ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC vs.
Revision 1.117 by ayin, Thu Nov 15 17:15:56 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
84#else
85# define WIN32_LEAN_AND_MEAN
86# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1
71#endif 89# endif
72#include <sys/time.h> 90#endif
73#include <time.h>
74 91
75/**/ 92/**/
76 93
77#ifndef EV_USE_MONOTONIC 94#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 95# define EV_USE_MONOTONIC 1
79#endif 96#endif
80 97
81#ifndef EV_USE_SELECT 98#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 99# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
83#endif 101#endif
84 102
85#ifndef EV_USE_POLL 103#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 104# ifdef _WIN32
105# define EV_USE_POLL 0
106# else
107# define EV_USE_POLL 1
108# endif
87#endif 109#endif
88 110
89#ifndef EV_USE_EPOLL 111#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 112# define EV_USE_EPOLL 0
91#endif 113#endif
92 114
93#ifndef EV_USE_KQUEUE 115#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 116# define EV_USE_KQUEUE 0
95#endif 117#endif
96 118
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 119#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1 120# define EV_USE_REALTIME 1
107#endif 121#endif
108 122
109/**/ 123/**/
124
125/* darwin simply cannot be helped */
126#ifdef __APPLE__
127# undef EV_USE_POLL
128# undef EV_USE_KQUEUE
129#endif
110 130
111#ifndef CLOCK_MONOTONIC 131#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 132# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 133# define EV_USE_MONOTONIC 0
114#endif 134#endif
115 135
116#ifndef CLOCK_REALTIME 136#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 137# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 138# define EV_USE_REALTIME 0
139#endif
140
141#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h>
119#endif 143#endif
120 144
121/**/ 145/**/
122 146
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 151
152#ifdef EV_H
153# include EV_H
154#else
128#include "ev.h" 155# include "ev.h"
156#endif
129 157
130#if __GNUC__ >= 3 158#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 159# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 160# define inline inline
133#else 161#else
139#define expect_true(expr) expect ((expr) != 0, 1) 167#define expect_true(expr) expect ((expr) != 0, 1)
140 168
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 170#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 171
172#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
173#define EMPTY2(a,b) /* used to suppress some warnings */
174
144typedef struct ev_watcher *W; 175typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 176typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 177typedef struct ev_watcher_time *WT;
147 178
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 179static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 180
150#if WIN32 181#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 182# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 183#endif
184
185/*****************************************************************************/
186
187static void (*syserr_cb)(const char *msg);
188
189void ev_set_syserr_cb (void (*cb)(const char *msg))
190{
191 syserr_cb = cb;
192}
193
194static void
195syserr (const char *msg)
196{
197 if (!msg)
198 msg = "(libev) system error";
199
200 if (syserr_cb)
201 syserr_cb (msg);
202 else
203 {
204 perror (msg);
205 abort ();
206 }
207}
208
209static void *(*alloc)(void *ptr, long size);
210
211void ev_set_allocator (void *(*cb)(void *ptr, long size))
212{
213 alloc = cb;
214}
215
216static void *
217ev_realloc (void *ptr, long size)
218{
219 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
220
221 if (!ptr && size)
222 {
223 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
224 abort ();
225 }
226
227 return ptr;
228}
229
230#define ev_malloc(size) ev_realloc (0, (size))
231#define ev_free(ptr) ev_realloc ((ptr), 0)
155 232
156/*****************************************************************************/ 233/*****************************************************************************/
157 234
158typedef struct 235typedef struct
159{ 236{
160 WL head; 237 WL head;
161 unsigned char events; 238 unsigned char events;
162 unsigned char reify; 239 unsigned char reify;
240#if EV_SELECT_IS_WINSOCKET
241 SOCKET handle;
242#endif
163} ANFD; 243} ANFD;
164 244
165typedef struct 245typedef struct
166{ 246{
167 W w; 247 W w;
168 int events; 248 int events;
169} ANPENDING; 249} ANPENDING;
170 250
171#if EV_MULTIPLICITY 251#if EV_MULTIPLICITY
172 252
173struct ev_loop 253 struct ev_loop
174{ 254 {
255 ev_tstamp ev_rt_now;
256 #define ev_rt_now ((loop)->ev_rt_now)
175# define VAR(name,decl) decl; 257 #define VAR(name,decl) decl;
176# include "ev_vars.h" 258 #include "ev_vars.h"
177};
178# undef VAR 259 #undef VAR
260 };
179# include "ev_wrap.h" 261 #include "ev_wrap.h"
262
263 static struct ev_loop default_loop_struct;
264 struct ev_loop *ev_default_loop_ptr;
180 265
181#else 266#else
182 267
268 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 269 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 270 #include "ev_vars.h"
185# undef VAR 271 #undef VAR
272
273 static int ev_default_loop_ptr;
186 274
187#endif 275#endif
188 276
189/*****************************************************************************/ 277/*****************************************************************************/
190 278
191inline ev_tstamp 279ev_tstamp
192ev_time (void) 280ev_time (void)
193{ 281{
194#if EV_USE_REALTIME 282#if EV_USE_REALTIME
195 struct timespec ts; 283 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts); 284 clock_gettime (CLOCK_REALTIME, &ts);
215#endif 303#endif
216 304
217 return ev_time (); 305 return ev_time ();
218} 306}
219 307
308#if EV_MULTIPLICITY
220ev_tstamp 309ev_tstamp
221ev_now (EV_P) 310ev_now (EV_P)
222{ 311{
223 return rt_now; 312 return ev_rt_now;
224} 313}
314#endif
225 315
226#define array_roundsize(base,n) ((n) | 4 & ~3) 316#define array_roundsize(type,n) (((n) | 4) & ~3)
227 317
228#define array_needsize(base,cur,cnt,init) \ 318#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 319 if (expect_false ((cnt) > cur)) \
230 { \ 320 { \
231 int newcnt = cur; \ 321 int newcnt = cur; \
232 do \ 322 do \
233 { \ 323 { \
234 newcnt = array_roundsize (base, newcnt << 1); \ 324 newcnt = array_roundsize (type, newcnt << 1); \
235 } \ 325 } \
236 while ((cnt) > newcnt); \ 326 while ((cnt) > newcnt); \
237 \ 327 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \ 328 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
239 init (base + cur, newcnt - cur); \ 329 init (base + cur, newcnt - cur); \
240 cur = newcnt; \ 330 cur = newcnt; \
241 } 331 }
242 332
243#define array_slim(stem) \ 333#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 334 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 335 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 336 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 337 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 338 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 339 }
250 340
251#define array_free(stem, idx) \ 341#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 342 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253 343
254/*****************************************************************************/ 344/*****************************************************************************/
255 345
256static void 346static void
257anfds_init (ANFD *base, int count) 347anfds_init (ANFD *base, int count)
264 354
265 ++base; 355 ++base;
266 } 356 }
267} 357}
268 358
269static void 359void
270event (EV_P_ W w, int events) 360ev_feed_event (EV_P_ void *w, int revents)
271{ 361{
362 W w_ = (W)w;
363
272 if (w->pending) 364 if (w_->pending)
273 { 365 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events; 366 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
275 return; 367 return;
276 } 368 }
277 369
278 w->pending = ++pendingcnt [ABSPRI (w)]; 370 w_->pending = ++pendingcnt [ABSPRI (w_)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 371 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
280 pendings [ABSPRI (w)][w->pending - 1].w = w; 372 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
281 pendings [ABSPRI (w)][w->pending - 1].events = events; 373 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
282} 374}
283 375
284static void 376static void
285queue_events (EV_P_ W *events, int eventcnt, int type) 377queue_events (EV_P_ W *events, int eventcnt, int type)
286{ 378{
287 int i; 379 int i;
288 380
289 for (i = 0; i < eventcnt; ++i) 381 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type); 382 ev_feed_event (EV_A_ events [i], type);
291} 383}
292 384
293static void 385inline void
294fd_event (EV_P_ int fd, int events) 386fd_event (EV_P_ int fd, int revents)
295{ 387{
296 ANFD *anfd = anfds + fd; 388 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 389 struct ev_io *w;
298 390
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 391 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
300 { 392 {
301 int ev = w->events & events; 393 int ev = w->events & revents;
302 394
303 if (ev) 395 if (ev)
304 event (EV_A_ (W)w, ev); 396 ev_feed_event (EV_A_ (W)w, ev);
305 } 397 }
398}
399
400void
401ev_feed_fd_event (EV_P_ int fd, int revents)
402{
403 fd_event (EV_A_ fd, revents);
306} 404}
307 405
308/*****************************************************************************/ 406/*****************************************************************************/
309 407
310static void 408static void
321 int events = 0; 419 int events = 0;
322 420
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 421 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
324 events |= w->events; 422 events |= w->events;
325 423
424#if EV_SELECT_IS_WINSOCKET
425 if (events)
426 {
427 unsigned long argp;
428 anfd->handle = _get_osfhandle (fd);
429 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
430 }
431#endif
432
326 anfd->reify = 0; 433 anfd->reify = 0;
327 434
328 method_modify (EV_A_ fd, anfd->events, events); 435 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events; 436 anfd->events = events;
330 } 437 }
333} 440}
334 441
335static void 442static void
336fd_change (EV_P_ int fd) 443fd_change (EV_P_ int fd)
337{ 444{
338 if (anfds [fd].reify || fdchangecnt < 0) 445 if (anfds [fd].reify)
339 return; 446 return;
340 447
341 anfds [fd].reify = 1; 448 anfds [fd].reify = 1;
342 449
343 ++fdchangecnt; 450 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 451 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
345 fdchanges [fdchangecnt - 1] = fd; 452 fdchanges [fdchangecnt - 1] = fd;
346} 453}
347 454
348static void 455static void
349fd_kill (EV_P_ int fd) 456fd_kill (EV_P_ int fd)
351 struct ev_io *w; 458 struct ev_io *w;
352 459
353 while ((w = (struct ev_io *)anfds [fd].head)) 460 while ((w = (struct ev_io *)anfds [fd].head))
354 { 461 {
355 ev_io_stop (EV_A_ w); 462 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 463 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 464 }
465}
466
467static int
468fd_valid (int fd)
469{
470#ifdef _WIN32
471 return _get_osfhandle (fd) != -1;
472#else
473 return fcntl (fd, F_GETFD) != -1;
474#endif
358} 475}
359 476
360/* called on EBADF to verify fds */ 477/* called on EBADF to verify fds */
361static void 478static void
362fd_ebadf (EV_P) 479fd_ebadf (EV_P)
363{ 480{
364 int fd; 481 int fd;
365 482
366 for (fd = 0; fd < anfdmax; ++fd) 483 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 484 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 485 if (!fd_valid (fd) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd); 486 fd_kill (EV_A_ fd);
370} 487}
371 488
372/* called on ENOMEM in select/poll to kill some fds and retry */ 489/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 490static void
381 fd_kill (EV_A_ fd); 498 fd_kill (EV_A_ fd);
382 return; 499 return;
383 } 500 }
384} 501}
385 502
386/* susually called after fork if method needs to re-arm all fds from scratch */ 503/* usually called after fork if method needs to re-arm all fds from scratch */
387static void 504static void
388fd_rearm_all (EV_P) 505fd_rearm_all (EV_P)
389{ 506{
390 int fd; 507 int fd;
391 508
439 556
440 heap [k] = w; 557 heap [k] = w;
441 ((W)heap [k])->active = k + 1; 558 ((W)heap [k])->active = k + 1;
442} 559}
443 560
561inline void
562adjustheap (WT *heap, int N, int k)
563{
564 upheap (heap, k);
565 downheap (heap, N, k);
566}
567
444/*****************************************************************************/ 568/*****************************************************************************/
445 569
446typedef struct 570typedef struct
447{ 571{
448 WL head; 572 WL head;
469} 593}
470 594
471static void 595static void
472sighandler (int signum) 596sighandler (int signum)
473{ 597{
474#if WIN32 598#if _WIN32
475 signal (signum, sighandler); 599 signal (signum, sighandler);
476#endif 600#endif
477 601
478 signals [signum - 1].gotsig = 1; 602 signals [signum - 1].gotsig = 1;
479 603
484 write (sigpipe [1], &signum, 1); 608 write (sigpipe [1], &signum, 1);
485 errno = old_errno; 609 errno = old_errno;
486 } 610 }
487} 611}
488 612
613void
614ev_feed_signal_event (EV_P_ int signum)
615{
616 WL w;
617
618#if EV_MULTIPLICITY
619 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
620#endif
621
622 --signum;
623
624 if (signum < 0 || signum >= signalmax)
625 return;
626
627 signals [signum].gotsig = 0;
628
629 for (w = signals [signum].head; w; w = w->next)
630 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
631}
632
489static void 633static void
490sigcb (EV_P_ struct ev_io *iow, int revents) 634sigcb (EV_P_ struct ev_io *iow, int revents)
491{ 635{
492 WL w;
493 int signum; 636 int signum;
494 637
495 read (sigpipe [0], &revents, 1); 638 read (sigpipe [0], &revents, 1);
496 gotsig = 0; 639 gotsig = 0;
497 640
498 for (signum = signalmax; signum--; ) 641 for (signum = signalmax; signum--; )
499 if (signals [signum].gotsig) 642 if (signals [signum].gotsig)
500 { 643 ev_feed_signal_event (EV_A_ signum + 1);
501 signals [signum].gotsig = 0; 644}
502 645
503 for (w = signals [signum].head; w; w = w->next) 646inline void
504 event (EV_A_ (W)w, EV_SIGNAL); 647fd_intern (int fd)
505 } 648{
649#ifdef _WIN32
650 int arg = 1;
651 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
652#else
653 fcntl (fd, F_SETFD, FD_CLOEXEC);
654 fcntl (fd, F_SETFL, O_NONBLOCK);
655#endif
506} 656}
507 657
508static void 658static void
509siginit (EV_P) 659siginit (EV_P)
510{ 660{
511#ifndef WIN32 661 fd_intern (sigpipe [0]);
512 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 662 fd_intern (sigpipe [1]);
513 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
514
515 /* rather than sort out wether we really need nb, set it */
516 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
517 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
518#endif
519 663
520 ev_io_set (&sigev, sigpipe [0], EV_READ); 664 ev_io_set (&sigev, sigpipe [0], EV_READ);
521 ev_io_start (EV_A_ &sigev); 665 ev_io_start (EV_A_ &sigev);
522 ev_unref (EV_A); /* child watcher should not keep loop alive */ 666 ev_unref (EV_A); /* child watcher should not keep loop alive */
523} 667}
524 668
525/*****************************************************************************/ 669/*****************************************************************************/
526 670
527#ifndef WIN32
528
529static struct ev_child *childs [PID_HASHSIZE]; 671static struct ev_child *childs [PID_HASHSIZE];
672
673#ifndef _WIN32
674
530static struct ev_signal childev; 675static struct ev_signal childev;
531 676
532#ifndef WCONTINUED 677#ifndef WCONTINUED
533# define WCONTINUED 0 678# define WCONTINUED 0
534#endif 679#endif
542 if (w->pid == pid || !w->pid) 687 if (w->pid == pid || !w->pid)
543 { 688 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 689 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid; 690 w->rpid = pid;
546 w->rstatus = status; 691 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD); 692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
548 } 693 }
549} 694}
550 695
551static void 696static void
552childcb (EV_P_ struct ev_signal *sw, int revents) 697childcb (EV_P_ struct ev_signal *sw, int revents)
554 int pid, status; 699 int pid, status;
555 700
556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 701 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
557 { 702 {
558 /* make sure we are called again until all childs have been reaped */ 703 /* make sure we are called again until all childs have been reaped */
559 event (EV_A_ (W)sw, EV_SIGNAL); 704 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
560 705
561 child_reap (EV_A_ sw, pid, pid, status); 706 child_reap (EV_A_ sw, pid, pid, status);
562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 707 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
563 } 708 }
564} 709}
594 739
595/* return true if we are running with elevated privileges and should ignore env variables */ 740/* return true if we are running with elevated privileges and should ignore env variables */
596static int 741static int
597enable_secure (void) 742enable_secure (void)
598{ 743{
599#ifdef WIN32 744#ifdef _WIN32
600 return 0; 745 return 0;
601#else 746#else
602 return getuid () != geteuid () 747 return getuid () != geteuid ()
603 || getgid () != getegid (); 748 || getgid () != getegid ();
604#endif 749#endif
605} 750}
606 751
607int 752unsigned int
608ev_method (EV_P) 753ev_method (EV_P)
609{ 754{
610 return method; 755 return method;
611} 756}
612 757
613static void 758static void
614loop_init (EV_P_ int methods) 759loop_init (EV_P_ unsigned int flags)
615{ 760{
616 if (!method) 761 if (!method)
617 { 762 {
618#if EV_USE_MONOTONIC 763#if EV_USE_MONOTONIC
619 { 764 {
621 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 766 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
622 have_monotonic = 1; 767 have_monotonic = 1;
623 } 768 }
624#endif 769#endif
625 770
626 rt_now = ev_time (); 771 ev_rt_now = ev_time ();
627 mn_now = get_clock (); 772 mn_now = get_clock ();
628 now_floor = mn_now; 773 now_floor = mn_now;
629 rtmn_diff = rt_now - mn_now; 774 rtmn_diff = ev_rt_now - mn_now;
630 775
631 if (methods == EVMETHOD_AUTO) 776 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
632 if (!enable_secure () && getenv ("LIBEV_METHODS"))
633 methods = atoi (getenv ("LIBEV_METHODS")); 777 flags = atoi (getenv ("LIBEV_FLAGS"));
634 else 778
635 methods = EVMETHOD_ANY; 779 if (!(flags & 0x0000ffff))
780 flags |= 0x0000ffff;
636 781
637 method = 0; 782 method = 0;
638#if EV_USE_WIN32
639 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
640#endif
641#if EV_USE_KQUEUE 783#if EV_USE_KQUEUE
642 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 784 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
643#endif 785#endif
644#if EV_USE_EPOLL 786#if EV_USE_EPOLL
645 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 787 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
646#endif 788#endif
647#if EV_USE_POLL 789#if EV_USE_POLL
648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 790 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
649#endif 791#endif
650#if EV_USE_SELECT 792#if EV_USE_SELECT
651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 793 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
652#endif 794#endif
795
796 ev_init (&sigev, sigcb);
797 ev_set_priority (&sigev, EV_MAXPRI);
653 } 798 }
654} 799}
655 800
656void 801void
657loop_destroy (EV_P) 802loop_destroy (EV_P)
658{ 803{
659 int i; 804 int i;
660 805
661#if EV_USE_WIN32
662 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
663#endif
664#if EV_USE_KQUEUE 806#if EV_USE_KQUEUE
665 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 807 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
666#endif 808#endif
667#if EV_USE_EPOLL 809#if EV_USE_EPOLL
668 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 810 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
675#endif 817#endif
676 818
677 for (i = NUMPRI; i--; ) 819 for (i = NUMPRI; i--; )
678 array_free (pending, [i]); 820 array_free (pending, [i]);
679 821
822 /* have to use the microsoft-never-gets-it-right macro */
680 array_free (fdchange, ); 823 array_free (fdchange, EMPTY0);
681 array_free (timer, ); 824 array_free (timer, EMPTY0);
825#if EV_PERIODICS
682 array_free (periodic, ); 826 array_free (periodic, EMPTY0);
827#endif
683 array_free (idle, ); 828 array_free (idle, EMPTY0);
684 array_free (prepare, ); 829 array_free (prepare, EMPTY0);
685 array_free (check, ); 830 array_free (check, EMPTY0);
686 831
687 method = 0; 832 method = 0;
688 /*TODO*/
689} 833}
690 834
691void 835static void
692loop_fork (EV_P) 836loop_fork (EV_P)
693{ 837{
694 /*TODO*/
695#if EV_USE_EPOLL 838#if EV_USE_EPOLL
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 839 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
697#endif 840#endif
698#if EV_USE_KQUEUE 841#if EV_USE_KQUEUE
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 842 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
700#endif 843#endif
844
845 if (ev_is_active (&sigev))
846 {
847 /* default loop */
848
849 ev_ref (EV_A);
850 ev_io_stop (EV_A_ &sigev);
851 close (sigpipe [0]);
852 close (sigpipe [1]);
853
854 while (pipe (sigpipe))
855 syserr ("(libev) error creating pipe");
856
857 siginit (EV_A);
858 }
859
860 postfork = 0;
701} 861}
702 862
703#if EV_MULTIPLICITY 863#if EV_MULTIPLICITY
704struct ev_loop * 864struct ev_loop *
705ev_loop_new (int methods) 865ev_loop_new (unsigned int flags)
706{ 866{
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 867 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
708 868
869 memset (loop, 0, sizeof (struct ev_loop));
870
709 loop_init (EV_A_ methods); 871 loop_init (EV_A_ flags);
710 872
711 if (ev_method (EV_A)) 873 if (ev_method (EV_A))
712 return loop; 874 return loop;
713 875
714 return 0; 876 return 0;
716 878
717void 879void
718ev_loop_destroy (EV_P) 880ev_loop_destroy (EV_P)
719{ 881{
720 loop_destroy (EV_A); 882 loop_destroy (EV_A);
721 free (loop); 883 ev_free (loop);
722} 884}
723 885
724void 886void
725ev_loop_fork (EV_P) 887ev_loop_fork (EV_P)
726{ 888{
727 loop_fork (EV_A); 889 postfork = 1;
728} 890}
729 891
730#endif 892#endif
731 893
732#if EV_MULTIPLICITY 894#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop * 895struct ev_loop *
896ev_default_loop_ (unsigned int flags)
737#else 897#else
738static int default_loop;
739
740int 898int
899ev_default_loop (unsigned int flags)
741#endif 900#endif
742ev_default_loop (int methods)
743{ 901{
744 if (sigpipe [0] == sigpipe [1]) 902 if (sigpipe [0] == sigpipe [1])
745 if (pipe (sigpipe)) 903 if (pipe (sigpipe))
746 return 0; 904 return 0;
747 905
748 if (!default_loop) 906 if (!ev_default_loop_ptr)
749 { 907 {
750#if EV_MULTIPLICITY 908#if EV_MULTIPLICITY
751 struct ev_loop *loop = default_loop = &default_loop_struct; 909 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
752#else 910#else
753 default_loop = 1; 911 ev_default_loop_ptr = 1;
754#endif 912#endif
755 913
756 loop_init (EV_A_ methods); 914 loop_init (EV_A_ flags);
757 915
758 if (ev_method (EV_A)) 916 if (ev_method (EV_A))
759 { 917 {
760 ev_watcher_init (&sigev, sigcb);
761 ev_set_priority (&sigev, EV_MAXPRI);
762 siginit (EV_A); 918 siginit (EV_A);
763 919
764#ifndef WIN32 920#ifndef _WIN32
765 ev_signal_init (&childev, childcb, SIGCHLD); 921 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI); 922 ev_set_priority (&childev, EV_MAXPRI);
767 ev_signal_start (EV_A_ &childev); 923 ev_signal_start (EV_A_ &childev);
768 ev_unref (EV_A); /* child watcher should not keep loop alive */ 924 ev_unref (EV_A); /* child watcher should not keep loop alive */
769#endif 925#endif
770 } 926 }
771 else 927 else
772 default_loop = 0; 928 ev_default_loop_ptr = 0;
773 } 929 }
774 930
775 return default_loop; 931 return ev_default_loop_ptr;
776} 932}
777 933
778void 934void
779ev_default_destroy (void) 935ev_default_destroy (void)
780{ 936{
781#if EV_MULTIPLICITY 937#if EV_MULTIPLICITY
782 struct ev_loop *loop = default_loop; 938 struct ev_loop *loop = ev_default_loop_ptr;
783#endif 939#endif
784 940
941#ifndef _WIN32
785 ev_ref (EV_A); /* child watcher */ 942 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev); 943 ev_signal_stop (EV_A_ &childev);
944#endif
787 945
788 ev_ref (EV_A); /* signal watcher */ 946 ev_ref (EV_A); /* signal watcher */
789 ev_io_stop (EV_A_ &sigev); 947 ev_io_stop (EV_A_ &sigev);
790 948
791 close (sigpipe [0]); sigpipe [0] = 0; 949 close (sigpipe [0]); sigpipe [0] = 0;
796 954
797void 955void
798ev_default_fork (void) 956ev_default_fork (void)
799{ 957{
800#if EV_MULTIPLICITY 958#if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop; 959 struct ev_loop *loop = ev_default_loop_ptr;
802#endif 960#endif
803 961
804 loop_fork (EV_A); 962 if (method)
805 963 postfork = 1;
806 ev_io_stop (EV_A_ &sigev);
807 close (sigpipe [0]);
808 close (sigpipe [1]);
809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
812 siginit (EV_A);
813} 964}
814 965
815/*****************************************************************************/ 966/*****************************************************************************/
967
968static int
969any_pending (EV_P)
970{
971 int pri;
972
973 for (pri = NUMPRI; pri--; )
974 if (pendingcnt [pri])
975 return 1;
976
977 return 0;
978}
816 979
817static void 980static void
818call_pending (EV_P) 981call_pending (EV_P)
819{ 982{
820 int pri; 983 int pri;
825 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 988 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
826 989
827 if (p->w) 990 if (p->w)
828 { 991 {
829 p->w->pending = 0; 992 p->w->pending = 0;
830 p->w->cb (EV_A_ p->w, p->events); 993 EV_CB_INVOKE (p->w, p->events);
831 } 994 }
832 } 995 }
833} 996}
834 997
835static void 998static void
843 1006
844 /* first reschedule or stop timer */ 1007 /* first reschedule or stop timer */
845 if (w->repeat) 1008 if (w->repeat)
846 { 1009 {
847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1010 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1011
848 ((WT)w)->at = mn_now + w->repeat; 1012 ((WT)w)->at += w->repeat;
1013 if (((WT)w)->at < mn_now)
1014 ((WT)w)->at = mn_now;
1015
849 downheap ((WT *)timers, timercnt, 0); 1016 downheap ((WT *)timers, timercnt, 0);
850 } 1017 }
851 else 1018 else
852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1019 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
853 1020
854 event (EV_A_ (W)w, EV_TIMEOUT); 1021 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
855 } 1022 }
856} 1023}
857 1024
1025#if EV_PERIODICS
858static void 1026static void
859periodics_reify (EV_P) 1027periodics_reify (EV_P)
860{ 1028{
861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1029 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
862 { 1030 {
863 struct ev_periodic *w = periodics [0]; 1031 struct ev_periodic *w = periodics [0];
864 1032
865 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1033 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
866 1034
867 /* first reschedule or stop timer */ 1035 /* first reschedule or stop timer */
868 if (w->interval) 1036 if (w->reschedule_cb)
869 { 1037 {
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1039 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1040 downheap ((WT *)periodics, periodiccnt, 0);
1041 }
1042 else if (w->interval)
1043 {
870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1044 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1045 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
872 downheap ((WT *)periodics, periodiccnt, 0); 1046 downheap ((WT *)periodics, periodiccnt, 0);
873 } 1047 }
874 else 1048 else
875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1049 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
876 1050
877 event (EV_A_ (W)w, EV_PERIODIC); 1051 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
878 } 1052 }
879} 1053}
880 1054
881static void 1055static void
882periodics_reschedule (EV_P) 1056periodics_reschedule (EV_P)
886 /* adjust periodics after time jump */ 1060 /* adjust periodics after time jump */
887 for (i = 0; i < periodiccnt; ++i) 1061 for (i = 0; i < periodiccnt; ++i)
888 { 1062 {
889 struct ev_periodic *w = periodics [i]; 1063 struct ev_periodic *w = periodics [i];
890 1064
1065 if (w->reschedule_cb)
1066 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
891 if (w->interval) 1067 else if (w->interval)
892 {
893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1068 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
894
895 if (fabs (diff) >= 1e-4)
896 {
897 ev_periodic_stop (EV_A_ w);
898 ev_periodic_start (EV_A_ w);
899
900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
901 }
902 }
903 } 1069 }
1070
1071 /* now rebuild the heap */
1072 for (i = periodiccnt >> 1; i--; )
1073 downheap ((WT *)periodics, periodiccnt, i);
904} 1074}
1075#endif
905 1076
906inline int 1077inline int
907time_update_monotonic (EV_P) 1078time_update_monotonic (EV_P)
908{ 1079{
909 mn_now = get_clock (); 1080 mn_now = get_clock ();
910 1081
911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1082 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
912 { 1083 {
913 rt_now = rtmn_diff + mn_now; 1084 ev_rt_now = rtmn_diff + mn_now;
914 return 0; 1085 return 0;
915 } 1086 }
916 else 1087 else
917 { 1088 {
918 now_floor = mn_now; 1089 now_floor = mn_now;
919 rt_now = ev_time (); 1090 ev_rt_now = ev_time ();
920 return 1; 1091 return 1;
921 } 1092 }
922} 1093}
923 1094
924static void 1095static void
933 { 1104 {
934 ev_tstamp odiff = rtmn_diff; 1105 ev_tstamp odiff = rtmn_diff;
935 1106
936 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1107 for (i = 4; --i; ) /* loop a few times, before making important decisions */
937 { 1108 {
938 rtmn_diff = rt_now - mn_now; 1109 rtmn_diff = ev_rt_now - mn_now;
939 1110
940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1111 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
941 return; /* all is well */ 1112 return; /* all is well */
942 1113
943 rt_now = ev_time (); 1114 ev_rt_now = ev_time ();
944 mn_now = get_clock (); 1115 mn_now = get_clock ();
945 now_floor = mn_now; 1116 now_floor = mn_now;
946 } 1117 }
947 1118
1119# if EV_PERIODICS
948 periodics_reschedule (EV_A); 1120 periodics_reschedule (EV_A);
1121# endif
949 /* no timer adjustment, as the monotonic clock doesn't jump */ 1122 /* no timer adjustment, as the monotonic clock doesn't jump */
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1123 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
951 } 1124 }
952 } 1125 }
953 else 1126 else
954#endif 1127#endif
955 { 1128 {
956 rt_now = ev_time (); 1129 ev_rt_now = ev_time ();
957 1130
958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1131 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
959 { 1132 {
1133#if EV_PERIODICS
960 periodics_reschedule (EV_A); 1134 periodics_reschedule (EV_A);
1135#endif
961 1136
962 /* adjust timers. this is easy, as the offset is the same for all */ 1137 /* adjust timers. this is easy, as the offset is the same for all */
963 for (i = 0; i < timercnt; ++i) 1138 for (i = 0; i < timercnt; ++i)
964 ((WT)timers [i])->at += rt_now - mn_now; 1139 ((WT)timers [i])->at += ev_rt_now - mn_now;
965 } 1140 }
966 1141
967 mn_now = rt_now; 1142 mn_now = ev_rt_now;
968 } 1143 }
969} 1144}
970 1145
971void 1146void
972ev_ref (EV_P) 1147ev_ref (EV_P)
986ev_loop (EV_P_ int flags) 1161ev_loop (EV_P_ int flags)
987{ 1162{
988 double block; 1163 double block;
989 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1164 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
990 1165
991 do 1166 while (activecnt)
992 { 1167 {
993 /* queue check watchers (and execute them) */ 1168 /* queue check watchers (and execute them) */
994 if (expect_false (preparecnt)) 1169 if (expect_false (preparecnt))
995 { 1170 {
996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1171 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
997 call_pending (EV_A); 1172 call_pending (EV_A);
998 } 1173 }
999 1174
1175 /* we might have forked, so reify kernel state if necessary */
1176 if (expect_false (postfork))
1177 loop_fork (EV_A);
1178
1000 /* update fd-related kernel structures */ 1179 /* update fd-related kernel structures */
1001 fd_reify (EV_A); 1180 fd_reify (EV_A);
1002 1181
1003 /* calculate blocking time */ 1182 /* calculate blocking time */
1004 1183
1005 /* we only need this for !monotonic clockor timers, but as we basically 1184 /* we only need this for !monotonic clock or timers, but as we basically
1006 always have timers, we just calculate it always */ 1185 always have timers, we just calculate it always */
1007#if EV_USE_MONOTONIC 1186#if EV_USE_MONOTONIC
1008 if (expect_true (have_monotonic)) 1187 if (expect_true (have_monotonic))
1009 time_update_monotonic (EV_A); 1188 time_update_monotonic (EV_A);
1010 else 1189 else
1011#endif 1190#endif
1012 { 1191 {
1013 rt_now = ev_time (); 1192 ev_rt_now = ev_time ();
1014 mn_now = rt_now; 1193 mn_now = ev_rt_now;
1015 } 1194 }
1016 1195
1017 if (flags & EVLOOP_NONBLOCK || idlecnt) 1196 if (flags & EVLOOP_NONBLOCK || idlecnt)
1018 block = 0.; 1197 block = 0.;
1019 else 1198 else
1024 { 1203 {
1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1204 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1026 if (block > to) block = to; 1205 if (block > to) block = to;
1027 } 1206 }
1028 1207
1208#if EV_PERIODICS
1029 if (periodiccnt) 1209 if (periodiccnt)
1030 { 1210 {
1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1211 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1032 if (block > to) block = to; 1212 if (block > to) block = to;
1033 } 1213 }
1214#endif
1034 1215
1035 if (block < 0.) block = 0.; 1216 if (block < 0.) block = 0.;
1036 } 1217 }
1037 1218
1038 method_poll (EV_A_ block); 1219 method_poll (EV_A_ block);
1039 1220
1040 /* update rt_now, do magic */ 1221 /* update ev_rt_now, do magic */
1041 time_update (EV_A); 1222 time_update (EV_A);
1042 1223
1043 /* queue pending timers and reschedule them */ 1224 /* queue pending timers and reschedule them */
1044 timers_reify (EV_A); /* relative timers called last */ 1225 timers_reify (EV_A); /* relative timers called last */
1226#if EV_PERIODICS
1045 periodics_reify (EV_A); /* absolute timers called first */ 1227 periodics_reify (EV_A); /* absolute timers called first */
1228#endif
1046 1229
1047 /* queue idle watchers unless io or timers are pending */ 1230 /* queue idle watchers unless io or timers are pending */
1048 if (!pendingcnt) 1231 if (idlecnt && !any_pending (EV_A))
1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1232 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1050 1233
1051 /* queue check watchers, to be executed first */ 1234 /* queue check watchers, to be executed first */
1052 if (checkcnt) 1235 if (checkcnt)
1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1236 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1054 1237
1055 call_pending (EV_A); 1238 call_pending (EV_A);
1239
1240 if (loop_done)
1241 break;
1056 } 1242 }
1057 while (activecnt && !loop_done);
1058 1243
1059 if (loop_done != 2) 1244 if (loop_done != 2)
1060 loop_done = 0; 1245 loop_done = 0;
1061} 1246}
1062 1247
1128 return; 1313 return;
1129 1314
1130 assert (("ev_io_start called with negative fd", fd >= 0)); 1315 assert (("ev_io_start called with negative fd", fd >= 0));
1131 1316
1132 ev_start (EV_A_ (W)w, 1); 1317 ev_start (EV_A_ (W)w, 1);
1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1318 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1134 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1319 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1135 1320
1136 fd_change (EV_A_ fd); 1321 fd_change (EV_A_ fd);
1137} 1322}
1138 1323
1141{ 1326{
1142 ev_clear_pending (EV_A_ (W)w); 1327 ev_clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w)) 1328 if (!ev_is_active (w))
1144 return; 1329 return;
1145 1330
1331 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1332
1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1333 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1147 ev_stop (EV_A_ (W)w); 1334 ev_stop (EV_A_ (W)w);
1148 1335
1149 fd_change (EV_A_ w->fd); 1336 fd_change (EV_A_ w->fd);
1150} 1337}
1158 ((WT)w)->at += mn_now; 1345 ((WT)w)->at += mn_now;
1159 1346
1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1347 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1161 1348
1162 ev_start (EV_A_ (W)w, ++timercnt); 1349 ev_start (EV_A_ (W)w, ++timercnt);
1163 array_needsize (timers, timermax, timercnt, ); 1350 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1164 timers [timercnt - 1] = w; 1351 timers [timercnt - 1] = w;
1165 upheap ((WT *)timers, timercnt - 1); 1352 upheap ((WT *)timers, timercnt - 1);
1166 1353
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1354 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1168} 1355}
1177 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1364 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1178 1365
1179 if (((W)w)->active < timercnt--) 1366 if (((W)w)->active < timercnt--)
1180 { 1367 {
1181 timers [((W)w)->active - 1] = timers [timercnt]; 1368 timers [((W)w)->active - 1] = timers [timercnt];
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1183 } 1370 }
1184 1371
1185 ((WT)w)->at = w->repeat; 1372 ((WT)w)->at -= mn_now;
1186 1373
1187 ev_stop (EV_A_ (W)w); 1374 ev_stop (EV_A_ (W)w);
1188} 1375}
1189 1376
1190void 1377void
1193 if (ev_is_active (w)) 1380 if (ev_is_active (w))
1194 { 1381 {
1195 if (w->repeat) 1382 if (w->repeat)
1196 { 1383 {
1197 ((WT)w)->at = mn_now + w->repeat; 1384 ((WT)w)->at = mn_now + w->repeat;
1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1385 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1199 } 1386 }
1200 else 1387 else
1201 ev_timer_stop (EV_A_ w); 1388 ev_timer_stop (EV_A_ w);
1202 } 1389 }
1203 else if (w->repeat) 1390 else if (w->repeat)
1391 {
1392 w->at = w->repeat;
1204 ev_timer_start (EV_A_ w); 1393 ev_timer_start (EV_A_ w);
1394 }
1205} 1395}
1206 1396
1397#if EV_PERIODICS
1207void 1398void
1208ev_periodic_start (EV_P_ struct ev_periodic *w) 1399ev_periodic_start (EV_P_ struct ev_periodic *w)
1209{ 1400{
1210 if (ev_is_active (w)) 1401 if (ev_is_active (w))
1211 return; 1402 return;
1212 1403
1404 if (w->reschedule_cb)
1405 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1406 else if (w->interval)
1407 {
1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1408 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1214
1215 /* this formula differs from the one in periodic_reify because we do not always round up */ 1409 /* this formula differs from the one in periodic_reify because we do not always round up */
1216 if (w->interval)
1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1410 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1411 }
1218 1412
1219 ev_start (EV_A_ (W)w, ++periodiccnt); 1413 ev_start (EV_A_ (W)w, ++periodiccnt);
1220 array_needsize (periodics, periodicmax, periodiccnt, ); 1414 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1221 periodics [periodiccnt - 1] = w; 1415 periodics [periodiccnt - 1] = w;
1222 upheap ((WT *)periodics, periodiccnt - 1); 1416 upheap ((WT *)periodics, periodiccnt - 1);
1223 1417
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1418 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1225} 1419}
1234 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1428 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1235 1429
1236 if (((W)w)->active < periodiccnt--) 1430 if (((W)w)->active < periodiccnt--)
1237 { 1431 {
1238 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1432 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1239 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1433 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1240 } 1434 }
1241 1435
1242 ev_stop (EV_A_ (W)w); 1436 ev_stop (EV_A_ (W)w);
1243} 1437}
1244 1438
1245void 1439void
1440ev_periodic_again (EV_P_ struct ev_periodic *w)
1441{
1442 /* TODO: use adjustheap and recalculation */
1443 ev_periodic_stop (EV_A_ w);
1444 ev_periodic_start (EV_A_ w);
1445}
1446#endif
1447
1448void
1246ev_idle_start (EV_P_ struct ev_idle *w) 1449ev_idle_start (EV_P_ struct ev_idle *w)
1247{ 1450{
1248 if (ev_is_active (w)) 1451 if (ev_is_active (w))
1249 return; 1452 return;
1250 1453
1251 ev_start (EV_A_ (W)w, ++idlecnt); 1454 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, ); 1455 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1253 idles [idlecnt - 1] = w; 1456 idles [idlecnt - 1] = w;
1254} 1457}
1255 1458
1256void 1459void
1257ev_idle_stop (EV_P_ struct ev_idle *w) 1460ev_idle_stop (EV_P_ struct ev_idle *w)
1258{ 1461{
1259 ev_clear_pending (EV_A_ (W)w); 1462 ev_clear_pending (EV_A_ (W)w);
1260 if (ev_is_active (w)) 1463 if (!ev_is_active (w))
1261 return; 1464 return;
1262 1465
1263 idles [((W)w)->active - 1] = idles [--idlecnt]; 1466 idles [((W)w)->active - 1] = idles [--idlecnt];
1264 ev_stop (EV_A_ (W)w); 1467 ev_stop (EV_A_ (W)w);
1265} 1468}
1269{ 1472{
1270 if (ev_is_active (w)) 1473 if (ev_is_active (w))
1271 return; 1474 return;
1272 1475
1273 ev_start (EV_A_ (W)w, ++preparecnt); 1476 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, ); 1477 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1275 prepares [preparecnt - 1] = w; 1478 prepares [preparecnt - 1] = w;
1276} 1479}
1277 1480
1278void 1481void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w) 1482ev_prepare_stop (EV_P_ struct ev_prepare *w)
1280{ 1483{
1281 ev_clear_pending (EV_A_ (W)w); 1484 ev_clear_pending (EV_A_ (W)w);
1282 if (ev_is_active (w)) 1485 if (!ev_is_active (w))
1283 return; 1486 return;
1284 1487
1285 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1488 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1286 ev_stop (EV_A_ (W)w); 1489 ev_stop (EV_A_ (W)w);
1287} 1490}
1291{ 1494{
1292 if (ev_is_active (w)) 1495 if (ev_is_active (w))
1293 return; 1496 return;
1294 1497
1295 ev_start (EV_A_ (W)w, ++checkcnt); 1498 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, ); 1499 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1297 checks [checkcnt - 1] = w; 1500 checks [checkcnt - 1] = w;
1298} 1501}
1299 1502
1300void 1503void
1301ev_check_stop (EV_P_ struct ev_check *w) 1504ev_check_stop (EV_P_ struct ev_check *w)
1302{ 1505{
1303 ev_clear_pending (EV_A_ (W)w); 1506 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w)) 1507 if (!ev_is_active (w))
1305 return; 1508 return;
1306 1509
1307 checks [((W)w)->active - 1] = checks [--checkcnt]; 1510 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w); 1511 ev_stop (EV_A_ (W)w);
1309} 1512}
1314 1517
1315void 1518void
1316ev_signal_start (EV_P_ struct ev_signal *w) 1519ev_signal_start (EV_P_ struct ev_signal *w)
1317{ 1520{
1318#if EV_MULTIPLICITY 1521#if EV_MULTIPLICITY
1319 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1522 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1320#endif 1523#endif
1321 if (ev_is_active (w)) 1524 if (ev_is_active (w))
1322 return; 1525 return;
1323 1526
1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1527 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1325 1528
1326 ev_start (EV_A_ (W)w, 1); 1529 ev_start (EV_A_ (W)w, 1);
1327 array_needsize (signals, signalmax, w->signum, signals_init); 1530 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1531 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1329 1532
1330 if (!((WL)w)->next) 1533 if (!((WL)w)->next)
1331 { 1534 {
1332#if WIN32 1535#if _WIN32
1333 signal (w->signum, sighandler); 1536 signal (w->signum, sighandler);
1334#else 1537#else
1335 struct sigaction sa; 1538 struct sigaction sa;
1336 sa.sa_handler = sighandler; 1539 sa.sa_handler = sighandler;
1337 sigfillset (&sa.sa_mask); 1540 sigfillset (&sa.sa_mask);
1357 1560
1358void 1561void
1359ev_child_start (EV_P_ struct ev_child *w) 1562ev_child_start (EV_P_ struct ev_child *w)
1360{ 1563{
1361#if EV_MULTIPLICITY 1564#if EV_MULTIPLICITY
1362 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1565 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1363#endif 1566#endif
1364 if (ev_is_active (w)) 1567 if (ev_is_active (w))
1365 return; 1568 return;
1366 1569
1367 ev_start (EV_A_ (W)w, 1); 1570 ev_start (EV_A_ (W)w, 1);
1370 1573
1371void 1574void
1372ev_child_stop (EV_P_ struct ev_child *w) 1575ev_child_stop (EV_P_ struct ev_child *w)
1373{ 1576{
1374 ev_clear_pending (EV_A_ (W)w); 1577 ev_clear_pending (EV_A_ (W)w);
1375 if (ev_is_active (w)) 1578 if (!ev_is_active (w))
1376 return; 1579 return;
1377 1580
1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1581 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1379 ev_stop (EV_A_ (W)w); 1582 ev_stop (EV_A_ (W)w);
1380} 1583}
1395 void (*cb)(int revents, void *arg) = once->cb; 1598 void (*cb)(int revents, void *arg) = once->cb;
1396 void *arg = once->arg; 1599 void *arg = once->arg;
1397 1600
1398 ev_io_stop (EV_A_ &once->io); 1601 ev_io_stop (EV_A_ &once->io);
1399 ev_timer_stop (EV_A_ &once->to); 1602 ev_timer_stop (EV_A_ &once->to);
1400 free (once); 1603 ev_free (once);
1401 1604
1402 cb (revents, arg); 1605 cb (revents, arg);
1403} 1606}
1404 1607
1405static void 1608static void
1415} 1618}
1416 1619
1417void 1620void
1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1621ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1419{ 1622{
1420 struct ev_once *once = malloc (sizeof (struct ev_once)); 1623 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1421 1624
1422 if (!once) 1625 if (!once)
1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1424 else 1627 else
1425 { 1628 {
1426 once->cb = cb; 1629 once->cb = cb;
1427 once->arg = arg; 1630 once->arg = arg;
1428 1631
1429 ev_watcher_init (&once->io, once_cb_io); 1632 ev_init (&once->io, once_cb_io);
1430 if (fd >= 0) 1633 if (fd >= 0)
1431 { 1634 {
1432 ev_io_set (&once->io, fd, events); 1635 ev_io_set (&once->io, fd, events);
1433 ev_io_start (EV_A_ &once->io); 1636 ev_io_start (EV_A_ &once->io);
1434 } 1637 }
1435 1638
1436 ev_watcher_init (&once->to, once_cb_to); 1639 ev_init (&once->to, once_cb_to);
1437 if (timeout >= 0.) 1640 if (timeout >= 0.)
1438 { 1641 {
1439 ev_timer_set (&once->to, timeout, 0.); 1642 ev_timer_set (&once->to, timeout, 0.);
1440 ev_timer_start (EV_A_ &once->to); 1643 ev_timer_start (EV_A_ &once->to);
1441 } 1644 }
1442 } 1645 }
1443} 1646}
1444 1647
1648#ifdef __cplusplus
1649}
1650#endif
1651

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines