ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.118 by root, Fri Nov 16 01:33:54 2007 UTC vs.
Revision 1.184 by root, Wed Dec 12 05:30:52 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
43# ifndef EV_USE_REALTIME 47# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
45# endif 49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
46# endif 57# endif
47 58
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 59# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
50# endif 65# endif
51 66
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 67# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
54# endif 73# endif
55 74
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
58# endif 81# endif
59 82
83# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
62# endif 89# endif
63 90
64# if HAVE_PORT_H && HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
65# define EV_USE_PORT 1 93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
66# endif 105# endif
67 106
68#endif 107#endif
69 108
70#include <math.h> 109#include <math.h>
79#include <sys/types.h> 118#include <sys/types.h>
80#include <time.h> 119#include <time.h>
81 120
82#include <signal.h> 121#include <signal.h>
83 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
84#ifndef _WIN32 129#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 130# include <sys/time.h>
87# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
88#else 133#else
89# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 135# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
94#endif 139#endif
95 140
96/**/ 141/**/
97 142
98#ifndef EV_USE_MONOTONIC 143#ifndef EV_USE_MONOTONIC
99# define EV_USE_MONOTONIC 1 144# define EV_USE_MONOTONIC 0
100#endif 145#endif
101 146
102#ifndef EV_USE_REALTIME 147#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 1 148# define EV_USE_REALTIME 0
104#endif 149#endif
105 150
106#ifndef EV_USE_SELECT 151#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 152# define EV_USE_SELECT 1
108# define EV_SELECT_USE_FD_SET 1
109#endif 153#endif
110 154
111#ifndef EV_USE_POLL 155#ifndef EV_USE_POLL
112# ifdef _WIN32 156# ifdef _WIN32
113# define EV_USE_POLL 0 157# define EV_USE_POLL 0
126 170
127#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
128# define EV_USE_PORT 0 172# define EV_USE_PORT 0
129#endif 173#endif
130 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
131/**/ 195/**/
132
133/* darwin simply cannot be helped */
134#ifdef __APPLE__
135# undef EV_USE_POLL
136# undef EV_USE_KQUEUE
137#endif
138 196
139#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
140# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
141# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
142#endif 200#endif
148 206
149#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
150# include <winsock.h> 208# include <winsock.h>
151#endif 209#endif
152 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
153/**/ 219/**/
154 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
155#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
156#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
157#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
158/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165 234
166#if __GNUC__ >= 3 235#if __GNUC__ >= 3
167# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
168# define inline inline 237# define noinline __attribute__ ((noinline))
169#else 238#else
170# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
171# define inline static 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
172#endif 244#endif
173 245
174#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
175#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
176 255
177#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
178#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
179 258
180#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
181#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
182 261
183typedef struct ev_watcher *W; 262typedef ev_watcher *W;
184typedef struct ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
185typedef struct ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
186 265
187static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
188 267
189#ifdef _WIN32 268#ifdef _WIN32
190# include "ev_win32.c" 269# include "ev_win32.c"
192 271
193/*****************************************************************************/ 272/*****************************************************************************/
194 273
195static void (*syserr_cb)(const char *msg); 274static void (*syserr_cb)(const char *msg);
196 275
276void
197void ev_set_syserr_cb (void (*cb)(const char *msg)) 277ev_set_syserr_cb (void (*cb)(const char *msg))
198{ 278{
199 syserr_cb = cb; 279 syserr_cb = cb;
200} 280}
201 281
202static void 282static void noinline
203syserr (const char *msg) 283syserr (const char *msg)
204{ 284{
205 if (!msg) 285 if (!msg)
206 msg = "(libev) system error"; 286 msg = "(libev) system error";
207 287
214 } 294 }
215} 295}
216 296
217static void *(*alloc)(void *ptr, long size); 297static void *(*alloc)(void *ptr, long size);
218 298
299void
219void ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
220{ 301{
221 alloc = cb; 302 alloc = cb;
222} 303}
223 304
224static void * 305inline_speed void *
225ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
226{ 307{
227 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
228 309
229 if (!ptr && size) 310 if (!ptr && size)
253typedef struct 334typedef struct
254{ 335{
255 W w; 336 W w;
256 int events; 337 int events;
257} ANPENDING; 338} ANPENDING;
339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
258 346
259#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
260 348
261 struct ev_loop 349 struct ev_loop
262 { 350 {
296 gettimeofday (&tv, 0); 384 gettimeofday (&tv, 0);
297 return tv.tv_sec + tv.tv_usec * 1e-6; 385 return tv.tv_sec + tv.tv_usec * 1e-6;
298#endif 386#endif
299} 387}
300 388
301inline ev_tstamp 389ev_tstamp inline_size
302get_clock (void) 390get_clock (void)
303{ 391{
304#if EV_USE_MONOTONIC 392#if EV_USE_MONOTONIC
305 if (expect_true (have_monotonic)) 393 if (expect_true (have_monotonic))
306 { 394 {
319{ 407{
320 return ev_rt_now; 408 return ev_rt_now;
321} 409}
322#endif 410#endif
323 411
324#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
325 439
326#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
327 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
328 { \ 442 { \
329 int newcnt = cur; \ 443 int ocur_ = (cur); \
330 do \ 444 (base) = (type *)array_realloc \
331 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
332 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
333 } \
334 while ((cnt) > newcnt); \
335 \
336 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
337 init (base + cur, newcnt - cur); \
338 cur = newcnt; \
339 } 447 }
340 448
449#if 0
341#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
342 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
343 { \ 452 { \
344 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
345 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
346 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
347 } 456 }
457#endif
348 458
349#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
350 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
351 461
352/*****************************************************************************/ 462/*****************************************************************************/
353 463
354static void 464void noinline
465ev_feed_event (EV_P_ void *w, int revents)
466{
467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
469
470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents;
478 }
479}
480
481void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type)
483{
484 int i;
485
486 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type);
488}
489
490/*****************************************************************************/
491
492void inline_size
355anfds_init (ANFD *base, int count) 493anfds_init (ANFD *base, int count)
356{ 494{
357 while (count--) 495 while (count--)
358 { 496 {
359 base->head = 0; 497 base->head = 0;
362 500
363 ++base; 501 ++base;
364 } 502 }
365} 503}
366 504
367void 505void inline_speed
368ev_feed_event (EV_P_ void *w, int revents)
369{
370 W w_ = (W)w;
371
372 if (w_->pending)
373 {
374 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
375 return;
376 }
377
378 w_->pending = ++pendingcnt [ABSPRI (w_)];
379 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
380 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
381 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
382}
383
384static void
385queue_events (EV_P_ W *events, int eventcnt, int type)
386{
387 int i;
388
389 for (i = 0; i < eventcnt; ++i)
390 ev_feed_event (EV_A_ events [i], type);
391}
392
393inline void
394fd_event (EV_P_ int fd, int revents) 506fd_event (EV_P_ int fd, int revents)
395{ 507{
396 ANFD *anfd = anfds + fd; 508 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 509 ev_io *w;
398 510
399 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
400 { 512 {
401 int ev = w->events & revents; 513 int ev = w->events & revents;
402 514
403 if (ev) 515 if (ev)
404 ev_feed_event (EV_A_ (W)w, ev); 516 ev_feed_event (EV_A_ (W)w, ev);
406} 518}
407 519
408void 520void
409ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
410{ 522{
523 if (fd >= 0 && fd < anfdmax)
411 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
412} 525}
413 526
414/*****************************************************************************/ 527void inline_size
415
416static void
417fd_reify (EV_P) 528fd_reify (EV_P)
418{ 529{
419 int i; 530 int i;
420 531
421 for (i = 0; i < fdchangecnt; ++i) 532 for (i = 0; i < fdchangecnt; ++i)
422 { 533 {
423 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
424 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
425 struct ev_io *w; 536 ev_io *w;
426 537
427 int events = 0; 538 unsigned char events = 0;
428 539
429 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
430 events |= w->events; 541 events |= (unsigned char)w->events;
431 542
432#if EV_SELECT_IS_WINSOCKET 543#if EV_SELECT_IS_WINSOCKET
433 if (events) 544 if (events)
434 { 545 {
435 unsigned long argp; 546 unsigned long argp;
436 anfd->handle = _get_osfhandle (fd); 547 anfd->handle = _get_osfhandle (fd);
437 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
438 } 549 }
439#endif 550#endif
440 551
552 {
553 unsigned char o_events = anfd->events;
554 unsigned char o_reify = anfd->reify;
555
441 anfd->reify = 0; 556 anfd->reify = 0;
442
443 method_modify (EV_A_ fd, anfd->events, events);
444 anfd->events = events; 557 anfd->events = events;
558
559 if (o_events != events || o_reify & EV_IOFDSET)
560 backend_modify (EV_A_ fd, o_events, events);
561 }
445 } 562 }
446 563
447 fdchangecnt = 0; 564 fdchangecnt = 0;
448} 565}
449 566
450static void 567void inline_size
451fd_change (EV_P_ int fd) 568fd_change (EV_P_ int fd, int flags)
452{ 569{
453 if (anfds [fd].reify) 570 unsigned char reify = anfds [fd].reify;
454 return;
455
456 anfds [fd].reify = 1; 571 anfds [fd].reify |= flags;
457 572
573 if (expect_true (!reify))
574 {
458 ++fdchangecnt; 575 ++fdchangecnt;
459 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 576 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
460 fdchanges [fdchangecnt - 1] = fd; 577 fdchanges [fdchangecnt - 1] = fd;
578 }
461} 579}
462 580
463static void 581void inline_speed
464fd_kill (EV_P_ int fd) 582fd_kill (EV_P_ int fd)
465{ 583{
466 struct ev_io *w; 584 ev_io *w;
467 585
468 while ((w = (struct ev_io *)anfds [fd].head)) 586 while ((w = (ev_io *)anfds [fd].head))
469 { 587 {
470 ev_io_stop (EV_A_ w); 588 ev_io_stop (EV_A_ w);
471 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 589 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
472 } 590 }
473} 591}
474 592
475static int 593int inline_size
476fd_valid (int fd) 594fd_valid (int fd)
477{ 595{
478#ifdef _WIN32 596#ifdef _WIN32
479 return _get_osfhandle (fd) != -1; 597 return _get_osfhandle (fd) != -1;
480#else 598#else
481 return fcntl (fd, F_GETFD) != -1; 599 return fcntl (fd, F_GETFD) != -1;
482#endif 600#endif
483} 601}
484 602
485/* called on EBADF to verify fds */ 603/* called on EBADF to verify fds */
486static void 604static void noinline
487fd_ebadf (EV_P) 605fd_ebadf (EV_P)
488{ 606{
489 int fd; 607 int fd;
490 608
491 for (fd = 0; fd < anfdmax; ++fd) 609 for (fd = 0; fd < anfdmax; ++fd)
493 if (!fd_valid (fd) == -1 && errno == EBADF) 611 if (!fd_valid (fd) == -1 && errno == EBADF)
494 fd_kill (EV_A_ fd); 612 fd_kill (EV_A_ fd);
495} 613}
496 614
497/* called on ENOMEM in select/poll to kill some fds and retry */ 615/* called on ENOMEM in select/poll to kill some fds and retry */
498static void 616static void noinline
499fd_enomem (EV_P) 617fd_enomem (EV_P)
500{ 618{
501 int fd; 619 int fd;
502 620
503 for (fd = anfdmax; fd--; ) 621 for (fd = anfdmax; fd--; )
506 fd_kill (EV_A_ fd); 624 fd_kill (EV_A_ fd);
507 return; 625 return;
508 } 626 }
509} 627}
510 628
511/* usually called after fork if method needs to re-arm all fds from scratch */ 629/* usually called after fork if backend needs to re-arm all fds from scratch */
512static void 630static void noinline
513fd_rearm_all (EV_P) 631fd_rearm_all (EV_P)
514{ 632{
515 int fd; 633 int fd;
516 634
517 /* this should be highly optimised to not do anything but set a flag */
518 for (fd = 0; fd < anfdmax; ++fd) 635 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 636 if (anfds [fd].events)
520 { 637 {
521 anfds [fd].events = 0; 638 anfds [fd].events = 0;
522 fd_change (EV_A_ fd); 639 fd_change (EV_A_ fd, EV_IOFDSET | 1);
523 } 640 }
524} 641}
525 642
526/*****************************************************************************/ 643/*****************************************************************************/
527 644
528static void 645void inline_speed
529upheap (WT *heap, int k) 646upheap (WT *heap, int k)
530{ 647{
531 WT w = heap [k]; 648 WT w = heap [k];
532 649
533 while (k && heap [k >> 1]->at > w->at) 650 while (k)
534 { 651 {
652 int p = (k - 1) >> 1;
653
654 if (heap [p]->at <= w->at)
655 break;
656
535 heap [k] = heap [k >> 1]; 657 heap [k] = heap [p];
536 ((W)heap [k])->active = k + 1; 658 ((W)heap [k])->active = k + 1;
537 k >>= 1; 659 k = p;
538 } 660 }
539 661
540 heap [k] = w; 662 heap [k] = w;
541 ((W)heap [k])->active = k + 1; 663 ((W)heap [k])->active = k + 1;
542
543} 664}
544 665
545static void 666void inline_speed
546downheap (WT *heap, int N, int k) 667downheap (WT *heap, int N, int k)
547{ 668{
548 WT w = heap [k]; 669 WT w = heap [k];
549 670
550 while (k < (N >> 1)) 671 for (;;)
551 { 672 {
552 int j = k << 1; 673 int c = (k << 1) + 1;
553 674
554 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 675 if (c >= N)
555 ++j;
556
557 if (w->at <= heap [j]->at)
558 break; 676 break;
559 677
678 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
679 ? 1 : 0;
680
681 if (w->at <= heap [c]->at)
682 break;
683
560 heap [k] = heap [j]; 684 heap [k] = heap [c];
561 ((W)heap [k])->active = k + 1; 685 ((W)heap [k])->active = k + 1;
686
562 k = j; 687 k = c;
563 } 688 }
564 689
565 heap [k] = w; 690 heap [k] = w;
566 ((W)heap [k])->active = k + 1; 691 ((W)heap [k])->active = k + 1;
567} 692}
568 693
569inline void 694void inline_size
570adjustheap (WT *heap, int N, int k) 695adjustheap (WT *heap, int N, int k)
571{ 696{
572 upheap (heap, k); 697 upheap (heap, k);
573 downheap (heap, N, k); 698 downheap (heap, N, k);
574} 699}
584static ANSIG *signals; 709static ANSIG *signals;
585static int signalmax; 710static int signalmax;
586 711
587static int sigpipe [2]; 712static int sigpipe [2];
588static sig_atomic_t volatile gotsig; 713static sig_atomic_t volatile gotsig;
589static struct ev_io sigev; 714static ev_io sigev;
590 715
591static void 716void inline_size
592signals_init (ANSIG *base, int count) 717signals_init (ANSIG *base, int count)
593{ 718{
594 while (count--) 719 while (count--)
595 { 720 {
596 base->head = 0; 721 base->head = 0;
616 write (sigpipe [1], &signum, 1); 741 write (sigpipe [1], &signum, 1);
617 errno = old_errno; 742 errno = old_errno;
618 } 743 }
619} 744}
620 745
621void 746void noinline
622ev_feed_signal_event (EV_P_ int signum) 747ev_feed_signal_event (EV_P_ int signum)
623{ 748{
624 WL w; 749 WL w;
625 750
626#if EV_MULTIPLICITY 751#if EV_MULTIPLICITY
637 for (w = signals [signum].head; w; w = w->next) 762 for (w = signals [signum].head; w; w = w->next)
638 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 763 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
639} 764}
640 765
641static void 766static void
642sigcb (EV_P_ struct ev_io *iow, int revents) 767sigcb (EV_P_ ev_io *iow, int revents)
643{ 768{
644 int signum; 769 int signum;
645 770
646 read (sigpipe [0], &revents, 1); 771 read (sigpipe [0], &revents, 1);
647 gotsig = 0; 772 gotsig = 0;
649 for (signum = signalmax; signum--; ) 774 for (signum = signalmax; signum--; )
650 if (signals [signum].gotsig) 775 if (signals [signum].gotsig)
651 ev_feed_signal_event (EV_A_ signum + 1); 776 ev_feed_signal_event (EV_A_ signum + 1);
652} 777}
653 778
654inline void 779void inline_speed
655fd_intern (int fd) 780fd_intern (int fd)
656{ 781{
657#ifdef _WIN32 782#ifdef _WIN32
658 int arg = 1; 783 int arg = 1;
659 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 784 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
661 fcntl (fd, F_SETFD, FD_CLOEXEC); 786 fcntl (fd, F_SETFD, FD_CLOEXEC);
662 fcntl (fd, F_SETFL, O_NONBLOCK); 787 fcntl (fd, F_SETFL, O_NONBLOCK);
663#endif 788#endif
664} 789}
665 790
666static void 791static void noinline
667siginit (EV_P) 792siginit (EV_P)
668{ 793{
669 fd_intern (sigpipe [0]); 794 fd_intern (sigpipe [0]);
670 fd_intern (sigpipe [1]); 795 fd_intern (sigpipe [1]);
671 796
674 ev_unref (EV_A); /* child watcher should not keep loop alive */ 799 ev_unref (EV_A); /* child watcher should not keep loop alive */
675} 800}
676 801
677/*****************************************************************************/ 802/*****************************************************************************/
678 803
679static struct ev_child *childs [PID_HASHSIZE]; 804static WL childs [EV_PID_HASHSIZE];
680 805
681#ifndef _WIN32 806#ifndef _WIN32
682 807
683static struct ev_signal childev; 808static ev_signal childev;
809
810void inline_speed
811child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
812{
813 ev_child *w;
814
815 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
816 if (w->pid == pid || !w->pid)
817 {
818 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
819 w->rpid = pid;
820 w->rstatus = status;
821 ev_feed_event (EV_A_ (W)w, EV_CHILD);
822 }
823}
684 824
685#ifndef WCONTINUED 825#ifndef WCONTINUED
686# define WCONTINUED 0 826# define WCONTINUED 0
687#endif 827#endif
688 828
689static void 829static void
690child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
691{
692 struct ev_child *w;
693
694 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
695 if (w->pid == pid || !w->pid)
696 {
697 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
698 w->rpid = pid;
699 w->rstatus = status;
700 ev_feed_event (EV_A_ (W)w, EV_CHILD);
701 }
702}
703
704static void
705childcb (EV_P_ struct ev_signal *sw, int revents) 830childcb (EV_P_ ev_signal *sw, int revents)
706{ 831{
707 int pid, status; 832 int pid, status;
708 833
834 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
709 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 835 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
710 { 836 if (!WCONTINUED
837 || errno != EINVAL
838 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
839 return;
840
711 /* make sure we are called again until all childs have been reaped */ 841 /* make sure we are called again until all childs have been reaped */
842 /* we need to do it this way so that the callback gets called before we continue */
712 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 843 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
713 844
714 child_reap (EV_A_ sw, pid, pid, status); 845 child_reap (EV_A_ sw, pid, pid, status);
846 if (EV_PID_HASHSIZE > 1)
715 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 847 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
716 }
717} 848}
718 849
719#endif 850#endif
720 851
721/*****************************************************************************/ 852/*****************************************************************************/
747{ 878{
748 return EV_VERSION_MINOR; 879 return EV_VERSION_MINOR;
749} 880}
750 881
751/* return true if we are running with elevated privileges and should ignore env variables */ 882/* return true if we are running with elevated privileges and should ignore env variables */
752static int 883int inline_size
753enable_secure (void) 884enable_secure (void)
754{ 885{
755#ifdef _WIN32 886#ifdef _WIN32
756 return 0; 887 return 0;
757#else 888#else
759 || getgid () != getegid (); 890 || getgid () != getegid ();
760#endif 891#endif
761} 892}
762 893
763unsigned int 894unsigned int
764ev_method (EV_P) 895ev_supported_backends (void)
765{ 896{
766 return method; 897 unsigned int flags = 0;
767}
768 898
769static void 899 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
900 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
901 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
902 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
903 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
904
905 return flags;
906}
907
908unsigned int
909ev_recommended_backends (void)
910{
911 unsigned int flags = ev_supported_backends ();
912
913#ifndef __NetBSD__
914 /* kqueue is borked on everything but netbsd apparently */
915 /* it usually doesn't work correctly on anything but sockets and pipes */
916 flags &= ~EVBACKEND_KQUEUE;
917#endif
918#ifdef __APPLE__
919 // flags &= ~EVBACKEND_KQUEUE; for documentation
920 flags &= ~EVBACKEND_POLL;
921#endif
922
923 return flags;
924}
925
926unsigned int
927ev_embeddable_backends (void)
928{
929 return EVBACKEND_EPOLL
930 | EVBACKEND_KQUEUE
931 | EVBACKEND_PORT;
932}
933
934unsigned int
935ev_backend (EV_P)
936{
937 return backend;
938}
939
940unsigned int
941ev_loop_count (EV_P)
942{
943 return loop_count;
944}
945
946static void noinline
770loop_init (EV_P_ unsigned int flags) 947loop_init (EV_P_ unsigned int flags)
771{ 948{
772 if (!method) 949 if (!backend)
773 { 950 {
774#if EV_USE_MONOTONIC 951#if EV_USE_MONOTONIC
775 { 952 {
776 struct timespec ts; 953 struct timespec ts;
777 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 954 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
782 ev_rt_now = ev_time (); 959 ev_rt_now = ev_time ();
783 mn_now = get_clock (); 960 mn_now = get_clock ();
784 now_floor = mn_now; 961 now_floor = mn_now;
785 rtmn_diff = ev_rt_now - mn_now; 962 rtmn_diff = ev_rt_now - mn_now;
786 963
787 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 964 /* pid check not overridable via env */
965#ifndef _WIN32
966 if (flags & EVFLAG_FORKCHECK)
967 curpid = getpid ();
968#endif
969
970 if (!(flags & EVFLAG_NOENV)
971 && !enable_secure ()
972 && getenv ("LIBEV_FLAGS"))
788 flags = atoi (getenv ("LIBEV_FLAGS")); 973 flags = atoi (getenv ("LIBEV_FLAGS"));
789 974
790 if (!(flags & 0x0000ffff)) 975 if (!(flags & 0x0000ffffUL))
791 flags |= 0x0000ffff; 976 flags |= ev_recommended_backends ();
792 977
793 method = 0; 978 backend = 0;
979 backend_fd = -1;
980#if EV_USE_INOTIFY
981 fs_fd = -2;
982#endif
983
794#if EV_USE_PORT 984#if EV_USE_PORT
795 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 985 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
796#endif 986#endif
797#if EV_USE_KQUEUE 987#if EV_USE_KQUEUE
798 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 988 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
799#endif 989#endif
800#if EV_USE_EPOLL 990#if EV_USE_EPOLL
801 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 991 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
802#endif 992#endif
803#if EV_USE_POLL 993#if EV_USE_POLL
804 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 994 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
805#endif 995#endif
806#if EV_USE_SELECT 996#if EV_USE_SELECT
807 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 997 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
808#endif 998#endif
809 999
810 ev_init (&sigev, sigcb); 1000 ev_init (&sigev, sigcb);
811 ev_set_priority (&sigev, EV_MAXPRI); 1001 ev_set_priority (&sigev, EV_MAXPRI);
812 } 1002 }
813} 1003}
814 1004
815void 1005static void noinline
816loop_destroy (EV_P) 1006loop_destroy (EV_P)
817{ 1007{
818 int i; 1008 int i;
819 1009
1010#if EV_USE_INOTIFY
1011 if (fs_fd >= 0)
1012 close (fs_fd);
1013#endif
1014
1015 if (backend_fd >= 0)
1016 close (backend_fd);
1017
820#if EV_USE_PORT 1018#if EV_USE_PORT
821 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1019 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
822#endif 1020#endif
823#if EV_USE_KQUEUE 1021#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1022 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
825#endif 1023#endif
826#if EV_USE_EPOLL 1024#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1025 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
828#endif 1026#endif
829#if EV_USE_POLL 1027#if EV_USE_POLL
830 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1028 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
831#endif 1029#endif
832#if EV_USE_SELECT 1030#if EV_USE_SELECT
833 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1031 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
834#endif 1032#endif
835 1033
836 for (i = NUMPRI; i--; ) 1034 for (i = NUMPRI; i--; )
1035 {
837 array_free (pending, [i]); 1036 array_free (pending, [i]);
1037#if EV_IDLE_ENABLE
1038 array_free (idle, [i]);
1039#endif
1040 }
838 1041
839 /* have to use the microsoft-never-gets-it-right macro */ 1042 /* have to use the microsoft-never-gets-it-right macro */
840 array_free (fdchange, EMPTY0); 1043 array_free (fdchange, EMPTY);
841 array_free (timer, EMPTY0); 1044 array_free (timer, EMPTY);
842#if EV_PERIODICS 1045#if EV_PERIODIC_ENABLE
843 array_free (periodic, EMPTY0); 1046 array_free (periodic, EMPTY);
844#endif 1047#endif
845 array_free (idle, EMPTY0);
846 array_free (prepare, EMPTY0); 1048 array_free (prepare, EMPTY);
847 array_free (check, EMPTY0); 1049 array_free (check, EMPTY);
848 1050
849 method = 0; 1051 backend = 0;
850} 1052}
851 1053
852static void 1054void inline_size infy_fork (EV_P);
1055
1056void inline_size
853loop_fork (EV_P) 1057loop_fork (EV_P)
854{ 1058{
855#if EV_USE_PORT 1059#if EV_USE_PORT
856 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1060 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
857#endif 1061#endif
858#if EV_USE_KQUEUE 1062#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1063 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
860#endif 1064#endif
861#if EV_USE_EPOLL 1065#if EV_USE_EPOLL
862 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1066 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1067#endif
1068#if EV_USE_INOTIFY
1069 infy_fork (EV_A);
863#endif 1070#endif
864 1071
865 if (ev_is_active (&sigev)) 1072 if (ev_is_active (&sigev))
866 { 1073 {
867 /* default loop */ 1074 /* default loop */
888 1095
889 memset (loop, 0, sizeof (struct ev_loop)); 1096 memset (loop, 0, sizeof (struct ev_loop));
890 1097
891 loop_init (EV_A_ flags); 1098 loop_init (EV_A_ flags);
892 1099
893 if (ev_method (EV_A)) 1100 if (ev_backend (EV_A))
894 return loop; 1101 return loop;
895 1102
896 return 0; 1103 return 0;
897} 1104}
898 1105
911 1118
912#endif 1119#endif
913 1120
914#if EV_MULTIPLICITY 1121#if EV_MULTIPLICITY
915struct ev_loop * 1122struct ev_loop *
916ev_default_loop_ (unsigned int flags) 1123ev_default_loop_init (unsigned int flags)
917#else 1124#else
918int 1125int
919ev_default_loop (unsigned int flags) 1126ev_default_loop (unsigned int flags)
920#endif 1127#endif
921{ 1128{
931 ev_default_loop_ptr = 1; 1138 ev_default_loop_ptr = 1;
932#endif 1139#endif
933 1140
934 loop_init (EV_A_ flags); 1141 loop_init (EV_A_ flags);
935 1142
936 if (ev_method (EV_A)) 1143 if (ev_backend (EV_A))
937 { 1144 {
938 siginit (EV_A); 1145 siginit (EV_A);
939 1146
940#ifndef _WIN32 1147#ifndef _WIN32
941 ev_signal_init (&childev, childcb, SIGCHLD); 1148 ev_signal_init (&childev, childcb, SIGCHLD);
977{ 1184{
978#if EV_MULTIPLICITY 1185#if EV_MULTIPLICITY
979 struct ev_loop *loop = ev_default_loop_ptr; 1186 struct ev_loop *loop = ev_default_loop_ptr;
980#endif 1187#endif
981 1188
982 if (method) 1189 if (backend)
983 postfork = 1; 1190 postfork = 1;
984} 1191}
985 1192
986/*****************************************************************************/ 1193/*****************************************************************************/
987 1194
988static int 1195void
989any_pending (EV_P) 1196ev_invoke (EV_P_ void *w, int revents)
990{ 1197{
991 int pri; 1198 EV_CB_INVOKE ((W)w, revents);
992
993 for (pri = NUMPRI; pri--; )
994 if (pendingcnt [pri])
995 return 1;
996
997 return 0;
998} 1199}
999 1200
1000static void 1201void inline_speed
1001call_pending (EV_P) 1202call_pending (EV_P)
1002{ 1203{
1003 int pri; 1204 int pri;
1004 1205
1005 for (pri = NUMPRI; pri--; ) 1206 for (pri = NUMPRI; pri--; )
1006 while (pendingcnt [pri]) 1207 while (pendingcnt [pri])
1007 { 1208 {
1008 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1209 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1009 1210
1010 if (p->w) 1211 if (expect_true (p->w))
1011 { 1212 {
1213 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1214
1012 p->w->pending = 0; 1215 p->w->pending = 0;
1013 EV_CB_INVOKE (p->w, p->events); 1216 EV_CB_INVOKE (p->w, p->events);
1014 } 1217 }
1015 } 1218 }
1016} 1219}
1017 1220
1018static void 1221void inline_size
1019timers_reify (EV_P) 1222timers_reify (EV_P)
1020{ 1223{
1021 while (timercnt && ((WT)timers [0])->at <= mn_now) 1224 while (timercnt && ((WT)timers [0])->at <= mn_now)
1022 { 1225 {
1023 struct ev_timer *w = timers [0]; 1226 ev_timer *w = (ev_timer *)timers [0];
1024 1227
1025 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1228 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1026 1229
1027 /* first reschedule or stop timer */ 1230 /* first reschedule or stop timer */
1028 if (w->repeat) 1231 if (w->repeat)
1029 { 1232 {
1030 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1233 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1031 1234
1032 ((WT)w)->at += w->repeat; 1235 ((WT)w)->at += w->repeat;
1033 if (((WT)w)->at < mn_now) 1236 if (((WT)w)->at < mn_now)
1034 ((WT)w)->at = mn_now; 1237 ((WT)w)->at = mn_now;
1035 1238
1036 downheap ((WT *)timers, timercnt, 0); 1239 downheap (timers, timercnt, 0);
1037 } 1240 }
1038 else 1241 else
1039 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1242 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1040 1243
1041 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1244 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1042 } 1245 }
1043} 1246}
1044 1247
1045#if EV_PERIODICS 1248#if EV_PERIODIC_ENABLE
1046static void 1249void inline_size
1047periodics_reify (EV_P) 1250periodics_reify (EV_P)
1048{ 1251{
1049 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1252 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1050 { 1253 {
1051 struct ev_periodic *w = periodics [0]; 1254 ev_periodic *w = (ev_periodic *)periodics [0];
1052 1255
1053 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1256 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1054 1257
1055 /* first reschedule or stop timer */ 1258 /* first reschedule or stop timer */
1056 if (w->reschedule_cb) 1259 if (w->reschedule_cb)
1057 { 1260 {
1058 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1261 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1059 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1262 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1060 downheap ((WT *)periodics, periodiccnt, 0); 1263 downheap (periodics, periodiccnt, 0);
1061 } 1264 }
1062 else if (w->interval) 1265 else if (w->interval)
1063 { 1266 {
1064 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1267 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1268 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1065 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1269 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1066 downheap ((WT *)periodics, periodiccnt, 0); 1270 downheap (periodics, periodiccnt, 0);
1067 } 1271 }
1068 else 1272 else
1069 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1273 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1070 1274
1071 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1275 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1072 } 1276 }
1073} 1277}
1074 1278
1075static void 1279static void noinline
1076periodics_reschedule (EV_P) 1280periodics_reschedule (EV_P)
1077{ 1281{
1078 int i; 1282 int i;
1079 1283
1080 /* adjust periodics after time jump */ 1284 /* adjust periodics after time jump */
1081 for (i = 0; i < periodiccnt; ++i) 1285 for (i = 0; i < periodiccnt; ++i)
1082 { 1286 {
1083 struct ev_periodic *w = periodics [i]; 1287 ev_periodic *w = (ev_periodic *)periodics [i];
1084 1288
1085 if (w->reschedule_cb) 1289 if (w->reschedule_cb)
1086 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1290 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1087 else if (w->interval) 1291 else if (w->interval)
1088 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1292 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1089 } 1293 }
1090 1294
1091 /* now rebuild the heap */ 1295 /* now rebuild the heap */
1092 for (i = periodiccnt >> 1; i--; ) 1296 for (i = periodiccnt >> 1; i--; )
1093 downheap ((WT *)periodics, periodiccnt, i); 1297 downheap (periodics, periodiccnt, i);
1094} 1298}
1095#endif 1299#endif
1096 1300
1097inline int 1301#if EV_IDLE_ENABLE
1098time_update_monotonic (EV_P) 1302void inline_size
1303idle_reify (EV_P)
1099{ 1304{
1305 if (expect_false (idleall))
1306 {
1307 int pri;
1308
1309 for (pri = NUMPRI; pri--; )
1310 {
1311 if (pendingcnt [pri])
1312 break;
1313
1314 if (idlecnt [pri])
1315 {
1316 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1317 break;
1318 }
1319 }
1320 }
1321}
1322#endif
1323
1324void inline_speed
1325time_update (EV_P_ ev_tstamp max_block)
1326{
1327 int i;
1328
1329#if EV_USE_MONOTONIC
1330 if (expect_true (have_monotonic))
1331 {
1332 ev_tstamp odiff = rtmn_diff;
1333
1100 mn_now = get_clock (); 1334 mn_now = get_clock ();
1101 1335
1336 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1337 /* interpolate in the meantime */
1102 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1338 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1103 { 1339 {
1104 ev_rt_now = rtmn_diff + mn_now; 1340 ev_rt_now = rtmn_diff + mn_now;
1105 return 0; 1341 return;
1106 } 1342 }
1107 else 1343
1108 {
1109 now_floor = mn_now; 1344 now_floor = mn_now;
1110 ev_rt_now = ev_time (); 1345 ev_rt_now = ev_time ();
1111 return 1;
1112 }
1113}
1114 1346
1115static void 1347 /* loop a few times, before making important decisions.
1116time_update (EV_P) 1348 * on the choice of "4": one iteration isn't enough,
1117{ 1349 * in case we get preempted during the calls to
1118 int i; 1350 * ev_time and get_clock. a second call is almost guaranteed
1119 1351 * to succeed in that case, though. and looping a few more times
1120#if EV_USE_MONOTONIC 1352 * doesn't hurt either as we only do this on time-jumps or
1121 if (expect_true (have_monotonic)) 1353 * in the unlikely event of having been preempted here.
1122 { 1354 */
1123 if (time_update_monotonic (EV_A)) 1355 for (i = 4; --i; )
1124 { 1356 {
1125 ev_tstamp odiff = rtmn_diff;
1126
1127 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1128 {
1129 rtmn_diff = ev_rt_now - mn_now; 1357 rtmn_diff = ev_rt_now - mn_now;
1130 1358
1131 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1359 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1132 return; /* all is well */ 1360 return; /* all is well */
1133 1361
1134 ev_rt_now = ev_time (); 1362 ev_rt_now = ev_time ();
1135 mn_now = get_clock (); 1363 mn_now = get_clock ();
1136 now_floor = mn_now; 1364 now_floor = mn_now;
1137 } 1365 }
1138 1366
1139# if EV_PERIODICS 1367# if EV_PERIODIC_ENABLE
1368 periodics_reschedule (EV_A);
1369# endif
1370 /* no timer adjustment, as the monotonic clock doesn't jump */
1371 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1372 }
1373 else
1374#endif
1375 {
1376 ev_rt_now = ev_time ();
1377
1378 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1379 {
1380#if EV_PERIODIC_ENABLE
1140 periodics_reschedule (EV_A); 1381 periodics_reschedule (EV_A);
1141# endif 1382#endif
1142 /* no timer adjustment, as the monotonic clock doesn't jump */
1143 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1144 }
1145 }
1146 else
1147#endif
1148 {
1149 ev_rt_now = ev_time ();
1150
1151 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1152 {
1153#if EV_PERIODICS
1154 periodics_reschedule (EV_A);
1155#endif
1156
1157 /* adjust timers. this is easy, as the offset is the same for all */ 1383 /* adjust timers. this is easy, as the offset is the same for all of them */
1158 for (i = 0; i < timercnt; ++i) 1384 for (i = 0; i < timercnt; ++i)
1159 ((WT)timers [i])->at += ev_rt_now - mn_now; 1385 ((WT)timers [i])->at += ev_rt_now - mn_now;
1160 } 1386 }
1161 1387
1162 mn_now = ev_rt_now; 1388 mn_now = ev_rt_now;
1178static int loop_done; 1404static int loop_done;
1179 1405
1180void 1406void
1181ev_loop (EV_P_ int flags) 1407ev_loop (EV_P_ int flags)
1182{ 1408{
1183 double block;
1184 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1409 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1410 ? EVUNLOOP_ONE
1411 : EVUNLOOP_CANCEL;
1185 1412
1186 while (activecnt) 1413 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1414
1415 do
1187 { 1416 {
1417#ifndef _WIN32
1418 if (expect_false (curpid)) /* penalise the forking check even more */
1419 if (expect_false (getpid () != curpid))
1420 {
1421 curpid = getpid ();
1422 postfork = 1;
1423 }
1424#endif
1425
1426#if EV_FORK_ENABLE
1427 /* we might have forked, so queue fork handlers */
1428 if (expect_false (postfork))
1429 if (forkcnt)
1430 {
1431 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1432 call_pending (EV_A);
1433 }
1434#endif
1435
1188 /* queue check watchers (and execute them) */ 1436 /* queue prepare watchers (and execute them) */
1189 if (expect_false (preparecnt)) 1437 if (expect_false (preparecnt))
1190 { 1438 {
1191 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1439 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1192 call_pending (EV_A); 1440 call_pending (EV_A);
1193 } 1441 }
1194 1442
1443 if (expect_false (!activecnt))
1444 break;
1445
1195 /* we might have forked, so reify kernel state if necessary */ 1446 /* we might have forked, so reify kernel state if necessary */
1196 if (expect_false (postfork)) 1447 if (expect_false (postfork))
1197 loop_fork (EV_A); 1448 loop_fork (EV_A);
1198 1449
1199 /* update fd-related kernel structures */ 1450 /* update fd-related kernel structures */
1200 fd_reify (EV_A); 1451 fd_reify (EV_A);
1201 1452
1202 /* calculate blocking time */ 1453 /* calculate blocking time */
1454 {
1455 ev_tstamp block;
1203 1456
1204 /* we only need this for !monotonic clock or timers, but as we basically 1457 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1205 always have timers, we just calculate it always */ 1458 block = 0.; /* do not block at all */
1206#if EV_USE_MONOTONIC
1207 if (expect_true (have_monotonic))
1208 time_update_monotonic (EV_A);
1209 else 1459 else
1210#endif
1211 { 1460 {
1212 ev_rt_now = ev_time (); 1461 /* update time to cancel out callback processing overhead */
1213 mn_now = ev_rt_now; 1462 time_update (EV_A_ 1e100);
1214 }
1215 1463
1216 if (flags & EVLOOP_NONBLOCK || idlecnt)
1217 block = 0.;
1218 else
1219 {
1220 block = MAX_BLOCKTIME; 1464 block = MAX_BLOCKTIME;
1221 1465
1222 if (timercnt) 1466 if (timercnt)
1223 { 1467 {
1224 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1468 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1225 if (block > to) block = to; 1469 if (block > to) block = to;
1226 } 1470 }
1227 1471
1228#if EV_PERIODICS 1472#if EV_PERIODIC_ENABLE
1229 if (periodiccnt) 1473 if (periodiccnt)
1230 { 1474 {
1231 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1475 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1232 if (block > to) block = to; 1476 if (block > to) block = to;
1233 } 1477 }
1234#endif 1478#endif
1235 1479
1236 if (block < 0.) block = 0.; 1480 if (expect_false (block < 0.)) block = 0.;
1237 } 1481 }
1238 1482
1483 ++loop_count;
1239 method_poll (EV_A_ block); 1484 backend_poll (EV_A_ block);
1240 1485
1241 /* update ev_rt_now, do magic */ 1486 /* update ev_rt_now, do magic */
1242 time_update (EV_A); 1487 time_update (EV_A_ block);
1488 }
1243 1489
1244 /* queue pending timers and reschedule them */ 1490 /* queue pending timers and reschedule them */
1245 timers_reify (EV_A); /* relative timers called last */ 1491 timers_reify (EV_A); /* relative timers called last */
1246#if EV_PERIODICS 1492#if EV_PERIODIC_ENABLE
1247 periodics_reify (EV_A); /* absolute timers called first */ 1493 periodics_reify (EV_A); /* absolute timers called first */
1248#endif 1494#endif
1249 1495
1496#if EV_IDLE_ENABLE
1250 /* queue idle watchers unless io or timers are pending */ 1497 /* queue idle watchers unless other events are pending */
1251 if (idlecnt && !any_pending (EV_A)) 1498 idle_reify (EV_A);
1252 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1499#endif
1253 1500
1254 /* queue check watchers, to be executed first */ 1501 /* queue check watchers, to be executed first */
1255 if (checkcnt) 1502 if (expect_false (checkcnt))
1256 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1503 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1257 1504
1258 call_pending (EV_A); 1505 call_pending (EV_A);
1259 1506
1260 if (loop_done)
1261 break;
1262 } 1507 }
1508 while (expect_true (activecnt && !loop_done));
1263 1509
1264 if (loop_done != 2) 1510 if (loop_done == EVUNLOOP_ONE)
1265 loop_done = 0; 1511 loop_done = EVUNLOOP_CANCEL;
1266} 1512}
1267 1513
1268void 1514void
1269ev_unloop (EV_P_ int how) 1515ev_unloop (EV_P_ int how)
1270{ 1516{
1271 loop_done = how; 1517 loop_done = how;
1272} 1518}
1273 1519
1274/*****************************************************************************/ 1520/*****************************************************************************/
1275 1521
1276inline void 1522void inline_size
1277wlist_add (WL *head, WL elem) 1523wlist_add (WL *head, WL elem)
1278{ 1524{
1279 elem->next = *head; 1525 elem->next = *head;
1280 *head = elem; 1526 *head = elem;
1281} 1527}
1282 1528
1283inline void 1529void inline_size
1284wlist_del (WL *head, WL elem) 1530wlist_del (WL *head, WL elem)
1285{ 1531{
1286 while (*head) 1532 while (*head)
1287 { 1533 {
1288 if (*head == elem) 1534 if (*head == elem)
1293 1539
1294 head = &(*head)->next; 1540 head = &(*head)->next;
1295 } 1541 }
1296} 1542}
1297 1543
1298inline void 1544void inline_speed
1299ev_clear_pending (EV_P_ W w) 1545clear_pending (EV_P_ W w)
1300{ 1546{
1301 if (w->pending) 1547 if (w->pending)
1302 { 1548 {
1303 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1549 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1304 w->pending = 0; 1550 w->pending = 0;
1305 } 1551 }
1306} 1552}
1307 1553
1308inline void 1554int
1555ev_clear_pending (EV_P_ void *w)
1556{
1557 W w_ = (W)w;
1558 int pending = w_->pending;
1559
1560 if (expect_true (pending))
1561 {
1562 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1563 w_->pending = 0;
1564 p->w = 0;
1565 return p->events;
1566 }
1567 else
1568 return 0;
1569}
1570
1571void inline_size
1572pri_adjust (EV_P_ W w)
1573{
1574 int pri = w->priority;
1575 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1576 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1577 w->priority = pri;
1578}
1579
1580void inline_speed
1309ev_start (EV_P_ W w, int active) 1581ev_start (EV_P_ W w, int active)
1310{ 1582{
1311 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1583 pri_adjust (EV_A_ w);
1312 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1313
1314 w->active = active; 1584 w->active = active;
1315 ev_ref (EV_A); 1585 ev_ref (EV_A);
1316} 1586}
1317 1587
1318inline void 1588void inline_size
1319ev_stop (EV_P_ W w) 1589ev_stop (EV_P_ W w)
1320{ 1590{
1321 ev_unref (EV_A); 1591 ev_unref (EV_A);
1322 w->active = 0; 1592 w->active = 0;
1323} 1593}
1324 1594
1325/*****************************************************************************/ 1595/*****************************************************************************/
1326 1596
1327void 1597void noinline
1328ev_io_start (EV_P_ struct ev_io *w) 1598ev_io_start (EV_P_ ev_io *w)
1329{ 1599{
1330 int fd = w->fd; 1600 int fd = w->fd;
1331 1601
1332 if (ev_is_active (w)) 1602 if (expect_false (ev_is_active (w)))
1333 return; 1603 return;
1334 1604
1335 assert (("ev_io_start called with negative fd", fd >= 0)); 1605 assert (("ev_io_start called with negative fd", fd >= 0));
1336 1606
1337 ev_start (EV_A_ (W)w, 1); 1607 ev_start (EV_A_ (W)w, 1);
1338 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1608 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1339 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1609 wlist_add (&anfds[fd].head, (WL)w);
1340 1610
1341 fd_change (EV_A_ fd); 1611 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1612 w->events &= ~EV_IOFDSET;
1342} 1613}
1343 1614
1344void 1615void noinline
1345ev_io_stop (EV_P_ struct ev_io *w) 1616ev_io_stop (EV_P_ ev_io *w)
1346{ 1617{
1347 ev_clear_pending (EV_A_ (W)w); 1618 clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 1619 if (expect_false (!ev_is_active (w)))
1349 return; 1620 return;
1350 1621
1351 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1622 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1352 1623
1353 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1624 wlist_del (&anfds[w->fd].head, (WL)w);
1354 ev_stop (EV_A_ (W)w); 1625 ev_stop (EV_A_ (W)w);
1355 1626
1356 fd_change (EV_A_ w->fd); 1627 fd_change (EV_A_ w->fd, 1);
1357} 1628}
1358 1629
1359void 1630void noinline
1360ev_timer_start (EV_P_ struct ev_timer *w) 1631ev_timer_start (EV_P_ ev_timer *w)
1361{ 1632{
1362 if (ev_is_active (w)) 1633 if (expect_false (ev_is_active (w)))
1363 return; 1634 return;
1364 1635
1365 ((WT)w)->at += mn_now; 1636 ((WT)w)->at += mn_now;
1366 1637
1367 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1638 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1368 1639
1369 ev_start (EV_A_ (W)w, ++timercnt); 1640 ev_start (EV_A_ (W)w, ++timercnt);
1370 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1641 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1371 timers [timercnt - 1] = w; 1642 timers [timercnt - 1] = (WT)w;
1372 upheap ((WT *)timers, timercnt - 1); 1643 upheap (timers, timercnt - 1);
1373 1644
1374 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1645 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1375} 1646}
1376 1647
1377void 1648void noinline
1378ev_timer_stop (EV_P_ struct ev_timer *w) 1649ev_timer_stop (EV_P_ ev_timer *w)
1379{ 1650{
1380 ev_clear_pending (EV_A_ (W)w); 1651 clear_pending (EV_A_ (W)w);
1381 if (!ev_is_active (w)) 1652 if (expect_false (!ev_is_active (w)))
1382 return; 1653 return;
1383 1654
1384 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1655 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1385 1656
1386 if (((W)w)->active < timercnt--) 1657 {
1658 int active = ((W)w)->active;
1659
1660 if (expect_true (--active < --timercnt))
1387 { 1661 {
1388 timers [((W)w)->active - 1] = timers [timercnt]; 1662 timers [active] = timers [timercnt];
1389 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1663 adjustheap (timers, timercnt, active);
1390 } 1664 }
1665 }
1391 1666
1392 ((WT)w)->at -= mn_now; 1667 ((WT)w)->at -= mn_now;
1393 1668
1394 ev_stop (EV_A_ (W)w); 1669 ev_stop (EV_A_ (W)w);
1395} 1670}
1396 1671
1397void 1672void noinline
1398ev_timer_again (EV_P_ struct ev_timer *w) 1673ev_timer_again (EV_P_ ev_timer *w)
1399{ 1674{
1400 if (ev_is_active (w)) 1675 if (ev_is_active (w))
1401 { 1676 {
1402 if (w->repeat) 1677 if (w->repeat)
1403 { 1678 {
1404 ((WT)w)->at = mn_now + w->repeat; 1679 ((WT)w)->at = mn_now + w->repeat;
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1680 adjustheap (timers, timercnt, ((W)w)->active - 1);
1406 } 1681 }
1407 else 1682 else
1408 ev_timer_stop (EV_A_ w); 1683 ev_timer_stop (EV_A_ w);
1409 } 1684 }
1410 else if (w->repeat) 1685 else if (w->repeat)
1412 w->at = w->repeat; 1687 w->at = w->repeat;
1413 ev_timer_start (EV_A_ w); 1688 ev_timer_start (EV_A_ w);
1414 } 1689 }
1415} 1690}
1416 1691
1417#if EV_PERIODICS 1692#if EV_PERIODIC_ENABLE
1418void 1693void noinline
1419ev_periodic_start (EV_P_ struct ev_periodic *w) 1694ev_periodic_start (EV_P_ ev_periodic *w)
1420{ 1695{
1421 if (ev_is_active (w)) 1696 if (expect_false (ev_is_active (w)))
1422 return; 1697 return;
1423 1698
1424 if (w->reschedule_cb) 1699 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1700 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval) 1701 else if (w->interval)
1427 { 1702 {
1428 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1703 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1429 /* this formula differs from the one in periodic_reify because we do not always round up */ 1704 /* this formula differs from the one in periodic_reify because we do not always round up */
1430 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1705 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 } 1706 }
1707 else
1708 ((WT)w)->at = w->offset;
1432 1709
1433 ev_start (EV_A_ (W)w, ++periodiccnt); 1710 ev_start (EV_A_ (W)w, ++periodiccnt);
1434 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1711 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1435 periodics [periodiccnt - 1] = w; 1712 periodics [periodiccnt - 1] = (WT)w;
1436 upheap ((WT *)periodics, periodiccnt - 1); 1713 upheap (periodics, periodiccnt - 1);
1437 1714
1438 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1715 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1439} 1716}
1440 1717
1441void 1718void noinline
1442ev_periodic_stop (EV_P_ struct ev_periodic *w) 1719ev_periodic_stop (EV_P_ ev_periodic *w)
1443{ 1720{
1444 ev_clear_pending (EV_A_ (W)w); 1721 clear_pending (EV_A_ (W)w);
1445 if (!ev_is_active (w)) 1722 if (expect_false (!ev_is_active (w)))
1446 return; 1723 return;
1447 1724
1448 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1725 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1449 1726
1450 if (((W)w)->active < periodiccnt--) 1727 {
1728 int active = ((W)w)->active;
1729
1730 if (expect_true (--active < --periodiccnt))
1451 { 1731 {
1452 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1732 periodics [active] = periodics [periodiccnt];
1453 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1733 adjustheap (periodics, periodiccnt, active);
1454 } 1734 }
1735 }
1455 1736
1456 ev_stop (EV_A_ (W)w); 1737 ev_stop (EV_A_ (W)w);
1457} 1738}
1458 1739
1459void 1740void noinline
1460ev_periodic_again (EV_P_ struct ev_periodic *w) 1741ev_periodic_again (EV_P_ ev_periodic *w)
1461{ 1742{
1462 /* TODO: use adjustheap and recalculation */ 1743 /* TODO: use adjustheap and recalculation */
1463 ev_periodic_stop (EV_A_ w); 1744 ev_periodic_stop (EV_A_ w);
1464 ev_periodic_start (EV_A_ w); 1745 ev_periodic_start (EV_A_ w);
1465} 1746}
1466#endif 1747#endif
1467 1748
1468void
1469ev_idle_start (EV_P_ struct ev_idle *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++idlecnt);
1475 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1476 idles [idlecnt - 1] = w;
1477}
1478
1479void
1480ev_idle_stop (EV_P_ struct ev_idle *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 idles [((W)w)->active - 1] = idles [--idlecnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490void
1491ev_prepare_start (EV_P_ struct ev_prepare *w)
1492{
1493 if (ev_is_active (w))
1494 return;
1495
1496 ev_start (EV_A_ (W)w, ++preparecnt);
1497 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1498 prepares [preparecnt - 1] = w;
1499}
1500
1501void
1502ev_prepare_stop (EV_P_ struct ev_prepare *w)
1503{
1504 ev_clear_pending (EV_A_ (W)w);
1505 if (!ev_is_active (w))
1506 return;
1507
1508 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1509 ev_stop (EV_A_ (W)w);
1510}
1511
1512void
1513ev_check_start (EV_P_ struct ev_check *w)
1514{
1515 if (ev_is_active (w))
1516 return;
1517
1518 ev_start (EV_A_ (W)w, ++checkcnt);
1519 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1520 checks [checkcnt - 1] = w;
1521}
1522
1523void
1524ev_check_stop (EV_P_ struct ev_check *w)
1525{
1526 ev_clear_pending (EV_A_ (W)w);
1527 if (!ev_is_active (w))
1528 return;
1529
1530 checks [((W)w)->active - 1] = checks [--checkcnt];
1531 ev_stop (EV_A_ (W)w);
1532}
1533
1534#ifndef SA_RESTART 1749#ifndef SA_RESTART
1535# define SA_RESTART 0 1750# define SA_RESTART 0
1536#endif 1751#endif
1537 1752
1538void 1753void noinline
1539ev_signal_start (EV_P_ struct ev_signal *w) 1754ev_signal_start (EV_P_ ev_signal *w)
1540{ 1755{
1541#if EV_MULTIPLICITY 1756#if EV_MULTIPLICITY
1542 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1757 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1543#endif 1758#endif
1544 if (ev_is_active (w)) 1759 if (expect_false (ev_is_active (w)))
1545 return; 1760 return;
1546 1761
1547 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1762 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1548 1763
1764 {
1765#ifndef _WIN32
1766 sigset_t full, prev;
1767 sigfillset (&full);
1768 sigprocmask (SIG_SETMASK, &full, &prev);
1769#endif
1770
1771 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1772
1773#ifndef _WIN32
1774 sigprocmask (SIG_SETMASK, &prev, 0);
1775#endif
1776 }
1777
1549 ev_start (EV_A_ (W)w, 1); 1778 ev_start (EV_A_ (W)w, 1);
1550 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1551 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1779 wlist_add (&signals [w->signum - 1].head, (WL)w);
1552 1780
1553 if (!((WL)w)->next) 1781 if (!((WL)w)->next)
1554 { 1782 {
1555#if _WIN32 1783#if _WIN32
1556 signal (w->signum, sighandler); 1784 signal (w->signum, sighandler);
1562 sigaction (w->signum, &sa, 0); 1790 sigaction (w->signum, &sa, 0);
1563#endif 1791#endif
1564 } 1792 }
1565} 1793}
1566 1794
1567void 1795void noinline
1568ev_signal_stop (EV_P_ struct ev_signal *w) 1796ev_signal_stop (EV_P_ ev_signal *w)
1569{ 1797{
1570 ev_clear_pending (EV_A_ (W)w); 1798 clear_pending (EV_A_ (W)w);
1571 if (!ev_is_active (w)) 1799 if (expect_false (!ev_is_active (w)))
1572 return; 1800 return;
1573 1801
1574 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1802 wlist_del (&signals [w->signum - 1].head, (WL)w);
1575 ev_stop (EV_A_ (W)w); 1803 ev_stop (EV_A_ (W)w);
1576 1804
1577 if (!signals [w->signum - 1].head) 1805 if (!signals [w->signum - 1].head)
1578 signal (w->signum, SIG_DFL); 1806 signal (w->signum, SIG_DFL);
1579} 1807}
1580 1808
1581void 1809void
1582ev_child_start (EV_P_ struct ev_child *w) 1810ev_child_start (EV_P_ ev_child *w)
1583{ 1811{
1584#if EV_MULTIPLICITY 1812#if EV_MULTIPLICITY
1585 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1813 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1586#endif 1814#endif
1587 if (ev_is_active (w)) 1815 if (expect_false (ev_is_active (w)))
1588 return; 1816 return;
1589 1817
1590 ev_start (EV_A_ (W)w, 1); 1818 ev_start (EV_A_ (W)w, 1);
1591 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1819 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1592} 1820}
1593 1821
1594void 1822void
1595ev_child_stop (EV_P_ struct ev_child *w) 1823ev_child_stop (EV_P_ ev_child *w)
1596{ 1824{
1597 ev_clear_pending (EV_A_ (W)w); 1825 clear_pending (EV_A_ (W)w);
1598 if (!ev_is_active (w)) 1826 if (expect_false (!ev_is_active (w)))
1599 return; 1827 return;
1600 1828
1601 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1829 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1602 ev_stop (EV_A_ (W)w); 1830 ev_stop (EV_A_ (W)w);
1603} 1831}
1604 1832
1833#if EV_STAT_ENABLE
1834
1835# ifdef _WIN32
1836# undef lstat
1837# define lstat(a,b) _stati64 (a,b)
1838# endif
1839
1840#define DEF_STAT_INTERVAL 5.0074891
1841#define MIN_STAT_INTERVAL 0.1074891
1842
1843static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1844
1845#if EV_USE_INOTIFY
1846# define EV_INOTIFY_BUFSIZE 8192
1847
1848static void noinline
1849infy_add (EV_P_ ev_stat *w)
1850{
1851 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1852
1853 if (w->wd < 0)
1854 {
1855 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1856
1857 /* monitor some parent directory for speedup hints */
1858 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1859 {
1860 char path [4096];
1861 strcpy (path, w->path);
1862
1863 do
1864 {
1865 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1866 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1867
1868 char *pend = strrchr (path, '/');
1869
1870 if (!pend)
1871 break; /* whoops, no '/', complain to your admin */
1872
1873 *pend = 0;
1874 w->wd = inotify_add_watch (fs_fd, path, mask);
1875 }
1876 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1877 }
1878 }
1879 else
1880 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1881
1882 if (w->wd >= 0)
1883 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1884}
1885
1886static void noinline
1887infy_del (EV_P_ ev_stat *w)
1888{
1889 int slot;
1890 int wd = w->wd;
1891
1892 if (wd < 0)
1893 return;
1894
1895 w->wd = -2;
1896 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1897 wlist_del (&fs_hash [slot].head, (WL)w);
1898
1899 /* remove this watcher, if others are watching it, they will rearm */
1900 inotify_rm_watch (fs_fd, wd);
1901}
1902
1903static void noinline
1904infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1905{
1906 if (slot < 0)
1907 /* overflow, need to check for all hahs slots */
1908 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1909 infy_wd (EV_A_ slot, wd, ev);
1910 else
1911 {
1912 WL w_;
1913
1914 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1915 {
1916 ev_stat *w = (ev_stat *)w_;
1917 w_ = w_->next; /* lets us remove this watcher and all before it */
1918
1919 if (w->wd == wd || wd == -1)
1920 {
1921 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1922 {
1923 w->wd = -1;
1924 infy_add (EV_A_ w); /* re-add, no matter what */
1925 }
1926
1927 stat_timer_cb (EV_A_ &w->timer, 0);
1928 }
1929 }
1930 }
1931}
1932
1933static void
1934infy_cb (EV_P_ ev_io *w, int revents)
1935{
1936 char buf [EV_INOTIFY_BUFSIZE];
1937 struct inotify_event *ev = (struct inotify_event *)buf;
1938 int ofs;
1939 int len = read (fs_fd, buf, sizeof (buf));
1940
1941 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1942 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1943}
1944
1945void inline_size
1946infy_init (EV_P)
1947{
1948 if (fs_fd != -2)
1949 return;
1950
1951 fs_fd = inotify_init ();
1952
1953 if (fs_fd >= 0)
1954 {
1955 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1956 ev_set_priority (&fs_w, EV_MAXPRI);
1957 ev_io_start (EV_A_ &fs_w);
1958 }
1959}
1960
1961void inline_size
1962infy_fork (EV_P)
1963{
1964 int slot;
1965
1966 if (fs_fd < 0)
1967 return;
1968
1969 close (fs_fd);
1970 fs_fd = inotify_init ();
1971
1972 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1973 {
1974 WL w_ = fs_hash [slot].head;
1975 fs_hash [slot].head = 0;
1976
1977 while (w_)
1978 {
1979 ev_stat *w = (ev_stat *)w_;
1980 w_ = w_->next; /* lets us add this watcher */
1981
1982 w->wd = -1;
1983
1984 if (fs_fd >= 0)
1985 infy_add (EV_A_ w); /* re-add, no matter what */
1986 else
1987 ev_timer_start (EV_A_ &w->timer);
1988 }
1989
1990 }
1991}
1992
1993#endif
1994
1995void
1996ev_stat_stat (EV_P_ ev_stat *w)
1997{
1998 if (lstat (w->path, &w->attr) < 0)
1999 w->attr.st_nlink = 0;
2000 else if (!w->attr.st_nlink)
2001 w->attr.st_nlink = 1;
2002}
2003
2004static void noinline
2005stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2006{
2007 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2008
2009 /* we copy this here each the time so that */
2010 /* prev has the old value when the callback gets invoked */
2011 w->prev = w->attr;
2012 ev_stat_stat (EV_A_ w);
2013
2014 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2015 if (
2016 w->prev.st_dev != w->attr.st_dev
2017 || w->prev.st_ino != w->attr.st_ino
2018 || w->prev.st_mode != w->attr.st_mode
2019 || w->prev.st_nlink != w->attr.st_nlink
2020 || w->prev.st_uid != w->attr.st_uid
2021 || w->prev.st_gid != w->attr.st_gid
2022 || w->prev.st_rdev != w->attr.st_rdev
2023 || w->prev.st_size != w->attr.st_size
2024 || w->prev.st_atime != w->attr.st_atime
2025 || w->prev.st_mtime != w->attr.st_mtime
2026 || w->prev.st_ctime != w->attr.st_ctime
2027 ) {
2028 #if EV_USE_INOTIFY
2029 infy_del (EV_A_ w);
2030 infy_add (EV_A_ w);
2031 ev_stat_stat (EV_A_ w); /* avoid race... */
2032 #endif
2033
2034 ev_feed_event (EV_A_ w, EV_STAT);
2035 }
2036}
2037
2038void
2039ev_stat_start (EV_P_ ev_stat *w)
2040{
2041 if (expect_false (ev_is_active (w)))
2042 return;
2043
2044 /* since we use memcmp, we need to clear any padding data etc. */
2045 memset (&w->prev, 0, sizeof (ev_statdata));
2046 memset (&w->attr, 0, sizeof (ev_statdata));
2047
2048 ev_stat_stat (EV_A_ w);
2049
2050 if (w->interval < MIN_STAT_INTERVAL)
2051 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2052
2053 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2054 ev_set_priority (&w->timer, ev_priority (w));
2055
2056#if EV_USE_INOTIFY
2057 infy_init (EV_A);
2058
2059 if (fs_fd >= 0)
2060 infy_add (EV_A_ w);
2061 else
2062#endif
2063 ev_timer_start (EV_A_ &w->timer);
2064
2065 ev_start (EV_A_ (W)w, 1);
2066}
2067
2068void
2069ev_stat_stop (EV_P_ ev_stat *w)
2070{
2071 clear_pending (EV_A_ (W)w);
2072 if (expect_false (!ev_is_active (w)))
2073 return;
2074
2075#if EV_USE_INOTIFY
2076 infy_del (EV_A_ w);
2077#endif
2078 ev_timer_stop (EV_A_ &w->timer);
2079
2080 ev_stop (EV_A_ (W)w);
2081}
2082#endif
2083
2084#if EV_IDLE_ENABLE
2085void
2086ev_idle_start (EV_P_ ev_idle *w)
2087{
2088 if (expect_false (ev_is_active (w)))
2089 return;
2090
2091 pri_adjust (EV_A_ (W)w);
2092
2093 {
2094 int active = ++idlecnt [ABSPRI (w)];
2095
2096 ++idleall;
2097 ev_start (EV_A_ (W)w, active);
2098
2099 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2100 idles [ABSPRI (w)][active - 1] = w;
2101 }
2102}
2103
2104void
2105ev_idle_stop (EV_P_ ev_idle *w)
2106{
2107 clear_pending (EV_A_ (W)w);
2108 if (expect_false (!ev_is_active (w)))
2109 return;
2110
2111 {
2112 int active = ((W)w)->active;
2113
2114 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2115 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2116
2117 ev_stop (EV_A_ (W)w);
2118 --idleall;
2119 }
2120}
2121#endif
2122
2123void
2124ev_prepare_start (EV_P_ ev_prepare *w)
2125{
2126 if (expect_false (ev_is_active (w)))
2127 return;
2128
2129 ev_start (EV_A_ (W)w, ++preparecnt);
2130 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2131 prepares [preparecnt - 1] = w;
2132}
2133
2134void
2135ev_prepare_stop (EV_P_ ev_prepare *w)
2136{
2137 clear_pending (EV_A_ (W)w);
2138 if (expect_false (!ev_is_active (w)))
2139 return;
2140
2141 {
2142 int active = ((W)w)->active;
2143 prepares [active - 1] = prepares [--preparecnt];
2144 ((W)prepares [active - 1])->active = active;
2145 }
2146
2147 ev_stop (EV_A_ (W)w);
2148}
2149
2150void
2151ev_check_start (EV_P_ ev_check *w)
2152{
2153 if (expect_false (ev_is_active (w)))
2154 return;
2155
2156 ev_start (EV_A_ (W)w, ++checkcnt);
2157 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2158 checks [checkcnt - 1] = w;
2159}
2160
2161void
2162ev_check_stop (EV_P_ ev_check *w)
2163{
2164 clear_pending (EV_A_ (W)w);
2165 if (expect_false (!ev_is_active (w)))
2166 return;
2167
2168 {
2169 int active = ((W)w)->active;
2170 checks [active - 1] = checks [--checkcnt];
2171 ((W)checks [active - 1])->active = active;
2172 }
2173
2174 ev_stop (EV_A_ (W)w);
2175}
2176
2177#if EV_EMBED_ENABLE
2178void noinline
2179ev_embed_sweep (EV_P_ ev_embed *w)
2180{
2181 ev_loop (w->loop, EVLOOP_NONBLOCK);
2182}
2183
2184static void
2185embed_cb (EV_P_ ev_io *io, int revents)
2186{
2187 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2188
2189 if (ev_cb (w))
2190 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2191 else
2192 ev_embed_sweep (loop, w);
2193}
2194
2195void
2196ev_embed_start (EV_P_ ev_embed *w)
2197{
2198 if (expect_false (ev_is_active (w)))
2199 return;
2200
2201 {
2202 struct ev_loop *loop = w->loop;
2203 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2204 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2205 }
2206
2207 ev_set_priority (&w->io, ev_priority (w));
2208 ev_io_start (EV_A_ &w->io);
2209
2210 ev_start (EV_A_ (W)w, 1);
2211}
2212
2213void
2214ev_embed_stop (EV_P_ ev_embed *w)
2215{
2216 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w)))
2218 return;
2219
2220 ev_io_stop (EV_A_ &w->io);
2221
2222 ev_stop (EV_A_ (W)w);
2223}
2224#endif
2225
2226#if EV_FORK_ENABLE
2227void
2228ev_fork_start (EV_P_ ev_fork *w)
2229{
2230 if (expect_false (ev_is_active (w)))
2231 return;
2232
2233 ev_start (EV_A_ (W)w, ++forkcnt);
2234 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2235 forks [forkcnt - 1] = w;
2236}
2237
2238void
2239ev_fork_stop (EV_P_ ev_fork *w)
2240{
2241 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w)))
2243 return;
2244
2245 {
2246 int active = ((W)w)->active;
2247 forks [active - 1] = forks [--forkcnt];
2248 ((W)forks [active - 1])->active = active;
2249 }
2250
2251 ev_stop (EV_A_ (W)w);
2252}
2253#endif
2254
1605/*****************************************************************************/ 2255/*****************************************************************************/
1606 2256
1607struct ev_once 2257struct ev_once
1608{ 2258{
1609 struct ev_io io; 2259 ev_io io;
1610 struct ev_timer to; 2260 ev_timer to;
1611 void (*cb)(int revents, void *arg); 2261 void (*cb)(int revents, void *arg);
1612 void *arg; 2262 void *arg;
1613}; 2263};
1614 2264
1615static void 2265static void
1624 2274
1625 cb (revents, arg); 2275 cb (revents, arg);
1626} 2276}
1627 2277
1628static void 2278static void
1629once_cb_io (EV_P_ struct ev_io *w, int revents) 2279once_cb_io (EV_P_ ev_io *w, int revents)
1630{ 2280{
1631 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2281 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1632} 2282}
1633 2283
1634static void 2284static void
1635once_cb_to (EV_P_ struct ev_timer *w, int revents) 2285once_cb_to (EV_P_ ev_timer *w, int revents)
1636{ 2286{
1637 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2287 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1638} 2288}
1639 2289
1640void 2290void
1641ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2291ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1642{ 2292{
1643 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2293 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1644 2294
1645 if (!once) 2295 if (expect_false (!once))
2296 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2297 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1647 else 2298 return;
1648 { 2299 }
2300
1649 once->cb = cb; 2301 once->cb = cb;
1650 once->arg = arg; 2302 once->arg = arg;
1651 2303
1652 ev_init (&once->io, once_cb_io); 2304 ev_init (&once->io, once_cb_io);
1653 if (fd >= 0) 2305 if (fd >= 0)
1654 { 2306 {
1655 ev_io_set (&once->io, fd, events); 2307 ev_io_set (&once->io, fd, events);
1656 ev_io_start (EV_A_ &once->io); 2308 ev_io_start (EV_A_ &once->io);
1657 } 2309 }
1658 2310
1659 ev_init (&once->to, once_cb_to); 2311 ev_init (&once->to, once_cb_to);
1660 if (timeout >= 0.) 2312 if (timeout >= 0.)
1661 { 2313 {
1662 ev_timer_set (&once->to, timeout, 0.); 2314 ev_timer_set (&once->to, timeout, 0.);
1663 ev_timer_start (EV_A_ &once->to); 2315 ev_timer_start (EV_A_ &once->to);
1664 }
1665 } 2316 }
1666} 2317}
1667 2318
1668#ifdef __cplusplus 2319#ifdef __cplusplus
1669} 2320}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines