ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.117 by ayin, Thu Nov 15 17:15:56 2007 UTC vs.
Revision 1.345 by sf-exg, Sat Jul 31 22:33:26 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
45# endif 79# endif
46# endif 80# endif
47 81
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 83# ifndef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
86# else
87# undef EV_USE_NANOSLEEP
88# define EV_USE_NANOSLEEP 0
50# endif 89# endif
51 90
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
94# endif
95# else
96# undef EV_USE_SELECT
53# define EV_USE_POLL 1 97# define EV_USE_SELECT 0
54# endif 98# endif
55 99
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 100# if HAVE_POLL && HAVE_POLL_H
101# ifndef EV_USE_POLL
102# define EV_USE_POLL EV_FEATURE_BACKENDS
103# endif
104# else
105# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 106# define EV_USE_POLL 0
58# endif 107# endif
59 108
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 110# ifndef EV_USE_EPOLL
111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
62# endif 116# endif
117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
119# ifndef EV_USE_KQUEUE
120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
125# endif
126
127# if HAVE_PORT_H && HAVE_PORT_CREATE
128# ifndef EV_USE_PORT
129# define EV_USE_PORT EV_FEATURE_BACKENDS
130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
134# endif
63 135
136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
137# ifndef EV_USE_INOTIFY
138# define EV_USE_INOTIFY EV_FEATURE_OS
139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
143# endif
144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
64#endif 163#endif
65 164
66#include <math.h> 165#include <math.h>
67#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
68#include <fcntl.h> 168#include <fcntl.h>
69#include <stddef.h> 169#include <stddef.h>
70 170
71#include <stdio.h> 171#include <stdio.h>
72 172
73#include <assert.h> 173#include <assert.h>
74#include <errno.h> 174#include <errno.h>
75#include <sys/types.h> 175#include <sys/types.h>
76#include <time.h> 176#include <time.h>
177#include <limits.h>
77 178
78#include <signal.h> 179#include <signal.h>
79 180
181#ifdef EV_H
182# include EV_H
183#else
184# include "ev.h"
185#endif
186
80#ifndef _WIN32 187#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 188# include <sys/time.h>
83# include <sys/wait.h> 189# include <sys/wait.h>
190# include <unistd.h>
84#else 191#else
192# include <io.h>
85# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 194# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
89# endif 197# endif
198# undef EV_AVOID_STDIO
199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
208
209/* this block tries to deduce configuration from header-defined symbols and defaults */
210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
90#endif 244# endif
91 245#endif
92/**/
93 246
94#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
95# define EV_USE_MONOTONIC 1 251# define EV_USE_MONOTONIC 0
252# endif
253#endif
254
255#ifndef EV_USE_REALTIME
256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
257#endif
258
259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
263# define EV_USE_NANOSLEEP 0
264# endif
96#endif 265#endif
97 266
98#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
100# define EV_SELECT_USE_FD_SET 1
101#endif 269#endif
102 270
103#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
104# ifdef _WIN32 272# ifdef _WIN32
105# define EV_USE_POLL 0 273# define EV_USE_POLL 0
106# else 274# else
107# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
108# endif 276# endif
109#endif 277#endif
110 278
111#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
282# else
112# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
284# endif
113#endif 285#endif
114 286
115#ifndef EV_USE_KQUEUE 287#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 288# define EV_USE_KQUEUE 0
117#endif 289#endif
118 290
119#ifndef EV_USE_REALTIME 291#ifndef EV_USE_PORT
120# define EV_USE_REALTIME 1 292# define EV_USE_PORT 0
293#endif
294
295#ifndef EV_USE_INOTIFY
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_INOTIFY EV_FEATURE_OS
298# else
299# define EV_USE_INOTIFY 0
121#endif 300# endif
301#endif
122 302
123/**/ 303#ifndef EV_PID_HASHSIZE
304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
305#endif
124 306
125/* darwin simply cannot be helped */ 307#ifndef EV_INOTIFY_HASHSIZE
126#ifdef __APPLE__ 308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
309#endif
310
311#ifndef EV_USE_EVENTFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_EVENTFD EV_FEATURE_OS
314# else
315# define EV_USE_EVENTFD 0
316# endif
317#endif
318
319#ifndef EV_USE_SIGNALFD
320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321# define EV_USE_SIGNALFD EV_FEATURE_OS
322# else
323# define EV_USE_SIGNALFD 0
324# endif
325#endif
326
327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
337#ifndef EV_USE_4HEAP
338# define EV_USE_4HEAP EV_FEATURE_DATA
339#endif
340
341#ifndef EV_HEAP_CACHE_AT
342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
357#endif
358
359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
127# undef EV_USE_POLL 363# undef EV_USE_POLL
128# undef EV_USE_KQUEUE 364# define EV_USE_POLL 0
129#endif 365#endif
130 366
131#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
136#ifndef CLOCK_REALTIME 372#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 373# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 374# define EV_USE_REALTIME 0
139#endif 375#endif
140 376
377#if !EV_STAT_ENABLE
378# undef EV_USE_INOTIFY
379# define EV_USE_INOTIFY 0
380#endif
381
382#if !EV_USE_NANOSLEEP
383# ifndef _WIN32
384# include <sys/select.h>
385# endif
386#endif
387
388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
397#endif
398
141#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h> 400# include <winsock.h>
143#endif 401#endif
144 402
403#if EV_USE_EVENTFD
404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
416# ifdef __cplusplus
417extern "C" {
418# endif
419int (eventfd) (unsigned int initval, int flags);
420# ifdef __cplusplus
421}
422# endif
423#endif
424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
453
145/**/ 454/**/
146 455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
462/*
463 * This is used to avoid floating point rounding problems.
464 * It is added to ev_rt_now when scheduling periodics
465 * to ensure progress, time-wise, even when rounding
466 * errors are against us.
467 * This value is good at least till the year 4000.
468 * Better solutions welcome.
469 */
470#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
471
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
151 474
152#ifdef EV_H
153# include EV_H
154#else
155# include "ev.h"
156#endif
157
158#if __GNUC__ >= 3 475#if __GNUC__ >= 4
159# define expect(expr,value) __builtin_expect ((expr),(value)) 476# define expect(expr,value) __builtin_expect ((expr),(value))
160# define inline inline 477# define noinline __attribute__ ((noinline))
161#else 478#else
162# define expect(expr,value) (expr) 479# define expect(expr,value) (expr)
163# define inline static 480# define noinline
481# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
482# define inline
483# endif
164#endif 484#endif
165 485
166#define expect_false(expr) expect ((expr) != 0, 0) 486#define expect_false(expr) expect ((expr) != 0, 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 487#define expect_true(expr) expect ((expr) != 0, 1)
488#define inline_size static inline
168 489
490#if EV_FEATURE_CODE
491# define inline_speed static inline
492#else
493# define inline_speed static noinline
494#endif
495
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 496#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
497
498#if EV_MINPRI == EV_MAXPRI
499# define ABSPRI(w) (((W)w), 0)
500#else
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 501# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
502#endif
171 503
172#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 504#define EMPTY /* required for microsofts broken pseudo-c compiler */
173#define EMPTY2(a,b) /* used to suppress some warnings */ 505#define EMPTY2(a,b) /* used to suppress some warnings */
174 506
175typedef struct ev_watcher *W; 507typedef ev_watcher *W;
176typedef struct ev_watcher_list *WL; 508typedef ev_watcher_list *WL;
177typedef struct ev_watcher_time *WT; 509typedef ev_watcher_time *WT;
178 510
511#define ev_active(w) ((W)(w))->active
512#define ev_at(w) ((WT)(w))->at
513
514#if EV_USE_REALTIME
515/* sig_atomic_t is used to avoid per-thread variables or locking but still */
516/* giving it a reasonably high chance of working on typical architectures */
517static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
518#endif
519
520#if EV_USE_MONOTONIC
179static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 521static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
522#endif
523
524#ifndef EV_FD_TO_WIN32_HANDLE
525# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
526#endif
527#ifndef EV_WIN32_HANDLE_TO_FD
528# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
529#endif
530#ifndef EV_WIN32_CLOSE_FD
531# define EV_WIN32_CLOSE_FD(fd) close (fd)
532#endif
180 533
181#ifdef _WIN32 534#ifdef _WIN32
182# include "ev_win32.c" 535# include "ev_win32.c"
183#endif 536#endif
184 537
185/*****************************************************************************/ 538/*****************************************************************************/
186 539
540#if EV_AVOID_STDIO
541static void noinline
542ev_printerr (const char *msg)
543{
544 write (STDERR_FILENO, msg, strlen (msg));
545}
546#endif
547
187static void (*syserr_cb)(const char *msg); 548static void (*syserr_cb)(const char *msg);
188 549
550void
189void ev_set_syserr_cb (void (*cb)(const char *msg)) 551ev_set_syserr_cb (void (*cb)(const char *msg))
190{ 552{
191 syserr_cb = cb; 553 syserr_cb = cb;
192} 554}
193 555
194static void 556static void noinline
195syserr (const char *msg) 557ev_syserr (const char *msg)
196{ 558{
197 if (!msg) 559 if (!msg)
198 msg = "(libev) system error"; 560 msg = "(libev) system error";
199 561
200 if (syserr_cb) 562 if (syserr_cb)
201 syserr_cb (msg); 563 syserr_cb (msg);
202 else 564 else
203 { 565 {
566#if EV_AVOID_STDIO
567 const char *err = strerror (errno);
568
569 ev_printerr (msg);
570 ev_printerr (": ");
571 ev_printerr (err);
572 ev_printerr ("\n");
573#else
204 perror (msg); 574 perror (msg);
575#endif
205 abort (); 576 abort ();
206 } 577 }
207} 578}
208 579
580static void *
581ev_realloc_emul (void *ptr, long size)
582{
583#if __GLIBC__
584 return realloc (ptr, size);
585#else
586 /* some systems, notably openbsd and darwin, fail to properly
587 * implement realloc (x, 0) (as required by both ansi c-89 and
588 * the single unix specification, so work around them here.
589 */
590
591 if (size)
592 return realloc (ptr, size);
593
594 free (ptr);
595 return 0;
596#endif
597}
598
209static void *(*alloc)(void *ptr, long size); 599static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
210 600
601void
211void ev_set_allocator (void *(*cb)(void *ptr, long size)) 602ev_set_allocator (void *(*cb)(void *ptr, long size))
212{ 603{
213 alloc = cb; 604 alloc = cb;
214} 605}
215 606
216static void * 607inline_speed void *
217ev_realloc (void *ptr, long size) 608ev_realloc (void *ptr, long size)
218{ 609{
219 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 610 ptr = alloc (ptr, size);
220 611
221 if (!ptr && size) 612 if (!ptr && size)
222 { 613 {
614#if EV_AVOID_STDIO
615 ev_printerr ("libev: memory allocation failed, aborting.\n");
616#else
223 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 617 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
618#endif
224 abort (); 619 abort ();
225 } 620 }
226 621
227 return ptr; 622 return ptr;
228} 623}
230#define ev_malloc(size) ev_realloc (0, (size)) 625#define ev_malloc(size) ev_realloc (0, (size))
231#define ev_free(ptr) ev_realloc ((ptr), 0) 626#define ev_free(ptr) ev_realloc ((ptr), 0)
232 627
233/*****************************************************************************/ 628/*****************************************************************************/
234 629
630/* set in reify when reification needed */
631#define EV_ANFD_REIFY 1
632
633/* file descriptor info structure */
235typedef struct 634typedef struct
236{ 635{
237 WL head; 636 WL head;
238 unsigned char events; 637 unsigned char events; /* the events watched for */
638 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
639 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
239 unsigned char reify; 640 unsigned char unused;
641#if EV_USE_EPOLL
642 unsigned int egen; /* generation counter to counter epoll bugs */
643#endif
240#if EV_SELECT_IS_WINSOCKET 644#if EV_SELECT_IS_WINSOCKET
241 SOCKET handle; 645 SOCKET handle;
242#endif 646#endif
243} ANFD; 647} ANFD;
244 648
649/* stores the pending event set for a given watcher */
245typedef struct 650typedef struct
246{ 651{
247 W w; 652 W w;
248 int events; 653 int events; /* the pending event set for the given watcher */
249} ANPENDING; 654} ANPENDING;
655
656#if EV_USE_INOTIFY
657/* hash table entry per inotify-id */
658typedef struct
659{
660 WL head;
661} ANFS;
662#endif
663
664/* Heap Entry */
665#if EV_HEAP_CACHE_AT
666 /* a heap element */
667 typedef struct {
668 ev_tstamp at;
669 WT w;
670 } ANHE;
671
672 #define ANHE_w(he) (he).w /* access watcher, read-write */
673 #define ANHE_at(he) (he).at /* access cached at, read-only */
674 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
675#else
676 /* a heap element */
677 typedef WT ANHE;
678
679 #define ANHE_w(he) (he)
680 #define ANHE_at(he) (he)->at
681 #define ANHE_at_cache(he)
682#endif
250 683
251#if EV_MULTIPLICITY 684#if EV_MULTIPLICITY
252 685
253 struct ev_loop 686 struct ev_loop
254 { 687 {
272 705
273 static int ev_default_loop_ptr; 706 static int ev_default_loop_ptr;
274 707
275#endif 708#endif
276 709
710#if EV_FEATURE_API
711# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
712# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
713# define EV_INVOKE_PENDING invoke_cb (EV_A)
714#else
715# define EV_RELEASE_CB (void)0
716# define EV_ACQUIRE_CB (void)0
717# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
718#endif
719
720#define EVUNLOOP_RECURSE 0x80
721
277/*****************************************************************************/ 722/*****************************************************************************/
278 723
724#ifndef EV_HAVE_EV_TIME
279ev_tstamp 725ev_tstamp
280ev_time (void) 726ev_time (void)
281{ 727{
282#if EV_USE_REALTIME 728#if EV_USE_REALTIME
729 if (expect_true (have_realtime))
730 {
283 struct timespec ts; 731 struct timespec ts;
284 clock_gettime (CLOCK_REALTIME, &ts); 732 clock_gettime (CLOCK_REALTIME, &ts);
285 return ts.tv_sec + ts.tv_nsec * 1e-9; 733 return ts.tv_sec + ts.tv_nsec * 1e-9;
286#else 734 }
735#endif
736
287 struct timeval tv; 737 struct timeval tv;
288 gettimeofday (&tv, 0); 738 gettimeofday (&tv, 0);
289 return tv.tv_sec + tv.tv_usec * 1e-6; 739 return tv.tv_sec + tv.tv_usec * 1e-6;
290#endif
291} 740}
741#endif
292 742
293inline ev_tstamp 743inline_size ev_tstamp
294get_clock (void) 744get_clock (void)
295{ 745{
296#if EV_USE_MONOTONIC 746#if EV_USE_MONOTONIC
297 if (expect_true (have_monotonic)) 747 if (expect_true (have_monotonic))
298 { 748 {
311{ 761{
312 return ev_rt_now; 762 return ev_rt_now;
313} 763}
314#endif 764#endif
315 765
316#define array_roundsize(type,n) (((n) | 4) & ~3) 766void
767ev_sleep (ev_tstamp delay)
768{
769 if (delay > 0.)
770 {
771#if EV_USE_NANOSLEEP
772 struct timespec ts;
773
774 ts.tv_sec = (time_t)delay;
775 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
776
777 nanosleep (&ts, 0);
778#elif defined(_WIN32)
779 Sleep ((unsigned long)(delay * 1e3));
780#else
781 struct timeval tv;
782
783 tv.tv_sec = (time_t)delay;
784 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
785
786 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
787 /* something not guaranteed by newer posix versions, but guaranteed */
788 /* by older ones */
789 select (0, 0, 0, 0, &tv);
790#endif
791 }
792}
793
794/*****************************************************************************/
795
796#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
797
798/* find a suitable new size for the given array, */
799/* hopefully by rounding to a nice-to-malloc size */
800inline_size int
801array_nextsize (int elem, int cur, int cnt)
802{
803 int ncur = cur + 1;
804
805 do
806 ncur <<= 1;
807 while (cnt > ncur);
808
809 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
810 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
811 {
812 ncur *= elem;
813 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
814 ncur = ncur - sizeof (void *) * 4;
815 ncur /= elem;
816 }
817
818 return ncur;
819}
820
821static noinline void *
822array_realloc (int elem, void *base, int *cur, int cnt)
823{
824 *cur = array_nextsize (elem, *cur, cnt);
825 return ev_realloc (base, elem * *cur);
826}
827
828#define array_init_zero(base,count) \
829 memset ((void *)(base), 0, sizeof (*(base)) * (count))
317 830
318#define array_needsize(type,base,cur,cnt,init) \ 831#define array_needsize(type,base,cur,cnt,init) \
319 if (expect_false ((cnt) > cur)) \ 832 if (expect_false ((cnt) > (cur))) \
320 { \ 833 { \
321 int newcnt = cur; \ 834 int ocur_ = (cur); \
322 do \ 835 (base) = (type *)array_realloc \
323 { \ 836 (sizeof (type), (base), &(cur), (cnt)); \
324 newcnt = array_roundsize (type, newcnt << 1); \ 837 init ((base) + (ocur_), (cur) - ocur_); \
325 } \
326 while ((cnt) > newcnt); \
327 \
328 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
329 init (base + cur, newcnt - cur); \
330 cur = newcnt; \
331 } 838 }
332 839
840#if 0
333#define array_slim(type,stem) \ 841#define array_slim(type,stem) \
334 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 842 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
335 { \ 843 { \
336 stem ## max = array_roundsize (stem ## cnt >> 1); \ 844 stem ## max = array_roundsize (stem ## cnt >> 1); \
337 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 845 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
338 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 846 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
339 } 847 }
848#endif
340 849
341#define array_free(stem, idx) \ 850#define array_free(stem, idx) \
342 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 851 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
343 852
344/*****************************************************************************/ 853/*****************************************************************************/
345 854
346static void 855/* dummy callback for pending events */
347anfds_init (ANFD *base, int count) 856static void noinline
857pendingcb (EV_P_ ev_prepare *w, int revents)
348{ 858{
349 while (count--)
350 {
351 base->head = 0;
352 base->events = EV_NONE;
353 base->reify = 0;
354
355 ++base;
356 }
357} 859}
358 860
359void 861void noinline
360ev_feed_event (EV_P_ void *w, int revents) 862ev_feed_event (EV_P_ void *w, int revents)
361{ 863{
362 W w_ = (W)w; 864 W w_ = (W)w;
865 int pri = ABSPRI (w_);
363 866
364 if (w_->pending) 867 if (expect_false (w_->pending))
868 pendings [pri][w_->pending - 1].events |= revents;
869 else
365 { 870 {
871 w_->pending = ++pendingcnt [pri];
872 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
873 pendings [pri][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 874 pendings [pri][w_->pending - 1].events = revents;
367 return;
368 } 875 }
369
370 w_->pending = ++pendingcnt [ABSPRI (w_)];
371 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
372 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
374} 876}
375 877
376static void 878inline_speed void
879feed_reverse (EV_P_ W w)
880{
881 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
882 rfeeds [rfeedcnt++] = w;
883}
884
885inline_size void
886feed_reverse_done (EV_P_ int revents)
887{
888 do
889 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
890 while (rfeedcnt);
891}
892
893inline_speed void
377queue_events (EV_P_ W *events, int eventcnt, int type) 894queue_events (EV_P_ W *events, int eventcnt, int type)
378{ 895{
379 int i; 896 int i;
380 897
381 for (i = 0; i < eventcnt; ++i) 898 for (i = 0; i < eventcnt; ++i)
382 ev_feed_event (EV_A_ events [i], type); 899 ev_feed_event (EV_A_ events [i], type);
383} 900}
384 901
902/*****************************************************************************/
903
385inline void 904inline_speed void
386fd_event (EV_P_ int fd, int revents) 905fd_event_nocheck (EV_P_ int fd, int revents)
387{ 906{
388 ANFD *anfd = anfds + fd; 907 ANFD *anfd = anfds + fd;
389 struct ev_io *w; 908 ev_io *w;
390 909
391 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 910 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
392 { 911 {
393 int ev = w->events & revents; 912 int ev = w->events & revents;
394 913
395 if (ev) 914 if (ev)
396 ev_feed_event (EV_A_ (W)w, ev); 915 ev_feed_event (EV_A_ (W)w, ev);
397 } 916 }
398} 917}
399 918
919/* do not submit kernel events for fds that have reify set */
920/* because that means they changed while we were polling for new events */
921inline_speed void
922fd_event (EV_P_ int fd, int revents)
923{
924 ANFD *anfd = anfds + fd;
925
926 if (expect_true (!anfd->reify))
927 fd_event_nocheck (EV_A_ fd, revents);
928}
929
400void 930void
401ev_feed_fd_event (EV_P_ int fd, int revents) 931ev_feed_fd_event (EV_P_ int fd, int revents)
402{ 932{
933 if (fd >= 0 && fd < anfdmax)
403 fd_event (EV_A_ fd, revents); 934 fd_event_nocheck (EV_A_ fd, revents);
404} 935}
405 936
406/*****************************************************************************/ 937/* make sure the external fd watch events are in-sync */
407 938/* with the kernel/libev internal state */
408static void 939inline_size void
409fd_reify (EV_P) 940fd_reify (EV_P)
410{ 941{
411 int i; 942 int i;
412 943
413 for (i = 0; i < fdchangecnt; ++i) 944 for (i = 0; i < fdchangecnt; ++i)
414 { 945 {
415 int fd = fdchanges [i]; 946 int fd = fdchanges [i];
416 ANFD *anfd = anfds + fd; 947 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 948 ev_io *w;
418 949
419 int events = 0; 950 unsigned char events = 0;
420 951
421 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 952 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
422 events |= w->events; 953 events |= (unsigned char)w->events;
423 954
424#if EV_SELECT_IS_WINSOCKET 955#if EV_SELECT_IS_WINSOCKET
425 if (events) 956 if (events)
426 { 957 {
427 unsigned long argp; 958 unsigned long arg;
428 anfd->handle = _get_osfhandle (fd); 959 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
429 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 960 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
430 } 961 }
431#endif 962#endif
432 963
964 {
965 unsigned char o_events = anfd->events;
966 unsigned char o_reify = anfd->reify;
967
433 anfd->reify = 0; 968 anfd->reify = 0;
434
435 method_modify (EV_A_ fd, anfd->events, events);
436 anfd->events = events; 969 anfd->events = events;
970
971 if (o_events != events || o_reify & EV__IOFDSET)
972 backend_modify (EV_A_ fd, o_events, events);
973 }
437 } 974 }
438 975
439 fdchangecnt = 0; 976 fdchangecnt = 0;
440} 977}
441 978
442static void 979/* something about the given fd changed */
980inline_size void
443fd_change (EV_P_ int fd) 981fd_change (EV_P_ int fd, int flags)
444{ 982{
445 if (anfds [fd].reify) 983 unsigned char reify = anfds [fd].reify;
446 return;
447
448 anfds [fd].reify = 1; 984 anfds [fd].reify |= flags;
449 985
986 if (expect_true (!reify))
987 {
450 ++fdchangecnt; 988 ++fdchangecnt;
451 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 989 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
452 fdchanges [fdchangecnt - 1] = fd; 990 fdchanges [fdchangecnt - 1] = fd;
991 }
453} 992}
454 993
455static void 994/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
995inline_speed void
456fd_kill (EV_P_ int fd) 996fd_kill (EV_P_ int fd)
457{ 997{
458 struct ev_io *w; 998 ev_io *w;
459 999
460 while ((w = (struct ev_io *)anfds [fd].head)) 1000 while ((w = (ev_io *)anfds [fd].head))
461 { 1001 {
462 ev_io_stop (EV_A_ w); 1002 ev_io_stop (EV_A_ w);
463 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1003 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
464 } 1004 }
465} 1005}
466 1006
467static int 1007/* check whether the given fd is actually valid, for error recovery */
1008inline_size int
468fd_valid (int fd) 1009fd_valid (int fd)
469{ 1010{
470#ifdef _WIN32 1011#ifdef _WIN32
471 return _get_osfhandle (fd) != -1; 1012 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
472#else 1013#else
473 return fcntl (fd, F_GETFD) != -1; 1014 return fcntl (fd, F_GETFD) != -1;
474#endif 1015#endif
475} 1016}
476 1017
477/* called on EBADF to verify fds */ 1018/* called on EBADF to verify fds */
478static void 1019static void noinline
479fd_ebadf (EV_P) 1020fd_ebadf (EV_P)
480{ 1021{
481 int fd; 1022 int fd;
482 1023
483 for (fd = 0; fd < anfdmax; ++fd) 1024 for (fd = 0; fd < anfdmax; ++fd)
484 if (anfds [fd].events) 1025 if (anfds [fd].events)
485 if (!fd_valid (fd) == -1 && errno == EBADF) 1026 if (!fd_valid (fd) && errno == EBADF)
486 fd_kill (EV_A_ fd); 1027 fd_kill (EV_A_ fd);
487} 1028}
488 1029
489/* called on ENOMEM in select/poll to kill some fds and retry */ 1030/* called on ENOMEM in select/poll to kill some fds and retry */
490static void 1031static void noinline
491fd_enomem (EV_P) 1032fd_enomem (EV_P)
492{ 1033{
493 int fd; 1034 int fd;
494 1035
495 for (fd = anfdmax; fd--; ) 1036 for (fd = anfdmax; fd--; )
496 if (anfds [fd].events) 1037 if (anfds [fd].events)
497 { 1038 {
498 fd_kill (EV_A_ fd); 1039 fd_kill (EV_A_ fd);
499 return; 1040 break;
500 } 1041 }
501} 1042}
502 1043
503/* usually called after fork if method needs to re-arm all fds from scratch */ 1044/* usually called after fork if backend needs to re-arm all fds from scratch */
504static void 1045static void noinline
505fd_rearm_all (EV_P) 1046fd_rearm_all (EV_P)
506{ 1047{
507 int fd; 1048 int fd;
508 1049
509 /* this should be highly optimised to not do anything but set a flag */
510 for (fd = 0; fd < anfdmax; ++fd) 1050 for (fd = 0; fd < anfdmax; ++fd)
511 if (anfds [fd].events) 1051 if (anfds [fd].events)
512 { 1052 {
513 anfds [fd].events = 0; 1053 anfds [fd].events = 0;
514 fd_change (EV_A_ fd); 1054 anfds [fd].emask = 0;
1055 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
515 } 1056 }
516} 1057}
517 1058
518/*****************************************************************************/ 1059/* used to prepare libev internal fd's */
519 1060/* this is not fork-safe */
520static void
521upheap (WT *heap, int k)
522{
523 WT w = heap [k];
524
525 while (k && heap [k >> 1]->at > w->at)
526 {
527 heap [k] = heap [k >> 1];
528 ((W)heap [k])->active = k + 1;
529 k >>= 1;
530 }
531
532 heap [k] = w;
533 ((W)heap [k])->active = k + 1;
534
535}
536
537static void
538downheap (WT *heap, int N, int k)
539{
540 WT w = heap [k];
541
542 while (k < (N >> 1))
543 {
544 int j = k << 1;
545
546 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
547 ++j;
548
549 if (w->at <= heap [j]->at)
550 break;
551
552 heap [k] = heap [j];
553 ((W)heap [k])->active = k + 1;
554 k = j;
555 }
556
557 heap [k] = w;
558 ((W)heap [k])->active = k + 1;
559}
560
561inline void 1061inline_speed void
562adjustheap (WT *heap, int N, int k)
563{
564 upheap (heap, k);
565 downheap (heap, N, k);
566}
567
568/*****************************************************************************/
569
570typedef struct
571{
572 WL head;
573 sig_atomic_t volatile gotsig;
574} ANSIG;
575
576static ANSIG *signals;
577static int signalmax;
578
579static int sigpipe [2];
580static sig_atomic_t volatile gotsig;
581static struct ev_io sigev;
582
583static void
584signals_init (ANSIG *base, int count)
585{
586 while (count--)
587 {
588 base->head = 0;
589 base->gotsig = 0;
590
591 ++base;
592 }
593}
594
595static void
596sighandler (int signum)
597{
598#if _WIN32
599 signal (signum, sighandler);
600#endif
601
602 signals [signum - 1].gotsig = 1;
603
604 if (!gotsig)
605 {
606 int old_errno = errno;
607 gotsig = 1;
608 write (sigpipe [1], &signum, 1);
609 errno = old_errno;
610 }
611}
612
613void
614ev_feed_signal_event (EV_P_ int signum)
615{
616 WL w;
617
618#if EV_MULTIPLICITY
619 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
620#endif
621
622 --signum;
623
624 if (signum < 0 || signum >= signalmax)
625 return;
626
627 signals [signum].gotsig = 0;
628
629 for (w = signals [signum].head; w; w = w->next)
630 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
631}
632
633static void
634sigcb (EV_P_ struct ev_io *iow, int revents)
635{
636 int signum;
637
638 read (sigpipe [0], &revents, 1);
639 gotsig = 0;
640
641 for (signum = signalmax; signum--; )
642 if (signals [signum].gotsig)
643 ev_feed_signal_event (EV_A_ signum + 1);
644}
645
646inline void
647fd_intern (int fd) 1062fd_intern (int fd)
648{ 1063{
649#ifdef _WIN32 1064#ifdef _WIN32
650 int arg = 1; 1065 unsigned long arg = 1;
651 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1066 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
652#else 1067#else
653 fcntl (fd, F_SETFD, FD_CLOEXEC); 1068 fcntl (fd, F_SETFD, FD_CLOEXEC);
654 fcntl (fd, F_SETFL, O_NONBLOCK); 1069 fcntl (fd, F_SETFL, O_NONBLOCK);
655#endif 1070#endif
656} 1071}
657 1072
1073/*****************************************************************************/
1074
1075/*
1076 * the heap functions want a real array index. array index 0 is guaranteed to not
1077 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1078 * the branching factor of the d-tree.
1079 */
1080
1081/*
1082 * at the moment we allow libev the luxury of two heaps,
1083 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1084 * which is more cache-efficient.
1085 * the difference is about 5% with 50000+ watchers.
1086 */
1087#if EV_USE_4HEAP
1088
1089#define DHEAP 4
1090#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1091#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1092#define UPHEAP_DONE(p,k) ((p) == (k))
1093
1094/* away from the root */
1095inline_speed void
1096downheap (ANHE *heap, int N, int k)
1097{
1098 ANHE he = heap [k];
1099 ANHE *E = heap + N + HEAP0;
1100
1101 for (;;)
1102 {
1103 ev_tstamp minat;
1104 ANHE *minpos;
1105 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1106
1107 /* find minimum child */
1108 if (expect_true (pos + DHEAP - 1 < E))
1109 {
1110 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1111 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1112 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1113 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1114 }
1115 else if (pos < E)
1116 {
1117 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1118 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1119 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1120 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1121 }
1122 else
1123 break;
1124
1125 if (ANHE_at (he) <= minat)
1126 break;
1127
1128 heap [k] = *minpos;
1129 ev_active (ANHE_w (*minpos)) = k;
1130
1131 k = minpos - heap;
1132 }
1133
1134 heap [k] = he;
1135 ev_active (ANHE_w (he)) = k;
1136}
1137
1138#else /* 4HEAP */
1139
1140#define HEAP0 1
1141#define HPARENT(k) ((k) >> 1)
1142#define UPHEAP_DONE(p,k) (!(p))
1143
1144/* away from the root */
1145inline_speed void
1146downheap (ANHE *heap, int N, int k)
1147{
1148 ANHE he = heap [k];
1149
1150 for (;;)
1151 {
1152 int c = k << 1;
1153
1154 if (c >= N + HEAP0)
1155 break;
1156
1157 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1158 ? 1 : 0;
1159
1160 if (ANHE_at (he) <= ANHE_at (heap [c]))
1161 break;
1162
1163 heap [k] = heap [c];
1164 ev_active (ANHE_w (heap [k])) = k;
1165
1166 k = c;
1167 }
1168
1169 heap [k] = he;
1170 ev_active (ANHE_w (he)) = k;
1171}
1172#endif
1173
1174/* towards the root */
1175inline_speed void
1176upheap (ANHE *heap, int k)
1177{
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int p = HPARENT (k);
1183
1184 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1185 break;
1186
1187 heap [k] = heap [p];
1188 ev_active (ANHE_w (heap [k])) = k;
1189 k = p;
1190 }
1191
1192 heap [k] = he;
1193 ev_active (ANHE_w (he)) = k;
1194}
1195
1196/* move an element suitably so it is in a correct place */
1197inline_size void
1198adjustheap (ANHE *heap, int N, int k)
1199{
1200 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1201 upheap (heap, k);
1202 else
1203 downheap (heap, N, k);
1204}
1205
1206/* rebuild the heap: this function is used only once and executed rarely */
1207inline_size void
1208reheap (ANHE *heap, int N)
1209{
1210 int i;
1211
1212 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1213 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1214 for (i = 0; i < N; ++i)
1215 upheap (heap, i + HEAP0);
1216}
1217
1218/*****************************************************************************/
1219
1220/* associate signal watchers to a signal signal */
1221typedef struct
1222{
1223 EV_ATOMIC_T pending;
1224#if EV_MULTIPLICITY
1225 EV_P;
1226#endif
1227 WL head;
1228} ANSIG;
1229
1230static ANSIG signals [EV_NSIG - 1];
1231
1232/*****************************************************************************/
1233
1234#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1235
1236static void noinline
1237evpipe_init (EV_P)
1238{
1239 if (!ev_is_active (&pipe_w))
1240 {
1241# if EV_USE_EVENTFD
1242 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1243 if (evfd < 0 && errno == EINVAL)
1244 evfd = eventfd (0, 0);
1245
1246 if (evfd >= 0)
1247 {
1248 evpipe [0] = -1;
1249 fd_intern (evfd); /* doing it twice doesn't hurt */
1250 ev_io_set (&pipe_w, evfd, EV_READ);
1251 }
1252 else
1253# endif
1254 {
1255 while (pipe (evpipe))
1256 ev_syserr ("(libev) error creating signal/async pipe");
1257
1258 fd_intern (evpipe [0]);
1259 fd_intern (evpipe [1]);
1260 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1261 }
1262
1263 ev_io_start (EV_A_ &pipe_w);
1264 ev_unref (EV_A); /* watcher should not keep loop alive */
1265 }
1266}
1267
1268inline_size void
1269evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1270{
1271 if (!*flag)
1272 {
1273 int old_errno = errno; /* save errno because write might clobber it */
1274 char dummy;
1275
1276 *flag = 1;
1277
1278#if EV_USE_EVENTFD
1279 if (evfd >= 0)
1280 {
1281 uint64_t counter = 1;
1282 write (evfd, &counter, sizeof (uint64_t));
1283 }
1284 else
1285#endif
1286 write (evpipe [1], &dummy, 1);
1287
1288 errno = old_errno;
1289 }
1290}
1291
1292/* called whenever the libev signal pipe */
1293/* got some events (signal, async) */
658static void 1294static void
659siginit (EV_P) 1295pipecb (EV_P_ ev_io *iow, int revents)
660{ 1296{
661 fd_intern (sigpipe [0]); 1297 int i;
662 fd_intern (sigpipe [1]);
663 1298
664 ev_io_set (&sigev, sigpipe [0], EV_READ); 1299#if EV_USE_EVENTFD
665 ev_io_start (EV_A_ &sigev); 1300 if (evfd >= 0)
666 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1301 {
1302 uint64_t counter;
1303 read (evfd, &counter, sizeof (uint64_t));
1304 }
1305 else
1306#endif
1307 {
1308 char dummy;
1309 read (evpipe [0], &dummy, 1);
1310 }
1311
1312 if (sig_pending)
1313 {
1314 sig_pending = 0;
1315
1316 for (i = EV_NSIG - 1; i--; )
1317 if (expect_false (signals [i].pending))
1318 ev_feed_signal_event (EV_A_ i + 1);
1319 }
1320
1321#if EV_ASYNC_ENABLE
1322 if (async_pending)
1323 {
1324 async_pending = 0;
1325
1326 for (i = asynccnt; i--; )
1327 if (asyncs [i]->sent)
1328 {
1329 asyncs [i]->sent = 0;
1330 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1331 }
1332 }
1333#endif
667} 1334}
668 1335
669/*****************************************************************************/ 1336/*****************************************************************************/
670 1337
671static struct ev_child *childs [PID_HASHSIZE]; 1338static void
1339ev_sighandler (int signum)
1340{
1341#if EV_MULTIPLICITY
1342 EV_P = signals [signum - 1].loop;
1343#endif
672 1344
673#ifndef _WIN32 1345#ifdef _WIN32
1346 signal (signum, ev_sighandler);
1347#endif
674 1348
1349 signals [signum - 1].pending = 1;
1350 evpipe_write (EV_A_ &sig_pending);
1351}
1352
1353void noinline
1354ev_feed_signal_event (EV_P_ int signum)
1355{
1356 WL w;
1357
1358 if (expect_false (signum <= 0 || signum > EV_NSIG))
1359 return;
1360
1361 --signum;
1362
1363#if EV_MULTIPLICITY
1364 /* it is permissible to try to feed a signal to the wrong loop */
1365 /* or, likely more useful, feeding a signal nobody is waiting for */
1366
1367 if (expect_false (signals [signum].loop != EV_A))
1368 return;
1369#endif
1370
1371 signals [signum].pending = 0;
1372
1373 for (w = signals [signum].head; w; w = w->next)
1374 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1375}
1376
1377#if EV_USE_SIGNALFD
1378static void
1379sigfdcb (EV_P_ ev_io *iow, int revents)
1380{
1381 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1382
1383 for (;;)
1384 {
1385 ssize_t res = read (sigfd, si, sizeof (si));
1386
1387 /* not ISO-C, as res might be -1, but works with SuS */
1388 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1389 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1390
1391 if (res < (ssize_t)sizeof (si))
1392 break;
1393 }
1394}
1395#endif
1396
1397#endif
1398
1399/*****************************************************************************/
1400
1401#if EV_CHILD_ENABLE
1402static WL childs [EV_PID_HASHSIZE];
1403
675static struct ev_signal childev; 1404static ev_signal childev;
1405
1406#ifndef WIFCONTINUED
1407# define WIFCONTINUED(status) 0
1408#endif
1409
1410/* handle a single child status event */
1411inline_speed void
1412child_reap (EV_P_ int chain, int pid, int status)
1413{
1414 ev_child *w;
1415 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1416
1417 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1418 {
1419 if ((w->pid == pid || !w->pid)
1420 && (!traced || (w->flags & 1)))
1421 {
1422 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1423 w->rpid = pid;
1424 w->rstatus = status;
1425 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1426 }
1427 }
1428}
676 1429
677#ifndef WCONTINUED 1430#ifndef WCONTINUED
678# define WCONTINUED 0 1431# define WCONTINUED 0
679#endif 1432#endif
680 1433
1434/* called on sigchld etc., calls waitpid */
681static void 1435static void
682child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
683{
684 struct ev_child *w;
685
686 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
687 if (w->pid == pid || !w->pid)
688 {
689 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
690 w->rpid = pid;
691 w->rstatus = status;
692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
693 }
694}
695
696static void
697childcb (EV_P_ struct ev_signal *sw, int revents) 1436childcb (EV_P_ ev_signal *sw, int revents)
698{ 1437{
699 int pid, status; 1438 int pid, status;
700 1439
1440 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
701 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1441 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
702 { 1442 if (!WCONTINUED
1443 || errno != EINVAL
1444 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1445 return;
1446
703 /* make sure we are called again until all childs have been reaped */ 1447 /* make sure we are called again until all children have been reaped */
1448 /* we need to do it this way so that the callback gets called before we continue */
704 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1449 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
705 1450
706 child_reap (EV_A_ sw, pid, pid, status); 1451 child_reap (EV_A_ pid, pid, status);
1452 if ((EV_PID_HASHSIZE) > 1)
707 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1453 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
708 }
709} 1454}
710 1455
711#endif 1456#endif
712 1457
713/*****************************************************************************/ 1458/*****************************************************************************/
714 1459
1460#if EV_USE_PORT
1461# include "ev_port.c"
1462#endif
715#if EV_USE_KQUEUE 1463#if EV_USE_KQUEUE
716# include "ev_kqueue.c" 1464# include "ev_kqueue.c"
717#endif 1465#endif
718#if EV_USE_EPOLL 1466#if EV_USE_EPOLL
719# include "ev_epoll.c" 1467# include "ev_epoll.c"
736{ 1484{
737 return EV_VERSION_MINOR; 1485 return EV_VERSION_MINOR;
738} 1486}
739 1487
740/* return true if we are running with elevated privileges and should ignore env variables */ 1488/* return true if we are running with elevated privileges and should ignore env variables */
741static int 1489int inline_size
742enable_secure (void) 1490enable_secure (void)
743{ 1491{
744#ifdef _WIN32 1492#ifdef _WIN32
745 return 0; 1493 return 0;
746#else 1494#else
748 || getgid () != getegid (); 1496 || getgid () != getegid ();
749#endif 1497#endif
750} 1498}
751 1499
752unsigned int 1500unsigned int
1501ev_supported_backends (void)
1502{
1503 unsigned int flags = 0;
1504
1505 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1506 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1507 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1508 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1509 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1510
1511 return flags;
1512}
1513
1514unsigned int
1515ev_recommended_backends (void)
1516{
1517 unsigned int flags = ev_supported_backends ();
1518
1519#ifndef __NetBSD__
1520 /* kqueue is borked on everything but netbsd apparently */
1521 /* it usually doesn't work correctly on anything but sockets and pipes */
1522 flags &= ~EVBACKEND_KQUEUE;
1523#endif
1524#ifdef __APPLE__
1525 /* only select works correctly on that "unix-certified" platform */
1526 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1527 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1528#endif
1529#ifdef __FreeBSD__
1530 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1531#endif
1532
1533 return flags;
1534}
1535
1536unsigned int
1537ev_embeddable_backends (void)
1538{
1539 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1540
1541 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1542 /* please fix it and tell me how to detect the fix */
1543 flags &= ~EVBACKEND_EPOLL;
1544
1545 return flags;
1546}
1547
1548unsigned int
1549ev_backend (EV_P)
1550{
1551 return backend;
1552}
1553
1554#if EV_FEATURE_API
1555unsigned int
1556ev_iteration (EV_P)
1557{
1558 return loop_count;
1559}
1560
1561unsigned int
753ev_method (EV_P) 1562ev_depth (EV_P)
754{ 1563{
755 return method; 1564 return loop_depth;
756} 1565}
757 1566
758static void 1567void
1568ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1569{
1570 io_blocktime = interval;
1571}
1572
1573void
1574ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1575{
1576 timeout_blocktime = interval;
1577}
1578
1579void
1580ev_set_userdata (EV_P_ void *data)
1581{
1582 userdata = data;
1583}
1584
1585void *
1586ev_userdata (EV_P)
1587{
1588 return userdata;
1589}
1590
1591void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1592{
1593 invoke_cb = invoke_pending_cb;
1594}
1595
1596void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1597{
1598 release_cb = release;
1599 acquire_cb = acquire;
1600}
1601#endif
1602
1603/* initialise a loop structure, must be zero-initialised */
1604static void noinline
759loop_init (EV_P_ unsigned int flags) 1605loop_init (EV_P_ unsigned int flags)
760{ 1606{
761 if (!method) 1607 if (!backend)
762 { 1608 {
1609#if EV_USE_REALTIME
1610 if (!have_realtime)
1611 {
1612 struct timespec ts;
1613
1614 if (!clock_gettime (CLOCK_REALTIME, &ts))
1615 have_realtime = 1;
1616 }
1617#endif
1618
763#if EV_USE_MONOTONIC 1619#if EV_USE_MONOTONIC
1620 if (!have_monotonic)
1621 {
1622 struct timespec ts;
1623
1624 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1625 have_monotonic = 1;
1626 }
1627#endif
1628
1629 /* pid check not overridable via env */
1630#ifndef _WIN32
1631 if (flags & EVFLAG_FORKCHECK)
1632 curpid = getpid ();
1633#endif
1634
1635 if (!(flags & EVFLAG_NOENV)
1636 && !enable_secure ()
1637 && getenv ("LIBEV_FLAGS"))
1638 flags = atoi (getenv ("LIBEV_FLAGS"));
1639
1640 ev_rt_now = ev_time ();
1641 mn_now = get_clock ();
1642 now_floor = mn_now;
1643 rtmn_diff = ev_rt_now - mn_now;
1644#if EV_FEATURE_API
1645 invoke_cb = ev_invoke_pending;
1646#endif
1647
1648 io_blocktime = 0.;
1649 timeout_blocktime = 0.;
1650 backend = 0;
1651 backend_fd = -1;
1652 sig_pending = 0;
1653#if EV_ASYNC_ENABLE
1654 async_pending = 0;
1655#endif
1656#if EV_USE_INOTIFY
1657 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1658#endif
1659#if EV_USE_SIGNALFD
1660 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1661#endif
1662
1663 if (!(flags & 0x0000ffffU))
1664 flags |= ev_recommended_backends ();
1665
1666#if EV_USE_PORT
1667 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1668#endif
1669#if EV_USE_KQUEUE
1670 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1671#endif
1672#if EV_USE_EPOLL
1673 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1674#endif
1675#if EV_USE_POLL
1676 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1677#endif
1678#if EV_USE_SELECT
1679 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1680#endif
1681
1682 ev_prepare_init (&pending_w, pendingcb);
1683
1684#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1685 ev_init (&pipe_w, pipecb);
1686 ev_set_priority (&pipe_w, EV_MAXPRI);
1687#endif
1688 }
1689}
1690
1691/* free up a loop structure */
1692static void noinline
1693loop_destroy (EV_P)
1694{
1695 int i;
1696
1697 if (ev_is_active (&pipe_w))
1698 {
1699 /*ev_ref (EV_A);*/
1700 /*ev_io_stop (EV_A_ &pipe_w);*/
1701
1702#if EV_USE_EVENTFD
1703 if (evfd >= 0)
1704 close (evfd);
1705#endif
1706
1707 if (evpipe [0] >= 0)
1708 {
1709 EV_WIN32_CLOSE_FD (evpipe [0]);
1710 EV_WIN32_CLOSE_FD (evpipe [1]);
1711 }
1712 }
1713
1714#if EV_USE_SIGNALFD
1715 if (ev_is_active (&sigfd_w))
1716 close (sigfd);
1717#endif
1718
1719#if EV_USE_INOTIFY
1720 if (fs_fd >= 0)
1721 close (fs_fd);
1722#endif
1723
1724 if (backend_fd >= 0)
1725 close (backend_fd);
1726
1727#if EV_USE_PORT
1728 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1729#endif
1730#if EV_USE_KQUEUE
1731 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1732#endif
1733#if EV_USE_EPOLL
1734 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1735#endif
1736#if EV_USE_POLL
1737 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1738#endif
1739#if EV_USE_SELECT
1740 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1741#endif
1742
1743 for (i = NUMPRI; i--; )
1744 {
1745 array_free (pending, [i]);
1746#if EV_IDLE_ENABLE
1747 array_free (idle, [i]);
1748#endif
1749 }
1750
1751 ev_free (anfds); anfds = 0; anfdmax = 0;
1752
1753 /* have to use the microsoft-never-gets-it-right macro */
1754 array_free (rfeed, EMPTY);
1755 array_free (fdchange, EMPTY);
1756 array_free (timer, EMPTY);
1757#if EV_PERIODIC_ENABLE
1758 array_free (periodic, EMPTY);
1759#endif
1760#if EV_FORK_ENABLE
1761 array_free (fork, EMPTY);
1762#endif
1763 array_free (prepare, EMPTY);
1764 array_free (check, EMPTY);
1765#if EV_ASYNC_ENABLE
1766 array_free (async, EMPTY);
1767#endif
1768
1769 backend = 0;
1770}
1771
1772#if EV_USE_INOTIFY
1773inline_size void infy_fork (EV_P);
1774#endif
1775
1776inline_size void
1777loop_fork (EV_P)
1778{
1779#if EV_USE_PORT
1780 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1781#endif
1782#if EV_USE_KQUEUE
1783 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1784#endif
1785#if EV_USE_EPOLL
1786 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1787#endif
1788#if EV_USE_INOTIFY
1789 infy_fork (EV_A);
1790#endif
1791
1792 if (ev_is_active (&pipe_w))
1793 {
1794 /* this "locks" the handlers against writing to the pipe */
1795 /* while we modify the fd vars */
1796 sig_pending = 1;
1797#if EV_ASYNC_ENABLE
1798 async_pending = 1;
1799#endif
1800
1801 ev_ref (EV_A);
1802 ev_io_stop (EV_A_ &pipe_w);
1803
1804#if EV_USE_EVENTFD
1805 if (evfd >= 0)
1806 close (evfd);
1807#endif
1808
1809 if (evpipe [0] >= 0)
1810 {
1811 EV_WIN32_CLOSE_FD (evpipe [0]);
1812 EV_WIN32_CLOSE_FD (evpipe [1]);
1813 }
1814
1815#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1816 evpipe_init (EV_A);
1817 /* now iterate over everything, in case we missed something */
1818 pipecb (EV_A_ &pipe_w, EV_READ);
1819#endif
1820 }
1821
1822 postfork = 0;
1823}
1824
1825#if EV_MULTIPLICITY
1826
1827struct ev_loop *
1828ev_loop_new (unsigned int flags)
1829{
1830 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1831
1832 memset (EV_A, 0, sizeof (struct ev_loop));
1833 loop_init (EV_A_ flags);
1834
1835 if (ev_backend (EV_A))
1836 return EV_A;
1837
1838 return 0;
1839}
1840
1841void
1842ev_loop_destroy (EV_P)
1843{
1844 loop_destroy (EV_A);
1845 ev_free (loop);
1846}
1847
1848void
1849ev_loop_fork (EV_P)
1850{
1851 postfork = 1; /* must be in line with ev_default_fork */
1852}
1853#endif /* multiplicity */
1854
1855#if EV_VERIFY
1856static void noinline
1857verify_watcher (EV_P_ W w)
1858{
1859 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1860
1861 if (w->pending)
1862 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1863}
1864
1865static void noinline
1866verify_heap (EV_P_ ANHE *heap, int N)
1867{
1868 int i;
1869
1870 for (i = HEAP0; i < N + HEAP0; ++i)
1871 {
1872 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1873 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1874 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1875
1876 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1877 }
1878}
1879
1880static void noinline
1881array_verify (EV_P_ W *ws, int cnt)
1882{
1883 while (cnt--)
1884 {
1885 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1886 verify_watcher (EV_A_ ws [cnt]);
1887 }
1888}
1889#endif
1890
1891#if EV_FEATURE_API
1892void
1893ev_verify (EV_P)
1894{
1895#if EV_VERIFY
1896 int i;
1897 WL w;
1898
1899 assert (activecnt >= -1);
1900
1901 assert (fdchangemax >= fdchangecnt);
1902 for (i = 0; i < fdchangecnt; ++i)
1903 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1904
1905 assert (anfdmax >= 0);
1906 for (i = 0; i < anfdmax; ++i)
1907 for (w = anfds [i].head; w; w = w->next)
764 { 1908 {
765 struct timespec ts; 1909 verify_watcher (EV_A_ (W)w);
766 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1910 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
767 have_monotonic = 1; 1911 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
768 } 1912 }
769#endif
770 1913
771 ev_rt_now = ev_time (); 1914 assert (timermax >= timercnt);
772 mn_now = get_clock (); 1915 verify_heap (EV_A_ timers, timercnt);
773 now_floor = mn_now;
774 rtmn_diff = ev_rt_now - mn_now;
775 1916
776 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1917#if EV_PERIODIC_ENABLE
777 flags = atoi (getenv ("LIBEV_FLAGS")); 1918 assert (periodicmax >= periodiccnt);
778 1919 verify_heap (EV_A_ periodics, periodiccnt);
779 if (!(flags & 0x0000ffff))
780 flags |= 0x0000ffff;
781
782 method = 0;
783#if EV_USE_KQUEUE
784 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
785#endif
786#if EV_USE_EPOLL
787 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
788#endif
789#if EV_USE_POLL
790 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
791#endif
792#if EV_USE_SELECT
793 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
794#endif
795
796 ev_init (&sigev, sigcb);
797 ev_set_priority (&sigev, EV_MAXPRI);
798 }
799}
800
801void
802loop_destroy (EV_P)
803{
804 int i;
805
806#if EV_USE_KQUEUE
807 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
808#endif
809#if EV_USE_EPOLL
810 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
811#endif
812#if EV_USE_POLL
813 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
814#endif
815#if EV_USE_SELECT
816 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
817#endif 1920#endif
818 1921
819 for (i = NUMPRI; i--; ) 1922 for (i = NUMPRI; i--; )
820 array_free (pending, [i]); 1923 {
1924 assert (pendingmax [i] >= pendingcnt [i]);
1925#if EV_IDLE_ENABLE
1926 assert (idleall >= 0);
1927 assert (idlemax [i] >= idlecnt [i]);
1928 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1929#endif
1930 }
821 1931
822 /* have to use the microsoft-never-gets-it-right macro */ 1932#if EV_FORK_ENABLE
823 array_free (fdchange, EMPTY0); 1933 assert (forkmax >= forkcnt);
824 array_free (timer, EMPTY0); 1934 array_verify (EV_A_ (W *)forks, forkcnt);
825#if EV_PERIODICS 1935#endif
826 array_free (periodic, EMPTY0); 1936
1937#if EV_ASYNC_ENABLE
1938 assert (asyncmax >= asynccnt);
1939 array_verify (EV_A_ (W *)asyncs, asynccnt);
1940#endif
1941
1942#if EV_PREPARE_ENABLE
1943 assert (preparemax >= preparecnt);
1944 array_verify (EV_A_ (W *)prepares, preparecnt);
1945#endif
1946
1947#if EV_CHECK_ENABLE
1948 assert (checkmax >= checkcnt);
1949 array_verify (EV_A_ (W *)checks, checkcnt);
1950#endif
1951
1952# if 0
1953#if EV_CHILD_ENABLE
1954 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1955 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1956#endif
827#endif 1957# endif
828 array_free (idle, EMPTY0);
829 array_free (prepare, EMPTY0);
830 array_free (check, EMPTY0);
831
832 method = 0;
833}
834
835static void
836loop_fork (EV_P)
837{
838#if EV_USE_EPOLL
839 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
840#endif 1958#endif
841#if EV_USE_KQUEUE
842 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
843#endif
844
845 if (ev_is_active (&sigev))
846 {
847 /* default loop */
848
849 ev_ref (EV_A);
850 ev_io_stop (EV_A_ &sigev);
851 close (sigpipe [0]);
852 close (sigpipe [1]);
853
854 while (pipe (sigpipe))
855 syserr ("(libev) error creating pipe");
856
857 siginit (EV_A);
858 }
859
860 postfork = 0;
861} 1959}
1960#endif
862 1961
863#if EV_MULTIPLICITY 1962#if EV_MULTIPLICITY
864struct ev_loop * 1963struct ev_loop *
865ev_loop_new (unsigned int flags)
866{
867 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
868
869 memset (loop, 0, sizeof (struct ev_loop));
870
871 loop_init (EV_A_ flags);
872
873 if (ev_method (EV_A))
874 return loop;
875
876 return 0;
877}
878
879void
880ev_loop_destroy (EV_P)
881{
882 loop_destroy (EV_A);
883 ev_free (loop);
884}
885
886void
887ev_loop_fork (EV_P)
888{
889 postfork = 1;
890}
891
892#endif
893
894#if EV_MULTIPLICITY
895struct ev_loop *
896ev_default_loop_ (unsigned int flags) 1964ev_default_loop_init (unsigned int flags)
897#else 1965#else
898int 1966int
899ev_default_loop (unsigned int flags) 1967ev_default_loop (unsigned int flags)
900#endif 1968#endif
901{ 1969{
902 if (sigpipe [0] == sigpipe [1])
903 if (pipe (sigpipe))
904 return 0;
905
906 if (!ev_default_loop_ptr) 1970 if (!ev_default_loop_ptr)
907 { 1971 {
908#if EV_MULTIPLICITY 1972#if EV_MULTIPLICITY
909 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1973 EV_P = ev_default_loop_ptr = &default_loop_struct;
910#else 1974#else
911 ev_default_loop_ptr = 1; 1975 ev_default_loop_ptr = 1;
912#endif 1976#endif
913 1977
914 loop_init (EV_A_ flags); 1978 loop_init (EV_A_ flags);
915 1979
916 if (ev_method (EV_A)) 1980 if (ev_backend (EV_A))
917 { 1981 {
918 siginit (EV_A); 1982#if EV_CHILD_ENABLE
919
920#ifndef _WIN32
921 ev_signal_init (&childev, childcb, SIGCHLD); 1983 ev_signal_init (&childev, childcb, SIGCHLD);
922 ev_set_priority (&childev, EV_MAXPRI); 1984 ev_set_priority (&childev, EV_MAXPRI);
923 ev_signal_start (EV_A_ &childev); 1985 ev_signal_start (EV_A_ &childev);
924 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1986 ev_unref (EV_A); /* child watcher should not keep loop alive */
925#endif 1987#endif
933 1995
934void 1996void
935ev_default_destroy (void) 1997ev_default_destroy (void)
936{ 1998{
937#if EV_MULTIPLICITY 1999#if EV_MULTIPLICITY
938 struct ev_loop *loop = ev_default_loop_ptr; 2000 EV_P = ev_default_loop_ptr;
939#endif 2001#endif
940 2002
941#ifndef _WIN32 2003 ev_default_loop_ptr = 0;
2004
2005#if EV_CHILD_ENABLE
942 ev_ref (EV_A); /* child watcher */ 2006 ev_ref (EV_A); /* child watcher */
943 ev_signal_stop (EV_A_ &childev); 2007 ev_signal_stop (EV_A_ &childev);
944#endif 2008#endif
945 2009
946 ev_ref (EV_A); /* signal watcher */
947 ev_io_stop (EV_A_ &sigev);
948
949 close (sigpipe [0]); sigpipe [0] = 0;
950 close (sigpipe [1]); sigpipe [1] = 0;
951
952 loop_destroy (EV_A); 2010 loop_destroy (EV_A);
953} 2011}
954 2012
955void 2013void
956ev_default_fork (void) 2014ev_default_fork (void)
957{ 2015{
958#if EV_MULTIPLICITY 2016#if EV_MULTIPLICITY
959 struct ev_loop *loop = ev_default_loop_ptr; 2017 EV_P = ev_default_loop_ptr;
960#endif 2018#endif
961 2019
962 if (method) 2020 postfork = 1; /* must be in line with ev_loop_fork */
963 postfork = 1;
964} 2021}
965 2022
966/*****************************************************************************/ 2023/*****************************************************************************/
967 2024
968static int 2025void
969any_pending (EV_P) 2026ev_invoke (EV_P_ void *w, int revents)
2027{
2028 EV_CB_INVOKE ((W)w, revents);
2029}
2030
2031unsigned int
2032ev_pending_count (EV_P)
970{ 2033{
971 int pri; 2034 int pri;
2035 unsigned int count = 0;
972 2036
973 for (pri = NUMPRI; pri--; ) 2037 for (pri = NUMPRI; pri--; )
974 if (pendingcnt [pri]) 2038 count += pendingcnt [pri];
975 return 1;
976 2039
977 return 0; 2040 return count;
978} 2041}
979 2042
980static void 2043void noinline
981call_pending (EV_P) 2044ev_invoke_pending (EV_P)
982{ 2045{
983 int pri; 2046 int pri;
984 2047
985 for (pri = NUMPRI; pri--; ) 2048 for (pri = NUMPRI; pri--; )
986 while (pendingcnt [pri]) 2049 while (pendingcnt [pri])
987 { 2050 {
988 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2051 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
989 2052
990 if (p->w) 2053 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
991 { 2054 /* ^ this is no longer true, as pending_w could be here */
2055
992 p->w->pending = 0; 2056 p->w->pending = 0;
993 EV_CB_INVOKE (p->w, p->events); 2057 EV_CB_INVOKE (p->w, p->events);
994 } 2058 EV_FREQUENT_CHECK;
995 } 2059 }
996} 2060}
997 2061
998static void 2062#if EV_IDLE_ENABLE
2063/* make idle watchers pending. this handles the "call-idle */
2064/* only when higher priorities are idle" logic */
2065inline_size void
2066idle_reify (EV_P)
2067{
2068 if (expect_false (idleall))
2069 {
2070 int pri;
2071
2072 for (pri = NUMPRI; pri--; )
2073 {
2074 if (pendingcnt [pri])
2075 break;
2076
2077 if (idlecnt [pri])
2078 {
2079 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2080 break;
2081 }
2082 }
2083 }
2084}
2085#endif
2086
2087/* make timers pending */
2088inline_size void
999timers_reify (EV_P) 2089timers_reify (EV_P)
1000{ 2090{
2091 EV_FREQUENT_CHECK;
2092
1001 while (timercnt && ((WT)timers [0])->at <= mn_now) 2093 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1002 { 2094 {
1003 struct ev_timer *w = timers [0]; 2095 do
1004
1005 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1006
1007 /* first reschedule or stop timer */
1008 if (w->repeat)
1009 { 2096 {
2097 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2098
2099 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2100
2101 /* first reschedule or stop timer */
2102 if (w->repeat)
2103 {
2104 ev_at (w) += w->repeat;
2105 if (ev_at (w) < mn_now)
2106 ev_at (w) = mn_now;
2107
1010 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2108 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1011 2109
1012 ((WT)w)->at += w->repeat; 2110 ANHE_at_cache (timers [HEAP0]);
1013 if (((WT)w)->at < mn_now)
1014 ((WT)w)->at = mn_now;
1015
1016 downheap ((WT *)timers, timercnt, 0); 2111 downheap (timers, timercnt, HEAP0);
2112 }
2113 else
2114 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2115
2116 EV_FREQUENT_CHECK;
2117 feed_reverse (EV_A_ (W)w);
1017 } 2118 }
1018 else 2119 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1019 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1020 2120
1021 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2121 feed_reverse_done (EV_A_ EV_TIMER);
1022 } 2122 }
1023} 2123}
1024 2124
1025#if EV_PERIODICS 2125#if EV_PERIODIC_ENABLE
1026static void 2126/* make periodics pending */
2127inline_size void
1027periodics_reify (EV_P) 2128periodics_reify (EV_P)
1028{ 2129{
2130 EV_FREQUENT_CHECK;
2131
1029 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2132 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1030 { 2133 {
1031 struct ev_periodic *w = periodics [0]; 2134 int feed_count = 0;
1032 2135
2136 do
2137 {
2138 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2139
1033 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2140 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1034 2141
1035 /* first reschedule or stop timer */ 2142 /* first reschedule or stop timer */
2143 if (w->reschedule_cb)
2144 {
2145 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2146
2147 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2148
2149 ANHE_at_cache (periodics [HEAP0]);
2150 downheap (periodics, periodiccnt, HEAP0);
2151 }
2152 else if (w->interval)
2153 {
2154 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2155 /* if next trigger time is not sufficiently in the future, put it there */
2156 /* this might happen because of floating point inexactness */
2157 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2158 {
2159 ev_at (w) += w->interval;
2160
2161 /* if interval is unreasonably low we might still have a time in the past */
2162 /* so correct this. this will make the periodic very inexact, but the user */
2163 /* has effectively asked to get triggered more often than possible */
2164 if (ev_at (w) < ev_rt_now)
2165 ev_at (w) = ev_rt_now;
2166 }
2167
2168 ANHE_at_cache (periodics [HEAP0]);
2169 downheap (periodics, periodiccnt, HEAP0);
2170 }
2171 else
2172 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2173
2174 EV_FREQUENT_CHECK;
2175 feed_reverse (EV_A_ (W)w);
2176 }
2177 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2178
2179 feed_reverse_done (EV_A_ EV_PERIODIC);
2180 }
2181}
2182
2183/* simply recalculate all periodics */
2184/* TODO: maybe ensure that at least one event happens when jumping forward? */
2185static void noinline
2186periodics_reschedule (EV_P)
2187{
2188 int i;
2189
2190 /* adjust periodics after time jump */
2191 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2192 {
2193 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2194
1036 if (w->reschedule_cb) 2195 if (w->reschedule_cb)
2196 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2197 else if (w->interval)
2198 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2199
2200 ANHE_at_cache (periodics [i]);
2201 }
2202
2203 reheap (periodics, periodiccnt);
2204}
2205#endif
2206
2207/* adjust all timers by a given offset */
2208static void noinline
2209timers_reschedule (EV_P_ ev_tstamp adjust)
2210{
2211 int i;
2212
2213 for (i = 0; i < timercnt; ++i)
2214 {
2215 ANHE *he = timers + i + HEAP0;
2216 ANHE_w (*he)->at += adjust;
2217 ANHE_at_cache (*he);
2218 }
2219}
2220
2221/* fetch new monotonic and realtime times from the kernel */
2222/* also detect if there was a timejump, and act accordingly */
2223inline_speed void
2224time_update (EV_P_ ev_tstamp max_block)
2225{
2226#if EV_USE_MONOTONIC
2227 if (expect_true (have_monotonic))
2228 {
2229 int i;
2230 ev_tstamp odiff = rtmn_diff;
2231
2232 mn_now = get_clock ();
2233
2234 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2235 /* interpolate in the meantime */
2236 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1037 { 2237 {
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2238 ev_rt_now = rtmn_diff + mn_now;
1039 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2239 return;
1040 downheap ((WT *)periodics, periodiccnt, 0);
1041 } 2240 }
1042 else if (w->interval)
1043 {
1044 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1045 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1046 downheap ((WT *)periodics, periodiccnt, 0);
1047 }
1048 else
1049 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1050 2241
1051 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1052 }
1053}
1054
1055static void
1056periodics_reschedule (EV_P)
1057{
1058 int i;
1059
1060 /* adjust periodics after time jump */
1061 for (i = 0; i < periodiccnt; ++i)
1062 {
1063 struct ev_periodic *w = periodics [i];
1064
1065 if (w->reschedule_cb)
1066 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1067 else if (w->interval)
1068 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1069 }
1070
1071 /* now rebuild the heap */
1072 for (i = periodiccnt >> 1; i--; )
1073 downheap ((WT *)periodics, periodiccnt, i);
1074}
1075#endif
1076
1077inline int
1078time_update_monotonic (EV_P)
1079{
1080 mn_now = get_clock ();
1081
1082 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 {
1084 ev_rt_now = rtmn_diff + mn_now;
1085 return 0;
1086 }
1087 else
1088 {
1089 now_floor = mn_now; 2242 now_floor = mn_now;
1090 ev_rt_now = ev_time (); 2243 ev_rt_now = ev_time ();
1091 return 1;
1092 }
1093}
1094 2244
1095static void 2245 /* loop a few times, before making important decisions.
1096time_update (EV_P) 2246 * on the choice of "4": one iteration isn't enough,
1097{ 2247 * in case we get preempted during the calls to
1098 int i; 2248 * ev_time and get_clock. a second call is almost guaranteed
1099 2249 * to succeed in that case, though. and looping a few more times
1100#if EV_USE_MONOTONIC 2250 * doesn't hurt either as we only do this on time-jumps or
1101 if (expect_true (have_monotonic)) 2251 * in the unlikely event of having been preempted here.
1102 { 2252 */
1103 if (time_update_monotonic (EV_A)) 2253 for (i = 4; --i; )
1104 { 2254 {
1105 ev_tstamp odiff = rtmn_diff;
1106
1107 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1108 {
1109 rtmn_diff = ev_rt_now - mn_now; 2255 rtmn_diff = ev_rt_now - mn_now;
1110 2256
1111 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2257 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1112 return; /* all is well */ 2258 return; /* all is well */
1113 2259
1114 ev_rt_now = ev_time (); 2260 ev_rt_now = ev_time ();
1115 mn_now = get_clock (); 2261 mn_now = get_clock ();
1116 now_floor = mn_now; 2262 now_floor = mn_now;
1117 } 2263 }
1118 2264
2265 /* no timer adjustment, as the monotonic clock doesn't jump */
2266 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1119# if EV_PERIODICS 2267# if EV_PERIODIC_ENABLE
2268 periodics_reschedule (EV_A);
2269# endif
2270 }
2271 else
2272#endif
2273 {
2274 ev_rt_now = ev_time ();
2275
2276 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2277 {
2278 /* adjust timers. this is easy, as the offset is the same for all of them */
2279 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2280#if EV_PERIODIC_ENABLE
1120 periodics_reschedule (EV_A); 2281 periodics_reschedule (EV_A);
1121# endif 2282#endif
1122 /* no timer adjustment, as the monotonic clock doesn't jump */
1123 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1124 } 2283 }
1125 }
1126 else
1127#endif
1128 {
1129 ev_rt_now = ev_time ();
1130
1131 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1132 {
1133#if EV_PERIODICS
1134 periodics_reschedule (EV_A);
1135#endif
1136
1137 /* adjust timers. this is easy, as the offset is the same for all */
1138 for (i = 0; i < timercnt; ++i)
1139 ((WT)timers [i])->at += ev_rt_now - mn_now;
1140 }
1141 2284
1142 mn_now = ev_rt_now; 2285 mn_now = ev_rt_now;
1143 } 2286 }
1144} 2287}
1145 2288
1146void 2289void
1147ev_ref (EV_P)
1148{
1149 ++activecnt;
1150}
1151
1152void
1153ev_unref (EV_P)
1154{
1155 --activecnt;
1156}
1157
1158static int loop_done;
1159
1160void
1161ev_loop (EV_P_ int flags) 2290ev_loop (EV_P_ int flags)
1162{ 2291{
1163 double block; 2292#if EV_FEATURE_API
1164 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2293 ++loop_depth;
2294#endif
1165 2295
1166 while (activecnt) 2296 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2297
2298 loop_done = EVUNLOOP_CANCEL;
2299
2300 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2301
2302 do
1167 { 2303 {
2304#if EV_VERIFY >= 2
2305 ev_verify (EV_A);
2306#endif
2307
2308#ifndef _WIN32
2309 if (expect_false (curpid)) /* penalise the forking check even more */
2310 if (expect_false (getpid () != curpid))
2311 {
2312 curpid = getpid ();
2313 postfork = 1;
2314 }
2315#endif
2316
2317#if EV_FORK_ENABLE
2318 /* we might have forked, so queue fork handlers */
2319 if (expect_false (postfork))
2320 if (forkcnt)
2321 {
2322 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2323 EV_INVOKE_PENDING;
2324 }
2325#endif
2326
2327#if EV_PREPARE_ENABLE
1168 /* queue check watchers (and execute them) */ 2328 /* queue prepare watchers (and execute them) */
1169 if (expect_false (preparecnt)) 2329 if (expect_false (preparecnt))
1170 { 2330 {
1171 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2331 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1172 call_pending (EV_A); 2332 EV_INVOKE_PENDING;
1173 } 2333 }
2334#endif
2335
2336 if (expect_false (loop_done))
2337 break;
1174 2338
1175 /* we might have forked, so reify kernel state if necessary */ 2339 /* we might have forked, so reify kernel state if necessary */
1176 if (expect_false (postfork)) 2340 if (expect_false (postfork))
1177 loop_fork (EV_A); 2341 loop_fork (EV_A);
1178 2342
1179 /* update fd-related kernel structures */ 2343 /* update fd-related kernel structures */
1180 fd_reify (EV_A); 2344 fd_reify (EV_A);
1181 2345
1182 /* calculate blocking time */ 2346 /* calculate blocking time */
2347 {
2348 ev_tstamp waittime = 0.;
2349 ev_tstamp sleeptime = 0.;
1183 2350
1184 /* we only need this for !monotonic clock or timers, but as we basically 2351 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1185 always have timers, we just calculate it always */
1186#if EV_USE_MONOTONIC
1187 if (expect_true (have_monotonic))
1188 time_update_monotonic (EV_A);
1189 else
1190#endif
1191 { 2352 {
1192 ev_rt_now = ev_time (); 2353 /* remember old timestamp for io_blocktime calculation */
1193 mn_now = ev_rt_now; 2354 ev_tstamp prev_mn_now = mn_now;
1194 }
1195 2355
1196 if (flags & EVLOOP_NONBLOCK || idlecnt) 2356 /* update time to cancel out callback processing overhead */
1197 block = 0.; 2357 time_update (EV_A_ 1e100);
1198 else 2358
1199 {
1200 block = MAX_BLOCKTIME; 2359 waittime = MAX_BLOCKTIME;
1201 2360
1202 if (timercnt) 2361 if (timercnt)
1203 { 2362 {
1204 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2363 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1205 if (block > to) block = to; 2364 if (waittime > to) waittime = to;
1206 } 2365 }
1207 2366
1208#if EV_PERIODICS 2367#if EV_PERIODIC_ENABLE
1209 if (periodiccnt) 2368 if (periodiccnt)
1210 { 2369 {
1211 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2370 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1212 if (block > to) block = to; 2371 if (waittime > to) waittime = to;
1213 } 2372 }
1214#endif 2373#endif
1215 2374
1216 if (block < 0.) block = 0.; 2375 /* don't let timeouts decrease the waittime below timeout_blocktime */
2376 if (expect_false (waittime < timeout_blocktime))
2377 waittime = timeout_blocktime;
2378
2379 /* extra check because io_blocktime is commonly 0 */
2380 if (expect_false (io_blocktime))
2381 {
2382 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2383
2384 if (sleeptime > waittime - backend_fudge)
2385 sleeptime = waittime - backend_fudge;
2386
2387 if (expect_true (sleeptime > 0.))
2388 {
2389 ev_sleep (sleeptime);
2390 waittime -= sleeptime;
2391 }
2392 }
1217 } 2393 }
1218 2394
1219 method_poll (EV_A_ block); 2395#if EV_FEATURE_API
2396 ++loop_count;
2397#endif
2398 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2399 backend_poll (EV_A_ waittime);
2400 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1220 2401
1221 /* update ev_rt_now, do magic */ 2402 /* update ev_rt_now, do magic */
1222 time_update (EV_A); 2403 time_update (EV_A_ waittime + sleeptime);
2404 }
1223 2405
1224 /* queue pending timers and reschedule them */ 2406 /* queue pending timers and reschedule them */
1225 timers_reify (EV_A); /* relative timers called last */ 2407 timers_reify (EV_A); /* relative timers called last */
1226#if EV_PERIODICS 2408#if EV_PERIODIC_ENABLE
1227 periodics_reify (EV_A); /* absolute timers called first */ 2409 periodics_reify (EV_A); /* absolute timers called first */
1228#endif 2410#endif
1229 2411
2412#if EV_IDLE_ENABLE
1230 /* queue idle watchers unless io or timers are pending */ 2413 /* queue idle watchers unless other events are pending */
1231 if (idlecnt && !any_pending (EV_A)) 2414 idle_reify (EV_A);
1232 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2415#endif
1233 2416
2417#if EV_CHECK_ENABLE
1234 /* queue check watchers, to be executed first */ 2418 /* queue check watchers, to be executed first */
1235 if (checkcnt) 2419 if (expect_false (checkcnt))
1236 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2420 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2421#endif
1237 2422
1238 call_pending (EV_A); 2423 EV_INVOKE_PENDING;
1239
1240 if (loop_done)
1241 break;
1242 } 2424 }
2425 while (expect_true (
2426 activecnt
2427 && !loop_done
2428 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2429 ));
1243 2430
1244 if (loop_done != 2) 2431 if (loop_done == EVUNLOOP_ONE)
1245 loop_done = 0; 2432 loop_done = EVUNLOOP_CANCEL;
2433
2434#if EV_FEATURE_API
2435 --loop_depth;
2436#endif
1246} 2437}
1247 2438
1248void 2439void
1249ev_unloop (EV_P_ int how) 2440ev_unloop (EV_P_ int how)
1250{ 2441{
1251 loop_done = how; 2442 loop_done = how;
1252} 2443}
1253 2444
2445void
2446ev_ref (EV_P)
2447{
2448 ++activecnt;
2449}
2450
2451void
2452ev_unref (EV_P)
2453{
2454 --activecnt;
2455}
2456
2457void
2458ev_now_update (EV_P)
2459{
2460 time_update (EV_A_ 1e100);
2461}
2462
2463void
2464ev_suspend (EV_P)
2465{
2466 ev_now_update (EV_A);
2467}
2468
2469void
2470ev_resume (EV_P)
2471{
2472 ev_tstamp mn_prev = mn_now;
2473
2474 ev_now_update (EV_A);
2475 timers_reschedule (EV_A_ mn_now - mn_prev);
2476#if EV_PERIODIC_ENABLE
2477 /* TODO: really do this? */
2478 periodics_reschedule (EV_A);
2479#endif
2480}
2481
1254/*****************************************************************************/ 2482/*****************************************************************************/
2483/* singly-linked list management, used when the expected list length is short */
1255 2484
1256inline void 2485inline_size void
1257wlist_add (WL *head, WL elem) 2486wlist_add (WL *head, WL elem)
1258{ 2487{
1259 elem->next = *head; 2488 elem->next = *head;
1260 *head = elem; 2489 *head = elem;
1261} 2490}
1262 2491
1263inline void 2492inline_size void
1264wlist_del (WL *head, WL elem) 2493wlist_del (WL *head, WL elem)
1265{ 2494{
1266 while (*head) 2495 while (*head)
1267 { 2496 {
1268 if (*head == elem) 2497 if (expect_true (*head == elem))
1269 { 2498 {
1270 *head = elem->next; 2499 *head = elem->next;
1271 return; 2500 break;
1272 } 2501 }
1273 2502
1274 head = &(*head)->next; 2503 head = &(*head)->next;
1275 } 2504 }
1276} 2505}
1277 2506
2507/* internal, faster, version of ev_clear_pending */
1278inline void 2508inline_speed void
1279ev_clear_pending (EV_P_ W w) 2509clear_pending (EV_P_ W w)
1280{ 2510{
1281 if (w->pending) 2511 if (w->pending)
1282 { 2512 {
1283 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2513 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1284 w->pending = 0; 2514 w->pending = 0;
1285 } 2515 }
1286} 2516}
1287 2517
2518int
2519ev_clear_pending (EV_P_ void *w)
2520{
2521 W w_ = (W)w;
2522 int pending = w_->pending;
2523
2524 if (expect_true (pending))
2525 {
2526 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2527 p->w = (W)&pending_w;
2528 w_->pending = 0;
2529 return p->events;
2530 }
2531 else
2532 return 0;
2533}
2534
1288inline void 2535inline_size void
2536pri_adjust (EV_P_ W w)
2537{
2538 int pri = ev_priority (w);
2539 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2540 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2541 ev_set_priority (w, pri);
2542}
2543
2544inline_speed void
1289ev_start (EV_P_ W w, int active) 2545ev_start (EV_P_ W w, int active)
1290{ 2546{
1291 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2547 pri_adjust (EV_A_ w);
1292 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1293
1294 w->active = active; 2548 w->active = active;
1295 ev_ref (EV_A); 2549 ev_ref (EV_A);
1296} 2550}
1297 2551
1298inline void 2552inline_size void
1299ev_stop (EV_P_ W w) 2553ev_stop (EV_P_ W w)
1300{ 2554{
1301 ev_unref (EV_A); 2555 ev_unref (EV_A);
1302 w->active = 0; 2556 w->active = 0;
1303} 2557}
1304 2558
1305/*****************************************************************************/ 2559/*****************************************************************************/
1306 2560
1307void 2561void noinline
1308ev_io_start (EV_P_ struct ev_io *w) 2562ev_io_start (EV_P_ ev_io *w)
1309{ 2563{
1310 int fd = w->fd; 2564 int fd = w->fd;
1311 2565
1312 if (ev_is_active (w)) 2566 if (expect_false (ev_is_active (w)))
1313 return; 2567 return;
1314 2568
1315 assert (("ev_io_start called with negative fd", fd >= 0)); 2569 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2570 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2571
2572 EV_FREQUENT_CHECK;
1316 2573
1317 ev_start (EV_A_ (W)w, 1); 2574 ev_start (EV_A_ (W)w, 1);
1318 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2575 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1319 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2576 wlist_add (&anfds[fd].head, (WL)w);
1320 2577
1321 fd_change (EV_A_ fd); 2578 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1322} 2579 w->events &= ~EV__IOFDSET;
1323 2580
1324void 2581 EV_FREQUENT_CHECK;
2582}
2583
2584void noinline
1325ev_io_stop (EV_P_ struct ev_io *w) 2585ev_io_stop (EV_P_ ev_io *w)
1326{ 2586{
1327 ev_clear_pending (EV_A_ (W)w); 2587 clear_pending (EV_A_ (W)w);
1328 if (!ev_is_active (w)) 2588 if (expect_false (!ev_is_active (w)))
1329 return; 2589 return;
1330 2590
1331 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2591 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1332 2592
2593 EV_FREQUENT_CHECK;
2594
1333 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2595 wlist_del (&anfds[w->fd].head, (WL)w);
1334 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
1335 2597
1336 fd_change (EV_A_ w->fd); 2598 fd_change (EV_A_ w->fd, 1);
1337}
1338 2599
1339void 2600 EV_FREQUENT_CHECK;
2601}
2602
2603void noinline
1340ev_timer_start (EV_P_ struct ev_timer *w) 2604ev_timer_start (EV_P_ ev_timer *w)
1341{ 2605{
1342 if (ev_is_active (w)) 2606 if (expect_false (ev_is_active (w)))
1343 return; 2607 return;
1344 2608
1345 ((WT)w)->at += mn_now; 2609 ev_at (w) += mn_now;
1346 2610
1347 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2611 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1348 2612
2613 EV_FREQUENT_CHECK;
2614
2615 ++timercnt;
1349 ev_start (EV_A_ (W)w, ++timercnt); 2616 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1350 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2617 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1351 timers [timercnt - 1] = w; 2618 ANHE_w (timers [ev_active (w)]) = (WT)w;
1352 upheap ((WT *)timers, timercnt - 1); 2619 ANHE_at_cache (timers [ev_active (w)]);
2620 upheap (timers, ev_active (w));
1353 2621
2622 EV_FREQUENT_CHECK;
2623
1354 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2624 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1355} 2625}
1356 2626
1357void 2627void noinline
1358ev_timer_stop (EV_P_ struct ev_timer *w) 2628ev_timer_stop (EV_P_ ev_timer *w)
1359{ 2629{
1360 ev_clear_pending (EV_A_ (W)w); 2630 clear_pending (EV_A_ (W)w);
1361 if (!ev_is_active (w)) 2631 if (expect_false (!ev_is_active (w)))
1362 return; 2632 return;
1363 2633
2634 EV_FREQUENT_CHECK;
2635
2636 {
2637 int active = ev_active (w);
2638
1364 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2639 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1365 2640
1366 if (((W)w)->active < timercnt--) 2641 --timercnt;
2642
2643 if (expect_true (active < timercnt + HEAP0))
1367 { 2644 {
1368 timers [((W)w)->active - 1] = timers [timercnt]; 2645 timers [active] = timers [timercnt + HEAP0];
1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2646 adjustheap (timers, timercnt, active);
1370 } 2647 }
2648 }
1371 2649
1372 ((WT)w)->at -= mn_now; 2650 ev_at (w) -= mn_now;
1373 2651
1374 ev_stop (EV_A_ (W)w); 2652 ev_stop (EV_A_ (W)w);
1375}
1376 2653
1377void 2654 EV_FREQUENT_CHECK;
2655}
2656
2657void noinline
1378ev_timer_again (EV_P_ struct ev_timer *w) 2658ev_timer_again (EV_P_ ev_timer *w)
1379{ 2659{
2660 EV_FREQUENT_CHECK;
2661
1380 if (ev_is_active (w)) 2662 if (ev_is_active (w))
1381 { 2663 {
1382 if (w->repeat) 2664 if (w->repeat)
1383 { 2665 {
1384 ((WT)w)->at = mn_now + w->repeat; 2666 ev_at (w) = mn_now + w->repeat;
2667 ANHE_at_cache (timers [ev_active (w)]);
1385 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2668 adjustheap (timers, timercnt, ev_active (w));
1386 } 2669 }
1387 else 2670 else
1388 ev_timer_stop (EV_A_ w); 2671 ev_timer_stop (EV_A_ w);
1389 } 2672 }
1390 else if (w->repeat) 2673 else if (w->repeat)
1391 { 2674 {
1392 w->at = w->repeat; 2675 ev_at (w) = w->repeat;
1393 ev_timer_start (EV_A_ w); 2676 ev_timer_start (EV_A_ w);
1394 } 2677 }
1395}
1396 2678
2679 EV_FREQUENT_CHECK;
2680}
2681
2682ev_tstamp
2683ev_timer_remaining (EV_P_ ev_timer *w)
2684{
2685 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2686}
2687
1397#if EV_PERIODICS 2688#if EV_PERIODIC_ENABLE
1398void 2689void noinline
1399ev_periodic_start (EV_P_ struct ev_periodic *w) 2690ev_periodic_start (EV_P_ ev_periodic *w)
1400{ 2691{
1401 if (ev_is_active (w)) 2692 if (expect_false (ev_is_active (w)))
1402 return; 2693 return;
1403 2694
1404 if (w->reschedule_cb) 2695 if (w->reschedule_cb)
1405 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2696 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1406 else if (w->interval) 2697 else if (w->interval)
1407 { 2698 {
1408 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2699 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1409 /* this formula differs from the one in periodic_reify because we do not always round up */ 2700 /* this formula differs from the one in periodic_reify because we do not always round up */
1410 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2701 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1411 } 2702 }
2703 else
2704 ev_at (w) = w->offset;
1412 2705
2706 EV_FREQUENT_CHECK;
2707
2708 ++periodiccnt;
1413 ev_start (EV_A_ (W)w, ++periodiccnt); 2709 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1414 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2710 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1415 periodics [periodiccnt - 1] = w; 2711 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1416 upheap ((WT *)periodics, periodiccnt - 1); 2712 ANHE_at_cache (periodics [ev_active (w)]);
2713 upheap (periodics, ev_active (w));
1417 2714
2715 EV_FREQUENT_CHECK;
2716
1418 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2717 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1419} 2718}
1420 2719
1421void 2720void noinline
1422ev_periodic_stop (EV_P_ struct ev_periodic *w) 2721ev_periodic_stop (EV_P_ ev_periodic *w)
1423{ 2722{
1424 ev_clear_pending (EV_A_ (W)w); 2723 clear_pending (EV_A_ (W)w);
1425 if (!ev_is_active (w)) 2724 if (expect_false (!ev_is_active (w)))
1426 return; 2725 return;
1427 2726
2727 EV_FREQUENT_CHECK;
2728
2729 {
2730 int active = ev_active (w);
2731
1428 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2732 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1429 2733
1430 if (((W)w)->active < periodiccnt--) 2734 --periodiccnt;
2735
2736 if (expect_true (active < periodiccnt + HEAP0))
1431 { 2737 {
1432 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2738 periodics [active] = periodics [periodiccnt + HEAP0];
1433 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2739 adjustheap (periodics, periodiccnt, active);
1434 } 2740 }
2741 }
1435 2742
1436 ev_stop (EV_A_ (W)w); 2743 ev_stop (EV_A_ (W)w);
1437}
1438 2744
1439void 2745 EV_FREQUENT_CHECK;
2746}
2747
2748void noinline
1440ev_periodic_again (EV_P_ struct ev_periodic *w) 2749ev_periodic_again (EV_P_ ev_periodic *w)
1441{ 2750{
1442 /* TODO: use adjustheap and recalculation */ 2751 /* TODO: use adjustheap and recalculation */
1443 ev_periodic_stop (EV_A_ w); 2752 ev_periodic_stop (EV_A_ w);
1444 ev_periodic_start (EV_A_ w); 2753 ev_periodic_start (EV_A_ w);
1445} 2754}
1446#endif 2755#endif
1447 2756
1448void
1449ev_idle_start (EV_P_ struct ev_idle *w)
1450{
1451 if (ev_is_active (w))
1452 return;
1453
1454 ev_start (EV_A_ (W)w, ++idlecnt);
1455 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1456 idles [idlecnt - 1] = w;
1457}
1458
1459void
1460ev_idle_stop (EV_P_ struct ev_idle *w)
1461{
1462 ev_clear_pending (EV_A_ (W)w);
1463 if (!ev_is_active (w))
1464 return;
1465
1466 idles [((W)w)->active - 1] = idles [--idlecnt];
1467 ev_stop (EV_A_ (W)w);
1468}
1469
1470void
1471ev_prepare_start (EV_P_ struct ev_prepare *w)
1472{
1473 if (ev_is_active (w))
1474 return;
1475
1476 ev_start (EV_A_ (W)w, ++preparecnt);
1477 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1478 prepares [preparecnt - 1] = w;
1479}
1480
1481void
1482ev_prepare_stop (EV_P_ struct ev_prepare *w)
1483{
1484 ev_clear_pending (EV_A_ (W)w);
1485 if (!ev_is_active (w))
1486 return;
1487
1488 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1489 ev_stop (EV_A_ (W)w);
1490}
1491
1492void
1493ev_check_start (EV_P_ struct ev_check *w)
1494{
1495 if (ev_is_active (w))
1496 return;
1497
1498 ev_start (EV_A_ (W)w, ++checkcnt);
1499 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1500 checks [checkcnt - 1] = w;
1501}
1502
1503void
1504ev_check_stop (EV_P_ struct ev_check *w)
1505{
1506 ev_clear_pending (EV_A_ (W)w);
1507 if (!ev_is_active (w))
1508 return;
1509
1510 checks [((W)w)->active - 1] = checks [--checkcnt];
1511 ev_stop (EV_A_ (W)w);
1512}
1513
1514#ifndef SA_RESTART 2757#ifndef SA_RESTART
1515# define SA_RESTART 0 2758# define SA_RESTART 0
1516#endif 2759#endif
1517 2760
1518void 2761#if EV_SIGNAL_ENABLE
2762
2763void noinline
1519ev_signal_start (EV_P_ struct ev_signal *w) 2764ev_signal_start (EV_P_ ev_signal *w)
1520{ 2765{
2766 if (expect_false (ev_is_active (w)))
2767 return;
2768
2769 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2770
1521#if EV_MULTIPLICITY 2771#if EV_MULTIPLICITY
1522 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2772 assert (("libev: a signal must not be attached to two different loops",
2773 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2774
2775 signals [w->signum - 1].loop = EV_A;
2776#endif
2777
2778 EV_FREQUENT_CHECK;
2779
2780#if EV_USE_SIGNALFD
2781 if (sigfd == -2)
2782 {
2783 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2784 if (sigfd < 0 && errno == EINVAL)
2785 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2786
2787 if (sigfd >= 0)
2788 {
2789 fd_intern (sigfd); /* doing it twice will not hurt */
2790
2791 sigemptyset (&sigfd_set);
2792
2793 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2794 ev_set_priority (&sigfd_w, EV_MAXPRI);
2795 ev_io_start (EV_A_ &sigfd_w);
2796 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2797 }
2798 }
2799
2800 if (sigfd >= 0)
2801 {
2802 /* TODO: check .head */
2803 sigaddset (&sigfd_set, w->signum);
2804 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2805
2806 signalfd (sigfd, &sigfd_set, 0);
2807 }
2808#endif
2809
2810 ev_start (EV_A_ (W)w, 1);
2811 wlist_add (&signals [w->signum - 1].head, (WL)w);
2812
2813 if (!((WL)w)->next)
2814# if EV_USE_SIGNALFD
2815 if (sigfd < 0) /*TODO*/
1523#endif 2816# endif
1524 if (ev_is_active (w)) 2817 {
2818# ifdef _WIN32
2819 evpipe_init (EV_A);
2820
2821 signal (w->signum, ev_sighandler);
2822# else
2823 struct sigaction sa;
2824
2825 evpipe_init (EV_A);
2826
2827 sa.sa_handler = ev_sighandler;
2828 sigfillset (&sa.sa_mask);
2829 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2830 sigaction (w->signum, &sa, 0);
2831
2832 sigemptyset (&sa.sa_mask);
2833 sigaddset (&sa.sa_mask, w->signum);
2834 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2835#endif
2836 }
2837
2838 EV_FREQUENT_CHECK;
2839}
2840
2841void noinline
2842ev_signal_stop (EV_P_ ev_signal *w)
2843{
2844 clear_pending (EV_A_ (W)w);
2845 if (expect_false (!ev_is_active (w)))
1525 return; 2846 return;
1526 2847
1527 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2848 EV_FREQUENT_CHECK;
2849
2850 wlist_del (&signals [w->signum - 1].head, (WL)w);
2851 ev_stop (EV_A_ (W)w);
2852
2853 if (!signals [w->signum - 1].head)
2854 {
2855#if EV_MULTIPLICITY
2856 signals [w->signum - 1].loop = 0; /* unattach from signal */
2857#endif
2858#if EV_USE_SIGNALFD
2859 if (sigfd >= 0)
2860 {
2861 sigset_t ss;
2862
2863 sigemptyset (&ss);
2864 sigaddset (&ss, w->signum);
2865 sigdelset (&sigfd_set, w->signum);
2866
2867 signalfd (sigfd, &sigfd_set, 0);
2868 sigprocmask (SIG_UNBLOCK, &ss, 0);
2869 }
2870 else
2871#endif
2872 signal (w->signum, SIG_DFL);
2873 }
2874
2875 EV_FREQUENT_CHECK;
2876}
2877
2878#endif
2879
2880#if EV_CHILD_ENABLE
2881
2882void
2883ev_child_start (EV_P_ ev_child *w)
2884{
2885#if EV_MULTIPLICITY
2886 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2887#endif
2888 if (expect_false (ev_is_active (w)))
2889 return;
2890
2891 EV_FREQUENT_CHECK;
1528 2892
1529 ev_start (EV_A_ (W)w, 1); 2893 ev_start (EV_A_ (W)w, 1);
1530 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2894 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1531 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1532 2895
1533 if (!((WL)w)->next) 2896 EV_FREQUENT_CHECK;
2897}
2898
2899void
2900ev_child_stop (EV_P_ ev_child *w)
2901{
2902 clear_pending (EV_A_ (W)w);
2903 if (expect_false (!ev_is_active (w)))
2904 return;
2905
2906 EV_FREQUENT_CHECK;
2907
2908 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2909 ev_stop (EV_A_ (W)w);
2910
2911 EV_FREQUENT_CHECK;
2912}
2913
2914#endif
2915
2916#if EV_STAT_ENABLE
2917
2918# ifdef _WIN32
2919# undef lstat
2920# define lstat(a,b) _stati64 (a,b)
2921# endif
2922
2923#define DEF_STAT_INTERVAL 5.0074891
2924#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2925#define MIN_STAT_INTERVAL 0.1074891
2926
2927static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2928
2929#if EV_USE_INOTIFY
2930
2931/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2932# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2933
2934static void noinline
2935infy_add (EV_P_ ev_stat *w)
2936{
2937 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2938
2939 if (w->wd >= 0)
2940 {
2941 struct statfs sfs;
2942
2943 /* now local changes will be tracked by inotify, but remote changes won't */
2944 /* unless the filesystem is known to be local, we therefore still poll */
2945 /* also do poll on <2.6.25, but with normal frequency */
2946
2947 if (!fs_2625)
2948 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2949 else if (!statfs (w->path, &sfs)
2950 && (sfs.f_type == 0x1373 /* devfs */
2951 || sfs.f_type == 0xEF53 /* ext2/3 */
2952 || sfs.f_type == 0x3153464a /* jfs */
2953 || sfs.f_type == 0x52654973 /* reiser3 */
2954 || sfs.f_type == 0x01021994 /* tempfs */
2955 || sfs.f_type == 0x58465342 /* xfs */))
2956 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2957 else
2958 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1534 { 2959 }
2960 else
2961 {
2962 /* can't use inotify, continue to stat */
2963 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2964
2965 /* if path is not there, monitor some parent directory for speedup hints */
2966 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2967 /* but an efficiency issue only */
2968 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2969 {
2970 char path [4096];
2971 strcpy (path, w->path);
2972
2973 do
2974 {
2975 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2976 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2977
2978 char *pend = strrchr (path, '/');
2979
2980 if (!pend || pend == path)
2981 break;
2982
2983 *pend = 0;
2984 w->wd = inotify_add_watch (fs_fd, path, mask);
2985 }
2986 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2987 }
2988 }
2989
2990 if (w->wd >= 0)
2991 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2992
2993 /* now re-arm timer, if required */
2994 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2995 ev_timer_again (EV_A_ &w->timer);
2996 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2997}
2998
2999static void noinline
3000infy_del (EV_P_ ev_stat *w)
3001{
3002 int slot;
3003 int wd = w->wd;
3004
3005 if (wd < 0)
3006 return;
3007
3008 w->wd = -2;
3009 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3010 wlist_del (&fs_hash [slot].head, (WL)w);
3011
3012 /* remove this watcher, if others are watching it, they will rearm */
3013 inotify_rm_watch (fs_fd, wd);
3014}
3015
3016static void noinline
3017infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3018{
3019 if (slot < 0)
3020 /* overflow, need to check for all hash slots */
3021 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3022 infy_wd (EV_A_ slot, wd, ev);
3023 else
3024 {
3025 WL w_;
3026
3027 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3028 {
3029 ev_stat *w = (ev_stat *)w_;
3030 w_ = w_->next; /* lets us remove this watcher and all before it */
3031
3032 if (w->wd == wd || wd == -1)
3033 {
3034 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3035 {
3036 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3037 w->wd = -1;
3038 infy_add (EV_A_ w); /* re-add, no matter what */
3039 }
3040
3041 stat_timer_cb (EV_A_ &w->timer, 0);
3042 }
3043 }
3044 }
3045}
3046
3047static void
3048infy_cb (EV_P_ ev_io *w, int revents)
3049{
3050 char buf [EV_INOTIFY_BUFSIZE];
3051 int ofs;
3052 int len = read (fs_fd, buf, sizeof (buf));
3053
3054 for (ofs = 0; ofs < len; )
3055 {
3056 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3057 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3058 ofs += sizeof (struct inotify_event) + ev->len;
3059 }
3060}
3061
3062inline_size unsigned int
3063ev_linux_version (void)
3064{
3065 struct utsname buf;
3066 unsigned int v;
3067 int i;
3068 char *p = buf.release;
3069
3070 if (uname (&buf))
3071 return 0;
3072
3073 for (i = 3+1; --i; )
3074 {
3075 unsigned int c = 0;
3076
3077 for (;;)
3078 {
3079 if (*p >= '0' && *p <= '9')
3080 c = c * 10 + *p++ - '0';
3081 else
3082 {
3083 p += *p == '.';
3084 break;
3085 }
3086 }
3087
3088 v = (v << 8) | c;
3089 }
3090
3091 return v;
3092}
3093
3094inline_size void
3095ev_check_2625 (EV_P)
3096{
3097 /* kernels < 2.6.25 are borked
3098 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3099 */
3100 if (ev_linux_version () < 0x020619)
3101 return;
3102
3103 fs_2625 = 1;
3104}
3105
3106inline_size int
3107infy_newfd (void)
3108{
3109#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3110 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3111 if (fd >= 0)
3112 return fd;
3113#endif
3114 return inotify_init ();
3115}
3116
3117inline_size void
3118infy_init (EV_P)
3119{
3120 if (fs_fd != -2)
3121 return;
3122
3123 fs_fd = -1;
3124
3125 ev_check_2625 (EV_A);
3126
3127 fs_fd = infy_newfd ();
3128
3129 if (fs_fd >= 0)
3130 {
3131 fd_intern (fs_fd);
3132 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3133 ev_set_priority (&fs_w, EV_MAXPRI);
3134 ev_io_start (EV_A_ &fs_w);
3135 ev_unref (EV_A);
3136 }
3137}
3138
3139inline_size void
3140infy_fork (EV_P)
3141{
3142 int slot;
3143
3144 if (fs_fd < 0)
3145 return;
3146
3147 ev_ref (EV_A);
3148 ev_io_stop (EV_A_ &fs_w);
3149 close (fs_fd);
3150 fs_fd = infy_newfd ();
3151
3152 if (fs_fd >= 0)
3153 {
3154 fd_intern (fs_fd);
3155 ev_io_set (&fs_w, fs_fd, EV_READ);
3156 ev_io_start (EV_A_ &fs_w);
3157 ev_unref (EV_A);
3158 }
3159
3160 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3161 {
3162 WL w_ = fs_hash [slot].head;
3163 fs_hash [slot].head = 0;
3164
3165 while (w_)
3166 {
3167 ev_stat *w = (ev_stat *)w_;
3168 w_ = w_->next; /* lets us add this watcher */
3169
3170 w->wd = -1;
3171
3172 if (fs_fd >= 0)
3173 infy_add (EV_A_ w); /* re-add, no matter what */
3174 else
3175 {
3176 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3177 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3178 ev_timer_again (EV_A_ &w->timer);
3179 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3180 }
3181 }
3182 }
3183}
3184
3185#endif
3186
1535#if _WIN32 3187#ifdef _WIN32
1536 signal (w->signum, sighandler); 3188# define EV_LSTAT(p,b) _stati64 (p, b)
1537#else 3189#else
1538 struct sigaction sa; 3190# define EV_LSTAT(p,b) lstat (p, b)
1539 sa.sa_handler = sighandler;
1540 sigfillset (&sa.sa_mask);
1541 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1542 sigaction (w->signum, &sa, 0);
1543#endif 3191#endif
1544 }
1545}
1546 3192
1547void 3193void
1548ev_signal_stop (EV_P_ struct ev_signal *w) 3194ev_stat_stat (EV_P_ ev_stat *w)
1549{ 3195{
1550 ev_clear_pending (EV_A_ (W)w); 3196 if (lstat (w->path, &w->attr) < 0)
1551 if (!ev_is_active (w)) 3197 w->attr.st_nlink = 0;
3198 else if (!w->attr.st_nlink)
3199 w->attr.st_nlink = 1;
3200}
3201
3202static void noinline
3203stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3204{
3205 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3206
3207 ev_statdata prev = w->attr;
3208 ev_stat_stat (EV_A_ w);
3209
3210 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3211 if (
3212 prev.st_dev != w->attr.st_dev
3213 || prev.st_ino != w->attr.st_ino
3214 || prev.st_mode != w->attr.st_mode
3215 || prev.st_nlink != w->attr.st_nlink
3216 || prev.st_uid != w->attr.st_uid
3217 || prev.st_gid != w->attr.st_gid
3218 || prev.st_rdev != w->attr.st_rdev
3219 || prev.st_size != w->attr.st_size
3220 || prev.st_atime != w->attr.st_atime
3221 || prev.st_mtime != w->attr.st_mtime
3222 || prev.st_ctime != w->attr.st_ctime
3223 ) {
3224 /* we only update w->prev on actual differences */
3225 /* in case we test more often than invoke the callback, */
3226 /* to ensure that prev is always different to attr */
3227 w->prev = prev;
3228
3229 #if EV_USE_INOTIFY
3230 if (fs_fd >= 0)
3231 {
3232 infy_del (EV_A_ w);
3233 infy_add (EV_A_ w);
3234 ev_stat_stat (EV_A_ w); /* avoid race... */
3235 }
3236 #endif
3237
3238 ev_feed_event (EV_A_ w, EV_STAT);
3239 }
3240}
3241
3242void
3243ev_stat_start (EV_P_ ev_stat *w)
3244{
3245 if (expect_false (ev_is_active (w)))
1552 return; 3246 return;
1553 3247
1554 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3248 ev_stat_stat (EV_A_ w);
3249
3250 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3251 w->interval = MIN_STAT_INTERVAL;
3252
3253 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3254 ev_set_priority (&w->timer, ev_priority (w));
3255
3256#if EV_USE_INOTIFY
3257 infy_init (EV_A);
3258
3259 if (fs_fd >= 0)
3260 infy_add (EV_A_ w);
3261 else
3262#endif
3263 {
3264 ev_timer_again (EV_A_ &w->timer);
3265 ev_unref (EV_A);
3266 }
3267
3268 ev_start (EV_A_ (W)w, 1);
3269
3270 EV_FREQUENT_CHECK;
3271}
3272
3273void
3274ev_stat_stop (EV_P_ ev_stat *w)
3275{
3276 clear_pending (EV_A_ (W)w);
3277 if (expect_false (!ev_is_active (w)))
3278 return;
3279
3280 EV_FREQUENT_CHECK;
3281
3282#if EV_USE_INOTIFY
3283 infy_del (EV_A_ w);
3284#endif
3285
3286 if (ev_is_active (&w->timer))
3287 {
3288 ev_ref (EV_A);
3289 ev_timer_stop (EV_A_ &w->timer);
3290 }
3291
1555 ev_stop (EV_A_ (W)w); 3292 ev_stop (EV_A_ (W)w);
1556 3293
1557 if (!signals [w->signum - 1].head) 3294 EV_FREQUENT_CHECK;
1558 signal (w->signum, SIG_DFL);
1559} 3295}
3296#endif
1560 3297
3298#if EV_IDLE_ENABLE
1561void 3299void
1562ev_child_start (EV_P_ struct ev_child *w) 3300ev_idle_start (EV_P_ ev_idle *w)
1563{ 3301{
1564#if EV_MULTIPLICITY
1565 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1566#endif
1567 if (ev_is_active (w)) 3302 if (expect_false (ev_is_active (w)))
1568 return; 3303 return;
1569 3304
3305 pri_adjust (EV_A_ (W)w);
3306
3307 EV_FREQUENT_CHECK;
3308
3309 {
3310 int active = ++idlecnt [ABSPRI (w)];
3311
3312 ++idleall;
3313 ev_start (EV_A_ (W)w, active);
3314
3315 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3316 idles [ABSPRI (w)][active - 1] = w;
3317 }
3318
3319 EV_FREQUENT_CHECK;
3320}
3321
3322void
3323ev_idle_stop (EV_P_ ev_idle *w)
3324{
3325 clear_pending (EV_A_ (W)w);
3326 if (expect_false (!ev_is_active (w)))
3327 return;
3328
3329 EV_FREQUENT_CHECK;
3330
3331 {
3332 int active = ev_active (w);
3333
3334 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3335 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3336
3337 ev_stop (EV_A_ (W)w);
3338 --idleall;
3339 }
3340
3341 EV_FREQUENT_CHECK;
3342}
3343#endif
3344
3345#if EV_PREPARE_ENABLE
3346void
3347ev_prepare_start (EV_P_ ev_prepare *w)
3348{
3349 if (expect_false (ev_is_active (w)))
3350 return;
3351
3352 EV_FREQUENT_CHECK;
3353
3354 ev_start (EV_A_ (W)w, ++preparecnt);
3355 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3356 prepares [preparecnt - 1] = w;
3357
3358 EV_FREQUENT_CHECK;
3359}
3360
3361void
3362ev_prepare_stop (EV_P_ ev_prepare *w)
3363{
3364 clear_pending (EV_A_ (W)w);
3365 if (expect_false (!ev_is_active (w)))
3366 return;
3367
3368 EV_FREQUENT_CHECK;
3369
3370 {
3371 int active = ev_active (w);
3372
3373 prepares [active - 1] = prepares [--preparecnt];
3374 ev_active (prepares [active - 1]) = active;
3375 }
3376
3377 ev_stop (EV_A_ (W)w);
3378
3379 EV_FREQUENT_CHECK;
3380}
3381#endif
3382
3383#if EV_CHECK_ENABLE
3384void
3385ev_check_start (EV_P_ ev_check *w)
3386{
3387 if (expect_false (ev_is_active (w)))
3388 return;
3389
3390 EV_FREQUENT_CHECK;
3391
3392 ev_start (EV_A_ (W)w, ++checkcnt);
3393 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3394 checks [checkcnt - 1] = w;
3395
3396 EV_FREQUENT_CHECK;
3397}
3398
3399void
3400ev_check_stop (EV_P_ ev_check *w)
3401{
3402 clear_pending (EV_A_ (W)w);
3403 if (expect_false (!ev_is_active (w)))
3404 return;
3405
3406 EV_FREQUENT_CHECK;
3407
3408 {
3409 int active = ev_active (w);
3410
3411 checks [active - 1] = checks [--checkcnt];
3412 ev_active (checks [active - 1]) = active;
3413 }
3414
3415 ev_stop (EV_A_ (W)w);
3416
3417 EV_FREQUENT_CHECK;
3418}
3419#endif
3420
3421#if EV_EMBED_ENABLE
3422void noinline
3423ev_embed_sweep (EV_P_ ev_embed *w)
3424{
3425 ev_loop (w->other, EVLOOP_NONBLOCK);
3426}
3427
3428static void
3429embed_io_cb (EV_P_ ev_io *io, int revents)
3430{
3431 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3432
3433 if (ev_cb (w))
3434 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3435 else
3436 ev_loop (w->other, EVLOOP_NONBLOCK);
3437}
3438
3439static void
3440embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3441{
3442 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3443
3444 {
3445 EV_P = w->other;
3446
3447 while (fdchangecnt)
3448 {
3449 fd_reify (EV_A);
3450 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3451 }
3452 }
3453}
3454
3455static void
3456embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3457{
3458 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3459
3460 ev_embed_stop (EV_A_ w);
3461
3462 {
3463 EV_P = w->other;
3464
3465 ev_loop_fork (EV_A);
3466 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3467 }
3468
3469 ev_embed_start (EV_A_ w);
3470}
3471
3472#if 0
3473static void
3474embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3475{
3476 ev_idle_stop (EV_A_ idle);
3477}
3478#endif
3479
3480void
3481ev_embed_start (EV_P_ ev_embed *w)
3482{
3483 if (expect_false (ev_is_active (w)))
3484 return;
3485
3486 {
3487 EV_P = w->other;
3488 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3489 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3490 }
3491
3492 EV_FREQUENT_CHECK;
3493
3494 ev_set_priority (&w->io, ev_priority (w));
3495 ev_io_start (EV_A_ &w->io);
3496
3497 ev_prepare_init (&w->prepare, embed_prepare_cb);
3498 ev_set_priority (&w->prepare, EV_MINPRI);
3499 ev_prepare_start (EV_A_ &w->prepare);
3500
3501 ev_fork_init (&w->fork, embed_fork_cb);
3502 ev_fork_start (EV_A_ &w->fork);
3503
3504 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3505
1570 ev_start (EV_A_ (W)w, 1); 3506 ev_start (EV_A_ (W)w, 1);
1571 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1572}
1573 3507
3508 EV_FREQUENT_CHECK;
3509}
3510
1574void 3511void
1575ev_child_stop (EV_P_ struct ev_child *w) 3512ev_embed_stop (EV_P_ ev_embed *w)
1576{ 3513{
1577 ev_clear_pending (EV_A_ (W)w); 3514 clear_pending (EV_A_ (W)w);
1578 if (!ev_is_active (w)) 3515 if (expect_false (!ev_is_active (w)))
1579 return; 3516 return;
1580 3517
1581 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3518 EV_FREQUENT_CHECK;
3519
3520 ev_io_stop (EV_A_ &w->io);
3521 ev_prepare_stop (EV_A_ &w->prepare);
3522 ev_fork_stop (EV_A_ &w->fork);
3523
1582 ev_stop (EV_A_ (W)w); 3524 ev_stop (EV_A_ (W)w);
3525
3526 EV_FREQUENT_CHECK;
1583} 3527}
3528#endif
3529
3530#if EV_FORK_ENABLE
3531void
3532ev_fork_start (EV_P_ ev_fork *w)
3533{
3534 if (expect_false (ev_is_active (w)))
3535 return;
3536
3537 EV_FREQUENT_CHECK;
3538
3539 ev_start (EV_A_ (W)w, ++forkcnt);
3540 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3541 forks [forkcnt - 1] = w;
3542
3543 EV_FREQUENT_CHECK;
3544}
3545
3546void
3547ev_fork_stop (EV_P_ ev_fork *w)
3548{
3549 clear_pending (EV_A_ (W)w);
3550 if (expect_false (!ev_is_active (w)))
3551 return;
3552
3553 EV_FREQUENT_CHECK;
3554
3555 {
3556 int active = ev_active (w);
3557
3558 forks [active - 1] = forks [--forkcnt];
3559 ev_active (forks [active - 1]) = active;
3560 }
3561
3562 ev_stop (EV_A_ (W)w);
3563
3564 EV_FREQUENT_CHECK;
3565}
3566#endif
3567
3568#if EV_ASYNC_ENABLE
3569void
3570ev_async_start (EV_P_ ev_async *w)
3571{
3572 if (expect_false (ev_is_active (w)))
3573 return;
3574
3575 evpipe_init (EV_A);
3576
3577 EV_FREQUENT_CHECK;
3578
3579 ev_start (EV_A_ (W)w, ++asynccnt);
3580 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3581 asyncs [asynccnt - 1] = w;
3582
3583 EV_FREQUENT_CHECK;
3584}
3585
3586void
3587ev_async_stop (EV_P_ ev_async *w)
3588{
3589 clear_pending (EV_A_ (W)w);
3590 if (expect_false (!ev_is_active (w)))
3591 return;
3592
3593 EV_FREQUENT_CHECK;
3594
3595 {
3596 int active = ev_active (w);
3597
3598 asyncs [active - 1] = asyncs [--asynccnt];
3599 ev_active (asyncs [active - 1]) = active;
3600 }
3601
3602 ev_stop (EV_A_ (W)w);
3603
3604 EV_FREQUENT_CHECK;
3605}
3606
3607void
3608ev_async_send (EV_P_ ev_async *w)
3609{
3610 w->sent = 1;
3611 evpipe_write (EV_A_ &async_pending);
3612}
3613#endif
1584 3614
1585/*****************************************************************************/ 3615/*****************************************************************************/
1586 3616
1587struct ev_once 3617struct ev_once
1588{ 3618{
1589 struct ev_io io; 3619 ev_io io;
1590 struct ev_timer to; 3620 ev_timer to;
1591 void (*cb)(int revents, void *arg); 3621 void (*cb)(int revents, void *arg);
1592 void *arg; 3622 void *arg;
1593}; 3623};
1594 3624
1595static void 3625static void
1596once_cb (EV_P_ struct ev_once *once, int revents) 3626once_cb (EV_P_ struct ev_once *once, int revents)
1597{ 3627{
1598 void (*cb)(int revents, void *arg) = once->cb; 3628 void (*cb)(int revents, void *arg) = once->cb;
1599 void *arg = once->arg; 3629 void *arg = once->arg;
1600 3630
1601 ev_io_stop (EV_A_ &once->io); 3631 ev_io_stop (EV_A_ &once->io);
1602 ev_timer_stop (EV_A_ &once->to); 3632 ev_timer_stop (EV_A_ &once->to);
1603 ev_free (once); 3633 ev_free (once);
1604 3634
1605 cb (revents, arg); 3635 cb (revents, arg);
1606} 3636}
1607 3637
1608static void 3638static void
1609once_cb_io (EV_P_ struct ev_io *w, int revents) 3639once_cb_io (EV_P_ ev_io *w, int revents)
1610{ 3640{
1611 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3641 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3642
3643 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1612} 3644}
1613 3645
1614static void 3646static void
1615once_cb_to (EV_P_ struct ev_timer *w, int revents) 3647once_cb_to (EV_P_ ev_timer *w, int revents)
1616{ 3648{
1617 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3649 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3650
3651 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1618} 3652}
1619 3653
1620void 3654void
1621ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3655ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1622{ 3656{
1623 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3657 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1624 3658
1625 if (!once) 3659 if (expect_false (!once))
3660 {
1626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3661 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1627 else 3662 return;
1628 { 3663 }
3664
1629 once->cb = cb; 3665 once->cb = cb;
1630 once->arg = arg; 3666 once->arg = arg;
1631 3667
1632 ev_init (&once->io, once_cb_io); 3668 ev_init (&once->io, once_cb_io);
1633 if (fd >= 0) 3669 if (fd >= 0)
3670 {
3671 ev_io_set (&once->io, fd, events);
3672 ev_io_start (EV_A_ &once->io);
3673 }
3674
3675 ev_init (&once->to, once_cb_to);
3676 if (timeout >= 0.)
3677 {
3678 ev_timer_set (&once->to, timeout, 0.);
3679 ev_timer_start (EV_A_ &once->to);
3680 }
3681}
3682
3683/*****************************************************************************/
3684
3685#if EV_WALK_ENABLE
3686void
3687ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3688{
3689 int i, j;
3690 ev_watcher_list *wl, *wn;
3691
3692 if (types & (EV_IO | EV_EMBED))
3693 for (i = 0; i < anfdmax; ++i)
3694 for (wl = anfds [i].head; wl; )
1634 { 3695 {
1635 ev_io_set (&once->io, fd, events); 3696 wn = wl->next;
1636 ev_io_start (EV_A_ &once->io); 3697
3698#if EV_EMBED_ENABLE
3699 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3700 {
3701 if (types & EV_EMBED)
3702 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3703 }
3704 else
3705#endif
3706#if EV_USE_INOTIFY
3707 if (ev_cb ((ev_io *)wl) == infy_cb)
3708 ;
3709 else
3710#endif
3711 if ((ev_io *)wl != &pipe_w)
3712 if (types & EV_IO)
3713 cb (EV_A_ EV_IO, wl);
3714
3715 wl = wn;
1637 } 3716 }
1638 3717
1639 ev_init (&once->to, once_cb_to); 3718 if (types & (EV_TIMER | EV_STAT))
1640 if (timeout >= 0.) 3719 for (i = timercnt + HEAP0; i-- > HEAP0; )
3720#if EV_STAT_ENABLE
3721 /*TODO: timer is not always active*/
3722 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1641 { 3723 {
1642 ev_timer_set (&once->to, timeout, 0.); 3724 if (types & EV_STAT)
1643 ev_timer_start (EV_A_ &once->to); 3725 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1644 } 3726 }
1645 } 3727 else
3728#endif
3729 if (types & EV_TIMER)
3730 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3731
3732#if EV_PERIODIC_ENABLE
3733 if (types & EV_PERIODIC)
3734 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3735 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3736#endif
3737
3738#if EV_IDLE_ENABLE
3739 if (types & EV_IDLE)
3740 for (j = NUMPRI; i--; )
3741 for (i = idlecnt [j]; i--; )
3742 cb (EV_A_ EV_IDLE, idles [j][i]);
3743#endif
3744
3745#if EV_FORK_ENABLE
3746 if (types & EV_FORK)
3747 for (i = forkcnt; i--; )
3748 if (ev_cb (forks [i]) != embed_fork_cb)
3749 cb (EV_A_ EV_FORK, forks [i]);
3750#endif
3751
3752#if EV_ASYNC_ENABLE
3753 if (types & EV_ASYNC)
3754 for (i = asynccnt; i--; )
3755 cb (EV_A_ EV_ASYNC, asyncs [i]);
3756#endif
3757
3758#if EV_PREPARE_ENABLE
3759 if (types & EV_PREPARE)
3760 for (i = preparecnt; i--; )
3761# if EV_EMBED_ENABLE
3762 if (ev_cb (prepares [i]) != embed_prepare_cb)
3763# endif
3764 cb (EV_A_ EV_PREPARE, prepares [i]);
3765#endif
3766
3767#if EV_CHECK_ENABLE
3768 if (types & EV_CHECK)
3769 for (i = checkcnt; i--; )
3770 cb (EV_A_ EV_CHECK, checks [i]);
3771#endif
3772
3773#if EV_SIGNAL_ENABLE
3774 if (types & EV_SIGNAL)
3775 for (i = 0; i < EV_NSIG - 1; ++i)
3776 for (wl = signals [i].head; wl; )
3777 {
3778 wn = wl->next;
3779 cb (EV_A_ EV_SIGNAL, wl);
3780 wl = wn;
3781 }
3782#endif
3783
3784#if EV_CHILD_ENABLE
3785 if (types & EV_CHILD)
3786 for (i = (EV_PID_HASHSIZE); i--; )
3787 for (wl = childs [i]; wl; )
3788 {
3789 wn = wl->next;
3790 cb (EV_A_ EV_CHILD, wl);
3791 wl = wn;
3792 }
3793#endif
3794/* EV_STAT 0x00001000 /* stat data changed */
3795/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1646} 3796}
3797#endif
3798
3799#if EV_MULTIPLICITY
3800 #include "ev_wrap.h"
3801#endif
1647 3802
1648#ifdef __cplusplus 3803#ifdef __cplusplus
1649} 3804}
1650#endif 3805#endif
1651 3806

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines