ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC vs.
Revision 1.117 by ayin, Thu Nov 15 17:15:56 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
84#else
85# define WIN32_LEAN_AND_MEAN
86# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1
71#endif 89# endif
72#include <sys/time.h> 90#endif
73#include <time.h>
74 91
75/**/ 92/**/
76 93
77#ifndef EV_USE_MONOTONIC 94#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 95# define EV_USE_MONOTONIC 1
79#endif 96#endif
80 97
81#ifndef EV_USE_SELECT 98#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 99# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
83#endif 101#endif
84 102
85#ifndef EV_USE_POLL 103#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 104# ifdef _WIN32
105# define EV_USE_POLL 0
106# else
107# define EV_USE_POLL 1
108# endif
87#endif 109#endif
88 110
89#ifndef EV_USE_EPOLL 111#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 112# define EV_USE_EPOLL 0
91#endif 113#endif
97#ifndef EV_USE_REALTIME 119#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1 120# define EV_USE_REALTIME 1
99#endif 121#endif
100 122
101/**/ 123/**/
124
125/* darwin simply cannot be helped */
126#ifdef __APPLE__
127# undef EV_USE_POLL
128# undef EV_USE_KQUEUE
129#endif
102 130
103#ifndef CLOCK_MONOTONIC 131#ifndef CLOCK_MONOTONIC
104# undef EV_USE_MONOTONIC 132# undef EV_USE_MONOTONIC
105# define EV_USE_MONOTONIC 0 133# define EV_USE_MONOTONIC 0
106#endif 134#endif
107 135
108#ifndef CLOCK_REALTIME 136#ifndef CLOCK_REALTIME
109# undef EV_USE_REALTIME 137# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0 138# define EV_USE_REALTIME 0
139#endif
140
141#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h>
111#endif 143#endif
112 144
113/**/ 145/**/
114 146
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
119 151
152#ifdef EV_H
153# include EV_H
154#else
120#include "ev.h" 155# include "ev.h"
156#endif
121 157
122#if __GNUC__ >= 3 158#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value)) 159# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline 160# define inline inline
125#else 161#else
131#define expect_true(expr) expect ((expr) != 0, 1) 167#define expect_true(expr) expect ((expr) != 0, 1)
132 168
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI) 170#define ABSPRI(w) ((w)->priority - EV_MINPRI)
135 171
172#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
173#define EMPTY2(a,b) /* used to suppress some warnings */
174
136typedef struct ev_watcher *W; 175typedef struct ev_watcher *W;
137typedef struct ev_watcher_list *WL; 176typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 177typedef struct ev_watcher_time *WT;
139 178
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 179static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 180
181#ifdef _WIN32
182# include "ev_win32.c"
183#endif
184
142/*****************************************************************************/ 185/*****************************************************************************/
143 186
187static void (*syserr_cb)(const char *msg);
188
189void ev_set_syserr_cb (void (*cb)(const char *msg))
190{
191 syserr_cb = cb;
192}
193
194static void
195syserr (const char *msg)
196{
197 if (!msg)
198 msg = "(libev) system error";
199
200 if (syserr_cb)
201 syserr_cb (msg);
202 else
203 {
204 perror (msg);
205 abort ();
206 }
207}
208
209static void *(*alloc)(void *ptr, long size);
210
211void ev_set_allocator (void *(*cb)(void *ptr, long size))
212{
213 alloc = cb;
214}
215
216static void *
217ev_realloc (void *ptr, long size)
218{
219 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
220
221 if (!ptr && size)
222 {
223 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
224 abort ();
225 }
226
227 return ptr;
228}
229
230#define ev_malloc(size) ev_realloc (0, (size))
231#define ev_free(ptr) ev_realloc ((ptr), 0)
232
233/*****************************************************************************/
234
144typedef struct 235typedef struct
145{ 236{
146 struct ev_watcher_list *head; 237 WL head;
147 unsigned char events; 238 unsigned char events;
148 unsigned char reify; 239 unsigned char reify;
240#if EV_SELECT_IS_WINSOCKET
241 SOCKET handle;
242#endif
149} ANFD; 243} ANFD;
150 244
151typedef struct 245typedef struct
152{ 246{
153 W w; 247 W w;
154 int events; 248 int events;
155} ANPENDING; 249} ANPENDING;
156 250
157#if EV_MULTIPLICITY 251#if EV_MULTIPLICITY
158 252
159struct ev_loop 253 struct ev_loop
160{ 254 {
255 ev_tstamp ev_rt_now;
256 #define ev_rt_now ((loop)->ev_rt_now)
161# define VAR(name,decl) decl; 257 #define VAR(name,decl) decl;
162# include "ev_vars.h" 258 #include "ev_vars.h"
163};
164# undef VAR 259 #undef VAR
260 };
165# include "ev_wrap.h" 261 #include "ev_wrap.h"
262
263 static struct ev_loop default_loop_struct;
264 struct ev_loop *ev_default_loop_ptr;
166 265
167#else 266#else
168 267
268 ev_tstamp ev_rt_now;
169# define VAR(name,decl) static decl; 269 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 270 #include "ev_vars.h"
171# undef VAR 271 #undef VAR
272
273 static int ev_default_loop_ptr;
172 274
173#endif 275#endif
174 276
175/*****************************************************************************/ 277/*****************************************************************************/
176 278
177inline ev_tstamp 279ev_tstamp
178ev_time (void) 280ev_time (void)
179{ 281{
180#if EV_USE_REALTIME 282#if EV_USE_REALTIME
181 struct timespec ts; 283 struct timespec ts;
182 clock_gettime (CLOCK_REALTIME, &ts); 284 clock_gettime (CLOCK_REALTIME, &ts);
201#endif 303#endif
202 304
203 return ev_time (); 305 return ev_time ();
204} 306}
205 307
308#if EV_MULTIPLICITY
206ev_tstamp 309ev_tstamp
207ev_now (EV_P) 310ev_now (EV_P)
208{ 311{
209 return rt_now; 312 return ev_rt_now;
210} 313}
314#endif
211 315
212#define array_roundsize(base,n) ((n) | 4 & ~3) 316#define array_roundsize(type,n) (((n) | 4) & ~3)
213 317
214#define array_needsize(base,cur,cnt,init) \ 318#define array_needsize(type,base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 319 if (expect_false ((cnt) > cur)) \
216 { \ 320 { \
217 int newcnt = cur; \ 321 int newcnt = cur; \
218 do \ 322 do \
219 { \ 323 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 324 newcnt = array_roundsize (type, newcnt << 1); \
221 } \ 325 } \
222 while ((cnt) > newcnt); \ 326 while ((cnt) > newcnt); \
223 \ 327 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 328 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
225 init (base + cur, newcnt - cur); \ 329 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 330 cur = newcnt; \
227 } 331 }
332
333#define array_slim(type,stem) \
334 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
335 { \
336 stem ## max = array_roundsize (stem ## cnt >> 1); \
337 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
338 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
339 }
340
341#define array_free(stem, idx) \
342 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 343
229/*****************************************************************************/ 344/*****************************************************************************/
230 345
231static void 346static void
232anfds_init (ANFD *base, int count) 347anfds_init (ANFD *base, int count)
239 354
240 ++base; 355 ++base;
241 } 356 }
242} 357}
243 358
244static void 359void
245event (EV_P_ W w, int events) 360ev_feed_event (EV_P_ void *w, int revents)
246{ 361{
362 W w_ = (W)w;
363
247 if (w->pending) 364 if (w_->pending)
248 { 365 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 366 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
250 return; 367 return;
251 } 368 }
252 369
253 w->pending = ++pendingcnt [ABSPRI (w)]; 370 w_->pending = ++pendingcnt [ABSPRI (w_)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 371 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
255 pendings [ABSPRI (w)][w->pending - 1].w = w; 372 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
256 pendings [ABSPRI (w)][w->pending - 1].events = events; 373 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
257} 374}
258 375
259static void 376static void
260queue_events (EV_P_ W *events, int eventcnt, int type) 377queue_events (EV_P_ W *events, int eventcnt, int type)
261{ 378{
262 int i; 379 int i;
263 380
264 for (i = 0; i < eventcnt; ++i) 381 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type); 382 ev_feed_event (EV_A_ events [i], type);
266} 383}
267 384
268static void 385inline void
269fd_event (EV_P_ int fd, int events) 386fd_event (EV_P_ int fd, int revents)
270{ 387{
271 ANFD *anfd = anfds + fd; 388 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 389 struct ev_io *w;
273 390
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 391 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
275 { 392 {
276 int ev = w->events & events; 393 int ev = w->events & revents;
277 394
278 if (ev) 395 if (ev)
279 event (EV_A_ (W)w, ev); 396 ev_feed_event (EV_A_ (W)w, ev);
280 } 397 }
398}
399
400void
401ev_feed_fd_event (EV_P_ int fd, int revents)
402{
403 fd_event (EV_A_ fd, revents);
281} 404}
282 405
283/*****************************************************************************/ 406/*****************************************************************************/
284 407
285static void 408static void
296 int events = 0; 419 int events = 0;
297 420
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 421 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events; 422 events |= w->events;
300 423
424#if EV_SELECT_IS_WINSOCKET
425 if (events)
426 {
427 unsigned long argp;
428 anfd->handle = _get_osfhandle (fd);
429 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
430 }
431#endif
432
301 anfd->reify = 0; 433 anfd->reify = 0;
302 434
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 435 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 436 anfd->events = events;
307 }
308 } 437 }
309 438
310 fdchangecnt = 0; 439 fdchangecnt = 0;
311} 440}
312 441
313static void 442static void
314fd_change (EV_P_ int fd) 443fd_change (EV_P_ int fd)
315{ 444{
316 if (anfds [fd].reify || fdchangecnt < 0) 445 if (anfds [fd].reify)
317 return; 446 return;
318 447
319 anfds [fd].reify = 1; 448 anfds [fd].reify = 1;
320 449
321 ++fdchangecnt; 450 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 451 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
323 fdchanges [fdchangecnt - 1] = fd; 452 fdchanges [fdchangecnt - 1] = fd;
324} 453}
325 454
326static void 455static void
327fd_kill (EV_P_ int fd) 456fd_kill (EV_P_ int fd)
329 struct ev_io *w; 458 struct ev_io *w;
330 459
331 while ((w = (struct ev_io *)anfds [fd].head)) 460 while ((w = (struct ev_io *)anfds [fd].head))
332 { 461 {
333 ev_io_stop (EV_A_ w); 462 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 463 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 464 }
465}
466
467static int
468fd_valid (int fd)
469{
470#ifdef _WIN32
471 return _get_osfhandle (fd) != -1;
472#else
473 return fcntl (fd, F_GETFD) != -1;
474#endif
336} 475}
337 476
338/* called on EBADF to verify fds */ 477/* called on EBADF to verify fds */
339static void 478static void
340fd_ebadf (EV_P) 479fd_ebadf (EV_P)
341{ 480{
342 int fd; 481 int fd;
343 482
344 for (fd = 0; fd < anfdmax; ++fd) 483 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 484 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 485 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 486 fd_kill (EV_A_ fd);
348} 487}
349 488
350/* called on ENOMEM in select/poll to kill some fds and retry */ 489/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 490static void
352fd_enomem (EV_P) 491fd_enomem (EV_P)
353{ 492{
354 int fd = anfdmax; 493 int fd;
355 494
356 while (fd--) 495 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 496 if (anfds [fd].events)
358 { 497 {
359 close (fd);
360 fd_kill (EV_A_ fd); 498 fd_kill (EV_A_ fd);
361 return; 499 return;
362 } 500 }
363} 501}
364 502
365/* susually called after fork if method needs to re-arm all fds from scratch */ 503/* usually called after fork if method needs to re-arm all fds from scratch */
366static void 504static void
367fd_rearm_all (EV_P) 505fd_rearm_all (EV_P)
368{ 506{
369 int fd; 507 int fd;
370 508
385 WT w = heap [k]; 523 WT w = heap [k];
386 524
387 while (k && heap [k >> 1]->at > w->at) 525 while (k && heap [k >> 1]->at > w->at)
388 { 526 {
389 heap [k] = heap [k >> 1]; 527 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 528 ((W)heap [k])->active = k + 1;
391 k >>= 1; 529 k >>= 1;
392 } 530 }
393 531
394 heap [k] = w; 532 heap [k] = w;
395 heap [k]->active = k + 1; 533 ((W)heap [k])->active = k + 1;
396 534
397} 535}
398 536
399static void 537static void
400downheap (WT *heap, int N, int k) 538downheap (WT *heap, int N, int k)
410 548
411 if (w->at <= heap [j]->at) 549 if (w->at <= heap [j]->at)
412 break; 550 break;
413 551
414 heap [k] = heap [j]; 552 heap [k] = heap [j];
415 heap [k]->active = k + 1; 553 ((W)heap [k])->active = k + 1;
416 k = j; 554 k = j;
417 } 555 }
418 556
419 heap [k] = w; 557 heap [k] = w;
420 heap [k]->active = k + 1; 558 ((W)heap [k])->active = k + 1;
559}
560
561inline void
562adjustheap (WT *heap, int N, int k)
563{
564 upheap (heap, k);
565 downheap (heap, N, k);
421} 566}
422 567
423/*****************************************************************************/ 568/*****************************************************************************/
424 569
425typedef struct 570typedef struct
426{ 571{
427 struct ev_watcher_list *head; 572 WL head;
428 sig_atomic_t volatile gotsig; 573 sig_atomic_t volatile gotsig;
429} ANSIG; 574} ANSIG;
430 575
431static ANSIG *signals; 576static ANSIG *signals;
432static int signalmax; 577static int signalmax;
448} 593}
449 594
450static void 595static void
451sighandler (int signum) 596sighandler (int signum)
452{ 597{
598#if _WIN32
599 signal (signum, sighandler);
600#endif
601
453 signals [signum - 1].gotsig = 1; 602 signals [signum - 1].gotsig = 1;
454 603
455 if (!gotsig) 604 if (!gotsig)
456 { 605 {
457 int old_errno = errno; 606 int old_errno = errno;
459 write (sigpipe [1], &signum, 1); 608 write (sigpipe [1], &signum, 1);
460 errno = old_errno; 609 errno = old_errno;
461 } 610 }
462} 611}
463 612
613void
614ev_feed_signal_event (EV_P_ int signum)
615{
616 WL w;
617
618#if EV_MULTIPLICITY
619 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
620#endif
621
622 --signum;
623
624 if (signum < 0 || signum >= signalmax)
625 return;
626
627 signals [signum].gotsig = 0;
628
629 for (w = signals [signum].head; w; w = w->next)
630 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
631}
632
464static void 633static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 634sigcb (EV_P_ struct ev_io *iow, int revents)
466{ 635{
467 struct ev_watcher_list *w;
468 int signum; 636 int signum;
469 637
470 read (sigpipe [0], &revents, 1); 638 read (sigpipe [0], &revents, 1);
471 gotsig = 0; 639 gotsig = 0;
472 640
473 for (signum = signalmax; signum--; ) 641 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig) 642 if (signals [signum].gotsig)
475 { 643 ev_feed_signal_event (EV_A_ signum + 1);
476 signals [signum].gotsig = 0; 644}
477 645
478 for (w = signals [signum].head; w; w = w->next) 646inline void
479 event (EV_A_ (W)w, EV_SIGNAL); 647fd_intern (int fd)
480 } 648{
649#ifdef _WIN32
650 int arg = 1;
651 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
652#else
653 fcntl (fd, F_SETFD, FD_CLOEXEC);
654 fcntl (fd, F_SETFL, O_NONBLOCK);
655#endif
481} 656}
482 657
483static void 658static void
484siginit (EV_P) 659siginit (EV_P)
485{ 660{
486#ifndef WIN32 661 fd_intern (sigpipe [0]);
487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 662 fd_intern (sigpipe [1]);
488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
489
490 /* rather than sort out wether we really need nb, set it */
491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
494 663
495 ev_io_set (&sigev, sigpipe [0], EV_READ); 664 ev_io_set (&sigev, sigpipe [0], EV_READ);
496 ev_io_start (EV_A_ &sigev); 665 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */ 666 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 667}
499 668
500/*****************************************************************************/ 669/*****************************************************************************/
501 670
502#ifndef WIN32
503
504static struct ev_child *childs [PID_HASHSIZE]; 671static struct ev_child *childs [PID_HASHSIZE];
672
673#ifndef _WIN32
674
505static struct ev_signal childev; 675static struct ev_signal childev;
506 676
507#ifndef WCONTINUED 677#ifndef WCONTINUED
508# define WCONTINUED 0 678# define WCONTINUED 0
509#endif 679#endif
514 struct ev_child *w; 684 struct ev_child *w;
515 685
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 686 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid) 687 if (w->pid == pid || !w->pid)
518 { 688 {
519 w->priority = sw->priority; /* need to do it *now* */ 689 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
520 w->rpid = pid; 690 w->rpid = pid;
521 w->rstatus = status; 691 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD); 692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
523 } 693 }
524} 694}
525 695
526static void 696static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 697childcb (EV_P_ struct ev_signal *sw, int revents)
529 int pid, status; 699 int pid, status;
530 700
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 701 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 702 {
533 /* make sure we are called again until all childs have been reaped */ 703 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL); 704 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 705
536 child_reap (EV_A_ sw, pid, pid, status); 706 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 707 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 } 708 }
539} 709}
569 739
570/* return true if we are running with elevated privileges and should ignore env variables */ 740/* return true if we are running with elevated privileges and should ignore env variables */
571static int 741static int
572enable_secure (void) 742enable_secure (void)
573{ 743{
574#ifdef WIN32 744#ifdef _WIN32
575 return 0; 745 return 0;
576#else 746#else
577 return getuid () != geteuid () 747 return getuid () != geteuid ()
578 || getgid () != getegid (); 748 || getgid () != getegid ();
579#endif 749#endif
580} 750}
581 751
582int 752unsigned int
583ev_method (EV_P) 753ev_method (EV_P)
584{ 754{
585 return method; 755 return method;
586} 756}
587 757
588static void 758static void
589loop_init (EV_P_ int methods) 759loop_init (EV_P_ unsigned int flags)
590{ 760{
591 if (!method) 761 if (!method)
592 { 762 {
593#if EV_USE_MONOTONIC 763#if EV_USE_MONOTONIC
594 { 764 {
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 766 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1; 767 have_monotonic = 1;
598 } 768 }
599#endif 769#endif
600 770
601 rt_now = ev_time (); 771 ev_rt_now = ev_time ();
602 mn_now = get_clock (); 772 mn_now = get_clock ();
603 now_floor = mn_now; 773 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now; 774 rtmn_diff = ev_rt_now - mn_now;
605 775
606 if (methods == EVMETHOD_AUTO) 776 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS")); 777 flags = atoi (getenv ("LIBEV_FLAGS"));
609 else 778
610 methods = EVMETHOD_ANY; 779 if (!(flags & 0x0000ffff))
780 flags |= 0x0000ffff;
611 781
612 method = 0; 782 method = 0;
613#if EV_USE_KQUEUE 783#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 784 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
615#endif 785#endif
616#if EV_USE_EPOLL 786#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 787 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
618#endif 788#endif
619#if EV_USE_POLL 789#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 790 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
621#endif 791#endif
622#if EV_USE_SELECT 792#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 793 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
624#endif 794#endif
795
796 ev_init (&sigev, sigcb);
797 ev_set_priority (&sigev, EV_MAXPRI);
625 } 798 }
626} 799}
627 800
628void 801void
629loop_destroy (EV_P) 802loop_destroy (EV_P)
630{ 803{
804 int i;
805
631#if EV_USE_KQUEUE 806#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 807 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif 808#endif
634#if EV_USE_EPOLL 809#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 810 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
639#endif 814#endif
640#if EV_USE_SELECT 815#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 816 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif 817#endif
643 818
819 for (i = NUMPRI; i--; )
820 array_free (pending, [i]);
821
822 /* have to use the microsoft-never-gets-it-right macro */
823 array_free (fdchange, EMPTY0);
824 array_free (timer, EMPTY0);
825#if EV_PERIODICS
826 array_free (periodic, EMPTY0);
827#endif
828 array_free (idle, EMPTY0);
829 array_free (prepare, EMPTY0);
830 array_free (check, EMPTY0);
831
644 method = 0; 832 method = 0;
645 /*TODO*/
646} 833}
647 834
648void 835static void
649loop_fork (EV_P) 836loop_fork (EV_P)
650{ 837{
651 /*TODO*/
652#if EV_USE_EPOLL 838#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 839 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif 840#endif
655#if EV_USE_KQUEUE 841#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 842 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif 843#endif
844
845 if (ev_is_active (&sigev))
846 {
847 /* default loop */
848
849 ev_ref (EV_A);
850 ev_io_stop (EV_A_ &sigev);
851 close (sigpipe [0]);
852 close (sigpipe [1]);
853
854 while (pipe (sigpipe))
855 syserr ("(libev) error creating pipe");
856
857 siginit (EV_A);
858 }
859
860 postfork = 0;
658} 861}
659 862
660#if EV_MULTIPLICITY 863#if EV_MULTIPLICITY
661struct ev_loop * 864struct ev_loop *
662ev_loop_new (int methods) 865ev_loop_new (unsigned int flags)
663{ 866{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 867 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
665 868
869 memset (loop, 0, sizeof (struct ev_loop));
870
666 loop_init (EV_A_ methods); 871 loop_init (EV_A_ flags);
667 872
668 if (ev_method (EV_A)) 873 if (ev_method (EV_A))
669 return loop; 874 return loop;
670 875
671 return 0; 876 return 0;
673 878
674void 879void
675ev_loop_destroy (EV_P) 880ev_loop_destroy (EV_P)
676{ 881{
677 loop_destroy (EV_A); 882 loop_destroy (EV_A);
678 free (loop); 883 ev_free (loop);
679} 884}
680 885
681void 886void
682ev_loop_fork (EV_P) 887ev_loop_fork (EV_P)
683{ 888{
684 loop_fork (EV_A); 889 postfork = 1;
685} 890}
686 891
687#endif 892#endif
688 893
689#if EV_MULTIPLICITY 894#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop * 895struct ev_loop *
896ev_default_loop_ (unsigned int flags)
694#else 897#else
695static int default_loop;
696
697int 898int
899ev_default_loop (unsigned int flags)
698#endif 900#endif
699ev_default_loop (int methods)
700{ 901{
701 if (sigpipe [0] == sigpipe [1]) 902 if (sigpipe [0] == sigpipe [1])
702 if (pipe (sigpipe)) 903 if (pipe (sigpipe))
703 return 0; 904 return 0;
704 905
705 if (!default_loop) 906 if (!ev_default_loop_ptr)
706 { 907 {
707#if EV_MULTIPLICITY 908#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct; 909 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
709#else 910#else
710 default_loop = 1; 911 ev_default_loop_ptr = 1;
711#endif 912#endif
712 913
713 loop_init (EV_A_ methods); 914 loop_init (EV_A_ flags);
714 915
715 if (ev_method (EV_A)) 916 if (ev_method (EV_A))
716 { 917 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 918 siginit (EV_A);
720 919
721#ifndef WIN32 920#ifndef _WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 921 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 922 ev_set_priority (&childev, EV_MAXPRI);
724 ev_signal_start (EV_A_ &childev); 923 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */ 924 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif 925#endif
727 } 926 }
728 else 927 else
729 default_loop = 0; 928 ev_default_loop_ptr = 0;
730 } 929 }
731 930
732 return default_loop; 931 return ev_default_loop_ptr;
733} 932}
734 933
735void 934void
736ev_default_destroy (void) 935ev_default_destroy (void)
737{ 936{
738#if EV_MULTIPLICITY 937#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 938 struct ev_loop *loop = ev_default_loop_ptr;
740#endif 939#endif
741 940
941#ifndef _WIN32
742 ev_ref (EV_A); /* child watcher */ 942 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 943 ev_signal_stop (EV_A_ &childev);
944#endif
744 945
745 ev_ref (EV_A); /* signal watcher */ 946 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev); 947 ev_io_stop (EV_A_ &sigev);
747 948
748 close (sigpipe [0]); sigpipe [0] = 0; 949 close (sigpipe [0]); sigpipe [0] = 0;
753 954
754void 955void
755ev_default_fork (void) 956ev_default_fork (void)
756{ 957{
757#if EV_MULTIPLICITY 958#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 959 struct ev_loop *loop = ev_default_loop_ptr;
759#endif 960#endif
760 961
761 loop_fork (EV_A); 962 if (method)
762 963 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 964}
771 965
772/*****************************************************************************/ 966/*****************************************************************************/
967
968static int
969any_pending (EV_P)
970{
971 int pri;
972
973 for (pri = NUMPRI; pri--; )
974 if (pendingcnt [pri])
975 return 1;
976
977 return 0;
978}
773 979
774static void 980static void
775call_pending (EV_P) 981call_pending (EV_P)
776{ 982{
777 int pri; 983 int pri;
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 988 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 989
784 if (p->w) 990 if (p->w)
785 { 991 {
786 p->w->pending = 0; 992 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events); 993 EV_CB_INVOKE (p->w, p->events);
788 } 994 }
789 } 995 }
790} 996}
791 997
792static void 998static void
793timers_reify (EV_P) 999timers_reify (EV_P)
794{ 1000{
795 while (timercnt && timers [0]->at <= mn_now) 1001 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 1002 {
797 struct ev_timer *w = timers [0]; 1003 struct ev_timer *w = timers [0];
798 1004
799 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1005 assert (("inactive timer on timer heap detected", ev_is_active (w)));
800 1006
801 /* first reschedule or stop timer */ 1007 /* first reschedule or stop timer */
802 if (w->repeat) 1008 if (w->repeat)
803 { 1009 {
804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1010 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1011
805 w->at = mn_now + w->repeat; 1012 ((WT)w)->at += w->repeat;
1013 if (((WT)w)->at < mn_now)
1014 ((WT)w)->at = mn_now;
1015
806 downheap ((WT *)timers, timercnt, 0); 1016 downheap ((WT *)timers, timercnt, 0);
807 } 1017 }
808 else 1018 else
809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1019 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
810 1020
811 event (EV_A_ (W)w, EV_TIMEOUT); 1021 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
812 } 1022 }
813} 1023}
814 1024
1025#if EV_PERIODICS
815static void 1026static void
816periodics_reify (EV_P) 1027periodics_reify (EV_P)
817{ 1028{
818 while (periodiccnt && periodics [0]->at <= rt_now) 1029 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
819 { 1030 {
820 struct ev_periodic *w = periodics [0]; 1031 struct ev_periodic *w = periodics [0];
821 1032
822 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1033 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
823 1034
824 /* first reschedule or stop timer */ 1035 /* first reschedule or stop timer */
825 if (w->interval) 1036 if (w->reschedule_cb)
826 { 1037 {
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1039 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1040 downheap ((WT *)periodics, periodiccnt, 0);
1041 }
1042 else if (w->interval)
1043 {
827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1044 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1045 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
829 downheap ((WT *)periodics, periodiccnt, 0); 1046 downheap ((WT *)periodics, periodiccnt, 0);
830 } 1047 }
831 else 1048 else
832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1049 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
833 1050
834 event (EV_A_ (W)w, EV_PERIODIC); 1051 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
835 } 1052 }
836} 1053}
837 1054
838static void 1055static void
839periodics_reschedule (EV_P) 1056periodics_reschedule (EV_P)
843 /* adjust periodics after time jump */ 1060 /* adjust periodics after time jump */
844 for (i = 0; i < periodiccnt; ++i) 1061 for (i = 0; i < periodiccnt; ++i)
845 { 1062 {
846 struct ev_periodic *w = periodics [i]; 1063 struct ev_periodic *w = periodics [i];
847 1064
1065 if (w->reschedule_cb)
1066 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
848 if (w->interval) 1067 else if (w->interval)
849 {
850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1068 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
851
852 if (fabs (diff) >= 1e-4)
853 {
854 ev_periodic_stop (EV_A_ w);
855 ev_periodic_start (EV_A_ w);
856
857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
858 }
859 }
860 } 1069 }
1070
1071 /* now rebuild the heap */
1072 for (i = periodiccnt >> 1; i--; )
1073 downheap ((WT *)periodics, periodiccnt, i);
861} 1074}
1075#endif
862 1076
863inline int 1077inline int
864time_update_monotonic (EV_P) 1078time_update_monotonic (EV_P)
865{ 1079{
866 mn_now = get_clock (); 1080 mn_now = get_clock ();
867 1081
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1082 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 { 1083 {
870 rt_now = rtmn_diff + mn_now; 1084 ev_rt_now = rtmn_diff + mn_now;
871 return 0; 1085 return 0;
872 } 1086 }
873 else 1087 else
874 { 1088 {
875 now_floor = mn_now; 1089 now_floor = mn_now;
876 rt_now = ev_time (); 1090 ev_rt_now = ev_time ();
877 return 1; 1091 return 1;
878 } 1092 }
879} 1093}
880 1094
881static void 1095static void
890 { 1104 {
891 ev_tstamp odiff = rtmn_diff; 1105 ev_tstamp odiff = rtmn_diff;
892 1106
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1107 for (i = 4; --i; ) /* loop a few times, before making important decisions */
894 { 1108 {
895 rtmn_diff = rt_now - mn_now; 1109 rtmn_diff = ev_rt_now - mn_now;
896 1110
897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1111 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
898 return; /* all is well */ 1112 return; /* all is well */
899 1113
900 rt_now = ev_time (); 1114 ev_rt_now = ev_time ();
901 mn_now = get_clock (); 1115 mn_now = get_clock ();
902 now_floor = mn_now; 1116 now_floor = mn_now;
903 } 1117 }
904 1118
1119# if EV_PERIODICS
905 periodics_reschedule (EV_A); 1120 periodics_reschedule (EV_A);
1121# endif
906 /* no timer adjustment, as the monotonic clock doesn't jump */ 1122 /* no timer adjustment, as the monotonic clock doesn't jump */
907 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1123 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
908 } 1124 }
909 } 1125 }
910 else 1126 else
911#endif 1127#endif
912 { 1128 {
913 rt_now = ev_time (); 1129 ev_rt_now = ev_time ();
914 1130
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1131 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
916 { 1132 {
1133#if EV_PERIODICS
917 periodics_reschedule (EV_A); 1134 periodics_reschedule (EV_A);
1135#endif
918 1136
919 /* adjust timers. this is easy, as the offset is the same for all */ 1137 /* adjust timers. this is easy, as the offset is the same for all */
920 for (i = 0; i < timercnt; ++i) 1138 for (i = 0; i < timercnt; ++i)
921 timers [i]->at += rt_now - mn_now; 1139 ((WT)timers [i])->at += ev_rt_now - mn_now;
922 } 1140 }
923 1141
924 mn_now = rt_now; 1142 mn_now = ev_rt_now;
925 } 1143 }
926} 1144}
927 1145
928void 1146void
929ev_ref (EV_P) 1147ev_ref (EV_P)
943ev_loop (EV_P_ int flags) 1161ev_loop (EV_P_ int flags)
944{ 1162{
945 double block; 1163 double block;
946 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1164 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
947 1165
948 do 1166 while (activecnt)
949 { 1167 {
950 /* queue check watchers (and execute them) */ 1168 /* queue check watchers (and execute them) */
951 if (expect_false (preparecnt)) 1169 if (expect_false (preparecnt))
952 { 1170 {
953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1171 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
954 call_pending (EV_A); 1172 call_pending (EV_A);
955 } 1173 }
956 1174
1175 /* we might have forked, so reify kernel state if necessary */
1176 if (expect_false (postfork))
1177 loop_fork (EV_A);
1178
957 /* update fd-related kernel structures */ 1179 /* update fd-related kernel structures */
958 fd_reify (EV_A); 1180 fd_reify (EV_A);
959 1181
960 /* calculate blocking time */ 1182 /* calculate blocking time */
961 1183
962 /* we only need this for !monotonic clockor timers, but as we basically 1184 /* we only need this for !monotonic clock or timers, but as we basically
963 always have timers, we just calculate it always */ 1185 always have timers, we just calculate it always */
964#if EV_USE_MONOTONIC 1186#if EV_USE_MONOTONIC
965 if (expect_true (have_monotonic)) 1187 if (expect_true (have_monotonic))
966 time_update_monotonic (EV_A); 1188 time_update_monotonic (EV_A);
967 else 1189 else
968#endif 1190#endif
969 { 1191 {
970 rt_now = ev_time (); 1192 ev_rt_now = ev_time ();
971 mn_now = rt_now; 1193 mn_now = ev_rt_now;
972 } 1194 }
973 1195
974 if (flags & EVLOOP_NONBLOCK || idlecnt) 1196 if (flags & EVLOOP_NONBLOCK || idlecnt)
975 block = 0.; 1197 block = 0.;
976 else 1198 else
977 { 1199 {
978 block = MAX_BLOCKTIME; 1200 block = MAX_BLOCKTIME;
979 1201
980 if (timercnt) 1202 if (timercnt)
981 { 1203 {
982 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1204 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
983 if (block > to) block = to; 1205 if (block > to) block = to;
984 } 1206 }
985 1207
1208#if EV_PERIODICS
986 if (periodiccnt) 1209 if (periodiccnt)
987 { 1210 {
988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1211 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
989 if (block > to) block = to; 1212 if (block > to) block = to;
990 } 1213 }
1214#endif
991 1215
992 if (block < 0.) block = 0.; 1216 if (block < 0.) block = 0.;
993 } 1217 }
994 1218
995 method_poll (EV_A_ block); 1219 method_poll (EV_A_ block);
996 1220
997 /* update rt_now, do magic */ 1221 /* update ev_rt_now, do magic */
998 time_update (EV_A); 1222 time_update (EV_A);
999 1223
1000 /* queue pending timers and reschedule them */ 1224 /* queue pending timers and reschedule them */
1001 timers_reify (EV_A); /* relative timers called last */ 1225 timers_reify (EV_A); /* relative timers called last */
1226#if EV_PERIODICS
1002 periodics_reify (EV_A); /* absolute timers called first */ 1227 periodics_reify (EV_A); /* absolute timers called first */
1228#endif
1003 1229
1004 /* queue idle watchers unless io or timers are pending */ 1230 /* queue idle watchers unless io or timers are pending */
1005 if (!pendingcnt) 1231 if (idlecnt && !any_pending (EV_A))
1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1232 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1007 1233
1008 /* queue check watchers, to be executed first */ 1234 /* queue check watchers, to be executed first */
1009 if (checkcnt) 1235 if (checkcnt)
1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1236 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1011 1237
1012 call_pending (EV_A); 1238 call_pending (EV_A);
1239
1240 if (loop_done)
1241 break;
1013 } 1242 }
1014 while (activecnt && !loop_done);
1015 1243
1016 if (loop_done != 2) 1244 if (loop_done != 2)
1017 loop_done = 0; 1245 loop_done = 0;
1018} 1246}
1019 1247
1085 return; 1313 return;
1086 1314
1087 assert (("ev_io_start called with negative fd", fd >= 0)); 1315 assert (("ev_io_start called with negative fd", fd >= 0));
1088 1316
1089 ev_start (EV_A_ (W)w, 1); 1317 ev_start (EV_A_ (W)w, 1);
1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1318 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1091 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1319 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1092 1320
1093 fd_change (EV_A_ fd); 1321 fd_change (EV_A_ fd);
1094} 1322}
1095 1323
1098{ 1326{
1099 ev_clear_pending (EV_A_ (W)w); 1327 ev_clear_pending (EV_A_ (W)w);
1100 if (!ev_is_active (w)) 1328 if (!ev_is_active (w))
1101 return; 1329 return;
1102 1330
1331 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1332
1103 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1333 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1104 ev_stop (EV_A_ (W)w); 1334 ev_stop (EV_A_ (W)w);
1105 1335
1106 fd_change (EV_A_ w->fd); 1336 fd_change (EV_A_ w->fd);
1107} 1337}
1110ev_timer_start (EV_P_ struct ev_timer *w) 1340ev_timer_start (EV_P_ struct ev_timer *w)
1111{ 1341{
1112 if (ev_is_active (w)) 1342 if (ev_is_active (w))
1113 return; 1343 return;
1114 1344
1115 w->at += mn_now; 1345 ((WT)w)->at += mn_now;
1116 1346
1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1347 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1118 1348
1119 ev_start (EV_A_ (W)w, ++timercnt); 1349 ev_start (EV_A_ (W)w, ++timercnt);
1120 array_needsize (timers, timermax, timercnt, ); 1350 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1121 timers [timercnt - 1] = w; 1351 timers [timercnt - 1] = w;
1122 upheap ((WT *)timers, timercnt - 1); 1352 upheap ((WT *)timers, timercnt - 1);
1353
1354 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1123} 1355}
1124 1356
1125void 1357void
1126ev_timer_stop (EV_P_ struct ev_timer *w) 1358ev_timer_stop (EV_P_ struct ev_timer *w)
1127{ 1359{
1128 ev_clear_pending (EV_A_ (W)w); 1360 ev_clear_pending (EV_A_ (W)w);
1129 if (!ev_is_active (w)) 1361 if (!ev_is_active (w))
1130 return; 1362 return;
1131 1363
1364 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1365
1132 if (w->active < timercnt--) 1366 if (((W)w)->active < timercnt--)
1133 { 1367 {
1134 timers [w->active - 1] = timers [timercnt]; 1368 timers [((W)w)->active - 1] = timers [timercnt];
1135 downheap ((WT *)timers, timercnt, w->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1136 } 1370 }
1137 1371
1138 w->at = w->repeat; 1372 ((WT)w)->at -= mn_now;
1139 1373
1140 ev_stop (EV_A_ (W)w); 1374 ev_stop (EV_A_ (W)w);
1141} 1375}
1142 1376
1143void 1377void
1145{ 1379{
1146 if (ev_is_active (w)) 1380 if (ev_is_active (w))
1147 { 1381 {
1148 if (w->repeat) 1382 if (w->repeat)
1149 { 1383 {
1150 w->at = mn_now + w->repeat; 1384 ((WT)w)->at = mn_now + w->repeat;
1151 downheap ((WT *)timers, timercnt, w->active - 1); 1385 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1152 } 1386 }
1153 else 1387 else
1154 ev_timer_stop (EV_A_ w); 1388 ev_timer_stop (EV_A_ w);
1155 } 1389 }
1156 else if (w->repeat) 1390 else if (w->repeat)
1391 {
1392 w->at = w->repeat;
1157 ev_timer_start (EV_A_ w); 1393 ev_timer_start (EV_A_ w);
1394 }
1158} 1395}
1159 1396
1397#if EV_PERIODICS
1160void 1398void
1161ev_periodic_start (EV_P_ struct ev_periodic *w) 1399ev_periodic_start (EV_P_ struct ev_periodic *w)
1162{ 1400{
1163 if (ev_is_active (w)) 1401 if (ev_is_active (w))
1164 return; 1402 return;
1165 1403
1404 if (w->reschedule_cb)
1405 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1406 else if (w->interval)
1407 {
1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1408 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1167
1168 /* this formula differs from the one in periodic_reify because we do not always round up */ 1409 /* this formula differs from the one in periodic_reify because we do not always round up */
1169 if (w->interval)
1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1410 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1411 }
1171 1412
1172 ev_start (EV_A_ (W)w, ++periodiccnt); 1413 ev_start (EV_A_ (W)w, ++periodiccnt);
1173 array_needsize (periodics, periodicmax, periodiccnt, ); 1414 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1174 periodics [periodiccnt - 1] = w; 1415 periodics [periodiccnt - 1] = w;
1175 upheap ((WT *)periodics, periodiccnt - 1); 1416 upheap ((WT *)periodics, periodiccnt - 1);
1417
1418 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1176} 1419}
1177 1420
1178void 1421void
1179ev_periodic_stop (EV_P_ struct ev_periodic *w) 1422ev_periodic_stop (EV_P_ struct ev_periodic *w)
1180{ 1423{
1181 ev_clear_pending (EV_A_ (W)w); 1424 ev_clear_pending (EV_A_ (W)w);
1182 if (!ev_is_active (w)) 1425 if (!ev_is_active (w))
1183 return; 1426 return;
1184 1427
1428 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1429
1185 if (w->active < periodiccnt--) 1430 if (((W)w)->active < periodiccnt--)
1186 { 1431 {
1187 periodics [w->active - 1] = periodics [periodiccnt]; 1432 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1188 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1433 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1189 } 1434 }
1190 1435
1191 ev_stop (EV_A_ (W)w); 1436 ev_stop (EV_A_ (W)w);
1192} 1437}
1193 1438
1194void 1439void
1440ev_periodic_again (EV_P_ struct ev_periodic *w)
1441{
1442 /* TODO: use adjustheap and recalculation */
1443 ev_periodic_stop (EV_A_ w);
1444 ev_periodic_start (EV_A_ w);
1445}
1446#endif
1447
1448void
1195ev_idle_start (EV_P_ struct ev_idle *w) 1449ev_idle_start (EV_P_ struct ev_idle *w)
1196{ 1450{
1197 if (ev_is_active (w)) 1451 if (ev_is_active (w))
1198 return; 1452 return;
1199 1453
1200 ev_start (EV_A_ (W)w, ++idlecnt); 1454 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, ); 1455 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1202 idles [idlecnt - 1] = w; 1456 idles [idlecnt - 1] = w;
1203} 1457}
1204 1458
1205void 1459void
1206ev_idle_stop (EV_P_ struct ev_idle *w) 1460ev_idle_stop (EV_P_ struct ev_idle *w)
1207{ 1461{
1208 ev_clear_pending (EV_A_ (W)w); 1462 ev_clear_pending (EV_A_ (W)w);
1463 if (!ev_is_active (w))
1464 return;
1465
1466 idles [((W)w)->active - 1] = idles [--idlecnt];
1467 ev_stop (EV_A_ (W)w);
1468}
1469
1470void
1471ev_prepare_start (EV_P_ struct ev_prepare *w)
1472{
1209 if (ev_is_active (w)) 1473 if (ev_is_active (w))
1210 return; 1474 return;
1211 1475
1212 idles [w->active - 1] = idles [--idlecnt]; 1476 ev_start (EV_A_ (W)w, ++preparecnt);
1477 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1478 prepares [preparecnt - 1] = w;
1479}
1480
1481void
1482ev_prepare_stop (EV_P_ struct ev_prepare *w)
1483{
1484 ev_clear_pending (EV_A_ (W)w);
1485 if (!ev_is_active (w))
1486 return;
1487
1488 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1213 ev_stop (EV_A_ (W)w); 1489 ev_stop (EV_A_ (W)w);
1214} 1490}
1215 1491
1216void 1492void
1217ev_prepare_start (EV_P_ struct ev_prepare *w) 1493ev_check_start (EV_P_ struct ev_check *w)
1218{ 1494{
1219 if (ev_is_active (w)) 1495 if (ev_is_active (w))
1220 return; 1496 return;
1221 1497
1222 ev_start (EV_A_ (W)w, ++preparecnt); 1498 ev_start (EV_A_ (W)w, ++checkcnt);
1223 array_needsize (prepares, preparemax, preparecnt, ); 1499 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1224 prepares [preparecnt - 1] = w; 1500 checks [checkcnt - 1] = w;
1225} 1501}
1226 1502
1227void 1503void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w) 1504ev_check_stop (EV_P_ struct ev_check *w)
1229{ 1505{
1230 ev_clear_pending (EV_A_ (W)w); 1506 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w)) 1507 if (!ev_is_active (w))
1232 return; 1508 return;
1233 1509
1234 prepares [w->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w);
1236}
1237
1238void
1239ev_check_start (EV_P_ struct ev_check *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, );
1246 checks [checkcnt - 1] = w;
1247}
1248
1249void
1250ev_check_stop (EV_P_ struct ev_check *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 checks [w->active - 1] = checks [--checkcnt]; 1510 checks [((W)w)->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w); 1511 ev_stop (EV_A_ (W)w);
1258} 1512}
1259 1513
1260#ifndef SA_RESTART 1514#ifndef SA_RESTART
1261# define SA_RESTART 0 1515# define SA_RESTART 0
1263 1517
1264void 1518void
1265ev_signal_start (EV_P_ struct ev_signal *w) 1519ev_signal_start (EV_P_ struct ev_signal *w)
1266{ 1520{
1267#if EV_MULTIPLICITY 1521#if EV_MULTIPLICITY
1268 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1522 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1269#endif 1523#endif
1270 if (ev_is_active (w)) 1524 if (ev_is_active (w))
1271 return; 1525 return;
1272 1526
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1527 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1274 1528
1275 ev_start (EV_A_ (W)w, 1); 1529 ev_start (EV_A_ (W)w, 1);
1276 array_needsize (signals, signalmax, w->signum, signals_init); 1530 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1531 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1278 1532
1279 if (!w->next) 1533 if (!((WL)w)->next)
1280 { 1534 {
1535#if _WIN32
1536 signal (w->signum, sighandler);
1537#else
1281 struct sigaction sa; 1538 struct sigaction sa;
1282 sa.sa_handler = sighandler; 1539 sa.sa_handler = sighandler;
1283 sigfillset (&sa.sa_mask); 1540 sigfillset (&sa.sa_mask);
1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1541 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1285 sigaction (w->signum, &sa, 0); 1542 sigaction (w->signum, &sa, 0);
1543#endif
1286 } 1544 }
1287} 1545}
1288 1546
1289void 1547void
1290ev_signal_stop (EV_P_ struct ev_signal *w) 1548ev_signal_stop (EV_P_ struct ev_signal *w)
1302 1560
1303void 1561void
1304ev_child_start (EV_P_ struct ev_child *w) 1562ev_child_start (EV_P_ struct ev_child *w)
1305{ 1563{
1306#if EV_MULTIPLICITY 1564#if EV_MULTIPLICITY
1307 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1565 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1308#endif 1566#endif
1309 if (ev_is_active (w)) 1567 if (ev_is_active (w))
1310 return; 1568 return;
1311 1569
1312 ev_start (EV_A_ (W)w, 1); 1570 ev_start (EV_A_ (W)w, 1);
1315 1573
1316void 1574void
1317ev_child_stop (EV_P_ struct ev_child *w) 1575ev_child_stop (EV_P_ struct ev_child *w)
1318{ 1576{
1319 ev_clear_pending (EV_A_ (W)w); 1577 ev_clear_pending (EV_A_ (W)w);
1320 if (ev_is_active (w)) 1578 if (!ev_is_active (w))
1321 return; 1579 return;
1322 1580
1323 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1581 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1324 ev_stop (EV_A_ (W)w); 1582 ev_stop (EV_A_ (W)w);
1325} 1583}
1340 void (*cb)(int revents, void *arg) = once->cb; 1598 void (*cb)(int revents, void *arg) = once->cb;
1341 void *arg = once->arg; 1599 void *arg = once->arg;
1342 1600
1343 ev_io_stop (EV_A_ &once->io); 1601 ev_io_stop (EV_A_ &once->io);
1344 ev_timer_stop (EV_A_ &once->to); 1602 ev_timer_stop (EV_A_ &once->to);
1345 free (once); 1603 ev_free (once);
1346 1604
1347 cb (revents, arg); 1605 cb (revents, arg);
1348} 1606}
1349 1607
1350static void 1608static void
1360} 1618}
1361 1619
1362void 1620void
1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1621ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1364{ 1622{
1365 struct ev_once *once = malloc (sizeof (struct ev_once)); 1623 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1366 1624
1367 if (!once) 1625 if (!once)
1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1369 else 1627 else
1370 { 1628 {
1371 once->cb = cb; 1629 once->cb = cb;
1372 once->arg = arg; 1630 once->arg = arg;
1373 1631
1374 ev_watcher_init (&once->io, once_cb_io); 1632 ev_init (&once->io, once_cb_io);
1375 if (fd >= 0) 1633 if (fd >= 0)
1376 { 1634 {
1377 ev_io_set (&once->io, fd, events); 1635 ev_io_set (&once->io, fd, events);
1378 ev_io_start (EV_A_ &once->io); 1636 ev_io_start (EV_A_ &once->io);
1379 } 1637 }
1380 1638
1381 ev_watcher_init (&once->to, once_cb_to); 1639 ev_init (&once->to, once_cb_to);
1382 if (timeout >= 0.) 1640 if (timeout >= 0.)
1383 { 1641 {
1384 ev_timer_set (&once->to, timeout, 0.); 1642 ev_timer_set (&once->to, timeout, 0.);
1385 ev_timer_start (EV_A_ &once->to); 1643 ev_timer_start (EV_A_ &once->to);
1386 } 1644 }
1387 } 1645 }
1388} 1646}
1389 1647
1648#ifdef __cplusplus
1649}
1650#endif
1651

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines