ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.118 by root, Fri Nov 16 01:33:54 2007 UTC vs.
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
43# ifndef EV_USE_REALTIME 47# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
45# endif 49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
46# endif 57# endif
47 58
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 59# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
50# endif 65# endif
51 66
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 67# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
54# endif 73# endif
55 74
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
58# endif 81# endif
59 82
83# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
62# endif 89# endif
63 90
64# if HAVE_PORT_H && HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
65# define EV_USE_PORT 1 93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
66# endif 105# endif
67 106
68#endif 107#endif
69 108
70#include <math.h> 109#include <math.h>
79#include <sys/types.h> 118#include <sys/types.h>
80#include <time.h> 119#include <time.h>
81 120
82#include <signal.h> 121#include <signal.h>
83 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
84#ifndef _WIN32 129#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 130# include <sys/time.h>
87# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
88#else 133#else
89# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 135# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
94#endif 139#endif
95 140
96/**/ 141/**/
97 142
98#ifndef EV_USE_MONOTONIC 143#ifndef EV_USE_MONOTONIC
99# define EV_USE_MONOTONIC 1 144# define EV_USE_MONOTONIC 0
100#endif 145#endif
101 146
102#ifndef EV_USE_REALTIME 147#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 1 148# define EV_USE_REALTIME 0
104#endif 149#endif
105 150
106#ifndef EV_USE_SELECT 151#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 152# define EV_USE_SELECT 1
108# define EV_SELECT_USE_FD_SET 1
109#endif 153#endif
110 154
111#ifndef EV_USE_POLL 155#ifndef EV_USE_POLL
112# ifdef _WIN32 156# ifdef _WIN32
113# define EV_USE_POLL 0 157# define EV_USE_POLL 0
126 170
127#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
128# define EV_USE_PORT 0 172# define EV_USE_PORT 0
129#endif 173#endif
130 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
131/**/ 195/**/
132
133/* darwin simply cannot be helped */
134#ifdef __APPLE__
135# undef EV_USE_POLL
136# undef EV_USE_KQUEUE
137#endif
138 196
139#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
140# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
141# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
142#endif 200#endif
148 206
149#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
150# include <winsock.h> 208# include <winsock.h>
151#endif 209#endif
152 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
153/**/ 219/**/
154 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000
227 * and intervals up to 20 years.
228 * Better solutions welcome.
229 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231
155#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
156#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
157#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
158/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165 235
166#if __GNUC__ >= 3 236#if __GNUC__ >= 3
167# define expect(expr,value) __builtin_expect ((expr),(value)) 237# define expect(expr,value) __builtin_expect ((expr),(value))
168# define inline inline 238# define noinline __attribute__ ((noinline))
169#else 239#else
170# define expect(expr,value) (expr) 240# define expect(expr,value) (expr)
171# define inline static 241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif
172#endif 245#endif
173 246
174#define expect_false(expr) expect ((expr) != 0, 0) 247#define expect_false(expr) expect ((expr) != 0, 0)
175#define expect_true(expr) expect ((expr) != 0, 1) 248#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline
250
251#if EV_MINIMAL
252# define inline_speed static noinline
253#else
254# define inline_speed static inline
255#endif
176 256
177#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
178#define ABSPRI(w) ((w)->priority - EV_MINPRI) 258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
179 259
180#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 260#define EMPTY /* required for microsofts broken pseudo-c compiler */
181#define EMPTY2(a,b) /* used to suppress some warnings */ 261#define EMPTY2(a,b) /* used to suppress some warnings */
182 262
183typedef struct ev_watcher *W; 263typedef ev_watcher *W;
184typedef struct ev_watcher_list *WL; 264typedef ev_watcher_list *WL;
185typedef struct ev_watcher_time *WT; 265typedef ev_watcher_time *WT;
186 266
187static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
188 268
189#ifdef _WIN32 269#ifdef _WIN32
190# include "ev_win32.c" 270# include "ev_win32.c"
192 272
193/*****************************************************************************/ 273/*****************************************************************************/
194 274
195static void (*syserr_cb)(const char *msg); 275static void (*syserr_cb)(const char *msg);
196 276
277void
197void ev_set_syserr_cb (void (*cb)(const char *msg)) 278ev_set_syserr_cb (void (*cb)(const char *msg))
198{ 279{
199 syserr_cb = cb; 280 syserr_cb = cb;
200} 281}
201 282
202static void 283static void noinline
203syserr (const char *msg) 284syserr (const char *msg)
204{ 285{
205 if (!msg) 286 if (!msg)
206 msg = "(libev) system error"; 287 msg = "(libev) system error";
207 288
214 } 295 }
215} 296}
216 297
217static void *(*alloc)(void *ptr, long size); 298static void *(*alloc)(void *ptr, long size);
218 299
300void
219void ev_set_allocator (void *(*cb)(void *ptr, long size)) 301ev_set_allocator (void *(*cb)(void *ptr, long size))
220{ 302{
221 alloc = cb; 303 alloc = cb;
222} 304}
223 305
224static void * 306inline_speed void *
225ev_realloc (void *ptr, long size) 307ev_realloc (void *ptr, long size)
226{ 308{
227 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
228 310
229 if (!ptr && size) 311 if (!ptr && size)
253typedef struct 335typedef struct
254{ 336{
255 W w; 337 W w;
256 int events; 338 int events;
257} ANPENDING; 339} ANPENDING;
340
341#if EV_USE_INOTIFY
342typedef struct
343{
344 WL head;
345} ANFS;
346#endif
258 347
259#if EV_MULTIPLICITY 348#if EV_MULTIPLICITY
260 349
261 struct ev_loop 350 struct ev_loop
262 { 351 {
296 gettimeofday (&tv, 0); 385 gettimeofday (&tv, 0);
297 return tv.tv_sec + tv.tv_usec * 1e-6; 386 return tv.tv_sec + tv.tv_usec * 1e-6;
298#endif 387#endif
299} 388}
300 389
301inline ev_tstamp 390ev_tstamp inline_size
302get_clock (void) 391get_clock (void)
303{ 392{
304#if EV_USE_MONOTONIC 393#if EV_USE_MONOTONIC
305 if (expect_true (have_monotonic)) 394 if (expect_true (have_monotonic))
306 { 395 {
319{ 408{
320 return ev_rt_now; 409 return ev_rt_now;
321} 410}
322#endif 411#endif
323 412
324#define array_roundsize(type,n) (((n) | 4) & ~3) 413int inline_size
414array_nextsize (int elem, int cur, int cnt)
415{
416 int ncur = cur + 1;
417
418 do
419 ncur <<= 1;
420 while (cnt > ncur);
421
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096)
424 {
425 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
427 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem;
429 }
430
431 return ncur;
432}
433
434static noinline void *
435array_realloc (int elem, void *base, int *cur, int cnt)
436{
437 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur);
439}
325 440
326#define array_needsize(type,base,cur,cnt,init) \ 441#define array_needsize(type,base,cur,cnt,init) \
327 if (expect_false ((cnt) > cur)) \ 442 if (expect_false ((cnt) > (cur))) \
328 { \ 443 { \
329 int newcnt = cur; \ 444 int ocur_ = (cur); \
330 do \ 445 (base) = (type *)array_realloc \
331 { \ 446 (sizeof (type), (base), &(cur), (cnt)); \
332 newcnt = array_roundsize (type, newcnt << 1); \ 447 init ((base) + (ocur_), (cur) - ocur_); \
333 } \
334 while ((cnt) > newcnt); \
335 \
336 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
337 init (base + cur, newcnt - cur); \
338 cur = newcnt; \
339 } 448 }
340 449
450#if 0
341#define array_slim(type,stem) \ 451#define array_slim(type,stem) \
342 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
343 { \ 453 { \
344 stem ## max = array_roundsize (stem ## cnt >> 1); \ 454 stem ## max = array_roundsize (stem ## cnt >> 1); \
345 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 455 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
346 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
347 } 457 }
458#endif
348 459
349#define array_free(stem, idx) \ 460#define array_free(stem, idx) \
350 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
351 462
352/*****************************************************************************/ 463/*****************************************************************************/
353 464
354static void 465void noinline
466ev_feed_event (EV_P_ void *w, int revents)
467{
468 W w_ = (W)w;
469 int pri = ABSPRI (w_);
470
471 if (expect_false (w_->pending))
472 pendings [pri][w_->pending - 1].events |= revents;
473 else
474 {
475 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
477 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents;
479 }
480}
481
482void inline_size
483queue_events (EV_P_ W *events, int eventcnt, int type)
484{
485 int i;
486
487 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type);
489}
490
491/*****************************************************************************/
492
493void inline_size
355anfds_init (ANFD *base, int count) 494anfds_init (ANFD *base, int count)
356{ 495{
357 while (count--) 496 while (count--)
358 { 497 {
359 base->head = 0; 498 base->head = 0;
362 501
363 ++base; 502 ++base;
364 } 503 }
365} 504}
366 505
367void 506void inline_speed
368ev_feed_event (EV_P_ void *w, int revents)
369{
370 W w_ = (W)w;
371
372 if (w_->pending)
373 {
374 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
375 return;
376 }
377
378 w_->pending = ++pendingcnt [ABSPRI (w_)];
379 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
380 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
381 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
382}
383
384static void
385queue_events (EV_P_ W *events, int eventcnt, int type)
386{
387 int i;
388
389 for (i = 0; i < eventcnt; ++i)
390 ev_feed_event (EV_A_ events [i], type);
391}
392
393inline void
394fd_event (EV_P_ int fd, int revents) 507fd_event (EV_P_ int fd, int revents)
395{ 508{
396 ANFD *anfd = anfds + fd; 509 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 510 ev_io *w;
398 511
399 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
400 { 513 {
401 int ev = w->events & revents; 514 int ev = w->events & revents;
402 515
403 if (ev) 516 if (ev)
404 ev_feed_event (EV_A_ (W)w, ev); 517 ev_feed_event (EV_A_ (W)w, ev);
406} 519}
407 520
408void 521void
409ev_feed_fd_event (EV_P_ int fd, int revents) 522ev_feed_fd_event (EV_P_ int fd, int revents)
410{ 523{
524 if (fd >= 0 && fd < anfdmax)
411 fd_event (EV_A_ fd, revents); 525 fd_event (EV_A_ fd, revents);
412} 526}
413 527
414/*****************************************************************************/ 528void inline_size
415
416static void
417fd_reify (EV_P) 529fd_reify (EV_P)
418{ 530{
419 int i; 531 int i;
420 532
421 for (i = 0; i < fdchangecnt; ++i) 533 for (i = 0; i < fdchangecnt; ++i)
422 { 534 {
423 int fd = fdchanges [i]; 535 int fd = fdchanges [i];
424 ANFD *anfd = anfds + fd; 536 ANFD *anfd = anfds + fd;
425 struct ev_io *w; 537 ev_io *w;
426 538
427 int events = 0; 539 int events = 0;
428 540
429 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
430 events |= w->events; 542 events |= w->events;
431 543
432#if EV_SELECT_IS_WINSOCKET 544#if EV_SELECT_IS_WINSOCKET
433 if (events) 545 if (events)
434 { 546 {
438 } 550 }
439#endif 551#endif
440 552
441 anfd->reify = 0; 553 anfd->reify = 0;
442 554
443 method_modify (EV_A_ fd, anfd->events, events); 555 backend_modify (EV_A_ fd, anfd->events, events);
444 anfd->events = events; 556 anfd->events = events;
445 } 557 }
446 558
447 fdchangecnt = 0; 559 fdchangecnt = 0;
448} 560}
449 561
450static void 562void inline_size
451fd_change (EV_P_ int fd) 563fd_change (EV_P_ int fd)
452{ 564{
453 if (anfds [fd].reify) 565 if (expect_false (anfds [fd].reify))
454 return; 566 return;
455 567
456 anfds [fd].reify = 1; 568 anfds [fd].reify = 1;
457 569
458 ++fdchangecnt; 570 ++fdchangecnt;
459 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
460 fdchanges [fdchangecnt - 1] = fd; 572 fdchanges [fdchangecnt - 1] = fd;
461} 573}
462 574
463static void 575void inline_speed
464fd_kill (EV_P_ int fd) 576fd_kill (EV_P_ int fd)
465{ 577{
466 struct ev_io *w; 578 ev_io *w;
467 579
468 while ((w = (struct ev_io *)anfds [fd].head)) 580 while ((w = (ev_io *)anfds [fd].head))
469 { 581 {
470 ev_io_stop (EV_A_ w); 582 ev_io_stop (EV_A_ w);
471 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
472 } 584 }
473} 585}
474 586
475static int 587int inline_size
476fd_valid (int fd) 588fd_valid (int fd)
477{ 589{
478#ifdef _WIN32 590#ifdef _WIN32
479 return _get_osfhandle (fd) != -1; 591 return _get_osfhandle (fd) != -1;
480#else 592#else
481 return fcntl (fd, F_GETFD) != -1; 593 return fcntl (fd, F_GETFD) != -1;
482#endif 594#endif
483} 595}
484 596
485/* called on EBADF to verify fds */ 597/* called on EBADF to verify fds */
486static void 598static void noinline
487fd_ebadf (EV_P) 599fd_ebadf (EV_P)
488{ 600{
489 int fd; 601 int fd;
490 602
491 for (fd = 0; fd < anfdmax; ++fd) 603 for (fd = 0; fd < anfdmax; ++fd)
493 if (!fd_valid (fd) == -1 && errno == EBADF) 605 if (!fd_valid (fd) == -1 && errno == EBADF)
494 fd_kill (EV_A_ fd); 606 fd_kill (EV_A_ fd);
495} 607}
496 608
497/* called on ENOMEM in select/poll to kill some fds and retry */ 609/* called on ENOMEM in select/poll to kill some fds and retry */
498static void 610static void noinline
499fd_enomem (EV_P) 611fd_enomem (EV_P)
500{ 612{
501 int fd; 613 int fd;
502 614
503 for (fd = anfdmax; fd--; ) 615 for (fd = anfdmax; fd--; )
506 fd_kill (EV_A_ fd); 618 fd_kill (EV_A_ fd);
507 return; 619 return;
508 } 620 }
509} 621}
510 622
511/* usually called after fork if method needs to re-arm all fds from scratch */ 623/* usually called after fork if backend needs to re-arm all fds from scratch */
512static void 624static void noinline
513fd_rearm_all (EV_P) 625fd_rearm_all (EV_P)
514{ 626{
515 int fd; 627 int fd;
516 628
517 /* this should be highly optimised to not do anything but set a flag */
518 for (fd = 0; fd < anfdmax; ++fd) 629 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 630 if (anfds [fd].events)
520 { 631 {
521 anfds [fd].events = 0; 632 anfds [fd].events = 0;
522 fd_change (EV_A_ fd); 633 fd_change (EV_A_ fd);
523 } 634 }
524} 635}
525 636
526/*****************************************************************************/ 637/*****************************************************************************/
527 638
528static void 639void inline_speed
529upheap (WT *heap, int k) 640upheap (WT *heap, int k)
530{ 641{
531 WT w = heap [k]; 642 WT w = heap [k];
532 643
533 while (k && heap [k >> 1]->at > w->at) 644 while (k && heap [k >> 1]->at > w->at)
540 heap [k] = w; 651 heap [k] = w;
541 ((W)heap [k])->active = k + 1; 652 ((W)heap [k])->active = k + 1;
542 653
543} 654}
544 655
545static void 656void inline_speed
546downheap (WT *heap, int N, int k) 657downheap (WT *heap, int N, int k)
547{ 658{
548 WT w = heap [k]; 659 WT w = heap [k];
549 660
550 while (k < (N >> 1)) 661 while (k < (N >> 1))
564 675
565 heap [k] = w; 676 heap [k] = w;
566 ((W)heap [k])->active = k + 1; 677 ((W)heap [k])->active = k + 1;
567} 678}
568 679
569inline void 680void inline_size
570adjustheap (WT *heap, int N, int k) 681adjustheap (WT *heap, int N, int k)
571{ 682{
572 upheap (heap, k); 683 upheap (heap, k);
573 downheap (heap, N, k); 684 downheap (heap, N, k);
574} 685}
584static ANSIG *signals; 695static ANSIG *signals;
585static int signalmax; 696static int signalmax;
586 697
587static int sigpipe [2]; 698static int sigpipe [2];
588static sig_atomic_t volatile gotsig; 699static sig_atomic_t volatile gotsig;
589static struct ev_io sigev; 700static ev_io sigev;
590 701
591static void 702void inline_size
592signals_init (ANSIG *base, int count) 703signals_init (ANSIG *base, int count)
593{ 704{
594 while (count--) 705 while (count--)
595 { 706 {
596 base->head = 0; 707 base->head = 0;
616 write (sigpipe [1], &signum, 1); 727 write (sigpipe [1], &signum, 1);
617 errno = old_errno; 728 errno = old_errno;
618 } 729 }
619} 730}
620 731
621void 732void noinline
622ev_feed_signal_event (EV_P_ int signum) 733ev_feed_signal_event (EV_P_ int signum)
623{ 734{
624 WL w; 735 WL w;
625 736
626#if EV_MULTIPLICITY 737#if EV_MULTIPLICITY
637 for (w = signals [signum].head; w; w = w->next) 748 for (w = signals [signum].head; w; w = w->next)
638 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
639} 750}
640 751
641static void 752static void
642sigcb (EV_P_ struct ev_io *iow, int revents) 753sigcb (EV_P_ ev_io *iow, int revents)
643{ 754{
644 int signum; 755 int signum;
645 756
646 read (sigpipe [0], &revents, 1); 757 read (sigpipe [0], &revents, 1);
647 gotsig = 0; 758 gotsig = 0;
649 for (signum = signalmax; signum--; ) 760 for (signum = signalmax; signum--; )
650 if (signals [signum].gotsig) 761 if (signals [signum].gotsig)
651 ev_feed_signal_event (EV_A_ signum + 1); 762 ev_feed_signal_event (EV_A_ signum + 1);
652} 763}
653 764
654inline void 765void inline_speed
655fd_intern (int fd) 766fd_intern (int fd)
656{ 767{
657#ifdef _WIN32 768#ifdef _WIN32
658 int arg = 1; 769 int arg = 1;
659 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
661 fcntl (fd, F_SETFD, FD_CLOEXEC); 772 fcntl (fd, F_SETFD, FD_CLOEXEC);
662 fcntl (fd, F_SETFL, O_NONBLOCK); 773 fcntl (fd, F_SETFL, O_NONBLOCK);
663#endif 774#endif
664} 775}
665 776
666static void 777static void noinline
667siginit (EV_P) 778siginit (EV_P)
668{ 779{
669 fd_intern (sigpipe [0]); 780 fd_intern (sigpipe [0]);
670 fd_intern (sigpipe [1]); 781 fd_intern (sigpipe [1]);
671 782
674 ev_unref (EV_A); /* child watcher should not keep loop alive */ 785 ev_unref (EV_A); /* child watcher should not keep loop alive */
675} 786}
676 787
677/*****************************************************************************/ 788/*****************************************************************************/
678 789
679static struct ev_child *childs [PID_HASHSIZE]; 790static ev_child *childs [EV_PID_HASHSIZE];
680 791
681#ifndef _WIN32 792#ifndef _WIN32
682 793
683static struct ev_signal childev; 794static ev_signal childev;
795
796void inline_speed
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
798{
799 ev_child *w;
800
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
802 if (w->pid == pid || !w->pid)
803 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
805 w->rpid = pid;
806 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 }
809}
684 810
685#ifndef WCONTINUED 811#ifndef WCONTINUED
686# define WCONTINUED 0 812# define WCONTINUED 0
687#endif 813#endif
688 814
689static void 815static void
690child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
691{
692 struct ev_child *w;
693
694 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
695 if (w->pid == pid || !w->pid)
696 {
697 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
698 w->rpid = pid;
699 w->rstatus = status;
700 ev_feed_event (EV_A_ (W)w, EV_CHILD);
701 }
702}
703
704static void
705childcb (EV_P_ struct ev_signal *sw, int revents) 816childcb (EV_P_ ev_signal *sw, int revents)
706{ 817{
707 int pid, status; 818 int pid, status;
708 819
820 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
709 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 821 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
710 { 822 if (!WCONTINUED
823 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return;
826
711 /* make sure we are called again until all childs have been reaped */ 827 /* make sure we are called again until all childs have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */
712 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
713 830
714 child_reap (EV_A_ sw, pid, pid, status); 831 child_reap (EV_A_ sw, pid, pid, status);
832 if (EV_PID_HASHSIZE > 1)
715 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
716 }
717} 834}
718 835
719#endif 836#endif
720 837
721/*****************************************************************************/ 838/*****************************************************************************/
747{ 864{
748 return EV_VERSION_MINOR; 865 return EV_VERSION_MINOR;
749} 866}
750 867
751/* return true if we are running with elevated privileges and should ignore env variables */ 868/* return true if we are running with elevated privileges and should ignore env variables */
752static int 869int inline_size
753enable_secure (void) 870enable_secure (void)
754{ 871{
755#ifdef _WIN32 872#ifdef _WIN32
756 return 0; 873 return 0;
757#else 874#else
759 || getgid () != getegid (); 876 || getgid () != getegid ();
760#endif 877#endif
761} 878}
762 879
763unsigned int 880unsigned int
764ev_method (EV_P) 881ev_supported_backends (void)
765{ 882{
766 return method; 883 unsigned int flags = 0;
767}
768 884
769static void 885 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
886 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
887 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
888 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
889 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
890
891 return flags;
892}
893
894unsigned int
895ev_recommended_backends (void)
896{
897 unsigned int flags = ev_supported_backends ();
898
899#ifndef __NetBSD__
900 /* kqueue is borked on everything but netbsd apparently */
901 /* it usually doesn't work correctly on anything but sockets and pipes */
902 flags &= ~EVBACKEND_KQUEUE;
903#endif
904#ifdef __APPLE__
905 // flags &= ~EVBACKEND_KQUEUE; for documentation
906 flags &= ~EVBACKEND_POLL;
907#endif
908
909 return flags;
910}
911
912unsigned int
913ev_embeddable_backends (void)
914{
915 return EVBACKEND_EPOLL
916 | EVBACKEND_KQUEUE
917 | EVBACKEND_PORT;
918}
919
920unsigned int
921ev_backend (EV_P)
922{
923 return backend;
924}
925
926unsigned int
927ev_loop_count (EV_P)
928{
929 return loop_count;
930}
931
932static void noinline
770loop_init (EV_P_ unsigned int flags) 933loop_init (EV_P_ unsigned int flags)
771{ 934{
772 if (!method) 935 if (!backend)
773 { 936 {
774#if EV_USE_MONOTONIC 937#if EV_USE_MONOTONIC
775 { 938 {
776 struct timespec ts; 939 struct timespec ts;
777 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 940 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
782 ev_rt_now = ev_time (); 945 ev_rt_now = ev_time ();
783 mn_now = get_clock (); 946 mn_now = get_clock ();
784 now_floor = mn_now; 947 now_floor = mn_now;
785 rtmn_diff = ev_rt_now - mn_now; 948 rtmn_diff = ev_rt_now - mn_now;
786 949
787 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 950 /* pid check not overridable via env */
951#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid ();
954#endif
955
956 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS"))
788 flags = atoi (getenv ("LIBEV_FLAGS")); 959 flags = atoi (getenv ("LIBEV_FLAGS"));
789 960
790 if (!(flags & 0x0000ffff)) 961 if (!(flags & 0x0000ffffUL))
791 flags |= 0x0000ffff; 962 flags |= ev_recommended_backends ();
792 963
793 method = 0; 964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969
794#if EV_USE_PORT 970#if EV_USE_PORT
795 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
796#endif 972#endif
797#if EV_USE_KQUEUE 973#if EV_USE_KQUEUE
798 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 974 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
799#endif 975#endif
800#if EV_USE_EPOLL 976#if EV_USE_EPOLL
801 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 977 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
802#endif 978#endif
803#if EV_USE_POLL 979#if EV_USE_POLL
804 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 980 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
805#endif 981#endif
806#if EV_USE_SELECT 982#if EV_USE_SELECT
807 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
808#endif 984#endif
809 985
810 ev_init (&sigev, sigcb); 986 ev_init (&sigev, sigcb);
811 ev_set_priority (&sigev, EV_MAXPRI); 987 ev_set_priority (&sigev, EV_MAXPRI);
812 } 988 }
813} 989}
814 990
815void 991static void noinline
816loop_destroy (EV_P) 992loop_destroy (EV_P)
817{ 993{
818 int i; 994 int i;
819 995
996#if EV_USE_INOTIFY
997 if (fs_fd >= 0)
998 close (fs_fd);
999#endif
1000
1001 if (backend_fd >= 0)
1002 close (backend_fd);
1003
820#if EV_USE_PORT 1004#if EV_USE_PORT
821 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1005 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
822#endif 1006#endif
823#if EV_USE_KQUEUE 1007#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1008 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
825#endif 1009#endif
826#if EV_USE_EPOLL 1010#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1011 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
828#endif 1012#endif
829#if EV_USE_POLL 1013#if EV_USE_POLL
830 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1014 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
831#endif 1015#endif
832#if EV_USE_SELECT 1016#if EV_USE_SELECT
833 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1017 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
834#endif 1018#endif
835 1019
836 for (i = NUMPRI; i--; ) 1020 for (i = NUMPRI; i--; )
1021 {
837 array_free (pending, [i]); 1022 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE
1024 array_free (idle, [i]);
1025#endif
1026 }
838 1027
839 /* have to use the microsoft-never-gets-it-right macro */ 1028 /* have to use the microsoft-never-gets-it-right macro */
840 array_free (fdchange, EMPTY0); 1029 array_free (fdchange, EMPTY);
841 array_free (timer, EMPTY0); 1030 array_free (timer, EMPTY);
842#if EV_PERIODICS 1031#if EV_PERIODIC_ENABLE
843 array_free (periodic, EMPTY0); 1032 array_free (periodic, EMPTY);
844#endif 1033#endif
845 array_free (idle, EMPTY0);
846 array_free (prepare, EMPTY0); 1034 array_free (prepare, EMPTY);
847 array_free (check, EMPTY0); 1035 array_free (check, EMPTY);
848 1036
849 method = 0; 1037 backend = 0;
850} 1038}
851 1039
852static void 1040void inline_size infy_fork (EV_P);
1041
1042void inline_size
853loop_fork (EV_P) 1043loop_fork (EV_P)
854{ 1044{
855#if EV_USE_PORT 1045#if EV_USE_PORT
856 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1046 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
857#endif 1047#endif
858#if EV_USE_KQUEUE 1048#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1049 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
860#endif 1050#endif
861#if EV_USE_EPOLL 1051#if EV_USE_EPOLL
862 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1052 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1053#endif
1054#if EV_USE_INOTIFY
1055 infy_fork (EV_A);
863#endif 1056#endif
864 1057
865 if (ev_is_active (&sigev)) 1058 if (ev_is_active (&sigev))
866 { 1059 {
867 /* default loop */ 1060 /* default loop */
888 1081
889 memset (loop, 0, sizeof (struct ev_loop)); 1082 memset (loop, 0, sizeof (struct ev_loop));
890 1083
891 loop_init (EV_A_ flags); 1084 loop_init (EV_A_ flags);
892 1085
893 if (ev_method (EV_A)) 1086 if (ev_backend (EV_A))
894 return loop; 1087 return loop;
895 1088
896 return 0; 1089 return 0;
897} 1090}
898 1091
911 1104
912#endif 1105#endif
913 1106
914#if EV_MULTIPLICITY 1107#if EV_MULTIPLICITY
915struct ev_loop * 1108struct ev_loop *
916ev_default_loop_ (unsigned int flags) 1109ev_default_loop_init (unsigned int flags)
917#else 1110#else
918int 1111int
919ev_default_loop (unsigned int flags) 1112ev_default_loop (unsigned int flags)
920#endif 1113#endif
921{ 1114{
931 ev_default_loop_ptr = 1; 1124 ev_default_loop_ptr = 1;
932#endif 1125#endif
933 1126
934 loop_init (EV_A_ flags); 1127 loop_init (EV_A_ flags);
935 1128
936 if (ev_method (EV_A)) 1129 if (ev_backend (EV_A))
937 { 1130 {
938 siginit (EV_A); 1131 siginit (EV_A);
939 1132
940#ifndef _WIN32 1133#ifndef _WIN32
941 ev_signal_init (&childev, childcb, SIGCHLD); 1134 ev_signal_init (&childev, childcb, SIGCHLD);
977{ 1170{
978#if EV_MULTIPLICITY 1171#if EV_MULTIPLICITY
979 struct ev_loop *loop = ev_default_loop_ptr; 1172 struct ev_loop *loop = ev_default_loop_ptr;
980#endif 1173#endif
981 1174
982 if (method) 1175 if (backend)
983 postfork = 1; 1176 postfork = 1;
984} 1177}
985 1178
986/*****************************************************************************/ 1179/*****************************************************************************/
987 1180
988static int 1181void
989any_pending (EV_P) 1182ev_invoke (EV_P_ void *w, int revents)
990{ 1183{
991 int pri; 1184 EV_CB_INVOKE ((W)w, revents);
992
993 for (pri = NUMPRI; pri--; )
994 if (pendingcnt [pri])
995 return 1;
996
997 return 0;
998} 1185}
999 1186
1000static void 1187void inline_speed
1001call_pending (EV_P) 1188call_pending (EV_P)
1002{ 1189{
1003 int pri; 1190 int pri;
1004 1191
1005 for (pri = NUMPRI; pri--; ) 1192 for (pri = NUMPRI; pri--; )
1006 while (pendingcnt [pri]) 1193 while (pendingcnt [pri])
1007 { 1194 {
1008 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1195 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1009 1196
1010 if (p->w) 1197 if (expect_true (p->w))
1011 { 1198 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1200
1012 p->w->pending = 0; 1201 p->w->pending = 0;
1013 EV_CB_INVOKE (p->w, p->events); 1202 EV_CB_INVOKE (p->w, p->events);
1014 } 1203 }
1015 } 1204 }
1016} 1205}
1017 1206
1018static void 1207void inline_size
1019timers_reify (EV_P) 1208timers_reify (EV_P)
1020{ 1209{
1021 while (timercnt && ((WT)timers [0])->at <= mn_now) 1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1022 { 1211 {
1023 struct ev_timer *w = timers [0]; 1212 ev_timer *w = timers [0];
1024 1213
1025 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1026 1215
1027 /* first reschedule or stop timer */ 1216 /* first reschedule or stop timer */
1028 if (w->repeat) 1217 if (w->repeat)
1029 { 1218 {
1030 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1040 1229
1041 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1042 } 1231 }
1043} 1232}
1044 1233
1045#if EV_PERIODICS 1234#if EV_PERIODIC_ENABLE
1046static void 1235void inline_size
1047periodics_reify (EV_P) 1236periodics_reify (EV_P)
1048{ 1237{
1049 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1050 { 1239 {
1051 struct ev_periodic *w = periodics [0]; 1240 ev_periodic *w = periodics [0];
1052 1241
1053 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1054 1243
1055 /* first reschedule or stop timer */ 1244 /* first reschedule or stop timer */
1056 if (w->reschedule_cb) 1245 if (w->reschedule_cb)
1057 { 1246 {
1058 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1059 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1060 downheap ((WT *)periodics, periodiccnt, 0); 1249 downheap ((WT *)periodics, periodiccnt, 0);
1061 } 1250 }
1062 else if (w->interval) 1251 else if (w->interval)
1063 { 1252 {
1064 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1065 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1066 downheap ((WT *)periodics, periodiccnt, 0); 1255 downheap ((WT *)periodics, periodiccnt, 0);
1067 } 1256 }
1068 else 1257 else
1069 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1070 1259
1071 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1072 } 1261 }
1073} 1262}
1074 1263
1075static void 1264static void noinline
1076periodics_reschedule (EV_P) 1265periodics_reschedule (EV_P)
1077{ 1266{
1078 int i; 1267 int i;
1079 1268
1080 /* adjust periodics after time jump */ 1269 /* adjust periodics after time jump */
1081 for (i = 0; i < periodiccnt; ++i) 1270 for (i = 0; i < periodiccnt; ++i)
1082 { 1271 {
1083 struct ev_periodic *w = periodics [i]; 1272 ev_periodic *w = periodics [i];
1084 1273
1085 if (w->reschedule_cb) 1274 if (w->reschedule_cb)
1086 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1087 else if (w->interval) 1276 else if (w->interval)
1088 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1089 } 1278 }
1090 1279
1091 /* now rebuild the heap */ 1280 /* now rebuild the heap */
1092 for (i = periodiccnt >> 1; i--; ) 1281 for (i = periodiccnt >> 1; i--; )
1093 downheap ((WT *)periodics, periodiccnt, i); 1282 downheap ((WT *)periodics, periodiccnt, i);
1094} 1283}
1095#endif 1284#endif
1096 1285
1097inline int 1286#if EV_IDLE_ENABLE
1287void inline_size
1288idle_reify (EV_P)
1289{
1290 if (expect_false (idleall))
1291 {
1292 int pri;
1293
1294 for (pri = NUMPRI; pri--; )
1295 {
1296 if (pendingcnt [pri])
1297 break;
1298
1299 if (idlecnt [pri])
1300 {
1301 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1302 break;
1303 }
1304 }
1305 }
1306}
1307#endif
1308
1309int inline_size
1098time_update_monotonic (EV_P) 1310time_update_monotonic (EV_P)
1099{ 1311{
1100 mn_now = get_clock (); 1312 mn_now = get_clock ();
1101 1313
1102 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1110 ev_rt_now = ev_time (); 1322 ev_rt_now = ev_time ();
1111 return 1; 1323 return 1;
1112 } 1324 }
1113} 1325}
1114 1326
1115static void 1327void inline_size
1116time_update (EV_P) 1328time_update (EV_P)
1117{ 1329{
1118 int i; 1330 int i;
1119 1331
1120#if EV_USE_MONOTONIC 1332#if EV_USE_MONOTONIC
1122 { 1334 {
1123 if (time_update_monotonic (EV_A)) 1335 if (time_update_monotonic (EV_A))
1124 { 1336 {
1125 ev_tstamp odiff = rtmn_diff; 1337 ev_tstamp odiff = rtmn_diff;
1126 1338
1127 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1128 { 1348 {
1129 rtmn_diff = ev_rt_now - mn_now; 1349 rtmn_diff = ev_rt_now - mn_now;
1130 1350
1131 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1132 return; /* all is well */ 1352 return; /* all is well */
1134 ev_rt_now = ev_time (); 1354 ev_rt_now = ev_time ();
1135 mn_now = get_clock (); 1355 mn_now = get_clock ();
1136 now_floor = mn_now; 1356 now_floor = mn_now;
1137 } 1357 }
1138 1358
1139# if EV_PERIODICS 1359# if EV_PERIODIC_ENABLE
1140 periodics_reschedule (EV_A); 1360 periodics_reschedule (EV_A);
1141# endif 1361# endif
1142 /* no timer adjustment, as the monotonic clock doesn't jump */ 1362 /* no timer adjustment, as the monotonic clock doesn't jump */
1143 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1144 } 1364 }
1148 { 1368 {
1149 ev_rt_now = ev_time (); 1369 ev_rt_now = ev_time ();
1150 1370
1151 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1152 { 1372 {
1153#if EV_PERIODICS 1373#if EV_PERIODIC_ENABLE
1154 periodics_reschedule (EV_A); 1374 periodics_reschedule (EV_A);
1155#endif 1375#endif
1156 1376
1157 /* adjust timers. this is easy, as the offset is the same for all */ 1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1158 for (i = 0; i < timercnt; ++i) 1378 for (i = 0; i < timercnt; ++i)
1159 ((WT)timers [i])->at += ev_rt_now - mn_now; 1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1160 } 1380 }
1161 1381
1162 mn_now = ev_rt_now; 1382 mn_now = ev_rt_now;
1178static int loop_done; 1398static int loop_done;
1179 1399
1180void 1400void
1181ev_loop (EV_P_ int flags) 1401ev_loop (EV_P_ int flags)
1182{ 1402{
1183 double block;
1184 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1185 1406
1186 while (activecnt) 1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408
1409 do
1187 { 1410 {
1411#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid))
1414 {
1415 curpid = getpid ();
1416 postfork = 1;
1417 }
1418#endif
1419
1420#if EV_FORK_ENABLE
1421 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork))
1423 if (forkcnt)
1424 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A);
1427 }
1428#endif
1429
1188 /* queue check watchers (and execute them) */ 1430 /* queue prepare watchers (and execute them) */
1189 if (expect_false (preparecnt)) 1431 if (expect_false (preparecnt))
1190 { 1432 {
1191 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1192 call_pending (EV_A); 1434 call_pending (EV_A);
1193 } 1435 }
1194 1436
1437 if (expect_false (!activecnt))
1438 break;
1439
1195 /* we might have forked, so reify kernel state if necessary */ 1440 /* we might have forked, so reify kernel state if necessary */
1196 if (expect_false (postfork)) 1441 if (expect_false (postfork))
1197 loop_fork (EV_A); 1442 loop_fork (EV_A);
1198 1443
1199 /* update fd-related kernel structures */ 1444 /* update fd-related kernel structures */
1200 fd_reify (EV_A); 1445 fd_reify (EV_A);
1201 1446
1202 /* calculate blocking time */ 1447 /* calculate blocking time */
1448 {
1449 ev_tstamp block;
1203 1450
1204 /* we only need this for !monotonic clock or timers, but as we basically 1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1205 always have timers, we just calculate it always */ 1452 block = 0.; /* do not block at all */
1453 else
1454 {
1455 /* update time to cancel out callback processing overhead */
1206#if EV_USE_MONOTONIC 1456#if EV_USE_MONOTONIC
1207 if (expect_true (have_monotonic)) 1457 if (expect_true (have_monotonic))
1208 time_update_monotonic (EV_A); 1458 time_update_monotonic (EV_A);
1209 else 1459 else
1210#endif 1460#endif
1211 { 1461 {
1212 ev_rt_now = ev_time (); 1462 ev_rt_now = ev_time ();
1213 mn_now = ev_rt_now; 1463 mn_now = ev_rt_now;
1214 } 1464 }
1215 1465
1216 if (flags & EVLOOP_NONBLOCK || idlecnt)
1217 block = 0.;
1218 else
1219 {
1220 block = MAX_BLOCKTIME; 1466 block = MAX_BLOCKTIME;
1221 1467
1222 if (timercnt) 1468 if (timercnt)
1223 { 1469 {
1224 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1225 if (block > to) block = to; 1471 if (block > to) block = to;
1226 } 1472 }
1227 1473
1228#if EV_PERIODICS 1474#if EV_PERIODIC_ENABLE
1229 if (periodiccnt) 1475 if (periodiccnt)
1230 { 1476 {
1231 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1232 if (block > to) block = to; 1478 if (block > to) block = to;
1233 } 1479 }
1234#endif 1480#endif
1235 1481
1236 if (block < 0.) block = 0.; 1482 if (expect_false (block < 0.)) block = 0.;
1237 } 1483 }
1238 1484
1485 ++loop_count;
1239 method_poll (EV_A_ block); 1486 backend_poll (EV_A_ block);
1487 }
1240 1488
1241 /* update ev_rt_now, do magic */ 1489 /* update ev_rt_now, do magic */
1242 time_update (EV_A); 1490 time_update (EV_A);
1243 1491
1244 /* queue pending timers and reschedule them */ 1492 /* queue pending timers and reschedule them */
1245 timers_reify (EV_A); /* relative timers called last */ 1493 timers_reify (EV_A); /* relative timers called last */
1246#if EV_PERIODICS 1494#if EV_PERIODIC_ENABLE
1247 periodics_reify (EV_A); /* absolute timers called first */ 1495 periodics_reify (EV_A); /* absolute timers called first */
1248#endif 1496#endif
1249 1497
1498#if EV_IDLE_ENABLE
1250 /* queue idle watchers unless io or timers are pending */ 1499 /* queue idle watchers unless other events are pending */
1251 if (idlecnt && !any_pending (EV_A)) 1500 idle_reify (EV_A);
1252 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1501#endif
1253 1502
1254 /* queue check watchers, to be executed first */ 1503 /* queue check watchers, to be executed first */
1255 if (checkcnt) 1504 if (expect_false (checkcnt))
1256 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1257 1506
1258 call_pending (EV_A); 1507 call_pending (EV_A);
1259 1508
1260 if (loop_done)
1261 break;
1262 } 1509 }
1510 while (expect_true (activecnt && !loop_done));
1263 1511
1264 if (loop_done != 2) 1512 if (loop_done == EVUNLOOP_ONE)
1265 loop_done = 0; 1513 loop_done = EVUNLOOP_CANCEL;
1266} 1514}
1267 1515
1268void 1516void
1269ev_unloop (EV_P_ int how) 1517ev_unloop (EV_P_ int how)
1270{ 1518{
1271 loop_done = how; 1519 loop_done = how;
1272} 1520}
1273 1521
1274/*****************************************************************************/ 1522/*****************************************************************************/
1275 1523
1276inline void 1524void inline_size
1277wlist_add (WL *head, WL elem) 1525wlist_add (WL *head, WL elem)
1278{ 1526{
1279 elem->next = *head; 1527 elem->next = *head;
1280 *head = elem; 1528 *head = elem;
1281} 1529}
1282 1530
1283inline void 1531void inline_size
1284wlist_del (WL *head, WL elem) 1532wlist_del (WL *head, WL elem)
1285{ 1533{
1286 while (*head) 1534 while (*head)
1287 { 1535 {
1288 if (*head == elem) 1536 if (*head == elem)
1293 1541
1294 head = &(*head)->next; 1542 head = &(*head)->next;
1295 } 1543 }
1296} 1544}
1297 1545
1298inline void 1546void inline_speed
1299ev_clear_pending (EV_P_ W w) 1547clear_pending (EV_P_ W w)
1300{ 1548{
1301 if (w->pending) 1549 if (w->pending)
1302 { 1550 {
1303 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1551 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1304 w->pending = 0; 1552 w->pending = 0;
1305 } 1553 }
1306} 1554}
1307 1555
1308inline void 1556int
1557ev_clear_pending (EV_P_ void *w)
1558{
1559 W w_ = (W)w;
1560 int pending = w_->pending;
1561
1562 if (expect_true (pending))
1563 {
1564 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1565 w_->pending = 0;
1566 p->w = 0;
1567 return p->events;
1568 }
1569 else
1570 return 0;
1571}
1572
1573void inline_size
1574pri_adjust (EV_P_ W w)
1575{
1576 int pri = w->priority;
1577 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1578 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1579 w->priority = pri;
1580}
1581
1582void inline_speed
1309ev_start (EV_P_ W w, int active) 1583ev_start (EV_P_ W w, int active)
1310{ 1584{
1311 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1585 pri_adjust (EV_A_ w);
1312 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1313
1314 w->active = active; 1586 w->active = active;
1315 ev_ref (EV_A); 1587 ev_ref (EV_A);
1316} 1588}
1317 1589
1318inline void 1590void inline_size
1319ev_stop (EV_P_ W w) 1591ev_stop (EV_P_ W w)
1320{ 1592{
1321 ev_unref (EV_A); 1593 ev_unref (EV_A);
1322 w->active = 0; 1594 w->active = 0;
1323} 1595}
1324 1596
1325/*****************************************************************************/ 1597/*****************************************************************************/
1326 1598
1327void 1599void noinline
1328ev_io_start (EV_P_ struct ev_io *w) 1600ev_io_start (EV_P_ ev_io *w)
1329{ 1601{
1330 int fd = w->fd; 1602 int fd = w->fd;
1331 1603
1332 if (ev_is_active (w)) 1604 if (expect_false (ev_is_active (w)))
1333 return; 1605 return;
1334 1606
1335 assert (("ev_io_start called with negative fd", fd >= 0)); 1607 assert (("ev_io_start called with negative fd", fd >= 0));
1336 1608
1337 ev_start (EV_A_ (W)w, 1); 1609 ev_start (EV_A_ (W)w, 1);
1339 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1611 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1340 1612
1341 fd_change (EV_A_ fd); 1613 fd_change (EV_A_ fd);
1342} 1614}
1343 1615
1344void 1616void noinline
1345ev_io_stop (EV_P_ struct ev_io *w) 1617ev_io_stop (EV_P_ ev_io *w)
1346{ 1618{
1347 ev_clear_pending (EV_A_ (W)w); 1619 clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 1620 if (expect_false (!ev_is_active (w)))
1349 return; 1621 return;
1350 1622
1351 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1352 1624
1353 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1354 ev_stop (EV_A_ (W)w); 1626 ev_stop (EV_A_ (W)w);
1355 1627
1356 fd_change (EV_A_ w->fd); 1628 fd_change (EV_A_ w->fd);
1357} 1629}
1358 1630
1359void 1631void noinline
1360ev_timer_start (EV_P_ struct ev_timer *w) 1632ev_timer_start (EV_P_ ev_timer *w)
1361{ 1633{
1362 if (ev_is_active (w)) 1634 if (expect_false (ev_is_active (w)))
1363 return; 1635 return;
1364 1636
1365 ((WT)w)->at += mn_now; 1637 ((WT)w)->at += mn_now;
1366 1638
1367 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1368 1640
1369 ev_start (EV_A_ (W)w, ++timercnt); 1641 ev_start (EV_A_ (W)w, ++timercnt);
1370 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1371 timers [timercnt - 1] = w; 1643 timers [timercnt - 1] = w;
1372 upheap ((WT *)timers, timercnt - 1); 1644 upheap ((WT *)timers, timercnt - 1);
1373 1645
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1647}
1648
1649void noinline
1650ev_timer_stop (EV_P_ ev_timer *w)
1651{
1652 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w)))
1654 return;
1655
1374 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1375}
1376 1657
1377void 1658 {
1378ev_timer_stop (EV_P_ struct ev_timer *w) 1659 int active = ((W)w)->active;
1379{
1380 ev_clear_pending (EV_A_ (W)w);
1381 if (!ev_is_active (w))
1382 return;
1383 1660
1384 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1661 if (expect_true (--active < --timercnt))
1385
1386 if (((W)w)->active < timercnt--)
1387 { 1662 {
1388 timers [((W)w)->active - 1] = timers [timercnt]; 1663 timers [active] = timers [timercnt];
1389 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1664 adjustheap ((WT *)timers, timercnt, active);
1390 } 1665 }
1666 }
1391 1667
1392 ((WT)w)->at -= mn_now; 1668 ((WT)w)->at -= mn_now;
1393 1669
1394 ev_stop (EV_A_ (W)w); 1670 ev_stop (EV_A_ (W)w);
1395} 1671}
1396 1672
1397void 1673void noinline
1398ev_timer_again (EV_P_ struct ev_timer *w) 1674ev_timer_again (EV_P_ ev_timer *w)
1399{ 1675{
1400 if (ev_is_active (w)) 1676 if (ev_is_active (w))
1401 { 1677 {
1402 if (w->repeat) 1678 if (w->repeat)
1403 { 1679 {
1412 w->at = w->repeat; 1688 w->at = w->repeat;
1413 ev_timer_start (EV_A_ w); 1689 ev_timer_start (EV_A_ w);
1414 } 1690 }
1415} 1691}
1416 1692
1417#if EV_PERIODICS 1693#if EV_PERIODIC_ENABLE
1418void 1694void noinline
1419ev_periodic_start (EV_P_ struct ev_periodic *w) 1695ev_periodic_start (EV_P_ ev_periodic *w)
1420{ 1696{
1421 if (ev_is_active (w)) 1697 if (expect_false (ev_is_active (w)))
1422 return; 1698 return;
1423 1699
1424 if (w->reschedule_cb) 1700 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval) 1702 else if (w->interval)
1427 { 1703 {
1428 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1429 /* this formula differs from the one in periodic_reify because we do not always round up */ 1705 /* this formula differs from the one in periodic_reify because we do not always round up */
1430 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 } 1707 }
1708 else
1709 ((WT)w)->at = w->offset;
1432 1710
1433 ev_start (EV_A_ (W)w, ++periodiccnt); 1711 ev_start (EV_A_ (W)w, ++periodiccnt);
1434 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1435 periodics [periodiccnt - 1] = w; 1713 periodics [periodiccnt - 1] = w;
1436 upheap ((WT *)periodics, periodiccnt - 1); 1714 upheap ((WT *)periodics, periodiccnt - 1);
1437 1715
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1717}
1718
1719void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w)
1721{
1722 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w)))
1724 return;
1725
1438 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1439}
1440 1727
1441void 1728 {
1442ev_periodic_stop (EV_P_ struct ev_periodic *w) 1729 int active = ((W)w)->active;
1443{
1444 ev_clear_pending (EV_A_ (W)w);
1445 if (!ev_is_active (w))
1446 return;
1447 1730
1448 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1731 if (expect_true (--active < --periodiccnt))
1449
1450 if (((W)w)->active < periodiccnt--)
1451 { 1732 {
1452 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1733 periodics [active] = periodics [periodiccnt];
1453 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1734 adjustheap ((WT *)periodics, periodiccnt, active);
1454 } 1735 }
1736 }
1455 1737
1456 ev_stop (EV_A_ (W)w); 1738 ev_stop (EV_A_ (W)w);
1457} 1739}
1458 1740
1459void 1741void noinline
1460ev_periodic_again (EV_P_ struct ev_periodic *w) 1742ev_periodic_again (EV_P_ ev_periodic *w)
1461{ 1743{
1462 /* TODO: use adjustheap and recalculation */ 1744 /* TODO: use adjustheap and recalculation */
1463 ev_periodic_stop (EV_A_ w); 1745 ev_periodic_stop (EV_A_ w);
1464 ev_periodic_start (EV_A_ w); 1746 ev_periodic_start (EV_A_ w);
1465} 1747}
1466#endif 1748#endif
1467 1749
1468void
1469ev_idle_start (EV_P_ struct ev_idle *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++idlecnt);
1475 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1476 idles [idlecnt - 1] = w;
1477}
1478
1479void
1480ev_idle_stop (EV_P_ struct ev_idle *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 idles [((W)w)->active - 1] = idles [--idlecnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490void
1491ev_prepare_start (EV_P_ struct ev_prepare *w)
1492{
1493 if (ev_is_active (w))
1494 return;
1495
1496 ev_start (EV_A_ (W)w, ++preparecnt);
1497 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1498 prepares [preparecnt - 1] = w;
1499}
1500
1501void
1502ev_prepare_stop (EV_P_ struct ev_prepare *w)
1503{
1504 ev_clear_pending (EV_A_ (W)w);
1505 if (!ev_is_active (w))
1506 return;
1507
1508 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1509 ev_stop (EV_A_ (W)w);
1510}
1511
1512void
1513ev_check_start (EV_P_ struct ev_check *w)
1514{
1515 if (ev_is_active (w))
1516 return;
1517
1518 ev_start (EV_A_ (W)w, ++checkcnt);
1519 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1520 checks [checkcnt - 1] = w;
1521}
1522
1523void
1524ev_check_stop (EV_P_ struct ev_check *w)
1525{
1526 ev_clear_pending (EV_A_ (W)w);
1527 if (!ev_is_active (w))
1528 return;
1529
1530 checks [((W)w)->active - 1] = checks [--checkcnt];
1531 ev_stop (EV_A_ (W)w);
1532}
1533
1534#ifndef SA_RESTART 1750#ifndef SA_RESTART
1535# define SA_RESTART 0 1751# define SA_RESTART 0
1536#endif 1752#endif
1537 1753
1538void 1754void noinline
1539ev_signal_start (EV_P_ struct ev_signal *w) 1755ev_signal_start (EV_P_ ev_signal *w)
1540{ 1756{
1541#if EV_MULTIPLICITY 1757#if EV_MULTIPLICITY
1542 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1543#endif 1759#endif
1544 if (ev_is_active (w)) 1760 if (expect_false (ev_is_active (w)))
1545 return; 1761 return;
1546 1762
1547 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1548 1764
1549 ev_start (EV_A_ (W)w, 1); 1765 ev_start (EV_A_ (W)w, 1);
1562 sigaction (w->signum, &sa, 0); 1778 sigaction (w->signum, &sa, 0);
1563#endif 1779#endif
1564 } 1780 }
1565} 1781}
1566 1782
1567void 1783void noinline
1568ev_signal_stop (EV_P_ struct ev_signal *w) 1784ev_signal_stop (EV_P_ ev_signal *w)
1569{ 1785{
1570 ev_clear_pending (EV_A_ (W)w); 1786 clear_pending (EV_A_ (W)w);
1571 if (!ev_is_active (w)) 1787 if (expect_false (!ev_is_active (w)))
1572 return; 1788 return;
1573 1789
1574 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1575 ev_stop (EV_A_ (W)w); 1791 ev_stop (EV_A_ (W)w);
1576 1792
1577 if (!signals [w->signum - 1].head) 1793 if (!signals [w->signum - 1].head)
1578 signal (w->signum, SIG_DFL); 1794 signal (w->signum, SIG_DFL);
1579} 1795}
1580 1796
1581void 1797void
1582ev_child_start (EV_P_ struct ev_child *w) 1798ev_child_start (EV_P_ ev_child *w)
1583{ 1799{
1584#if EV_MULTIPLICITY 1800#if EV_MULTIPLICITY
1585 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1586#endif 1802#endif
1587 if (ev_is_active (w)) 1803 if (expect_false (ev_is_active (w)))
1588 return; 1804 return;
1589 1805
1590 ev_start (EV_A_ (W)w, 1); 1806 ev_start (EV_A_ (W)w, 1);
1591 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1592} 1808}
1593 1809
1594void 1810void
1595ev_child_stop (EV_P_ struct ev_child *w) 1811ev_child_stop (EV_P_ ev_child *w)
1596{ 1812{
1597 ev_clear_pending (EV_A_ (W)w); 1813 clear_pending (EV_A_ (W)w);
1598 if (!ev_is_active (w)) 1814 if (expect_false (!ev_is_active (w)))
1599 return; 1815 return;
1600 1816
1601 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1602 ev_stop (EV_A_ (W)w); 1818 ev_stop (EV_A_ (W)w);
1603} 1819}
1604 1820
1821#if EV_STAT_ENABLE
1822
1823# ifdef _WIN32
1824# undef lstat
1825# define lstat(a,b) _stati64 (a,b)
1826# endif
1827
1828#define DEF_STAT_INTERVAL 5.0074891
1829#define MIN_STAT_INTERVAL 0.1074891
1830
1831static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1832
1833#if EV_USE_INOTIFY
1834# define EV_INOTIFY_BUFSIZE 8192
1835
1836static void noinline
1837infy_add (EV_P_ ev_stat *w)
1838{
1839 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1840
1841 if (w->wd < 0)
1842 {
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1844
1845 /* monitor some parent directory for speedup hints */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 {
1848 char path [4096];
1849 strcpy (path, w->path);
1850
1851 do
1852 {
1853 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1854 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1855
1856 char *pend = strrchr (path, '/');
1857
1858 if (!pend)
1859 break; /* whoops, no '/', complain to your admin */
1860
1861 *pend = 0;
1862 w->wd = inotify_add_watch (fs_fd, path, mask);
1863 }
1864 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1865 }
1866 }
1867 else
1868 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1869
1870 if (w->wd >= 0)
1871 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1872}
1873
1874static void noinline
1875infy_del (EV_P_ ev_stat *w)
1876{
1877 int slot;
1878 int wd = w->wd;
1879
1880 if (wd < 0)
1881 return;
1882
1883 w->wd = -2;
1884 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1885 wlist_del (&fs_hash [slot].head, (WL)w);
1886
1887 /* remove this watcher, if others are watching it, they will rearm */
1888 inotify_rm_watch (fs_fd, wd);
1889}
1890
1891static void noinline
1892infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1893{
1894 if (slot < 0)
1895 /* overflow, need to check for all hahs slots */
1896 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1897 infy_wd (EV_A_ slot, wd, ev);
1898 else
1899 {
1900 WL w_;
1901
1902 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1903 {
1904 ev_stat *w = (ev_stat *)w_;
1905 w_ = w_->next; /* lets us remove this watcher and all before it */
1906
1907 if (w->wd == wd || wd == -1)
1908 {
1909 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1910 {
1911 w->wd = -1;
1912 infy_add (EV_A_ w); /* re-add, no matter what */
1913 }
1914
1915 stat_timer_cb (EV_A_ &w->timer, 0);
1916 }
1917 }
1918 }
1919}
1920
1921static void
1922infy_cb (EV_P_ ev_io *w, int revents)
1923{
1924 char buf [EV_INOTIFY_BUFSIZE];
1925 struct inotify_event *ev = (struct inotify_event *)buf;
1926 int ofs;
1927 int len = read (fs_fd, buf, sizeof (buf));
1928
1929 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1930 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1931}
1932
1933void inline_size
1934infy_init (EV_P)
1935{
1936 if (fs_fd != -2)
1937 return;
1938
1939 fs_fd = inotify_init ();
1940
1941 if (fs_fd >= 0)
1942 {
1943 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1944 ev_set_priority (&fs_w, EV_MAXPRI);
1945 ev_io_start (EV_A_ &fs_w);
1946 }
1947}
1948
1949void inline_size
1950infy_fork (EV_P)
1951{
1952 int slot;
1953
1954 if (fs_fd < 0)
1955 return;
1956
1957 close (fs_fd);
1958 fs_fd = inotify_init ();
1959
1960 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1961 {
1962 WL w_ = fs_hash [slot].head;
1963 fs_hash [slot].head = 0;
1964
1965 while (w_)
1966 {
1967 ev_stat *w = (ev_stat *)w_;
1968 w_ = w_->next; /* lets us add this watcher */
1969
1970 w->wd = -1;
1971
1972 if (fs_fd >= 0)
1973 infy_add (EV_A_ w); /* re-add, no matter what */
1974 else
1975 ev_timer_start (EV_A_ &w->timer);
1976 }
1977
1978 }
1979}
1980
1981#endif
1982
1983void
1984ev_stat_stat (EV_P_ ev_stat *w)
1985{
1986 if (lstat (w->path, &w->attr) < 0)
1987 w->attr.st_nlink = 0;
1988 else if (!w->attr.st_nlink)
1989 w->attr.st_nlink = 1;
1990}
1991
1992static void noinline
1993stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1994{
1995 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1996
1997 /* we copy this here each the time so that */
1998 /* prev has the old value when the callback gets invoked */
1999 w->prev = w->attr;
2000 ev_stat_stat (EV_A_ w);
2001
2002 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2003 if (
2004 w->prev.st_dev != w->attr.st_dev
2005 || w->prev.st_ino != w->attr.st_ino
2006 || w->prev.st_mode != w->attr.st_mode
2007 || w->prev.st_nlink != w->attr.st_nlink
2008 || w->prev.st_uid != w->attr.st_uid
2009 || w->prev.st_gid != w->attr.st_gid
2010 || w->prev.st_rdev != w->attr.st_rdev
2011 || w->prev.st_size != w->attr.st_size
2012 || w->prev.st_atime != w->attr.st_atime
2013 || w->prev.st_mtime != w->attr.st_mtime
2014 || w->prev.st_ctime != w->attr.st_ctime
2015 ) {
2016 #if EV_USE_INOTIFY
2017 infy_del (EV_A_ w);
2018 infy_add (EV_A_ w);
2019 ev_stat_stat (EV_A_ w); /* avoid race... */
2020 #endif
2021
2022 ev_feed_event (EV_A_ w, EV_STAT);
2023 }
2024}
2025
2026void
2027ev_stat_start (EV_P_ ev_stat *w)
2028{
2029 if (expect_false (ev_is_active (w)))
2030 return;
2031
2032 /* since we use memcmp, we need to clear any padding data etc. */
2033 memset (&w->prev, 0, sizeof (ev_statdata));
2034 memset (&w->attr, 0, sizeof (ev_statdata));
2035
2036 ev_stat_stat (EV_A_ w);
2037
2038 if (w->interval < MIN_STAT_INTERVAL)
2039 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2040
2041 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2042 ev_set_priority (&w->timer, ev_priority (w));
2043
2044#if EV_USE_INOTIFY
2045 infy_init (EV_A);
2046
2047 if (fs_fd >= 0)
2048 infy_add (EV_A_ w);
2049 else
2050#endif
2051 ev_timer_start (EV_A_ &w->timer);
2052
2053 ev_start (EV_A_ (W)w, 1);
2054}
2055
2056void
2057ev_stat_stop (EV_P_ ev_stat *w)
2058{
2059 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w)))
2061 return;
2062
2063#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w);
2065#endif
2066 ev_timer_stop (EV_A_ &w->timer);
2067
2068 ev_stop (EV_A_ (W)w);
2069}
2070#endif
2071
2072#if EV_IDLE_ENABLE
2073void
2074ev_idle_start (EV_P_ ev_idle *w)
2075{
2076 if (expect_false (ev_is_active (w)))
2077 return;
2078
2079 pri_adjust (EV_A_ (W)w);
2080
2081 {
2082 int active = ++idlecnt [ABSPRI (w)];
2083
2084 ++idleall;
2085 ev_start (EV_A_ (W)w, active);
2086
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w;
2089 }
2090}
2091
2092void
2093ev_idle_stop (EV_P_ ev_idle *w)
2094{
2095 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w)))
2097 return;
2098
2099 {
2100 int active = ((W)w)->active;
2101
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2104
2105 ev_stop (EV_A_ (W)w);
2106 --idleall;
2107 }
2108}
2109#endif
2110
2111void
2112ev_prepare_start (EV_P_ ev_prepare *w)
2113{
2114 if (expect_false (ev_is_active (w)))
2115 return;
2116
2117 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w;
2120}
2121
2122void
2123ev_prepare_stop (EV_P_ ev_prepare *w)
2124{
2125 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w)))
2127 return;
2128
2129 {
2130 int active = ((W)w)->active;
2131 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active;
2133 }
2134
2135 ev_stop (EV_A_ (W)w);
2136}
2137
2138void
2139ev_check_start (EV_P_ ev_check *w)
2140{
2141 if (expect_false (ev_is_active (w)))
2142 return;
2143
2144 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w;
2147}
2148
2149void
2150ev_check_stop (EV_P_ ev_check *w)
2151{
2152 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w)))
2154 return;
2155
2156 {
2157 int active = ((W)w)->active;
2158 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active;
2160 }
2161
2162 ev_stop (EV_A_ (W)w);
2163}
2164
2165#if EV_EMBED_ENABLE
2166void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w)
2168{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK);
2170}
2171
2172static void
2173embed_cb (EV_P_ ev_io *io, int revents)
2174{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176
2177 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else
2180 ev_embed_sweep (loop, w);
2181}
2182
2183void
2184ev_embed_start (EV_P_ ev_embed *w)
2185{
2186 if (expect_false (ev_is_active (w)))
2187 return;
2188
2189 {
2190 struct ev_loop *loop = w->loop;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2193 }
2194
2195 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io);
2197
2198 ev_start (EV_A_ (W)w, 1);
2199}
2200
2201void
2202ev_embed_stop (EV_P_ ev_embed *w)
2203{
2204 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w)))
2206 return;
2207
2208 ev_io_stop (EV_A_ &w->io);
2209
2210 ev_stop (EV_A_ (W)w);
2211}
2212#endif
2213
2214#if EV_FORK_ENABLE
2215void
2216ev_fork_start (EV_P_ ev_fork *w)
2217{
2218 if (expect_false (ev_is_active (w)))
2219 return;
2220
2221 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w;
2224}
2225
2226void
2227ev_fork_stop (EV_P_ ev_fork *w)
2228{
2229 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w)))
2231 return;
2232
2233 {
2234 int active = ((W)w)->active;
2235 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active;
2237 }
2238
2239 ev_stop (EV_A_ (W)w);
2240}
2241#endif
2242
1605/*****************************************************************************/ 2243/*****************************************************************************/
1606 2244
1607struct ev_once 2245struct ev_once
1608{ 2246{
1609 struct ev_io io; 2247 ev_io io;
1610 struct ev_timer to; 2248 ev_timer to;
1611 void (*cb)(int revents, void *arg); 2249 void (*cb)(int revents, void *arg);
1612 void *arg; 2250 void *arg;
1613}; 2251};
1614 2252
1615static void 2253static void
1624 2262
1625 cb (revents, arg); 2263 cb (revents, arg);
1626} 2264}
1627 2265
1628static void 2266static void
1629once_cb_io (EV_P_ struct ev_io *w, int revents) 2267once_cb_io (EV_P_ ev_io *w, int revents)
1630{ 2268{
1631 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2269 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1632} 2270}
1633 2271
1634static void 2272static void
1635once_cb_to (EV_P_ struct ev_timer *w, int revents) 2273once_cb_to (EV_P_ ev_timer *w, int revents)
1636{ 2274{
1637 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1638} 2276}
1639 2277
1640void 2278void
1641ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2279ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1642{ 2280{
1643 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2281 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1644 2282
1645 if (!once) 2283 if (expect_false (!once))
2284 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2285 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1647 else 2286 return;
1648 { 2287 }
2288
1649 once->cb = cb; 2289 once->cb = cb;
1650 once->arg = arg; 2290 once->arg = arg;
1651 2291
1652 ev_init (&once->io, once_cb_io); 2292 ev_init (&once->io, once_cb_io);
1653 if (fd >= 0) 2293 if (fd >= 0)
1654 { 2294 {
1655 ev_io_set (&once->io, fd, events); 2295 ev_io_set (&once->io, fd, events);
1656 ev_io_start (EV_A_ &once->io); 2296 ev_io_start (EV_A_ &once->io);
1657 } 2297 }
1658 2298
1659 ev_init (&once->to, once_cb_to); 2299 ev_init (&once->to, once_cb_to);
1660 if (timeout >= 0.) 2300 if (timeout >= 0.)
1661 { 2301 {
1662 ev_timer_set (&once->to, timeout, 0.); 2302 ev_timer_set (&once->to, timeout, 0.);
1663 ev_timer_start (EV_A_ &once->to); 2303 ev_timer_start (EV_A_ &once->to);
1664 }
1665 } 2304 }
1666} 2305}
1667 2306
1668#ifdef __cplusplus 2307#ifdef __cplusplus
1669} 2308}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines