ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.70 by root, Tue Nov 6 00:52:32 2007 UTC vs.
Revision 1.117 by ayin, Thu Nov 15 17:15:56 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
84#else
85# define WIN32_LEAN_AND_MEAN
86# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1
71#endif 89# endif
72#include <sys/time.h> 90#endif
73#include <time.h>
74 91
75/**/ 92/**/
76 93
77#ifndef EV_USE_MONOTONIC 94#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 95# define EV_USE_MONOTONIC 1
79#endif 96#endif
80 97
81#ifndef EV_USE_SELECT 98#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 99# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
83#endif 101#endif
84 102
85#ifndef EV_USE_POLL 103#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 104# ifdef _WIN32
105# define EV_USE_POLL 0
106# else
107# define EV_USE_POLL 1
108# endif
87#endif 109#endif
88 110
89#ifndef EV_USE_EPOLL 111#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 112# define EV_USE_EPOLL 0
91#endif 113#endif
92 114
93#ifndef EV_USE_KQUEUE 115#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 116# define EV_USE_KQUEUE 0
95#endif 117#endif
96 118
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 119#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1 120# define EV_USE_REALTIME 1
107#endif 121#endif
108 122
109/**/ 123/**/
124
125/* darwin simply cannot be helped */
126#ifdef __APPLE__
127# undef EV_USE_POLL
128# undef EV_USE_KQUEUE
129#endif
110 130
111#ifndef CLOCK_MONOTONIC 131#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 132# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 133# define EV_USE_MONOTONIC 0
114#endif 134#endif
115 135
116#ifndef CLOCK_REALTIME 136#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 137# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 138# define EV_USE_REALTIME 0
139#endif
140
141#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h>
119#endif 143#endif
120 144
121/**/ 145/**/
122 146
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 151
152#ifdef EV_H
153# include EV_H
154#else
128#include "ev.h" 155# include "ev.h"
156#endif
129 157
130#if __GNUC__ >= 3 158#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 159# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 160# define inline inline
133#else 161#else
139#define expect_true(expr) expect ((expr) != 0, 1) 167#define expect_true(expr) expect ((expr) != 0, 1)
140 168
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 170#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 171
172#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
173#define EMPTY2(a,b) /* used to suppress some warnings */
174
144typedef struct ev_watcher *W; 175typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 176typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 177typedef struct ev_watcher_time *WT;
147 178
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 179static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 180
150#if WIN32 181#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 182# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 183#endif
155 184
156/*****************************************************************************/ 185/*****************************************************************************/
157 186
158static void (*syserr_cb)(const char *msg); 187static void (*syserr_cb)(const char *msg);
206typedef struct 235typedef struct
207{ 236{
208 WL head; 237 WL head;
209 unsigned char events; 238 unsigned char events;
210 unsigned char reify; 239 unsigned char reify;
240#if EV_SELECT_IS_WINSOCKET
241 SOCKET handle;
242#endif
211} ANFD; 243} ANFD;
212 244
213typedef struct 245typedef struct
214{ 246{
215 W w; 247 W w;
216 int events; 248 int events;
217} ANPENDING; 249} ANPENDING;
218 250
219#if EV_MULTIPLICITY 251#if EV_MULTIPLICITY
220 252
221struct ev_loop 253 struct ev_loop
222{ 254 {
255 ev_tstamp ev_rt_now;
256 #define ev_rt_now ((loop)->ev_rt_now)
223# define VAR(name,decl) decl; 257 #define VAR(name,decl) decl;
224# include "ev_vars.h" 258 #include "ev_vars.h"
225};
226# undef VAR 259 #undef VAR
260 };
227# include "ev_wrap.h" 261 #include "ev_wrap.h"
262
263 static struct ev_loop default_loop_struct;
264 struct ev_loop *ev_default_loop_ptr;
228 265
229#else 266#else
230 267
268 ev_tstamp ev_rt_now;
231# define VAR(name,decl) static decl; 269 #define VAR(name,decl) static decl;
232# include "ev_vars.h" 270 #include "ev_vars.h"
233# undef VAR 271 #undef VAR
272
273 static int ev_default_loop_ptr;
234 274
235#endif 275#endif
236 276
237/*****************************************************************************/ 277/*****************************************************************************/
238 278
239inline ev_tstamp 279ev_tstamp
240ev_time (void) 280ev_time (void)
241{ 281{
242#if EV_USE_REALTIME 282#if EV_USE_REALTIME
243 struct timespec ts; 283 struct timespec ts;
244 clock_gettime (CLOCK_REALTIME, &ts); 284 clock_gettime (CLOCK_REALTIME, &ts);
263#endif 303#endif
264 304
265 return ev_time (); 305 return ev_time ();
266} 306}
267 307
308#if EV_MULTIPLICITY
268ev_tstamp 309ev_tstamp
269ev_now (EV_P) 310ev_now (EV_P)
270{ 311{
271 return rt_now; 312 return ev_rt_now;
272} 313}
314#endif
273 315
274#define array_roundsize(base,n) ((n) | 4 & ~3) 316#define array_roundsize(type,n) (((n) | 4) & ~3)
275 317
276#define array_needsize(base,cur,cnt,init) \ 318#define array_needsize(type,base,cur,cnt,init) \
277 if (expect_false ((cnt) > cur)) \ 319 if (expect_false ((cnt) > cur)) \
278 { \ 320 { \
279 int newcnt = cur; \ 321 int newcnt = cur; \
280 do \ 322 do \
281 { \ 323 { \
282 newcnt = array_roundsize (base, newcnt << 1); \ 324 newcnt = array_roundsize (type, newcnt << 1); \
283 } \ 325 } \
284 while ((cnt) > newcnt); \ 326 while ((cnt) > newcnt); \
285 \ 327 \
286 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 328 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
287 init (base + cur, newcnt - cur); \ 329 init (base + cur, newcnt - cur); \
288 cur = newcnt; \ 330 cur = newcnt; \
289 } 331 }
290 332
291#define array_slim(stem) \ 333#define array_slim(type,stem) \
292 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 334 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
293 { \ 335 { \
294 stem ## max = array_roundsize (stem ## cnt >> 1); \ 336 stem ## max = array_roundsize (stem ## cnt >> 1); \
295 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 337 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
296 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 338 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
297 } 339 }
298 340
299#define array_free(stem, idx) \ 341#define array_free(stem, idx) \
300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 342 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
312 354
313 ++base; 355 ++base;
314 } 356 }
315} 357}
316 358
317static void 359void
318event (EV_P_ W w, int events) 360ev_feed_event (EV_P_ void *w, int revents)
319{ 361{
362 W w_ = (W)w;
363
320 if (w->pending) 364 if (w_->pending)
321 { 365 {
322 pendings [ABSPRI (w)][w->pending - 1].events |= events; 366 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
323 return; 367 return;
324 } 368 }
325 369
326 w->pending = ++pendingcnt [ABSPRI (w)]; 370 w_->pending = ++pendingcnt [ABSPRI (w_)];
327 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 371 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
328 pendings [ABSPRI (w)][w->pending - 1].w = w; 372 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
329 pendings [ABSPRI (w)][w->pending - 1].events = events; 373 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
330} 374}
331 375
332static void 376static void
333queue_events (EV_P_ W *events, int eventcnt, int type) 377queue_events (EV_P_ W *events, int eventcnt, int type)
334{ 378{
335 int i; 379 int i;
336 380
337 for (i = 0; i < eventcnt; ++i) 381 for (i = 0; i < eventcnt; ++i)
338 event (EV_A_ events [i], type); 382 ev_feed_event (EV_A_ events [i], type);
339} 383}
340 384
341static void 385inline void
342fd_event (EV_P_ int fd, int events) 386fd_event (EV_P_ int fd, int revents)
343{ 387{
344 ANFD *anfd = anfds + fd; 388 ANFD *anfd = anfds + fd;
345 struct ev_io *w; 389 struct ev_io *w;
346 390
347 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 391 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
348 { 392 {
349 int ev = w->events & events; 393 int ev = w->events & revents;
350 394
351 if (ev) 395 if (ev)
352 event (EV_A_ (W)w, ev); 396 ev_feed_event (EV_A_ (W)w, ev);
353 } 397 }
398}
399
400void
401ev_feed_fd_event (EV_P_ int fd, int revents)
402{
403 fd_event (EV_A_ fd, revents);
354} 404}
355 405
356/*****************************************************************************/ 406/*****************************************************************************/
357 407
358static void 408static void
369 int events = 0; 419 int events = 0;
370 420
371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 421 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
372 events |= w->events; 422 events |= w->events;
373 423
424#if EV_SELECT_IS_WINSOCKET
425 if (events)
426 {
427 unsigned long argp;
428 anfd->handle = _get_osfhandle (fd);
429 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
430 }
431#endif
432
374 anfd->reify = 0; 433 anfd->reify = 0;
375 434
376 method_modify (EV_A_ fd, anfd->events, events); 435 method_modify (EV_A_ fd, anfd->events, events);
377 anfd->events = events; 436 anfd->events = events;
378 } 437 }
387 return; 446 return;
388 447
389 anfds [fd].reify = 1; 448 anfds [fd].reify = 1;
390 449
391 ++fdchangecnt; 450 ++fdchangecnt;
392 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 451 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
393 fdchanges [fdchangecnt - 1] = fd; 452 fdchanges [fdchangecnt - 1] = fd;
394} 453}
395 454
396static void 455static void
397fd_kill (EV_P_ int fd) 456fd_kill (EV_P_ int fd)
399 struct ev_io *w; 458 struct ev_io *w;
400 459
401 while ((w = (struct ev_io *)anfds [fd].head)) 460 while ((w = (struct ev_io *)anfds [fd].head))
402 { 461 {
403 ev_io_stop (EV_A_ w); 462 ev_io_stop (EV_A_ w);
404 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 463 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
405 } 464 }
465}
466
467static int
468fd_valid (int fd)
469{
470#ifdef _WIN32
471 return _get_osfhandle (fd) != -1;
472#else
473 return fcntl (fd, F_GETFD) != -1;
474#endif
406} 475}
407 476
408/* called on EBADF to verify fds */ 477/* called on EBADF to verify fds */
409static void 478static void
410fd_ebadf (EV_P) 479fd_ebadf (EV_P)
411{ 480{
412 int fd; 481 int fd;
413 482
414 for (fd = 0; fd < anfdmax; ++fd) 483 for (fd = 0; fd < anfdmax; ++fd)
415 if (anfds [fd].events) 484 if (anfds [fd].events)
416 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 485 if (!fd_valid (fd) == -1 && errno == EBADF)
417 fd_kill (EV_A_ fd); 486 fd_kill (EV_A_ fd);
418} 487}
419 488
420/* called on ENOMEM in select/poll to kill some fds and retry */ 489/* called on ENOMEM in select/poll to kill some fds and retry */
421static void 490static void
487 556
488 heap [k] = w; 557 heap [k] = w;
489 ((W)heap [k])->active = k + 1; 558 ((W)heap [k])->active = k + 1;
490} 559}
491 560
561inline void
562adjustheap (WT *heap, int N, int k)
563{
564 upheap (heap, k);
565 downheap (heap, N, k);
566}
567
492/*****************************************************************************/ 568/*****************************************************************************/
493 569
494typedef struct 570typedef struct
495{ 571{
496 WL head; 572 WL head;
517} 593}
518 594
519static void 595static void
520sighandler (int signum) 596sighandler (int signum)
521{ 597{
522#if WIN32 598#if _WIN32
523 signal (signum, sighandler); 599 signal (signum, sighandler);
524#endif 600#endif
525 601
526 signals [signum - 1].gotsig = 1; 602 signals [signum - 1].gotsig = 1;
527 603
532 write (sigpipe [1], &signum, 1); 608 write (sigpipe [1], &signum, 1);
533 errno = old_errno; 609 errno = old_errno;
534 } 610 }
535} 611}
536 612
613void
614ev_feed_signal_event (EV_P_ int signum)
615{
616 WL w;
617
618#if EV_MULTIPLICITY
619 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
620#endif
621
622 --signum;
623
624 if (signum < 0 || signum >= signalmax)
625 return;
626
627 signals [signum].gotsig = 0;
628
629 for (w = signals [signum].head; w; w = w->next)
630 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
631}
632
537static void 633static void
538sigcb (EV_P_ struct ev_io *iow, int revents) 634sigcb (EV_P_ struct ev_io *iow, int revents)
539{ 635{
540 WL w;
541 int signum; 636 int signum;
542 637
543 read (sigpipe [0], &revents, 1); 638 read (sigpipe [0], &revents, 1);
544 gotsig = 0; 639 gotsig = 0;
545 640
546 for (signum = signalmax; signum--; ) 641 for (signum = signalmax; signum--; )
547 if (signals [signum].gotsig) 642 if (signals [signum].gotsig)
548 { 643 ev_feed_signal_event (EV_A_ signum + 1);
549 signals [signum].gotsig = 0; 644}
550 645
551 for (w = signals [signum].head; w; w = w->next) 646inline void
552 event (EV_A_ (W)w, EV_SIGNAL); 647fd_intern (int fd)
553 } 648{
649#ifdef _WIN32
650 int arg = 1;
651 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
652#else
653 fcntl (fd, F_SETFD, FD_CLOEXEC);
654 fcntl (fd, F_SETFL, O_NONBLOCK);
655#endif
554} 656}
555 657
556static void 658static void
557siginit (EV_P) 659siginit (EV_P)
558{ 660{
559#ifndef WIN32 661 fd_intern (sigpipe [0]);
560 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 662 fd_intern (sigpipe [1]);
561 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
562
563 /* rather than sort out wether we really need nb, set it */
564 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
565 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
566#endif
567 663
568 ev_io_set (&sigev, sigpipe [0], EV_READ); 664 ev_io_set (&sigev, sigpipe [0], EV_READ);
569 ev_io_start (EV_A_ &sigev); 665 ev_io_start (EV_A_ &sigev);
570 ev_unref (EV_A); /* child watcher should not keep loop alive */ 666 ev_unref (EV_A); /* child watcher should not keep loop alive */
571} 667}
572 668
573/*****************************************************************************/ 669/*****************************************************************************/
574 670
575#ifndef WIN32
576
577static struct ev_child *childs [PID_HASHSIZE]; 671static struct ev_child *childs [PID_HASHSIZE];
672
673#ifndef _WIN32
674
578static struct ev_signal childev; 675static struct ev_signal childev;
579 676
580#ifndef WCONTINUED 677#ifndef WCONTINUED
581# define WCONTINUED 0 678# define WCONTINUED 0
582#endif 679#endif
590 if (w->pid == pid || !w->pid) 687 if (w->pid == pid || !w->pid)
591 { 688 {
592 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 689 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
593 w->rpid = pid; 690 w->rpid = pid;
594 w->rstatus = status; 691 w->rstatus = status;
595 event (EV_A_ (W)w, EV_CHILD); 692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
596 } 693 }
597} 694}
598 695
599static void 696static void
600childcb (EV_P_ struct ev_signal *sw, int revents) 697childcb (EV_P_ struct ev_signal *sw, int revents)
602 int pid, status; 699 int pid, status;
603 700
604 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 701 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
605 { 702 {
606 /* make sure we are called again until all childs have been reaped */ 703 /* make sure we are called again until all childs have been reaped */
607 event (EV_A_ (W)sw, EV_SIGNAL); 704 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
608 705
609 child_reap (EV_A_ sw, pid, pid, status); 706 child_reap (EV_A_ sw, pid, pid, status);
610 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 707 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
611 } 708 }
612} 709}
642 739
643/* return true if we are running with elevated privileges and should ignore env variables */ 740/* return true if we are running with elevated privileges and should ignore env variables */
644static int 741static int
645enable_secure (void) 742enable_secure (void)
646{ 743{
647#ifdef WIN32 744#ifdef _WIN32
648 return 0; 745 return 0;
649#else 746#else
650 return getuid () != geteuid () 747 return getuid () != geteuid ()
651 || getgid () != getegid (); 748 || getgid () != getegid ();
652#endif 749#endif
653} 750}
654 751
655int 752unsigned int
656ev_method (EV_P) 753ev_method (EV_P)
657{ 754{
658 return method; 755 return method;
659} 756}
660 757
661static void 758static void
662loop_init (EV_P_ int methods) 759loop_init (EV_P_ unsigned int flags)
663{ 760{
664 if (!method) 761 if (!method)
665 { 762 {
666#if EV_USE_MONOTONIC 763#if EV_USE_MONOTONIC
667 { 764 {
669 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 766 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
670 have_monotonic = 1; 767 have_monotonic = 1;
671 } 768 }
672#endif 769#endif
673 770
674 rt_now = ev_time (); 771 ev_rt_now = ev_time ();
675 mn_now = get_clock (); 772 mn_now = get_clock ();
676 now_floor = mn_now; 773 now_floor = mn_now;
677 rtmn_diff = rt_now - mn_now; 774 rtmn_diff = ev_rt_now - mn_now;
678 775
679 if (methods == EVMETHOD_AUTO) 776 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
680 if (!enable_secure () && getenv ("LIBEV_METHODS"))
681 methods = atoi (getenv ("LIBEV_METHODS")); 777 flags = atoi (getenv ("LIBEV_FLAGS"));
682 else 778
683 methods = EVMETHOD_ANY; 779 if (!(flags & 0x0000ffff))
780 flags |= 0x0000ffff;
684 781
685 method = 0; 782 method = 0;
686#if EV_USE_WIN32
687 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
688#endif
689#if EV_USE_KQUEUE 783#if EV_USE_KQUEUE
690 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 784 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
691#endif 785#endif
692#if EV_USE_EPOLL 786#if EV_USE_EPOLL
693 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 787 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
694#endif 788#endif
695#if EV_USE_POLL 789#if EV_USE_POLL
696 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 790 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
697#endif 791#endif
698#if EV_USE_SELECT 792#if EV_USE_SELECT
699 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 793 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
700#endif 794#endif
701 795
702 ev_watcher_init (&sigev, sigcb); 796 ev_init (&sigev, sigcb);
703 ev_set_priority (&sigev, EV_MAXPRI); 797 ev_set_priority (&sigev, EV_MAXPRI);
704 } 798 }
705} 799}
706 800
707void 801void
708loop_destroy (EV_P) 802loop_destroy (EV_P)
709{ 803{
710 int i; 804 int i;
711 805
712#if EV_USE_WIN32
713 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
714#endif
715#if EV_USE_KQUEUE 806#if EV_USE_KQUEUE
716 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 807 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
717#endif 808#endif
718#if EV_USE_EPOLL 809#if EV_USE_EPOLL
719 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 810 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
726#endif 817#endif
727 818
728 for (i = NUMPRI; i--; ) 819 for (i = NUMPRI; i--; )
729 array_free (pending, [i]); 820 array_free (pending, [i]);
730 821
822 /* have to use the microsoft-never-gets-it-right macro */
731 array_free (fdchange, ); 823 array_free (fdchange, EMPTY0);
732 array_free (timer, ); 824 array_free (timer, EMPTY0);
825#if EV_PERIODICS
733 array_free (periodic, ); 826 array_free (periodic, EMPTY0);
827#endif
734 array_free (idle, ); 828 array_free (idle, EMPTY0);
735 array_free (prepare, ); 829 array_free (prepare, EMPTY0);
736 array_free (check, ); 830 array_free (check, EMPTY0);
737 831
738 method = 0; 832 method = 0;
739} 833}
740 834
741static void 835static void
766 postfork = 0; 860 postfork = 0;
767} 861}
768 862
769#if EV_MULTIPLICITY 863#if EV_MULTIPLICITY
770struct ev_loop * 864struct ev_loop *
771ev_loop_new (int methods) 865ev_loop_new (unsigned int flags)
772{ 866{
773 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 867 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
774 868
775 memset (loop, 0, sizeof (struct ev_loop)); 869 memset (loop, 0, sizeof (struct ev_loop));
776 870
777 loop_init (EV_A_ methods); 871 loop_init (EV_A_ flags);
778 872
779 if (ev_method (EV_A)) 873 if (ev_method (EV_A))
780 return loop; 874 return loop;
781 875
782 return 0; 876 return 0;
796} 890}
797 891
798#endif 892#endif
799 893
800#if EV_MULTIPLICITY 894#if EV_MULTIPLICITY
801struct ev_loop default_loop_struct;
802static struct ev_loop *default_loop;
803
804struct ev_loop * 895struct ev_loop *
896ev_default_loop_ (unsigned int flags)
805#else 897#else
806static int default_loop;
807
808int 898int
899ev_default_loop (unsigned int flags)
809#endif 900#endif
810ev_default_loop (int methods)
811{ 901{
812 if (sigpipe [0] == sigpipe [1]) 902 if (sigpipe [0] == sigpipe [1])
813 if (pipe (sigpipe)) 903 if (pipe (sigpipe))
814 return 0; 904 return 0;
815 905
816 if (!default_loop) 906 if (!ev_default_loop_ptr)
817 { 907 {
818#if EV_MULTIPLICITY 908#if EV_MULTIPLICITY
819 struct ev_loop *loop = default_loop = &default_loop_struct; 909 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
820#else 910#else
821 default_loop = 1; 911 ev_default_loop_ptr = 1;
822#endif 912#endif
823 913
824 loop_init (EV_A_ methods); 914 loop_init (EV_A_ flags);
825 915
826 if (ev_method (EV_A)) 916 if (ev_method (EV_A))
827 { 917 {
828 siginit (EV_A); 918 siginit (EV_A);
829 919
830#ifndef WIN32 920#ifndef _WIN32
831 ev_signal_init (&childev, childcb, SIGCHLD); 921 ev_signal_init (&childev, childcb, SIGCHLD);
832 ev_set_priority (&childev, EV_MAXPRI); 922 ev_set_priority (&childev, EV_MAXPRI);
833 ev_signal_start (EV_A_ &childev); 923 ev_signal_start (EV_A_ &childev);
834 ev_unref (EV_A); /* child watcher should not keep loop alive */ 924 ev_unref (EV_A); /* child watcher should not keep loop alive */
835#endif 925#endif
836 } 926 }
837 else 927 else
838 default_loop = 0; 928 ev_default_loop_ptr = 0;
839 } 929 }
840 930
841 return default_loop; 931 return ev_default_loop_ptr;
842} 932}
843 933
844void 934void
845ev_default_destroy (void) 935ev_default_destroy (void)
846{ 936{
847#if EV_MULTIPLICITY 937#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop; 938 struct ev_loop *loop = ev_default_loop_ptr;
849#endif 939#endif
850 940
941#ifndef _WIN32
851 ev_ref (EV_A); /* child watcher */ 942 ev_ref (EV_A); /* child watcher */
852 ev_signal_stop (EV_A_ &childev); 943 ev_signal_stop (EV_A_ &childev);
944#endif
853 945
854 ev_ref (EV_A); /* signal watcher */ 946 ev_ref (EV_A); /* signal watcher */
855 ev_io_stop (EV_A_ &sigev); 947 ev_io_stop (EV_A_ &sigev);
856 948
857 close (sigpipe [0]); sigpipe [0] = 0; 949 close (sigpipe [0]); sigpipe [0] = 0;
862 954
863void 955void
864ev_default_fork (void) 956ev_default_fork (void)
865{ 957{
866#if EV_MULTIPLICITY 958#if EV_MULTIPLICITY
867 struct ev_loop *loop = default_loop; 959 struct ev_loop *loop = ev_default_loop_ptr;
868#endif 960#endif
869 961
870 if (method) 962 if (method)
871 postfork = 1; 963 postfork = 1;
872} 964}
873 965
874/*****************************************************************************/ 966/*****************************************************************************/
967
968static int
969any_pending (EV_P)
970{
971 int pri;
972
973 for (pri = NUMPRI; pri--; )
974 if (pendingcnt [pri])
975 return 1;
976
977 return 0;
978}
875 979
876static void 980static void
877call_pending (EV_P) 981call_pending (EV_P)
878{ 982{
879 int pri; 983 int pri;
884 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 988 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
885 989
886 if (p->w) 990 if (p->w)
887 { 991 {
888 p->w->pending = 0; 992 p->w->pending = 0;
889 p->w->cb (EV_A_ p->w, p->events); 993 EV_CB_INVOKE (p->w, p->events);
890 } 994 }
891 } 995 }
892} 996}
893 997
894static void 998static void
902 1006
903 /* first reschedule or stop timer */ 1007 /* first reschedule or stop timer */
904 if (w->repeat) 1008 if (w->repeat)
905 { 1009 {
906 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1010 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1011
907 ((WT)w)->at = mn_now + w->repeat; 1012 ((WT)w)->at += w->repeat;
1013 if (((WT)w)->at < mn_now)
1014 ((WT)w)->at = mn_now;
1015
908 downheap ((WT *)timers, timercnt, 0); 1016 downheap ((WT *)timers, timercnt, 0);
909 } 1017 }
910 else 1018 else
911 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1019 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
912 1020
913 event (EV_A_ (W)w, EV_TIMEOUT); 1021 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
914 } 1022 }
915} 1023}
916 1024
1025#if EV_PERIODICS
917static void 1026static void
918periodics_reify (EV_P) 1027periodics_reify (EV_P)
919{ 1028{
920 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1029 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
921 { 1030 {
922 struct ev_periodic *w = periodics [0]; 1031 struct ev_periodic *w = periodics [0];
923 1032
924 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1033 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
925 1034
926 /* first reschedule or stop timer */ 1035 /* first reschedule or stop timer */
927 if (w->interval) 1036 if (w->reschedule_cb)
928 { 1037 {
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1039 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1040 downheap ((WT *)periodics, periodiccnt, 0);
1041 }
1042 else if (w->interval)
1043 {
929 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1044 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
930 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1045 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
931 downheap ((WT *)periodics, periodiccnt, 0); 1046 downheap ((WT *)periodics, periodiccnt, 0);
932 } 1047 }
933 else 1048 else
934 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1049 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
935 1050
936 event (EV_A_ (W)w, EV_PERIODIC); 1051 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
937 } 1052 }
938} 1053}
939 1054
940static void 1055static void
941periodics_reschedule (EV_P) 1056periodics_reschedule (EV_P)
945 /* adjust periodics after time jump */ 1060 /* adjust periodics after time jump */
946 for (i = 0; i < periodiccnt; ++i) 1061 for (i = 0; i < periodiccnt; ++i)
947 { 1062 {
948 struct ev_periodic *w = periodics [i]; 1063 struct ev_periodic *w = periodics [i];
949 1064
1065 if (w->reschedule_cb)
1066 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
950 if (w->interval) 1067 else if (w->interval)
951 {
952 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1068 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
953
954 if (fabs (diff) >= 1e-4)
955 {
956 ev_periodic_stop (EV_A_ w);
957 ev_periodic_start (EV_A_ w);
958
959 i = 0; /* restart loop, inefficient, but time jumps should be rare */
960 }
961 }
962 } 1069 }
1070
1071 /* now rebuild the heap */
1072 for (i = periodiccnt >> 1; i--; )
1073 downheap ((WT *)periodics, periodiccnt, i);
963} 1074}
1075#endif
964 1076
965inline int 1077inline int
966time_update_monotonic (EV_P) 1078time_update_monotonic (EV_P)
967{ 1079{
968 mn_now = get_clock (); 1080 mn_now = get_clock ();
969 1081
970 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1082 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
971 { 1083 {
972 rt_now = rtmn_diff + mn_now; 1084 ev_rt_now = rtmn_diff + mn_now;
973 return 0; 1085 return 0;
974 } 1086 }
975 else 1087 else
976 { 1088 {
977 now_floor = mn_now; 1089 now_floor = mn_now;
978 rt_now = ev_time (); 1090 ev_rt_now = ev_time ();
979 return 1; 1091 return 1;
980 } 1092 }
981} 1093}
982 1094
983static void 1095static void
992 { 1104 {
993 ev_tstamp odiff = rtmn_diff; 1105 ev_tstamp odiff = rtmn_diff;
994 1106
995 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1107 for (i = 4; --i; ) /* loop a few times, before making important decisions */
996 { 1108 {
997 rtmn_diff = rt_now - mn_now; 1109 rtmn_diff = ev_rt_now - mn_now;
998 1110
999 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1111 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1000 return; /* all is well */ 1112 return; /* all is well */
1001 1113
1002 rt_now = ev_time (); 1114 ev_rt_now = ev_time ();
1003 mn_now = get_clock (); 1115 mn_now = get_clock ();
1004 now_floor = mn_now; 1116 now_floor = mn_now;
1005 } 1117 }
1006 1118
1119# if EV_PERIODICS
1007 periodics_reschedule (EV_A); 1120 periodics_reschedule (EV_A);
1121# endif
1008 /* no timer adjustment, as the monotonic clock doesn't jump */ 1122 /* no timer adjustment, as the monotonic clock doesn't jump */
1009 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1123 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1010 } 1124 }
1011 } 1125 }
1012 else 1126 else
1013#endif 1127#endif
1014 { 1128 {
1015 rt_now = ev_time (); 1129 ev_rt_now = ev_time ();
1016 1130
1017 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1131 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1018 { 1132 {
1133#if EV_PERIODICS
1019 periodics_reschedule (EV_A); 1134 periodics_reschedule (EV_A);
1135#endif
1020 1136
1021 /* adjust timers. this is easy, as the offset is the same for all */ 1137 /* adjust timers. this is easy, as the offset is the same for all */
1022 for (i = 0; i < timercnt; ++i) 1138 for (i = 0; i < timercnt; ++i)
1023 ((WT)timers [i])->at += rt_now - mn_now; 1139 ((WT)timers [i])->at += ev_rt_now - mn_now;
1024 } 1140 }
1025 1141
1026 mn_now = rt_now; 1142 mn_now = ev_rt_now;
1027 } 1143 }
1028} 1144}
1029 1145
1030void 1146void
1031ev_ref (EV_P) 1147ev_ref (EV_P)
1045ev_loop (EV_P_ int flags) 1161ev_loop (EV_P_ int flags)
1046{ 1162{
1047 double block; 1163 double block;
1048 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1164 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1049 1165
1050 do 1166 while (activecnt)
1051 { 1167 {
1052 /* queue check watchers (and execute them) */ 1168 /* queue check watchers (and execute them) */
1053 if (expect_false (preparecnt)) 1169 if (expect_false (preparecnt))
1054 { 1170 {
1055 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1171 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1063 /* update fd-related kernel structures */ 1179 /* update fd-related kernel structures */
1064 fd_reify (EV_A); 1180 fd_reify (EV_A);
1065 1181
1066 /* calculate blocking time */ 1182 /* calculate blocking time */
1067 1183
1068 /* we only need this for !monotonic clockor timers, but as we basically 1184 /* we only need this for !monotonic clock or timers, but as we basically
1069 always have timers, we just calculate it always */ 1185 always have timers, we just calculate it always */
1070#if EV_USE_MONOTONIC 1186#if EV_USE_MONOTONIC
1071 if (expect_true (have_monotonic)) 1187 if (expect_true (have_monotonic))
1072 time_update_monotonic (EV_A); 1188 time_update_monotonic (EV_A);
1073 else 1189 else
1074#endif 1190#endif
1075 { 1191 {
1076 rt_now = ev_time (); 1192 ev_rt_now = ev_time ();
1077 mn_now = rt_now; 1193 mn_now = ev_rt_now;
1078 } 1194 }
1079 1195
1080 if (flags & EVLOOP_NONBLOCK || idlecnt) 1196 if (flags & EVLOOP_NONBLOCK || idlecnt)
1081 block = 0.; 1197 block = 0.;
1082 else 1198 else
1087 { 1203 {
1088 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1204 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1089 if (block > to) block = to; 1205 if (block > to) block = to;
1090 } 1206 }
1091 1207
1208#if EV_PERIODICS
1092 if (periodiccnt) 1209 if (periodiccnt)
1093 { 1210 {
1094 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1211 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1095 if (block > to) block = to; 1212 if (block > to) block = to;
1096 } 1213 }
1214#endif
1097 1215
1098 if (block < 0.) block = 0.; 1216 if (block < 0.) block = 0.;
1099 } 1217 }
1100 1218
1101 method_poll (EV_A_ block); 1219 method_poll (EV_A_ block);
1102 1220
1103 /* update rt_now, do magic */ 1221 /* update ev_rt_now, do magic */
1104 time_update (EV_A); 1222 time_update (EV_A);
1105 1223
1106 /* queue pending timers and reschedule them */ 1224 /* queue pending timers and reschedule them */
1107 timers_reify (EV_A); /* relative timers called last */ 1225 timers_reify (EV_A); /* relative timers called last */
1226#if EV_PERIODICS
1108 periodics_reify (EV_A); /* absolute timers called first */ 1227 periodics_reify (EV_A); /* absolute timers called first */
1228#endif
1109 1229
1110 /* queue idle watchers unless io or timers are pending */ 1230 /* queue idle watchers unless io or timers are pending */
1111 if (!pendingcnt) 1231 if (idlecnt && !any_pending (EV_A))
1112 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1232 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1113 1233
1114 /* queue check watchers, to be executed first */ 1234 /* queue check watchers, to be executed first */
1115 if (checkcnt) 1235 if (checkcnt)
1116 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1236 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1117 1237
1118 call_pending (EV_A); 1238 call_pending (EV_A);
1239
1240 if (loop_done)
1241 break;
1119 } 1242 }
1120 while (activecnt && !loop_done);
1121 1243
1122 if (loop_done != 2) 1244 if (loop_done != 2)
1123 loop_done = 0; 1245 loop_done = 0;
1124} 1246}
1125 1247
1191 return; 1313 return;
1192 1314
1193 assert (("ev_io_start called with negative fd", fd >= 0)); 1315 assert (("ev_io_start called with negative fd", fd >= 0));
1194 1316
1195 ev_start (EV_A_ (W)w, 1); 1317 ev_start (EV_A_ (W)w, 1);
1196 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1318 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1197 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1319 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1198 1320
1199 fd_change (EV_A_ fd); 1321 fd_change (EV_A_ fd);
1200} 1322}
1201 1323
1204{ 1326{
1205 ev_clear_pending (EV_A_ (W)w); 1327 ev_clear_pending (EV_A_ (W)w);
1206 if (!ev_is_active (w)) 1328 if (!ev_is_active (w))
1207 return; 1329 return;
1208 1330
1331 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1332
1209 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1333 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1210 ev_stop (EV_A_ (W)w); 1334 ev_stop (EV_A_ (W)w);
1211 1335
1212 fd_change (EV_A_ w->fd); 1336 fd_change (EV_A_ w->fd);
1213} 1337}
1221 ((WT)w)->at += mn_now; 1345 ((WT)w)->at += mn_now;
1222 1346
1223 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1347 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1224 1348
1225 ev_start (EV_A_ (W)w, ++timercnt); 1349 ev_start (EV_A_ (W)w, ++timercnt);
1226 array_needsize (timers, timermax, timercnt, ); 1350 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1227 timers [timercnt - 1] = w; 1351 timers [timercnt - 1] = w;
1228 upheap ((WT *)timers, timercnt - 1); 1352 upheap ((WT *)timers, timercnt - 1);
1229 1353
1230 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1354 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1231} 1355}
1240 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1364 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1241 1365
1242 if (((W)w)->active < timercnt--) 1366 if (((W)w)->active < timercnt--)
1243 { 1367 {
1244 timers [((W)w)->active - 1] = timers [timercnt]; 1368 timers [((W)w)->active - 1] = timers [timercnt];
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1246 } 1370 }
1247 1371
1248 ((WT)w)->at = w->repeat; 1372 ((WT)w)->at -= mn_now;
1249 1373
1250 ev_stop (EV_A_ (W)w); 1374 ev_stop (EV_A_ (W)w);
1251} 1375}
1252 1376
1253void 1377void
1256 if (ev_is_active (w)) 1380 if (ev_is_active (w))
1257 { 1381 {
1258 if (w->repeat) 1382 if (w->repeat)
1259 { 1383 {
1260 ((WT)w)->at = mn_now + w->repeat; 1384 ((WT)w)->at = mn_now + w->repeat;
1261 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1385 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1262 } 1386 }
1263 else 1387 else
1264 ev_timer_stop (EV_A_ w); 1388 ev_timer_stop (EV_A_ w);
1265 } 1389 }
1266 else if (w->repeat) 1390 else if (w->repeat)
1391 {
1392 w->at = w->repeat;
1267 ev_timer_start (EV_A_ w); 1393 ev_timer_start (EV_A_ w);
1394 }
1268} 1395}
1269 1396
1397#if EV_PERIODICS
1270void 1398void
1271ev_periodic_start (EV_P_ struct ev_periodic *w) 1399ev_periodic_start (EV_P_ struct ev_periodic *w)
1272{ 1400{
1273 if (ev_is_active (w)) 1401 if (ev_is_active (w))
1274 return; 1402 return;
1275 1403
1404 if (w->reschedule_cb)
1405 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1406 else if (w->interval)
1407 {
1276 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1408 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1277
1278 /* this formula differs from the one in periodic_reify because we do not always round up */ 1409 /* this formula differs from the one in periodic_reify because we do not always round up */
1279 if (w->interval)
1280 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1410 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1411 }
1281 1412
1282 ev_start (EV_A_ (W)w, ++periodiccnt); 1413 ev_start (EV_A_ (W)w, ++periodiccnt);
1283 array_needsize (periodics, periodicmax, periodiccnt, ); 1414 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1284 periodics [periodiccnt - 1] = w; 1415 periodics [periodiccnt - 1] = w;
1285 upheap ((WT *)periodics, periodiccnt - 1); 1416 upheap ((WT *)periodics, periodiccnt - 1);
1286 1417
1287 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1418 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1288} 1419}
1297 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1428 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1298 1429
1299 if (((W)w)->active < periodiccnt--) 1430 if (((W)w)->active < periodiccnt--)
1300 { 1431 {
1301 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1432 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1302 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1433 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1303 } 1434 }
1304 1435
1305 ev_stop (EV_A_ (W)w); 1436 ev_stop (EV_A_ (W)w);
1306} 1437}
1307 1438
1308void 1439void
1440ev_periodic_again (EV_P_ struct ev_periodic *w)
1441{
1442 /* TODO: use adjustheap and recalculation */
1443 ev_periodic_stop (EV_A_ w);
1444 ev_periodic_start (EV_A_ w);
1445}
1446#endif
1447
1448void
1309ev_idle_start (EV_P_ struct ev_idle *w) 1449ev_idle_start (EV_P_ struct ev_idle *w)
1310{ 1450{
1311 if (ev_is_active (w)) 1451 if (ev_is_active (w))
1312 return; 1452 return;
1313 1453
1314 ev_start (EV_A_ (W)w, ++idlecnt); 1454 ev_start (EV_A_ (W)w, ++idlecnt);
1315 array_needsize (idles, idlemax, idlecnt, ); 1455 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1316 idles [idlecnt - 1] = w; 1456 idles [idlecnt - 1] = w;
1317} 1457}
1318 1458
1319void 1459void
1320ev_idle_stop (EV_P_ struct ev_idle *w) 1460ev_idle_stop (EV_P_ struct ev_idle *w)
1321{ 1461{
1322 ev_clear_pending (EV_A_ (W)w); 1462 ev_clear_pending (EV_A_ (W)w);
1323 if (ev_is_active (w)) 1463 if (!ev_is_active (w))
1324 return; 1464 return;
1325 1465
1326 idles [((W)w)->active - 1] = idles [--idlecnt]; 1466 idles [((W)w)->active - 1] = idles [--idlecnt];
1327 ev_stop (EV_A_ (W)w); 1467 ev_stop (EV_A_ (W)w);
1328} 1468}
1332{ 1472{
1333 if (ev_is_active (w)) 1473 if (ev_is_active (w))
1334 return; 1474 return;
1335 1475
1336 ev_start (EV_A_ (W)w, ++preparecnt); 1476 ev_start (EV_A_ (W)w, ++preparecnt);
1337 array_needsize (prepares, preparemax, preparecnt, ); 1477 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1338 prepares [preparecnt - 1] = w; 1478 prepares [preparecnt - 1] = w;
1339} 1479}
1340 1480
1341void 1481void
1342ev_prepare_stop (EV_P_ struct ev_prepare *w) 1482ev_prepare_stop (EV_P_ struct ev_prepare *w)
1343{ 1483{
1344 ev_clear_pending (EV_A_ (W)w); 1484 ev_clear_pending (EV_A_ (W)w);
1345 if (ev_is_active (w)) 1485 if (!ev_is_active (w))
1346 return; 1486 return;
1347 1487
1348 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1488 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1349 ev_stop (EV_A_ (W)w); 1489 ev_stop (EV_A_ (W)w);
1350} 1490}
1354{ 1494{
1355 if (ev_is_active (w)) 1495 if (ev_is_active (w))
1356 return; 1496 return;
1357 1497
1358 ev_start (EV_A_ (W)w, ++checkcnt); 1498 ev_start (EV_A_ (W)w, ++checkcnt);
1359 array_needsize (checks, checkmax, checkcnt, ); 1499 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1360 checks [checkcnt - 1] = w; 1500 checks [checkcnt - 1] = w;
1361} 1501}
1362 1502
1363void 1503void
1364ev_check_stop (EV_P_ struct ev_check *w) 1504ev_check_stop (EV_P_ struct ev_check *w)
1365{ 1505{
1366 ev_clear_pending (EV_A_ (W)w); 1506 ev_clear_pending (EV_A_ (W)w);
1367 if (ev_is_active (w)) 1507 if (!ev_is_active (w))
1368 return; 1508 return;
1369 1509
1370 checks [((W)w)->active - 1] = checks [--checkcnt]; 1510 checks [((W)w)->active - 1] = checks [--checkcnt];
1371 ev_stop (EV_A_ (W)w); 1511 ev_stop (EV_A_ (W)w);
1372} 1512}
1377 1517
1378void 1518void
1379ev_signal_start (EV_P_ struct ev_signal *w) 1519ev_signal_start (EV_P_ struct ev_signal *w)
1380{ 1520{
1381#if EV_MULTIPLICITY 1521#if EV_MULTIPLICITY
1382 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1522 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1383#endif 1523#endif
1384 if (ev_is_active (w)) 1524 if (ev_is_active (w))
1385 return; 1525 return;
1386 1526
1387 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1527 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1388 1528
1389 ev_start (EV_A_ (W)w, 1); 1529 ev_start (EV_A_ (W)w, 1);
1390 array_needsize (signals, signalmax, w->signum, signals_init); 1530 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1391 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1531 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1392 1532
1393 if (!((WL)w)->next) 1533 if (!((WL)w)->next)
1394 { 1534 {
1395#if WIN32 1535#if _WIN32
1396 signal (w->signum, sighandler); 1536 signal (w->signum, sighandler);
1397#else 1537#else
1398 struct sigaction sa; 1538 struct sigaction sa;
1399 sa.sa_handler = sighandler; 1539 sa.sa_handler = sighandler;
1400 sigfillset (&sa.sa_mask); 1540 sigfillset (&sa.sa_mask);
1420 1560
1421void 1561void
1422ev_child_start (EV_P_ struct ev_child *w) 1562ev_child_start (EV_P_ struct ev_child *w)
1423{ 1563{
1424#if EV_MULTIPLICITY 1564#if EV_MULTIPLICITY
1425 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1565 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1426#endif 1566#endif
1427 if (ev_is_active (w)) 1567 if (ev_is_active (w))
1428 return; 1568 return;
1429 1569
1430 ev_start (EV_A_ (W)w, 1); 1570 ev_start (EV_A_ (W)w, 1);
1433 1573
1434void 1574void
1435ev_child_stop (EV_P_ struct ev_child *w) 1575ev_child_stop (EV_P_ struct ev_child *w)
1436{ 1576{
1437 ev_clear_pending (EV_A_ (W)w); 1577 ev_clear_pending (EV_A_ (W)w);
1438 if (ev_is_active (w)) 1578 if (!ev_is_active (w))
1439 return; 1579 return;
1440 1580
1441 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1581 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1442 ev_stop (EV_A_ (W)w); 1582 ev_stop (EV_A_ (W)w);
1443} 1583}
1478} 1618}
1479 1619
1480void 1620void
1481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1621ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1482{ 1622{
1483 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1623 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1484 1624
1485 if (!once) 1625 if (!once)
1486 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1487 else 1627 else
1488 { 1628 {
1489 once->cb = cb; 1629 once->cb = cb;
1490 once->arg = arg; 1630 once->arg = arg;
1491 1631
1492 ev_watcher_init (&once->io, once_cb_io); 1632 ev_init (&once->io, once_cb_io);
1493 if (fd >= 0) 1633 if (fd >= 0)
1494 { 1634 {
1495 ev_io_set (&once->io, fd, events); 1635 ev_io_set (&once->io, fd, events);
1496 ev_io_start (EV_A_ &once->io); 1636 ev_io_start (EV_A_ &once->io);
1497 } 1637 }
1498 1638
1499 ev_watcher_init (&once->to, once_cb_to); 1639 ev_init (&once->to, once_cb_to);
1500 if (timeout >= 0.) 1640 if (timeout >= 0.)
1501 { 1641 {
1502 ev_timer_set (&once->to, timeout, 0.); 1642 ev_timer_set (&once->to, timeout, 0.);
1503 ev_timer_start (EV_A_ &once->to); 1643 ev_timer_start (EV_A_ &once->to);
1504 } 1644 }
1505 } 1645 }
1506} 1646}
1507 1647
1648#ifdef __cplusplus
1649}
1650#endif
1651

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines