
1573 2565
2566 EV_FREQUENT_CHECK;
2567}
2568
1574void 2569void
1575ev_child_stop (EV_P_ struct ev_child *w) 2570ev_child_stop (EV_P_ ev_child *w)
1576{ 2571{
1577 ev_clear_pending (EV_A_ (W)w); 2572 clear_pending (EV_A_ (W)w);
1578 if (!ev_is_active (w)) 2573 if (expect_false (!ev_is_active (w)))
1579 return; 2574 return;
1580 2575
2576 EV_FREQUENT_CHECK;
2577
1581 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2578 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1582 ev_stop (EV_A_ (W)w); 2579 ev_stop (EV_A_ (W)w);
2580
2581 EV_FREQUENT_CHECK;
1583} 2582}
2583
2584#if EV_STAT_ENABLE
2585
2586# ifdef _WIN32
2587# undef lstat
2588# define lstat(a,b) _stati64 (a,b)
2589# endif
2590
2591#define DEF_STAT_INTERVAL 5.0074891
2592#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2593#define MIN_STAT_INTERVAL 0.1074891
2594
2595static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2596
2597#if EV_USE_INOTIFY
2598# define EV_INOTIFY_BUFSIZE 8192
2599
2600static void noinline
2601infy_add (EV_P_ ev_stat *w)
2602{
2603 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2604
2605 if (w->wd < 0)
2606 {
2607 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2608 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2609
2610 /* monitor some parent directory for speedup hints */
2611 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2612 /* but an efficiency issue only */
2613 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2614 {
2615 char path [4096];
2616 strcpy (path, w->path);
2617
2618 do
2619 {
2620 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2621 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2622
2623 char *pend = strrchr (path, '/');
2624
2625 if (!pend || pend == path)
2626 break;
2627
2628 *pend = 0;
2629 w->wd = inotify_add_watch (fs_fd, path, mask);
2630 }
2631 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2632 }
2633 }
2634
2635 if (w->wd >= 0)
2636 {
2637 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2638
2639 /* now local changes will be tracked by inotify, but remote changes won't */
2640 /* unless the filesystem it known to be local, we therefore still poll */
2641 /* also do poll on <2.6.25, but with normal frequency */
2642 struct statfs sfs;
2643
2644 if (fs_2625 && !statfs (w->path, &sfs))
2645 if (sfs.f_type == 0x1373 /* devfs */
2646 || sfs.f_type == 0xEF53 /* ext2/3 */
2647 || sfs.f_type == 0x3153464a /* jfs */
2648 || sfs.f_type == 0x52654973 /* reiser3 */
2649 || sfs.f_type == 0x01021994 /* tempfs */
2650 || sfs.f_type == 0x58465342 /* xfs */)
2651 return;
2652
2653 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2654 ev_timer_again (EV_A_ &w->timer);
2655 }
2656}
2657
2658static void noinline
2659infy_del (EV_P_ ev_stat *w)
2660{
2661 int slot;
2662 int wd = w->wd;
2663
2664 if (wd < 0)
2665 return;
2666
2667 w->wd = -2;
2668 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2669 wlist_del (&fs_hash [slot].head, (WL)w);
2670
2671 /* remove this watcher, if others are watching it, they will rearm */
2672 inotify_rm_watch (fs_fd, wd);
2673}
2674
2675static void noinline
2676infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2677{
2678 if (slot < 0)
2679 /* overflow, need to check for all hash slots */
2680 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2681 infy_wd (EV_A_ slot, wd, ev);
2682 else
2683 {
2684 WL w_;
2685
2686 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2687 {
2688 ev_stat *w = (ev_stat *)w_;
2689 w_ = w_->next; /* lets us remove this watcher and all before it */
2690
2691 if (w->wd == wd || wd == -1)
2692 {
2693 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2694 {
2695 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2696 w->wd = -1;
2697 infy_add (EV_A_ w); /* re-add, no matter what */
2698 }
2699
2700 stat_timer_cb (EV_A_ &w->timer, 0);
2701 }
2702 }
2703 }
2704}
2705
2706static void
2707infy_cb (EV_P_ ev_io *w, int revents)
2708{
2709 char buf [EV_INOTIFY_BUFSIZE];
2710 struct inotify_event *ev = (struct inotify_event *)buf;
2711 int ofs;
2712 int len = read (fs_fd, buf, sizeof (buf));
2713
2714 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2715 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2716}
2717
2718inline_size void
2719check_2625 (EV_P)
2720{
2721 /* kernels < 2.6.25 are borked
2722 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2723 */
2724 struct utsname buf;
2725 int major, minor, micro;
2726
2727 if (uname (&buf))
2728 return;
2729
2730 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2731 return;
2732
2733 if (major < 2
2734 || (major == 2 && minor < 6)
2735 || (major == 2 && minor == 6 && micro < 25))
2736 return;
2737
2738 fs_2625 = 1;
2739}
2740
2741inline_size void
2742infy_init (EV_P)
2743{
2744 if (fs_fd != -2)
2745 return;
2746
2747 fs_fd = -1;
2748
2749 check_2625 (EV_A);
2750
2751 fs_fd = inotify_init ();
2752
2753 if (fs_fd >= 0)
2754 {
2755 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2756 ev_set_priority (&fs_w, EV_MAXPRI);
2757 ev_io_start (EV_A_ &fs_w);
2758 }
2759}
2760
2761inline_size void
2762infy_fork (EV_P)
2763{
2764 int slot;
2765
2766 if (fs_fd < 0)
2767 return;
2768
2769 close (fs_fd);
2770 fs_fd = inotify_init ();
2771
2772 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2773 {
2774 WL w_ = fs_hash [slot].head;
2775 fs_hash [slot].head = 0;
2776
2777 while (w_)
2778 {
2779 ev_stat *w = (ev_stat *)w_;
2780 w_ = w_->next; /* lets us add this watcher */
2781
2782 w->wd = -1;
2783
2784 if (fs_fd >= 0)
2785 infy_add (EV_A_ w); /* re-add, no matter what */
2786 else
2787 ev_timer_again (EV_A_ &w->timer);
2788 }
2789 }
2790}
2791
2792#endif
2793
2794#ifdef _WIN32
2795# define EV_LSTAT(p,b) _stati64 (p, b)
2796#else
2797# define EV_LSTAT(p,b) lstat (p, b)
2798#endif
2799
2800void
2801ev_stat_stat (EV_P_ ev_stat *w)
2802{
2803 if (lstat (w->path, &w->attr) < 0)
2804 w->attr.st_nlink = 0;
2805 else if (!w->attr.st_nlink)
2806 w->attr.st_nlink = 1;
2807}
2808
2809static void noinline
2810stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2811{
2812 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2813
2814 /* we copy this here each the time so that */
2815 /* prev has the old value when the callback gets invoked */
2816 w->prev = w->attr;
2817 ev_stat_stat (EV_A_ w);
2818
2819 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2820 if (
2821 w->prev.st_dev != w->attr.st_dev
2822 || w->prev.st_ino != w->attr.st_ino
2823 || w->prev.st_mode != w->attr.st_mode
2824 || w->prev.st_nlink != w->attr.st_nlink
2825 || w->prev.st_uid != w->attr.st_uid
2826 || w->prev.st_gid != w->attr.st_gid
2827 || w->prev.st_rdev != w->attr.st_rdev
2828 || w->prev.st_size != w->attr.st_size
2829 || w->prev.st_atime != w->attr.st_atime
2830 || w->prev.st_mtime != w->attr.st_mtime
2831 || w->prev.st_ctime != w->attr.st_ctime
2832 ) {
2833 #if EV_USE_INOTIFY
2834 if (fs_fd >= 0)
2835 {
2836 infy_del (EV_A_ w);
2837 infy_add (EV_A_ w);
2838 ev_stat_stat (EV_A_ w); /* avoid race... */
2839 }
2840 #endif
2841
2842 ev_feed_event (EV_A_ w, EV_STAT);
2843 }
2844}
2845
2846void
2847ev_stat_start (EV_P_ ev_stat *w)
2848{
2849 if (expect_false (ev_is_active (w)))
2850 return;
2851
2852 ev_stat_stat (EV_A_ w);
2853
2854 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2855 w->interval = MIN_STAT_INTERVAL;
2856
2857 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2858 ev_set_priority (&w->timer, ev_priority (w));
2859
2860#if EV_USE_INOTIFY
2861 infy_init (EV_A);
2862
2863 if (fs_fd >= 0)
2864 infy_add (EV_A_ w);
2865 else
2866#endif
2867 ev_timer_again (EV_A_ &w->timer);
2868
2869 ev_start (EV_A_ (W)w, 1);
2870
2871 EV_FREQUENT_CHECK;
2872}
2873
2874void
2875ev_stat_stop (EV_P_ ev_stat *w)
2876{
2877 clear_pending (EV_A_ (W)w);
2878 if (expect_false (!ev_is_active (w)))
2879 return;
2880
2881 EV_FREQUENT_CHECK;
2882
2883#if EV_USE_INOTIFY
2884 infy_del (EV_A_ w);
2885#endif
2886 ev_timer_stop (EV_A_ &w->timer);
2887
2888 ev_stop (EV_A_ (W)w);
2889
2890 EV_FREQUENT_CHECK;
2891}
2892#endif
2893
2894#if EV_IDLE_ENABLE
2895void
2896ev_idle_start (EV_P_ ev_idle *w)
2897{
2898 if (expect_false (ev_is_active (w)))
2899 return;
2900
2901 pri_adjust (EV_A_ (W)w);
2902
2903 EV_FREQUENT_CHECK;
2904
2905 {
2906 int active = ++idlecnt [ABSPRI (w)];
2907
2908 ++idleall;
2909 ev_start (EV_A_ (W)w, active);
2910
2911 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2912 idles [ABSPRI (w)][active - 1] = w;
2913 }
2914
2915 EV_FREQUENT_CHECK;
2916}
2917
2918void
2919ev_idle_stop (EV_P_ ev_idle *w)
2920{
2921 clear_pending (EV_A_ (W)w);
2922 if (expect_false (!ev_is_active (w)))
2923 return;
2924
2925 EV_FREQUENT_CHECK;
2926
2927 {
2928 int active = ev_active (w);
2929
2930 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2931 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2932
2933 ev_stop (EV_A_ (W)w);
2934 --idleall;
2935 }
2936
2937 EV_FREQUENT_CHECK;
2938}
2939#endif
2940
2941void
2942ev_prepare_start (EV_P_ ev_prepare *w)
2943{
2944 if (expect_false (ev_is_active (w)))
2945 return;
2946
2947 EV_FREQUENT_CHECK;
2948
2949 ev_start (EV_A_ (W)w, ++preparecnt);
2950 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2951 prepares [preparecnt - 1] = w;
2952
2953 EV_FREQUENT_CHECK;
2954}
2955
2956void
2957ev_prepare_stop (EV_P_ ev_prepare *w)
2958{
2959 clear_pending (EV_A_ (W)w);
2960 if (expect_false (!ev_is_active (w)))
2961 return;
2962
2963 EV_FREQUENT_CHECK;
2964
2965 {
2966 int active = ev_active (w);
2967
2968 prepares [active - 1] = prepares [--preparecnt];
2969 ev_active (prepares [active - 1]) = active;
2970 }
2971
2972 ev_stop (EV_A_ (W)w);
2973
2974 EV_FREQUENT_CHECK;
2975}
2976
2977void
2978ev_check_start (EV_P_ ev_check *w)
2979{
2980 if (expect_false (ev_is_active (w)))
2981 return;
2982
2983 EV_FREQUENT_CHECK;
2984
2985 ev_start (EV_A_ (W)w, ++checkcnt);
2986 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2987 checks [checkcnt - 1] = w;
2988
2989 EV_FREQUENT_CHECK;
2990}
2991
2992void
2993ev_check_stop (EV_P_ ev_check *w)
2994{
2995 clear_pending (EV_A_ (W)w);
2996 if (expect_false (!ev_is_active (w)))
2997 return;
2998
2999 EV_FREQUENT_CHECK;
3000
3001 {
3002 int active = ev_active (w);
3003
3004 checks [active - 1] = checks [--checkcnt];
3005 ev_active (checks [active - 1]) = active;
3006 }
3007
3008 ev_stop (EV_A_ (W)w);
3009
3010 EV_FREQUENT_CHECK;
3011}
3012
3013#if EV_EMBED_ENABLE
3014void noinline
3015ev_embed_sweep (EV_P_ ev_embed *w)
3016{
3017 ev_loop (w->other, EVLOOP_NONBLOCK);
3018}
3019
3020static void
3021embed_io_cb (EV_P_ ev_io *io, int revents)
3022{
3023 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3024
3025 if (ev_cb (w))
3026 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3027 else
3028 ev_loop (w->other, EVLOOP_NONBLOCK);
3029}
3030
3031static void
3032embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3033{
3034 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3035
3036 {
3037 struct ev_loop *loop = w->other;
3038
3039 while (fdchangecnt)
3040 {
3041 fd_reify (EV_A);
3042 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3043 }
3044 }
3045}
3046
3047static void
3048embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3049{
3050 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3051
3052 ev_embed_stop (EV_A_ w);
3053
3054 {
3055 struct ev_loop *loop = w->other;
3056
3057 ev_loop_fork (EV_A);
3058 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3059 }
3060
3061 ev_embed_start (EV_A_ w);
3062}
3063
3064#if 0
3065static void
3066embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3067{
3068 ev_idle_stop (EV_A_ idle);
3069}
3070#endif
3071
3072void
3073ev_embed_start (EV_P_ ev_embed *w)
3074{
3075 if (expect_false (ev_is_active (w)))
3076 return;
3077
3078 {
3079 struct ev_loop *loop = w->other;
3080 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3081 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3082 }
3083
3084 EV_FREQUENT_CHECK;
3085
3086 ev_set_priority (&w->io, ev_priority (w));
3087 ev_io_start (EV_A_ &w->io);
3088
3089 ev_prepare_init (&w->prepare, embed_prepare_cb);
3090 ev_set_priority (&w->prepare, EV_MINPRI);
3091 ev_prepare_start (EV_A_ &w->prepare);
3092
3093 ev_fork_init (&w->fork, embed_fork_cb);
3094 ev_fork_start (EV_A_ &w->fork);
3095
3096 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3097
3098 ev_start (EV_A_ (W)w, 1);
3099
3100 EV_FREQUENT_CHECK;
3101}
3102
3103void
3104ev_embed_stop (EV_P_ ev_embed *w)
3105{
3106 clear_pending (EV_A_ (W)w);
3107 if (expect_false (!ev_is_active (w)))
3108 return;
3109
3110 EV_FREQUENT_CHECK;
3111
3112 ev_io_stop (EV_A_ &w->io);
3113 ev_prepare_stop (EV_A_ &w->prepare);
3114 ev_fork_stop (EV_A_ &w->fork);
3115
3116 EV_FREQUENT_CHECK;
3117}
3118#endif
3119
3120#if EV_FORK_ENABLE
3121void
3122ev_fork_start (EV_P_ ev_fork *w)
3123{
3124 if (expect_false (ev_is_active (w)))
3125 return;
3126
3127 EV_FREQUENT_CHECK;
3128
3129 ev_start (EV_A_ (W)w, ++forkcnt);
3130 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3131 forks [forkcnt - 1] = w;
3132
3133 EV_FREQUENT_CHECK;
3134}
3135
3136void
3137ev_fork_stop (EV_P_ ev_fork *w)
3138{
3139 clear_pending (EV_A_ (W)w);
3140 if (expect_false (!ev_is_active (w)))
3141 return;
3142
3143 EV_FREQUENT_CHECK;
3144
3145 {
3146 int active = ev_active (w);
3147
3148 forks [active - 1] = forks [--forkcnt];
3149 ev_active (forks [active - 1]) = active;
3150 }
3151
3152 ev_stop (EV_A_ (W)w);
3153
3154 EV_FREQUENT_CHECK;
3155}
3156#endif
3157
3158#if EV_ASYNC_ENABLE
3159void
3160ev_async_start (EV_P_ ev_async *w)
3161{
3162 if (expect_false (ev_is_active (w)))
3163 return;
3164
3165 evpipe_init (EV_A);
3166
3167 EV_FREQUENT_CHECK;
3168
3169 ev_start (EV_A_ (W)w, ++asynccnt);
3170 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3171 asyncs [asynccnt - 1] = w;
3172
3173 EV_FREQUENT_CHECK;
3174}
3175
3176void
3177ev_async_stop (EV_P_ ev_async *w)
3178{
3179 clear_pending (EV_A_ (W)w);
3180 if (expect_false (!ev_is_active (w)))
3181 return;
3182
3183 EV_FREQUENT_CHECK;
3184
3185 {
3186 int active = ev_active (w);
3187
3188 asyncs [active - 1] = asyncs [--asynccnt];
3189 ev_active (asyncs [active - 1]) = active;
3190 }
3191
3192 ev_stop (EV_A_ (W)w);
3193
3194 EV_FREQUENT_CHECK;
3195}
3196
3197void
3198ev_async_send (EV_P_ ev_async *w)
3199{
3200 w->sent = 1;
3201 evpipe_write (EV_A_ &gotasync);
3202}
3203#endif
1584 3204
1585/*****************************************************************************/ 3205/*****************************************************************************/
1586 3206
1587struct ev_once 3207struct ev_once
1588{ 3208{
1589 struct ev_io io; 3209 ev_io io;
1590 struct ev_timer to; 3210 ev_timer to;
1591 void (*cb)(int revents, void *arg); 3211 void (*cb)(int revents, void *arg);
1592 void *arg; 3212 void *arg;
1593}; 3213};
1594 3214
1595static void 3215static void
1596once_cb (EV_P_ struct ev_once *once, int revents) 3216once_cb (EV_P_ struct ev_once *once, int revents)
1597{ 3217{
1598 void (*cb)(int revents, void *arg) = once->cb; 3218 void (*cb)(int revents, void *arg) = once->cb;
1599 void *arg = once->arg; 3219 void *arg = once->arg;
1600 3220
1601 ev_io_stop (EV_A_ &once->io); 3221 ev_io_stop (EV_A_ &once->io);
1602 ev_timer_stop (EV_A_ &once->to); 3222 ev_timer_stop (EV_A_ &once->to);
1603 ev_free (once); 3223 ev_free (once);
1604 3224
1605 cb (revents, arg); 3225 cb (revents, arg);
1606} 3226}
1607 3227
1608static void 3228static void
1609once_cb_io (EV_P_ struct ev_io *w, int revents) 3229once_cb_io (EV_P_ ev_io *w, int revents)
1610{ 3230{
1611 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3231 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3232
3233 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1612} 3234}
1613 3235
1614static void 3236static void
1615once_cb_to (EV_P_ struct ev_timer *w, int revents) 3237once_cb_to (EV_P_ ev_timer *w, int revents)
1616{ 3238{
1617 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3239 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3240
3241 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1618} 3242}
1619 3243
1620void 3244void
1621ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3245ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1622{ 3246{
1623 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3247 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1624 3248
1625 if (!once) 3249 if (expect_false (!once))
3250 {
1626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3251 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1627 else 3252 return;
1628 { 3253 }
3254
1629 once->cb = cb; 3255 once->cb = cb;
1630 once->arg = arg; 3256 once->arg = arg;
1631 3257
1632 ev_init (&once->io, once_cb_io); 3258 ev_init (&once->io, once_cb_io);
1633 if (fd >= 0) 3259 if (fd >= 0)
3260 {
3261 ev_io_set (&once->io, fd, events);
3262 ev_io_start (EV_A_ &once->io);
3263 }
3264
3265 ev_init (&once->to, once_cb_to);
3266 if (timeout >= 0.)
3267 {
3268 ev_timer_set (&once->to, timeout, 0.);
3269 ev_timer_start (EV_A_ &once->to);
3270 }
3271}
3272
3273/*****************************************************************************/
3274
3275#if EV_WALK_ENABLE
3276void
3277ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3278{
3279 int i, j;
3280 ev_watcher_list *wl, *wn;
3281
3282 if (types & (EV_IO | EV_EMBED))
3283 for (i = 0; i < anfdmax; ++i)
3284 for (wl = anfds [i].head; wl; )
1634 { 3285 {
1635 ev_io_set (&once->io, fd, events); 3286 wn = wl->next;
1636 ev_io_start (EV_A_ &once->io); 3287
3288#if EV_EMBED_ENABLE
3289 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3290 {
3291 if (types & EV_EMBED)
3292 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3293 }
3294 else
3295#endif
3296#if EV_USE_INOTIFY
3297 if (ev_cb ((ev_io *)wl) == infy_cb)
3298 ;
3299 else
3300#endif
3301 if ((ev_io *)wl != &pipe_w)
3302 if (types & EV_IO)
3303 cb (EV_A_ EV_IO, wl);
3304
3305 wl = wn;
1637 } 3306 }
1638 3307
1639 ev_init (&once->to, once_cb_to); 3308 if (types & (EV_TIMER | EV_STAT))
1640 if (timeout >= 0.) 3309 for (i = timercnt + HEAP0; i-- > HEAP0; )
3310#if EV_STAT_ENABLE
3311 /*TODO: timer is not always active*/
3312 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1641 { 3313 {
1642 ev_timer_set (&once->to, timeout, 0.); 3314 if (types & EV_STAT)
1643 ev_timer_start (EV_A_ &once->to); 3315 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1644 } 3316 }
1645 } 3317 else
3318#endif
3319 if (types & EV_TIMER)
3320 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3321
3322#if EV_PERIODIC_ENABLE
3323 if (types & EV_PERIODIC)
3324 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3325 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3326#endif
3327
3328#if EV_IDLE_ENABLE
3329 if (types & EV_IDLE)
3330 for (j = NUMPRI; i--; )
3331 for (i = idlecnt [j]; i--; )
3332 cb (EV_A_ EV_IDLE, idles [j][i]);
3333#endif
3334
3335#if EV_FORK_ENABLE
3336 if (types & EV_FORK)
3337 for (i = forkcnt; i--; )
3338 if (ev_cb (forks [i]) != embed_fork_cb)
3339 cb (EV_A_ EV_FORK, forks [i]);
3340#endif
3341
3342#if EV_ASYNC_ENABLE
3343 if (types & EV_ASYNC)
3344 for (i = asynccnt; i--; )
3345 cb (EV_A_ EV_ASYNC, asyncs [i]);
3346#endif
3347
3348 if (types & EV_PREPARE)
3349 for (i = preparecnt; i--; )
3350#if EV_EMBED_ENABLE
3351 if (ev_cb (prepares [i]) != embed_prepare_cb)
3352#endif
3353 cb (EV_A_ EV_PREPARE, prepares [i]);
3354
3355 if (types & EV_CHECK)
3356 for (i = checkcnt; i--; )
3357 cb (EV_A_ EV_CHECK, checks [i]);
3358
3359 if (types & EV_SIGNAL)
3360 for (i = 0; i < signalmax; ++i)
3361 for (wl = signals [i].head; wl; )
3362 {
3363 wn = wl->next;
3364 cb (EV_A_ EV_SIGNAL, wl);
3365 wl = wn;
3366 }
3367
3368 if (types & EV_CHILD)
3369 for (i = EV_PID_HASHSIZE; i--; )
3370 for (wl = childs [i]; wl; )
3371 {
3372 wn = wl->next;
3373 cb (EV_A_ EV_CHILD, wl);
3374 wl = wn;
3375 }
3376/* EV_STAT 0x00001000 /* stat data changed */
3377/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1646} 3378}
3379#endif
3380
3381#if EV_MULTIPLICITY
3382 #include "ev_wrap.h"
3383#endif
1647 3384
1648#ifdef __cplusplus 3385#ifdef __cplusplus
1649} 3386}
1650#endif 3387#endif
1651 3388

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines