ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.118 by root, Fri Nov 16 01:33:54 2007 UTC vs.
Revision 1.256 by root, Thu Jun 19 06:53:49 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
63 99
64# if HAVE_PORT_H && HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
66# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
67 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
68#endif 132#endif
69 133
70#include <math.h> 134#include <math.h>
71#include <stdlib.h> 135#include <stdlib.h>
72#include <fcntl.h> 136#include <fcntl.h>
79#include <sys/types.h> 143#include <sys/types.h>
80#include <time.h> 144#include <time.h>
81 145
82#include <signal.h> 146#include <signal.h>
83 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
84#ifndef _WIN32 154#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 155# include <sys/time.h>
87# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
88#else 158#else
159# include <io.h>
89# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 161# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
93# endif 164# endif
94#endif 165#endif
95 166
96/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
97 168
98#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
99# define EV_USE_MONOTONIC 1 171# define EV_USE_MONOTONIC 1
172# else
173# define EV_USE_MONOTONIC 0
174# endif
100#endif 175#endif
101 176
102#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 1 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
104#endif 187#endif
105 188
106#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
108# define EV_SELECT_USE_FD_SET 1
109#endif 191#endif
110 192
111#ifndef EV_USE_POLL 193#ifndef EV_USE_POLL
112# ifdef _WIN32 194# ifdef _WIN32
113# define EV_USE_POLL 0 195# define EV_USE_POLL 0
115# define EV_USE_POLL 1 197# define EV_USE_POLL 1
116# endif 198# endif
117#endif 199#endif
118 200
119#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
120# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
121#endif 207#endif
122 208
123#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
125#endif 211#endif
126 212
127#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
128# define EV_USE_PORT 0 214# define EV_USE_PORT 0
129#endif 215#endif
130 216
131/**/ 217#ifndef EV_USE_INOTIFY
132 218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
133/* darwin simply cannot be helped */ 219# define EV_USE_INOTIFY 1
134#ifdef __APPLE__ 220# else
135# undef EV_USE_POLL 221# define EV_USE_INOTIFY 0
136# undef EV_USE_KQUEUE
137#endif 222# endif
223#endif
224
225#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
138 268
139#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
140# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
141# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
142#endif 272#endif
144#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
145# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
146# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
147#endif 277#endif
148 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/inotify.h>
292#endif
293
149#if EV_SELECT_IS_WINSOCKET 294#if EV_SELECT_IS_WINSOCKET
150# include <winsock.h> 295# include <winsock.h>
151#endif 296#endif
152 297
298#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
303# endif
304int eventfd (unsigned int initval, int flags);
305# ifdef __cplusplus
306}
307# endif
308#endif
309
153/**/ 310/**/
154 311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
317
318/*
319 * This is used to avoid floating point rounding problems.
320 * It is added to ev_rt_now when scheduling periodics
321 * to ensure progress, time-wise, even when rounding
322 * errors are against us.
323 * This value is good at least till the year 4000.
324 * Better solutions welcome.
325 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
327
155#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
156#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
157#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
158/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
159 331
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
166#if __GNUC__ >= 3 332#if __GNUC__ >= 4
167# define expect(expr,value) __builtin_expect ((expr),(value)) 333# define expect(expr,value) __builtin_expect ((expr),(value))
168# define inline inline 334# define noinline __attribute__ ((noinline))
169#else 335#else
170# define expect(expr,value) (expr) 336# define expect(expr,value) (expr)
171# define inline static 337# define noinline
338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
339# define inline
340# endif
172#endif 341#endif
173 342
174#define expect_false(expr) expect ((expr) != 0, 0) 343#define expect_false(expr) expect ((expr) != 0, 0)
175#define expect_true(expr) expect ((expr) != 0, 1) 344#define expect_true(expr) expect ((expr) != 0, 1)
345#define inline_size static inline
346
347#if EV_MINIMAL
348# define inline_speed static noinline
349#else
350# define inline_speed static inline
351#endif
176 352
177#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
178#define ABSPRI(w) ((w)->priority - EV_MINPRI) 354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
179 355
180#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 356#define EMPTY /* required for microsofts broken pseudo-c compiler */
181#define EMPTY2(a,b) /* used to suppress some warnings */ 357#define EMPTY2(a,b) /* used to suppress some warnings */
182 358
183typedef struct ev_watcher *W; 359typedef ev_watcher *W;
184typedef struct ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
185typedef struct ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
186 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
366#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
187static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
370#endif
188 371
189#ifdef _WIN32 372#ifdef _WIN32
190# include "ev_win32.c" 373# include "ev_win32.c"
191#endif 374#endif
192 375
193/*****************************************************************************/ 376/*****************************************************************************/
194 377
195static void (*syserr_cb)(const char *msg); 378static void (*syserr_cb)(const char *msg);
196 379
380void
197void ev_set_syserr_cb (void (*cb)(const char *msg)) 381ev_set_syserr_cb (void (*cb)(const char *msg))
198{ 382{
199 syserr_cb = cb; 383 syserr_cb = cb;
200} 384}
201 385
202static void 386static void noinline
203syserr (const char *msg) 387syserr (const char *msg)
204{ 388{
205 if (!msg) 389 if (!msg)
206 msg = "(libev) system error"; 390 msg = "(libev) system error";
207 391
212 perror (msg); 396 perror (msg);
213 abort (); 397 abort ();
214 } 398 }
215} 399}
216 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
217static void *(*alloc)(void *ptr, long size); 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
218 417
418void
219void ev_set_allocator (void *(*cb)(void *ptr, long size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
220{ 420{
221 alloc = cb; 421 alloc = cb;
222} 422}
223 423
224static void * 424inline_speed void *
225ev_realloc (void *ptr, long size) 425ev_realloc (void *ptr, long size)
226{ 426{
227 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 427 ptr = alloc (ptr, size);
228 428
229 if (!ptr && size) 429 if (!ptr && size)
230 { 430 {
231 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
232 abort (); 432 abort ();
253typedef struct 453typedef struct
254{ 454{
255 W w; 455 W w;
256 int events; 456 int events;
257} ANPENDING; 457} ANPENDING;
458
459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
461typedef struct
462{
463 WL head;
464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
483#endif
258 484
259#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
260 486
261 struct ev_loop 487 struct ev_loop
262 { 488 {
296 gettimeofday (&tv, 0); 522 gettimeofday (&tv, 0);
297 return tv.tv_sec + tv.tv_usec * 1e-6; 523 return tv.tv_sec + tv.tv_usec * 1e-6;
298#endif 524#endif
299} 525}
300 526
301inline ev_tstamp 527ev_tstamp inline_size
302get_clock (void) 528get_clock (void)
303{ 529{
304#if EV_USE_MONOTONIC 530#if EV_USE_MONOTONIC
305 if (expect_true (have_monotonic)) 531 if (expect_true (have_monotonic))
306 { 532 {
319{ 545{
320 return ev_rt_now; 546 return ev_rt_now;
321} 547}
322#endif 548#endif
323 549
324#define array_roundsize(type,n) (((n) | 4) & ~3) 550void
551ev_sleep (ev_tstamp delay)
552{
553 if (delay > 0.)
554 {
555#if EV_USE_NANOSLEEP
556 struct timespec ts;
557
558 ts.tv_sec = (time_t)delay;
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0);
562#elif defined(_WIN32)
563 Sleep ((unsigned long)(delay * 1e3));
564#else
565 struct timeval tv;
566
567 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569
570 select (0, 0, 0, 0, &tv);
571#endif
572 }
573}
574
575/*****************************************************************************/
576
577#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
578
579int inline_size
580array_nextsize (int elem, int cur, int cnt)
581{
582 int ncur = cur + 1;
583
584 do
585 ncur <<= 1;
586 while (cnt > ncur);
587
588 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
589 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
590 {
591 ncur *= elem;
592 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
593 ncur = ncur - sizeof (void *) * 4;
594 ncur /= elem;
595 }
596
597 return ncur;
598}
599
600static noinline void *
601array_realloc (int elem, void *base, int *cur, int cnt)
602{
603 *cur = array_nextsize (elem, *cur, cnt);
604 return ev_realloc (base, elem * *cur);
605}
325 606
326#define array_needsize(type,base,cur,cnt,init) \ 607#define array_needsize(type,base,cur,cnt,init) \
327 if (expect_false ((cnt) > cur)) \ 608 if (expect_false ((cnt) > (cur))) \
328 { \ 609 { \
329 int newcnt = cur; \ 610 int ocur_ = (cur); \
330 do \ 611 (base) = (type *)array_realloc \
331 { \ 612 (sizeof (type), (base), &(cur), (cnt)); \
332 newcnt = array_roundsize (type, newcnt << 1); \ 613 init ((base) + (ocur_), (cur) - ocur_); \
333 } \
334 while ((cnt) > newcnt); \
335 \
336 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
337 init (base + cur, newcnt - cur); \
338 cur = newcnt; \
339 } 614 }
340 615
616#if 0
341#define array_slim(type,stem) \ 617#define array_slim(type,stem) \
342 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 618 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
343 { \ 619 { \
344 stem ## max = array_roundsize (stem ## cnt >> 1); \ 620 stem ## max = array_roundsize (stem ## cnt >> 1); \
345 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 621 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
346 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 622 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
347 } 623 }
624#endif
348 625
349#define array_free(stem, idx) \ 626#define array_free(stem, idx) \
350 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 627 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
351 628
352/*****************************************************************************/ 629/*****************************************************************************/
353 630
354static void 631void noinline
632ev_feed_event (EV_P_ void *w, int revents)
633{
634 W w_ = (W)w;
635 int pri = ABSPRI (w_);
636
637 if (expect_false (w_->pending))
638 pendings [pri][w_->pending - 1].events |= revents;
639 else
640 {
641 w_->pending = ++pendingcnt [pri];
642 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
643 pendings [pri][w_->pending - 1].w = w_;
644 pendings [pri][w_->pending - 1].events = revents;
645 }
646}
647
648void inline_speed
649queue_events (EV_P_ W *events, int eventcnt, int type)
650{
651 int i;
652
653 for (i = 0; i < eventcnt; ++i)
654 ev_feed_event (EV_A_ events [i], type);
655}
656
657/*****************************************************************************/
658
659void inline_size
355anfds_init (ANFD *base, int count) 660anfds_init (ANFD *base, int count)
356{ 661{
357 while (count--) 662 while (count--)
358 { 663 {
359 base->head = 0; 664 base->head = 0;
362 667
363 ++base; 668 ++base;
364 } 669 }
365} 670}
366 671
367void 672void inline_speed
368ev_feed_event (EV_P_ void *w, int revents)
369{
370 W w_ = (W)w;
371
372 if (w_->pending)
373 {
374 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
375 return;
376 }
377
378 w_->pending = ++pendingcnt [ABSPRI (w_)];
379 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
380 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
381 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
382}
383
384static void
385queue_events (EV_P_ W *events, int eventcnt, int type)
386{
387 int i;
388
389 for (i = 0; i < eventcnt; ++i)
390 ev_feed_event (EV_A_ events [i], type);
391}
392
393inline void
394fd_event (EV_P_ int fd, int revents) 673fd_event (EV_P_ int fd, int revents)
395{ 674{
396 ANFD *anfd = anfds + fd; 675 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 676 ev_io *w;
398 677
399 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 678 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
400 { 679 {
401 int ev = w->events & revents; 680 int ev = w->events & revents;
402 681
403 if (ev) 682 if (ev)
404 ev_feed_event (EV_A_ (W)w, ev); 683 ev_feed_event (EV_A_ (W)w, ev);
406} 685}
407 686
408void 687void
409ev_feed_fd_event (EV_P_ int fd, int revents) 688ev_feed_fd_event (EV_P_ int fd, int revents)
410{ 689{
690 if (fd >= 0 && fd < anfdmax)
411 fd_event (EV_A_ fd, revents); 691 fd_event (EV_A_ fd, revents);
412} 692}
413 693
414/*****************************************************************************/ 694void inline_size
415
416static void
417fd_reify (EV_P) 695fd_reify (EV_P)
418{ 696{
419 int i; 697 int i;
420 698
421 for (i = 0; i < fdchangecnt; ++i) 699 for (i = 0; i < fdchangecnt; ++i)
422 { 700 {
423 int fd = fdchanges [i]; 701 int fd = fdchanges [i];
424 ANFD *anfd = anfds + fd; 702 ANFD *anfd = anfds + fd;
425 struct ev_io *w; 703 ev_io *w;
426 704
427 int events = 0; 705 unsigned char events = 0;
428 706
429 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 707 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
430 events |= w->events; 708 events |= (unsigned char)w->events;
431 709
432#if EV_SELECT_IS_WINSOCKET 710#if EV_SELECT_IS_WINSOCKET
433 if (events) 711 if (events)
434 { 712 {
435 unsigned long argp; 713 unsigned long arg;
714 #ifdef EV_FD_TO_WIN32_HANDLE
715 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
716 #else
436 anfd->handle = _get_osfhandle (fd); 717 anfd->handle = _get_osfhandle (fd);
718 #endif
437 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 719 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
438 } 720 }
439#endif 721#endif
440 722
723 {
724 unsigned char o_events = anfd->events;
725 unsigned char o_reify = anfd->reify;
726
441 anfd->reify = 0; 727 anfd->reify = 0;
442
443 method_modify (EV_A_ fd, anfd->events, events);
444 anfd->events = events; 728 anfd->events = events;
729
730 if (o_events != events || o_reify & EV_IOFDSET)
731 backend_modify (EV_A_ fd, o_events, events);
732 }
445 } 733 }
446 734
447 fdchangecnt = 0; 735 fdchangecnt = 0;
448} 736}
449 737
450static void 738void inline_size
451fd_change (EV_P_ int fd) 739fd_change (EV_P_ int fd, int flags)
452{ 740{
453 if (anfds [fd].reify) 741 unsigned char reify = anfds [fd].reify;
454 return;
455
456 anfds [fd].reify = 1; 742 anfds [fd].reify |= flags;
457 743
744 if (expect_true (!reify))
745 {
458 ++fdchangecnt; 746 ++fdchangecnt;
459 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 747 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
460 fdchanges [fdchangecnt - 1] = fd; 748 fdchanges [fdchangecnt - 1] = fd;
749 }
461} 750}
462 751
463static void 752void inline_speed
464fd_kill (EV_P_ int fd) 753fd_kill (EV_P_ int fd)
465{ 754{
466 struct ev_io *w; 755 ev_io *w;
467 756
468 while ((w = (struct ev_io *)anfds [fd].head)) 757 while ((w = (ev_io *)anfds [fd].head))
469 { 758 {
470 ev_io_stop (EV_A_ w); 759 ev_io_stop (EV_A_ w);
471 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 760 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
472 } 761 }
473} 762}
474 763
475static int 764int inline_size
476fd_valid (int fd) 765fd_valid (int fd)
477{ 766{
478#ifdef _WIN32 767#ifdef _WIN32
479 return _get_osfhandle (fd) != -1; 768 return _get_osfhandle (fd) != -1;
480#else 769#else
481 return fcntl (fd, F_GETFD) != -1; 770 return fcntl (fd, F_GETFD) != -1;
482#endif 771#endif
483} 772}
484 773
485/* called on EBADF to verify fds */ 774/* called on EBADF to verify fds */
486static void 775static void noinline
487fd_ebadf (EV_P) 776fd_ebadf (EV_P)
488{ 777{
489 int fd; 778 int fd;
490 779
491 for (fd = 0; fd < anfdmax; ++fd) 780 for (fd = 0; fd < anfdmax; ++fd)
492 if (anfds [fd].events) 781 if (anfds [fd].events)
493 if (!fd_valid (fd) == -1 && errno == EBADF) 782 if (!fd_valid (fd) && errno == EBADF)
494 fd_kill (EV_A_ fd); 783 fd_kill (EV_A_ fd);
495} 784}
496 785
497/* called on ENOMEM in select/poll to kill some fds and retry */ 786/* called on ENOMEM in select/poll to kill some fds and retry */
498static void 787static void noinline
499fd_enomem (EV_P) 788fd_enomem (EV_P)
500{ 789{
501 int fd; 790 int fd;
502 791
503 for (fd = anfdmax; fd--; ) 792 for (fd = anfdmax; fd--; )
506 fd_kill (EV_A_ fd); 795 fd_kill (EV_A_ fd);
507 return; 796 return;
508 } 797 }
509} 798}
510 799
511/* usually called after fork if method needs to re-arm all fds from scratch */ 800/* usually called after fork if backend needs to re-arm all fds from scratch */
512static void 801static void noinline
513fd_rearm_all (EV_P) 802fd_rearm_all (EV_P)
514{ 803{
515 int fd; 804 int fd;
516 805
517 /* this should be highly optimised to not do anything but set a flag */
518 for (fd = 0; fd < anfdmax; ++fd) 806 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 807 if (anfds [fd].events)
520 { 808 {
521 anfds [fd].events = 0; 809 anfds [fd].events = 0;
522 fd_change (EV_A_ fd); 810 fd_change (EV_A_ fd, EV_IOFDSET | 1);
523 } 811 }
524} 812}
525 813
526/*****************************************************************************/ 814/*****************************************************************************/
527 815
528static void 816/*
529upheap (WT *heap, int k) 817 * the heap functions want a real array index. array index 0 uis guaranteed to not
530{ 818 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
531 WT w = heap [k]; 819 * the branching factor of the d-tree.
820 */
532 821
533 while (k && heap [k >> 1]->at > w->at) 822/*
534 { 823 * at the moment we allow libev the luxury of two heaps,
535 heap [k] = heap [k >> 1]; 824 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
536 ((W)heap [k])->active = k + 1; 825 * which is more cache-efficient.
537 k >>= 1; 826 * the difference is about 5% with 50000+ watchers.
538 } 827 */
828#if EV_USE_4HEAP
539 829
540 heap [k] = w; 830#define DHEAP 4
541 ((W)heap [k])->active = k + 1; 831#define HEAP0 (DHEAP - 1) /* index of first element in heap */
832#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
833#define UPHEAP_DONE(p,k) ((p) == (k))
542 834
543} 835/* away from the root */
544 836void inline_speed
545static void
546downheap (WT *heap, int N, int k) 837downheap (ANHE *heap, int N, int k)
547{ 838{
548 WT w = heap [k]; 839 ANHE he = heap [k];
840 ANHE *E = heap + N + HEAP0;
549 841
550 while (k < (N >> 1)) 842 for (;;)
551 { 843 {
552 int j = k << 1; 844 ev_tstamp minat;
845 ANHE *minpos;
846 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
553 847
554 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 848 /* find minimum child */
849 if (expect_true (pos + DHEAP - 1 < E))
555 ++j; 850 {
556 851 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
557 if (w->at <= heap [j]->at) 852 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
854 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
855 }
856 else if (pos < E)
857 {
858 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
859 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
860 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
861 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
862 }
863 else
558 break; 864 break;
559 865
866 if (ANHE_at (he) <= minat)
867 break;
868
869 heap [k] = *minpos;
870 ev_active (ANHE_w (*minpos)) = k;
871
872 k = minpos - heap;
873 }
874
875 heap [k] = he;
876 ev_active (ANHE_w (he)) = k;
877}
878
879#else /* 4HEAP */
880
881#define HEAP0 1
882#define HPARENT(k) ((k) >> 1)
883#define UPHEAP_DONE(p,k) (!(p))
884
885/* away from the root */
886void inline_speed
887downheap (ANHE *heap, int N, int k)
888{
889 ANHE he = heap [k];
890
891 for (;;)
892 {
893 int c = k << 1;
894
895 if (c > N + HEAP0 - 1)
896 break;
897
898 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
899 ? 1 : 0;
900
901 if (ANHE_at (he) <= ANHE_at (heap [c]))
902 break;
903
560 heap [k] = heap [j]; 904 heap [k] = heap [c];
561 ((W)heap [k])->active = k + 1; 905 ev_active (ANHE_w (heap [k])) = k;
906
562 k = j; 907 k = c;
563 } 908 }
564 909
565 heap [k] = w; 910 heap [k] = he;
566 ((W)heap [k])->active = k + 1; 911 ev_active (ANHE_w (he)) = k;
567} 912}
913#endif
568 914
569inline void 915/* towards the root */
916void inline_speed
917upheap (ANHE *heap, int k)
918{
919 ANHE he = heap [k];
920
921 for (;;)
922 {
923 int p = HPARENT (k);
924
925 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
926 break;
927
928 heap [k] = heap [p];
929 ev_active (ANHE_w (heap [k])) = k;
930 k = p;
931 }
932
933 heap [k] = he;
934 ev_active (ANHE_w (he)) = k;
935}
936
937void inline_size
570adjustheap (WT *heap, int N, int k) 938adjustheap (ANHE *heap, int N, int k)
571{ 939{
940 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
572 upheap (heap, k); 941 upheap (heap, k);
942 else
573 downheap (heap, N, k); 943 downheap (heap, N, k);
944}
945
946/* rebuild the heap: this function is used only once and executed rarely */
947void inline_size
948reheap (ANHE *heap, int N)
949{
950 int i;
951
952 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
953 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
954 for (i = 0; i < N; ++i)
955 upheap (heap, i + HEAP0);
574} 956}
575 957
576/*****************************************************************************/ 958/*****************************************************************************/
577 959
578typedef struct 960typedef struct
579{ 961{
580 WL head; 962 WL head;
581 sig_atomic_t volatile gotsig; 963 EV_ATOMIC_T gotsig;
582} ANSIG; 964} ANSIG;
583 965
584static ANSIG *signals; 966static ANSIG *signals;
585static int signalmax; 967static int signalmax;
586 968
587static int sigpipe [2]; 969static EV_ATOMIC_T gotsig;
588static sig_atomic_t volatile gotsig;
589static struct ev_io sigev;
590 970
591static void 971void inline_size
592signals_init (ANSIG *base, int count) 972signals_init (ANSIG *base, int count)
593{ 973{
594 while (count--) 974 while (count--)
595 { 975 {
596 base->head = 0; 976 base->head = 0;
598 978
599 ++base; 979 ++base;
600 } 980 }
601} 981}
602 982
603static void 983/*****************************************************************************/
604sighandler (int signum)
605{
606#if _WIN32
607 signal (signum, sighandler);
608#endif
609 984
610 signals [signum - 1].gotsig = 1; 985void inline_speed
611
612 if (!gotsig)
613 {
614 int old_errno = errno;
615 gotsig = 1;
616 write (sigpipe [1], &signum, 1);
617 errno = old_errno;
618 }
619}
620
621void
622ev_feed_signal_event (EV_P_ int signum)
623{
624 WL w;
625
626#if EV_MULTIPLICITY
627 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
628#endif
629
630 --signum;
631
632 if (signum < 0 || signum >= signalmax)
633 return;
634
635 signals [signum].gotsig = 0;
636
637 for (w = signals [signum].head; w; w = w->next)
638 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
639}
640
641static void
642sigcb (EV_P_ struct ev_io *iow, int revents)
643{
644 int signum;
645
646 read (sigpipe [0], &revents, 1);
647 gotsig = 0;
648
649 for (signum = signalmax; signum--; )
650 if (signals [signum].gotsig)
651 ev_feed_signal_event (EV_A_ signum + 1);
652}
653
654inline void
655fd_intern (int fd) 986fd_intern (int fd)
656{ 987{
657#ifdef _WIN32 988#ifdef _WIN32
658 int arg = 1; 989 unsigned long arg = 1;
659 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
660#else 991#else
661 fcntl (fd, F_SETFD, FD_CLOEXEC); 992 fcntl (fd, F_SETFD, FD_CLOEXEC);
662 fcntl (fd, F_SETFL, O_NONBLOCK); 993 fcntl (fd, F_SETFL, O_NONBLOCK);
663#endif 994#endif
664} 995}
665 996
997static void noinline
998evpipe_init (EV_P)
999{
1000 if (!ev_is_active (&pipeev))
1001 {
1002#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0)
1004 {
1005 evpipe [0] = -1;
1006 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 }
1009 else
1010#endif
1011 {
1012 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe");
1014
1015 fd_intern (evpipe [0]);
1016 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ);
1018 }
1019
1020 ev_io_start (EV_A_ &pipeev);
1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 {
1030 int old_errno = errno; /* save errno because write might clobber it */
1031
1032 *flag = 1;
1033
1034#if EV_USE_EVENTFD
1035 if (evfd >= 0)
1036 {
1037 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t));
1039 }
1040 else
1041#endif
1042 write (evpipe [1], &old_errno, 1);
1043
1044 errno = old_errno;
1045 }
1046}
1047
666static void 1048static void
667siginit (EV_P) 1049pipecb (EV_P_ ev_io *iow, int revents)
668{ 1050{
669 fd_intern (sigpipe [0]); 1051#if EV_USE_EVENTFD
670 fd_intern (sigpipe [1]); 1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy;
1061 read (evpipe [0], &dummy, 1);
1062 }
671 1063
672 ev_io_set (&sigev, sigpipe [0], EV_READ); 1064 if (gotsig && ev_is_default_loop (EV_A))
673 ev_io_start (EV_A_ &sigev); 1065 {
674 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1066 int signum;
1067 gotsig = 0;
1068
1069 for (signum = signalmax; signum--; )
1070 if (signals [signum].gotsig)
1071 ev_feed_signal_event (EV_A_ signum + 1);
1072 }
1073
1074#if EV_ASYNC_ENABLE
1075 if (gotasync)
1076 {
1077 int i;
1078 gotasync = 0;
1079
1080 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent)
1082 {
1083 asyncs [i]->sent = 0;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 }
1086 }
1087#endif
675} 1088}
676 1089
677/*****************************************************************************/ 1090/*****************************************************************************/
678 1091
679static struct ev_child *childs [PID_HASHSIZE]; 1092static void
1093ev_sighandler (int signum)
1094{
1095#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct;
1097#endif
1098
1099#if _WIN32
1100 signal (signum, ev_sighandler);
1101#endif
1102
1103 signals [signum - 1].gotsig = 1;
1104 evpipe_write (EV_A_ &gotsig);
1105}
1106
1107void noinline
1108ev_feed_signal_event (EV_P_ int signum)
1109{
1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
1116 --signum;
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return;
1120
1121 signals [signum].gotsig = 0;
1122
1123 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125}
1126
1127/*****************************************************************************/
1128
1129static WL childs [EV_PID_HASHSIZE];
680 1130
681#ifndef _WIN32 1131#ifndef _WIN32
682 1132
683static struct ev_signal childev; 1133static ev_signal childev;
1134
1135#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0
1137#endif
1138
1139void inline_speed
1140child_reap (EV_P_ int chain, int pid, int status)
1141{
1142 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1144
1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 {
1147 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1)))
1149 {
1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1151 w->rpid = pid;
1152 w->rstatus = status;
1153 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1154 }
1155 }
1156}
684 1157
685#ifndef WCONTINUED 1158#ifndef WCONTINUED
686# define WCONTINUED 0 1159# define WCONTINUED 0
687#endif 1160#endif
688 1161
689static void 1162static void
690child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
691{
692 struct ev_child *w;
693
694 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
695 if (w->pid == pid || !w->pid)
696 {
697 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
698 w->rpid = pid;
699 w->rstatus = status;
700 ev_feed_event (EV_A_ (W)w, EV_CHILD);
701 }
702}
703
704static void
705childcb (EV_P_ struct ev_signal *sw, int revents) 1163childcb (EV_P_ ev_signal *sw, int revents)
706{ 1164{
707 int pid, status; 1165 int pid, status;
708 1166
1167 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
709 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1168 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
710 { 1169 if (!WCONTINUED
1170 || errno != EINVAL
1171 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1172 return;
1173
711 /* make sure we are called again until all childs have been reaped */ 1174 /* make sure we are called again until all children have been reaped */
1175 /* we need to do it this way so that the callback gets called before we continue */
712 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
713 1177
714 child_reap (EV_A_ sw, pid, pid, status); 1178 child_reap (EV_A_ pid, pid, status);
1179 if (EV_PID_HASHSIZE > 1)
715 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
716 }
717} 1181}
718 1182
719#endif 1183#endif
720 1184
721/*****************************************************************************/ 1185/*****************************************************************************/
747{ 1211{
748 return EV_VERSION_MINOR; 1212 return EV_VERSION_MINOR;
749} 1213}
750 1214
751/* return true if we are running with elevated privileges and should ignore env variables */ 1215/* return true if we are running with elevated privileges and should ignore env variables */
752static int 1216int inline_size
753enable_secure (void) 1217enable_secure (void)
754{ 1218{
755#ifdef _WIN32 1219#ifdef _WIN32
756 return 0; 1220 return 0;
757#else 1221#else
759 || getgid () != getegid (); 1223 || getgid () != getegid ();
760#endif 1224#endif
761} 1225}
762 1226
763unsigned int 1227unsigned int
764ev_method (EV_P) 1228ev_supported_backends (void)
765{ 1229{
766 return method; 1230 unsigned int flags = 0;
767}
768 1231
769static void 1232 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1233 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1234 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1235 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1236 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1237
1238 return flags;
1239}
1240
1241unsigned int
1242ev_recommended_backends (void)
1243{
1244 unsigned int flags = ev_supported_backends ();
1245
1246#ifndef __NetBSD__
1247 /* kqueue is borked on everything but netbsd apparently */
1248 /* it usually doesn't work correctly on anything but sockets and pipes */
1249 flags &= ~EVBACKEND_KQUEUE;
1250#endif
1251#ifdef __APPLE__
1252 // flags &= ~EVBACKEND_KQUEUE; for documentation
1253 flags &= ~EVBACKEND_POLL;
1254#endif
1255
1256 return flags;
1257}
1258
1259unsigned int
1260ev_embeddable_backends (void)
1261{
1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1263
1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */
1266 flags &= ~EVBACKEND_EPOLL;
1267
1268 return flags;
1269}
1270
1271unsigned int
1272ev_backend (EV_P)
1273{
1274 return backend;
1275}
1276
1277unsigned int
1278ev_loop_count (EV_P)
1279{
1280 return loop_count;
1281}
1282
1283void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 io_blocktime = interval;
1287}
1288
1289void
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 timeout_blocktime = interval;
1293}
1294
1295static void noinline
770loop_init (EV_P_ unsigned int flags) 1296loop_init (EV_P_ unsigned int flags)
771{ 1297{
772 if (!method) 1298 if (!backend)
773 { 1299 {
774#if EV_USE_MONOTONIC 1300#if EV_USE_MONOTONIC
775 { 1301 {
776 struct timespec ts; 1302 struct timespec ts;
777 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
778 have_monotonic = 1; 1304 have_monotonic = 1;
779 } 1305 }
780#endif 1306#endif
781 1307
782 ev_rt_now = ev_time (); 1308 ev_rt_now = ev_time ();
783 mn_now = get_clock (); 1309 mn_now = get_clock ();
784 now_floor = mn_now; 1310 now_floor = mn_now;
785 rtmn_diff = ev_rt_now - mn_now; 1311 rtmn_diff = ev_rt_now - mn_now;
786 1312
787 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1313 io_blocktime = 0.;
1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif
1321
1322 /* pid check not overridable via env */
1323#ifndef _WIN32
1324 if (flags & EVFLAG_FORKCHECK)
1325 curpid = getpid ();
1326#endif
1327
1328 if (!(flags & EVFLAG_NOENV)
1329 && !enable_secure ()
1330 && getenv ("LIBEV_FLAGS"))
788 flags = atoi (getenv ("LIBEV_FLAGS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
789 1332
790 if (!(flags & 0x0000ffff)) 1333 if (!(flags & 0x0000ffffU))
791 flags |= 0x0000ffff; 1334 flags |= ev_recommended_backends ();
792 1335
793 method = 0;
794#if EV_USE_PORT 1336#if EV_USE_PORT
795 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
796#endif 1338#endif
797#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
798 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
799#endif 1341#endif
800#if EV_USE_EPOLL 1342#if EV_USE_EPOLL
801 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
802#endif 1344#endif
803#if EV_USE_POLL 1345#if EV_USE_POLL
804 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1346 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
805#endif 1347#endif
806#if EV_USE_SELECT 1348#if EV_USE_SELECT
807 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
808#endif 1350#endif
809 1351
810 ev_init (&sigev, sigcb); 1352 ev_init (&pipeev, pipecb);
811 ev_set_priority (&sigev, EV_MAXPRI); 1353 ev_set_priority (&pipeev, EV_MAXPRI);
812 } 1354 }
813} 1355}
814 1356
815void 1357static void noinline
816loop_destroy (EV_P) 1358loop_destroy (EV_P)
817{ 1359{
818 int i; 1360 int i;
819 1361
1362 if (ev_is_active (&pipeev))
1363 {
1364 ev_ref (EV_A); /* signal watcher */
1365 ev_io_stop (EV_A_ &pipeev);
1366
1367#if EV_USE_EVENTFD
1368 if (evfd >= 0)
1369 close (evfd);
1370#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1377 }
1378
1379#if EV_USE_INOTIFY
1380 if (fs_fd >= 0)
1381 close (fs_fd);
1382#endif
1383
1384 if (backend_fd >= 0)
1385 close (backend_fd);
1386
820#if EV_USE_PORT 1387#if EV_USE_PORT
821 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1388 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
822#endif 1389#endif
823#if EV_USE_KQUEUE 1390#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1391 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
825#endif 1392#endif
826#if EV_USE_EPOLL 1393#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1394 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
828#endif 1395#endif
829#if EV_USE_POLL 1396#if EV_USE_POLL
830 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1397 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
831#endif 1398#endif
832#if EV_USE_SELECT 1399#if EV_USE_SELECT
833 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1400 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
834#endif 1401#endif
835 1402
836 for (i = NUMPRI; i--; ) 1403 for (i = NUMPRI; i--; )
1404 {
837 array_free (pending, [i]); 1405 array_free (pending, [i]);
1406#if EV_IDLE_ENABLE
1407 array_free (idle, [i]);
1408#endif
1409 }
1410
1411 ev_free (anfds); anfdmax = 0;
838 1412
839 /* have to use the microsoft-never-gets-it-right macro */ 1413 /* have to use the microsoft-never-gets-it-right macro */
840 array_free (fdchange, EMPTY0); 1414 array_free (fdchange, EMPTY);
841 array_free (timer, EMPTY0); 1415 array_free (timer, EMPTY);
842#if EV_PERIODICS 1416#if EV_PERIODIC_ENABLE
843 array_free (periodic, EMPTY0); 1417 array_free (periodic, EMPTY);
844#endif 1418#endif
1419#if EV_FORK_ENABLE
845 array_free (idle, EMPTY0); 1420 array_free (fork, EMPTY);
1421#endif
846 array_free (prepare, EMPTY0); 1422 array_free (prepare, EMPTY);
847 array_free (check, EMPTY0); 1423 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY);
1426#endif
848 1427
849 method = 0; 1428 backend = 0;
850} 1429}
851 1430
852static void 1431#if EV_USE_INOTIFY
1432void inline_size infy_fork (EV_P);
1433#endif
1434
1435void inline_size
853loop_fork (EV_P) 1436loop_fork (EV_P)
854{ 1437{
855#if EV_USE_PORT 1438#if EV_USE_PORT
856 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1439 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
857#endif 1440#endif
858#if EV_USE_KQUEUE 1441#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1442 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
860#endif 1443#endif
861#if EV_USE_EPOLL 1444#if EV_USE_EPOLL
862 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1445 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
863#endif 1446#endif
1447#if EV_USE_INOTIFY
1448 infy_fork (EV_A);
1449#endif
864 1450
865 if (ev_is_active (&sigev)) 1451 if (ev_is_active (&pipeev))
866 { 1452 {
867 /* default loop */ 1453 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
868 1459
869 ev_ref (EV_A); 1460 ev_ref (EV_A);
870 ev_io_stop (EV_A_ &sigev); 1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
871 close (sigpipe [0]); 1470 close (evpipe [0]);
872 close (sigpipe [1]); 1471 close (evpipe [1]);
1472 }
873 1473
874 while (pipe (sigpipe))
875 syserr ("(libev) error creating pipe");
876
877 siginit (EV_A); 1474 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ);
878 } 1477 }
879 1478
880 postfork = 0; 1479 postfork = 0;
881} 1480}
1481
1482#if EV_MULTIPLICITY
1483
1484struct ev_loop *
1485ev_loop_new (unsigned int flags)
1486{
1487 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1488
1489 memset (loop, 0, sizeof (struct ev_loop));
1490
1491 loop_init (EV_A_ flags);
1492
1493 if (ev_backend (EV_A))
1494 return loop;
1495
1496 return 0;
1497}
1498
1499void
1500ev_loop_destroy (EV_P)
1501{
1502 loop_destroy (EV_A);
1503 ev_free (loop);
1504}
1505
1506void
1507ev_loop_fork (EV_P)
1508{
1509 postfork = 1; /* must be in line with ev_default_fork */
1510}
1511
1512#if EV_VERIFY
1513void noinline
1514verify_watcher (EV_P_ W w)
1515{
1516 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1517
1518 if (w->pending)
1519 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1520}
1521
1522static void noinline
1523verify_heap (EV_P_ ANHE *heap, int N)
1524{
1525 int i;
1526
1527 for (i = HEAP0; i < N + HEAP0; ++i)
1528 {
1529 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1530 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1531 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1532
1533 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1534 }
1535}
1536
1537static void noinline
1538array_verify (EV_P_ W *ws, int cnt)
1539{
1540 while (cnt--)
1541 {
1542 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1543 verify_watcher (EV_A_ ws [cnt]);
1544 }
1545}
1546#endif
1547
1548void
1549ev_loop_verify (EV_P)
1550{
1551#if EV_VERIFY
1552 int i;
1553 WL w;
1554
1555 assert (activecnt >= -1);
1556
1557 assert (fdchangemax >= fdchangecnt);
1558 for (i = 0; i < fdchangecnt; ++i)
1559 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1560
1561 assert (anfdmax >= 0);
1562 for (i = 0; i < anfdmax; ++i)
1563 for (w = anfds [i].head; w; w = w->next)
1564 {
1565 verify_watcher (EV_A_ (W)w);
1566 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1567 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1568 }
1569
1570 assert (timermax >= timercnt);
1571 verify_heap (EV_A_ timers, timercnt);
1572
1573#if EV_PERIODIC_ENABLE
1574 assert (periodicmax >= periodiccnt);
1575 verify_heap (EV_A_ periodics, periodiccnt);
1576#endif
1577
1578 for (i = NUMPRI; i--; )
1579 {
1580 assert (pendingmax [i] >= pendingcnt [i]);
1581#if EV_IDLE_ENABLE
1582 assert (idleall >= 0);
1583 assert (idlemax [i] >= idlecnt [i]);
1584 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1585#endif
1586 }
1587
1588#if EV_FORK_ENABLE
1589 assert (forkmax >= forkcnt);
1590 array_verify (EV_A_ (W *)forks, forkcnt);
1591#endif
1592
1593#if EV_ASYNC_ENABLE
1594 assert (asyncmax >= asynccnt);
1595 array_verify (EV_A_ (W *)asyncs, asynccnt);
1596#endif
1597
1598 assert (preparemax >= preparecnt);
1599 array_verify (EV_A_ (W *)prepares, preparecnt);
1600
1601 assert (checkmax >= checkcnt);
1602 array_verify (EV_A_ (W *)checks, checkcnt);
1603
1604# if 0
1605 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1606 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1607# endif
1608#endif
1609}
1610
1611#endif /* multiplicity */
882 1612
883#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
884struct ev_loop * 1614struct ev_loop *
885ev_loop_new (unsigned int flags)
886{
887 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
888
889 memset (loop, 0, sizeof (struct ev_loop));
890
891 loop_init (EV_A_ flags);
892
893 if (ev_method (EV_A))
894 return loop;
895
896 return 0;
897}
898
899void
900ev_loop_destroy (EV_P)
901{
902 loop_destroy (EV_A);
903 ev_free (loop);
904}
905
906void
907ev_loop_fork (EV_P)
908{
909 postfork = 1;
910}
911
912#endif
913
914#if EV_MULTIPLICITY
915struct ev_loop *
916ev_default_loop_ (unsigned int flags) 1615ev_default_loop_init (unsigned int flags)
917#else 1616#else
918int 1617int
919ev_default_loop (unsigned int flags) 1618ev_default_loop (unsigned int flags)
920#endif 1619#endif
921{ 1620{
922 if (sigpipe [0] == sigpipe [1])
923 if (pipe (sigpipe))
924 return 0;
925
926 if (!ev_default_loop_ptr) 1621 if (!ev_default_loop_ptr)
927 { 1622 {
928#if EV_MULTIPLICITY 1623#if EV_MULTIPLICITY
929 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1624 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
930#else 1625#else
931 ev_default_loop_ptr = 1; 1626 ev_default_loop_ptr = 1;
932#endif 1627#endif
933 1628
934 loop_init (EV_A_ flags); 1629 loop_init (EV_A_ flags);
935 1630
936 if (ev_method (EV_A)) 1631 if (ev_backend (EV_A))
937 { 1632 {
938 siginit (EV_A);
939
940#ifndef _WIN32 1633#ifndef _WIN32
941 ev_signal_init (&childev, childcb, SIGCHLD); 1634 ev_signal_init (&childev, childcb, SIGCHLD);
942 ev_set_priority (&childev, EV_MAXPRI); 1635 ev_set_priority (&childev, EV_MAXPRI);
943 ev_signal_start (EV_A_ &childev); 1636 ev_signal_start (EV_A_ &childev);
944 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1637 ev_unref (EV_A); /* child watcher should not keep loop alive */
961#ifndef _WIN32 1654#ifndef _WIN32
962 ev_ref (EV_A); /* child watcher */ 1655 ev_ref (EV_A); /* child watcher */
963 ev_signal_stop (EV_A_ &childev); 1656 ev_signal_stop (EV_A_ &childev);
964#endif 1657#endif
965 1658
966 ev_ref (EV_A); /* signal watcher */
967 ev_io_stop (EV_A_ &sigev);
968
969 close (sigpipe [0]); sigpipe [0] = 0;
970 close (sigpipe [1]); sigpipe [1] = 0;
971
972 loop_destroy (EV_A); 1659 loop_destroy (EV_A);
973} 1660}
974 1661
975void 1662void
976ev_default_fork (void) 1663ev_default_fork (void)
977{ 1664{
978#if EV_MULTIPLICITY 1665#if EV_MULTIPLICITY
979 struct ev_loop *loop = ev_default_loop_ptr; 1666 struct ev_loop *loop = ev_default_loop_ptr;
980#endif 1667#endif
981 1668
982 if (method) 1669 if (backend)
983 postfork = 1; 1670 postfork = 1; /* must be in line with ev_loop_fork */
984} 1671}
985 1672
986/*****************************************************************************/ 1673/*****************************************************************************/
987 1674
988static int 1675void
989any_pending (EV_P) 1676ev_invoke (EV_P_ void *w, int revents)
990{ 1677{
991 int pri; 1678 EV_CB_INVOKE ((W)w, revents);
992
993 for (pri = NUMPRI; pri--; )
994 if (pendingcnt [pri])
995 return 1;
996
997 return 0;
998} 1679}
999 1680
1000static void 1681void inline_speed
1001call_pending (EV_P) 1682call_pending (EV_P)
1002{ 1683{
1003 int pri; 1684 int pri;
1004 1685
1005 for (pri = NUMPRI; pri--; ) 1686 for (pri = NUMPRI; pri--; )
1006 while (pendingcnt [pri]) 1687 while (pendingcnt [pri])
1007 { 1688 {
1008 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1689 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1009 1690
1010 if (p->w) 1691 if (expect_true (p->w))
1011 { 1692 {
1693 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1694
1012 p->w->pending = 0; 1695 p->w->pending = 0;
1013 EV_CB_INVOKE (p->w, p->events); 1696 EV_CB_INVOKE (p->w, p->events);
1697 EV_FREQUENT_CHECK;
1014 } 1698 }
1015 } 1699 }
1016} 1700}
1017 1701
1018static void 1702#if EV_IDLE_ENABLE
1703void inline_size
1704idle_reify (EV_P)
1705{
1706 if (expect_false (idleall))
1707 {
1708 int pri;
1709
1710 for (pri = NUMPRI; pri--; )
1711 {
1712 if (pendingcnt [pri])
1713 break;
1714
1715 if (idlecnt [pri])
1716 {
1717 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1718 break;
1719 }
1720 }
1721 }
1722}
1723#endif
1724
1725void inline_size
1019timers_reify (EV_P) 1726timers_reify (EV_P)
1020{ 1727{
1728 EV_FREQUENT_CHECK;
1729
1021 while (timercnt && ((WT)timers [0])->at <= mn_now) 1730 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1022 { 1731 {
1023 struct ev_timer *w = timers [0]; 1732 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1024 1733
1025 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1734 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1026 1735
1027 /* first reschedule or stop timer */ 1736 /* first reschedule or stop timer */
1028 if (w->repeat) 1737 if (w->repeat)
1029 { 1738 {
1739 ev_at (w) += w->repeat;
1740 if (ev_at (w) < mn_now)
1741 ev_at (w) = mn_now;
1742
1030 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1743 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1031 1744
1032 ((WT)w)->at += w->repeat; 1745 ANHE_at_cache (timers [HEAP0]);
1033 if (((WT)w)->at < mn_now)
1034 ((WT)w)->at = mn_now;
1035
1036 downheap ((WT *)timers, timercnt, 0); 1746 downheap (timers, timercnt, HEAP0);
1037 } 1747 }
1038 else 1748 else
1039 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1749 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1040 1750
1751 EV_FREQUENT_CHECK;
1041 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1752 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1042 } 1753 }
1043} 1754}
1044 1755
1045#if EV_PERIODICS 1756#if EV_PERIODIC_ENABLE
1046static void 1757void inline_size
1047periodics_reify (EV_P) 1758periodics_reify (EV_P)
1048{ 1759{
1760 EV_FREQUENT_CHECK;
1761
1049 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1762 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1050 { 1763 {
1051 struct ev_periodic *w = periodics [0]; 1764 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1052 1765
1053 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1766 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1054 1767
1055 /* first reschedule or stop timer */ 1768 /* first reschedule or stop timer */
1056 if (w->reschedule_cb) 1769 if (w->reschedule_cb)
1057 { 1770 {
1058 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1771 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1772
1059 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1773 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1774
1775 ANHE_at_cache (periodics [HEAP0]);
1060 downheap ((WT *)periodics, periodiccnt, 0); 1776 downheap (periodics, periodiccnt, HEAP0);
1061 } 1777 }
1062 else if (w->interval) 1778 else if (w->interval)
1063 { 1779 {
1064 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1780 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1065 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1781 /* if next trigger time is not sufficiently in the future, put it there */
1782 /* this might happen because of floating point inexactness */
1783 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1784 {
1785 ev_at (w) += w->interval;
1786
1787 /* if interval is unreasonably low we might still have a time in the past */
1788 /* so correct this. this will make the periodic very inexact, but the user */
1789 /* has effectively asked to get triggered more often than possible */
1790 if (ev_at (w) < ev_rt_now)
1791 ev_at (w) = ev_rt_now;
1792 }
1793
1794 ANHE_at_cache (periodics [HEAP0]);
1066 downheap ((WT *)periodics, periodiccnt, 0); 1795 downheap (periodics, periodiccnt, HEAP0);
1067 } 1796 }
1068 else 1797 else
1069 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1070 1799
1800 EV_FREQUENT_CHECK;
1071 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1801 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1072 } 1802 }
1073} 1803}
1074 1804
1075static void 1805static void noinline
1076periodics_reschedule (EV_P) 1806periodics_reschedule (EV_P)
1077{ 1807{
1078 int i; 1808 int i;
1079 1809
1080 /* adjust periodics after time jump */ 1810 /* adjust periodics after time jump */
1081 for (i = 0; i < periodiccnt; ++i) 1811 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1082 { 1812 {
1083 struct ev_periodic *w = periodics [i]; 1813 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1084 1814
1085 if (w->reschedule_cb) 1815 if (w->reschedule_cb)
1086 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1816 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1087 else if (w->interval) 1817 else if (w->interval)
1088 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1818 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1819
1820 ANHE_at_cache (periodics [i]);
1821 }
1822
1823 reheap (periodics, periodiccnt);
1824}
1825#endif
1826
1827void inline_speed
1828time_update (EV_P_ ev_tstamp max_block)
1829{
1830 int i;
1831
1832#if EV_USE_MONOTONIC
1833 if (expect_true (have_monotonic))
1089 } 1834 {
1835 ev_tstamp odiff = rtmn_diff;
1090 1836
1091 /* now rebuild the heap */
1092 for (i = periodiccnt >> 1; i--; )
1093 downheap ((WT *)periodics, periodiccnt, i);
1094}
1095#endif
1096
1097inline int
1098time_update_monotonic (EV_P)
1099{
1100 mn_now = get_clock (); 1837 mn_now = get_clock ();
1101 1838
1839 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1840 /* interpolate in the meantime */
1102 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1841 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1103 { 1842 {
1104 ev_rt_now = rtmn_diff + mn_now; 1843 ev_rt_now = rtmn_diff + mn_now;
1105 return 0; 1844 return;
1106 } 1845 }
1107 else 1846
1108 {
1109 now_floor = mn_now; 1847 now_floor = mn_now;
1110 ev_rt_now = ev_time (); 1848 ev_rt_now = ev_time ();
1111 return 1;
1112 }
1113}
1114 1849
1115static void 1850 /* loop a few times, before making important decisions.
1116time_update (EV_P) 1851 * on the choice of "4": one iteration isn't enough,
1117{ 1852 * in case we get preempted during the calls to
1118 int i; 1853 * ev_time and get_clock. a second call is almost guaranteed
1119 1854 * to succeed in that case, though. and looping a few more times
1120#if EV_USE_MONOTONIC 1855 * doesn't hurt either as we only do this on time-jumps or
1121 if (expect_true (have_monotonic)) 1856 * in the unlikely event of having been preempted here.
1122 { 1857 */
1123 if (time_update_monotonic (EV_A)) 1858 for (i = 4; --i; )
1124 { 1859 {
1125 ev_tstamp odiff = rtmn_diff; 1860 rtmn_diff = ev_rt_now - mn_now;
1126 1861
1127 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1862 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1863 return; /* all is well */
1864
1865 ev_rt_now = ev_time ();
1866 mn_now = get_clock ();
1867 now_floor = mn_now;
1868 }
1869
1870# if EV_PERIODIC_ENABLE
1871 periodics_reschedule (EV_A);
1872# endif
1873 /* no timer adjustment, as the monotonic clock doesn't jump */
1874 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1875 }
1876 else
1877#endif
1878 {
1879 ev_rt_now = ev_time ();
1880
1881 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1882 {
1883#if EV_PERIODIC_ENABLE
1884 periodics_reschedule (EV_A);
1885#endif
1886 /* adjust timers. this is easy, as the offset is the same for all of them */
1887 for (i = 0; i < timercnt; ++i)
1128 { 1888 {
1129 rtmn_diff = ev_rt_now - mn_now; 1889 ANHE *he = timers + i + HEAP0;
1130 1890 ANHE_w (*he)->at += ev_rt_now - mn_now;
1131 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1891 ANHE_at_cache (*he);
1132 return; /* all is well */
1133
1134 ev_rt_now = ev_time ();
1135 mn_now = get_clock ();
1136 now_floor = mn_now;
1137 } 1892 }
1138
1139# if EV_PERIODICS
1140 periodics_reschedule (EV_A);
1141# endif
1142 /* no timer adjustment, as the monotonic clock doesn't jump */
1143 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1144 } 1893 }
1145 }
1146 else
1147#endif
1148 {
1149 ev_rt_now = ev_time ();
1150
1151 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1152 {
1153#if EV_PERIODICS
1154 periodics_reschedule (EV_A);
1155#endif
1156
1157 /* adjust timers. this is easy, as the offset is the same for all */
1158 for (i = 0; i < timercnt; ++i)
1159 ((WT)timers [i])->at += ev_rt_now - mn_now;
1160 }
1161 1894
1162 mn_now = ev_rt_now; 1895 mn_now = ev_rt_now;
1163 } 1896 }
1164} 1897}
1165 1898
1178static int loop_done; 1911static int loop_done;
1179 1912
1180void 1913void
1181ev_loop (EV_P_ int flags) 1914ev_loop (EV_P_ int flags)
1182{ 1915{
1183 double block; 1916 loop_done = EVUNLOOP_CANCEL;
1184 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1185 1917
1186 while (activecnt) 1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1919
1920 do
1187 { 1921 {
1922#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A);
1924#endif
1925
1926#ifndef _WIN32
1927 if (expect_false (curpid)) /* penalise the forking check even more */
1928 if (expect_false (getpid () != curpid))
1929 {
1930 curpid = getpid ();
1931 postfork = 1;
1932 }
1933#endif
1934
1935#if EV_FORK_ENABLE
1936 /* we might have forked, so queue fork handlers */
1937 if (expect_false (postfork))
1938 if (forkcnt)
1939 {
1940 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1941 call_pending (EV_A);
1942 }
1943#endif
1944
1188 /* queue check watchers (and execute them) */ 1945 /* queue prepare watchers (and execute them) */
1189 if (expect_false (preparecnt)) 1946 if (expect_false (preparecnt))
1190 { 1947 {
1191 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1948 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1192 call_pending (EV_A); 1949 call_pending (EV_A);
1193 } 1950 }
1194 1951
1952 if (expect_false (!activecnt))
1953 break;
1954
1195 /* we might have forked, so reify kernel state if necessary */ 1955 /* we might have forked, so reify kernel state if necessary */
1196 if (expect_false (postfork)) 1956 if (expect_false (postfork))
1197 loop_fork (EV_A); 1957 loop_fork (EV_A);
1198 1958
1199 /* update fd-related kernel structures */ 1959 /* update fd-related kernel structures */
1200 fd_reify (EV_A); 1960 fd_reify (EV_A);
1201 1961
1202 /* calculate blocking time */ 1962 /* calculate blocking time */
1963 {
1964 ev_tstamp waittime = 0.;
1965 ev_tstamp sleeptime = 0.;
1203 1966
1204 /* we only need this for !monotonic clock or timers, but as we basically 1967 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1205 always have timers, we just calculate it always */
1206#if EV_USE_MONOTONIC
1207 if (expect_true (have_monotonic))
1208 time_update_monotonic (EV_A);
1209 else
1210#endif
1211 { 1968 {
1212 ev_rt_now = ev_time (); 1969 /* update time to cancel out callback processing overhead */
1213 mn_now = ev_rt_now; 1970 time_update (EV_A_ 1e100);
1214 }
1215 1971
1216 if (flags & EVLOOP_NONBLOCK || idlecnt)
1217 block = 0.;
1218 else
1219 {
1220 block = MAX_BLOCKTIME; 1972 waittime = MAX_BLOCKTIME;
1221 1973
1222 if (timercnt) 1974 if (timercnt)
1223 { 1975 {
1224 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1225 if (block > to) block = to; 1977 if (waittime > to) waittime = to;
1226 } 1978 }
1227 1979
1228#if EV_PERIODICS 1980#if EV_PERIODIC_ENABLE
1229 if (periodiccnt) 1981 if (periodiccnt)
1230 { 1982 {
1231 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1232 if (block > to) block = to; 1984 if (waittime > to) waittime = to;
1233 } 1985 }
1234#endif 1986#endif
1235 1987
1236 if (block < 0.) block = 0.; 1988 if (expect_false (waittime < timeout_blocktime))
1989 waittime = timeout_blocktime;
1990
1991 sleeptime = waittime - backend_fudge;
1992
1993 if (expect_true (sleeptime > io_blocktime))
1994 sleeptime = io_blocktime;
1995
1996 if (sleeptime)
1997 {
1998 ev_sleep (sleeptime);
1999 waittime -= sleeptime;
2000 }
1237 } 2001 }
1238 2002
1239 method_poll (EV_A_ block); 2003 ++loop_count;
2004 backend_poll (EV_A_ waittime);
1240 2005
1241 /* update ev_rt_now, do magic */ 2006 /* update ev_rt_now, do magic */
1242 time_update (EV_A); 2007 time_update (EV_A_ waittime + sleeptime);
2008 }
1243 2009
1244 /* queue pending timers and reschedule them */ 2010 /* queue pending timers and reschedule them */
1245 timers_reify (EV_A); /* relative timers called last */ 2011 timers_reify (EV_A); /* relative timers called last */
1246#if EV_PERIODICS 2012#if EV_PERIODIC_ENABLE
1247 periodics_reify (EV_A); /* absolute timers called first */ 2013 periodics_reify (EV_A); /* absolute timers called first */
1248#endif 2014#endif
1249 2015
2016#if EV_IDLE_ENABLE
1250 /* queue idle watchers unless io or timers are pending */ 2017 /* queue idle watchers unless other events are pending */
1251 if (idlecnt && !any_pending (EV_A)) 2018 idle_reify (EV_A);
1252 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2019#endif
1253 2020
1254 /* queue check watchers, to be executed first */ 2021 /* queue check watchers, to be executed first */
1255 if (checkcnt) 2022 if (expect_false (checkcnt))
1256 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1257 2024
1258 call_pending (EV_A); 2025 call_pending (EV_A);
1259
1260 if (loop_done)
1261 break;
1262 } 2026 }
2027 while (expect_true (
2028 activecnt
2029 && !loop_done
2030 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2031 ));
1263 2032
1264 if (loop_done != 2) 2033 if (loop_done == EVUNLOOP_ONE)
1265 loop_done = 0; 2034 loop_done = EVUNLOOP_CANCEL;
1266} 2035}
1267 2036
1268void 2037void
1269ev_unloop (EV_P_ int how) 2038ev_unloop (EV_P_ int how)
1270{ 2039{
1271 loop_done = how; 2040 loop_done = how;
1272} 2041}
1273 2042
1274/*****************************************************************************/ 2043/*****************************************************************************/
1275 2044
1276inline void 2045void inline_size
1277wlist_add (WL *head, WL elem) 2046wlist_add (WL *head, WL elem)
1278{ 2047{
1279 elem->next = *head; 2048 elem->next = *head;
1280 *head = elem; 2049 *head = elem;
1281} 2050}
1282 2051
1283inline void 2052void inline_size
1284wlist_del (WL *head, WL elem) 2053wlist_del (WL *head, WL elem)
1285{ 2054{
1286 while (*head) 2055 while (*head)
1287 { 2056 {
1288 if (*head == elem) 2057 if (*head == elem)
1293 2062
1294 head = &(*head)->next; 2063 head = &(*head)->next;
1295 } 2064 }
1296} 2065}
1297 2066
1298inline void 2067void inline_speed
1299ev_clear_pending (EV_P_ W w) 2068clear_pending (EV_P_ W w)
1300{ 2069{
1301 if (w->pending) 2070 if (w->pending)
1302 { 2071 {
1303 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2072 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1304 w->pending = 0; 2073 w->pending = 0;
1305 } 2074 }
1306} 2075}
1307 2076
1308inline void 2077int
2078ev_clear_pending (EV_P_ void *w)
2079{
2080 W w_ = (W)w;
2081 int pending = w_->pending;
2082
2083 if (expect_true (pending))
2084 {
2085 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2086 w_->pending = 0;
2087 p->w = 0;
2088 return p->events;
2089 }
2090 else
2091 return 0;
2092}
2093
2094void inline_size
2095pri_adjust (EV_P_ W w)
2096{
2097 int pri = w->priority;
2098 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2099 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2100 w->priority = pri;
2101}
2102
2103void inline_speed
1309ev_start (EV_P_ W w, int active) 2104ev_start (EV_P_ W w, int active)
1310{ 2105{
1311 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2106 pri_adjust (EV_A_ w);
1312 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1313
1314 w->active = active; 2107 w->active = active;
1315 ev_ref (EV_A); 2108 ev_ref (EV_A);
1316} 2109}
1317 2110
1318inline void 2111void inline_size
1319ev_stop (EV_P_ W w) 2112ev_stop (EV_P_ W w)
1320{ 2113{
1321 ev_unref (EV_A); 2114 ev_unref (EV_A);
1322 w->active = 0; 2115 w->active = 0;
1323} 2116}
1324 2117
1325/*****************************************************************************/ 2118/*****************************************************************************/
1326 2119
1327void 2120void noinline
1328ev_io_start (EV_P_ struct ev_io *w) 2121ev_io_start (EV_P_ ev_io *w)
1329{ 2122{
1330 int fd = w->fd; 2123 int fd = w->fd;
1331 2124
1332 if (ev_is_active (w)) 2125 if (expect_false (ev_is_active (w)))
1333 return; 2126 return;
1334 2127
1335 assert (("ev_io_start called with negative fd", fd >= 0)); 2128 assert (("ev_io_start called with negative fd", fd >= 0));
2129
2130 EV_FREQUENT_CHECK;
1336 2131
1337 ev_start (EV_A_ (W)w, 1); 2132 ev_start (EV_A_ (W)w, 1);
1338 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2133 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1339 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2134 wlist_add (&anfds[fd].head, (WL)w);
1340 2135
1341 fd_change (EV_A_ fd); 2136 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1342} 2137 w->events &= ~EV_IOFDSET;
1343 2138
1344void 2139 EV_FREQUENT_CHECK;
2140}
2141
2142void noinline
1345ev_io_stop (EV_P_ struct ev_io *w) 2143ev_io_stop (EV_P_ ev_io *w)
1346{ 2144{
1347 ev_clear_pending (EV_A_ (W)w); 2145 clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 2146 if (expect_false (!ev_is_active (w)))
1349 return; 2147 return;
1350 2148
1351 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2149 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1352 2150
2151 EV_FREQUENT_CHECK;
2152
1353 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2153 wlist_del (&anfds[w->fd].head, (WL)w);
1354 ev_stop (EV_A_ (W)w); 2154 ev_stop (EV_A_ (W)w);
1355 2155
1356 fd_change (EV_A_ w->fd); 2156 fd_change (EV_A_ w->fd, 1);
1357}
1358 2157
1359void 2158 EV_FREQUENT_CHECK;
2159}
2160
2161void noinline
1360ev_timer_start (EV_P_ struct ev_timer *w) 2162ev_timer_start (EV_P_ ev_timer *w)
1361{ 2163{
1362 if (ev_is_active (w)) 2164 if (expect_false (ev_is_active (w)))
1363 return; 2165 return;
1364 2166
1365 ((WT)w)->at += mn_now; 2167 ev_at (w) += mn_now;
1366 2168
1367 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2169 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1368 2170
2171 EV_FREQUENT_CHECK;
2172
2173 ++timercnt;
1369 ev_start (EV_A_ (W)w, ++timercnt); 2174 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1370 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2175 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1371 timers [timercnt - 1] = w; 2176 ANHE_w (timers [ev_active (w)]) = (WT)w;
1372 upheap ((WT *)timers, timercnt - 1); 2177 ANHE_at_cache (timers [ev_active (w)]);
2178 upheap (timers, ev_active (w));
1373 2179
2180 EV_FREQUENT_CHECK;
2181
1374 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2182 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1375} 2183}
1376 2184
1377void 2185void noinline
1378ev_timer_stop (EV_P_ struct ev_timer *w) 2186ev_timer_stop (EV_P_ ev_timer *w)
1379{ 2187{
1380 ev_clear_pending (EV_A_ (W)w); 2188 clear_pending (EV_A_ (W)w);
1381 if (!ev_is_active (w)) 2189 if (expect_false (!ev_is_active (w)))
1382 return; 2190 return;
1383 2191
2192 EV_FREQUENT_CHECK;
2193
2194 {
2195 int active = ev_active (w);
2196
1384 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2197 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1385 2198
1386 if (((W)w)->active < timercnt--) 2199 --timercnt;
2200
2201 if (expect_true (active < timercnt + HEAP0))
1387 { 2202 {
1388 timers [((W)w)->active - 1] = timers [timercnt]; 2203 timers [active] = timers [timercnt + HEAP0];
1389 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2204 adjustheap (timers, timercnt, active);
1390 } 2205 }
2206 }
1391 2207
1392 ((WT)w)->at -= mn_now; 2208 EV_FREQUENT_CHECK;
2209
2210 ev_at (w) -= mn_now;
1393 2211
1394 ev_stop (EV_A_ (W)w); 2212 ev_stop (EV_A_ (W)w);
1395} 2213}
1396 2214
1397void 2215void noinline
1398ev_timer_again (EV_P_ struct ev_timer *w) 2216ev_timer_again (EV_P_ ev_timer *w)
1399{ 2217{
2218 EV_FREQUENT_CHECK;
2219
1400 if (ev_is_active (w)) 2220 if (ev_is_active (w))
1401 { 2221 {
1402 if (w->repeat) 2222 if (w->repeat)
1403 { 2223 {
1404 ((WT)w)->at = mn_now + w->repeat; 2224 ev_at (w) = mn_now + w->repeat;
2225 ANHE_at_cache (timers [ev_active (w)]);
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2226 adjustheap (timers, timercnt, ev_active (w));
1406 } 2227 }
1407 else 2228 else
1408 ev_timer_stop (EV_A_ w); 2229 ev_timer_stop (EV_A_ w);
1409 } 2230 }
1410 else if (w->repeat) 2231 else if (w->repeat)
1411 { 2232 {
1412 w->at = w->repeat; 2233 ev_at (w) = w->repeat;
1413 ev_timer_start (EV_A_ w); 2234 ev_timer_start (EV_A_ w);
1414 } 2235 }
1415}
1416 2236
2237 EV_FREQUENT_CHECK;
2238}
2239
1417#if EV_PERIODICS 2240#if EV_PERIODIC_ENABLE
1418void 2241void noinline
1419ev_periodic_start (EV_P_ struct ev_periodic *w) 2242ev_periodic_start (EV_P_ ev_periodic *w)
1420{ 2243{
1421 if (ev_is_active (w)) 2244 if (expect_false (ev_is_active (w)))
1422 return; 2245 return;
1423 2246
1424 if (w->reschedule_cb) 2247 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2248 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval) 2249 else if (w->interval)
1427 { 2250 {
1428 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2251 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1429 /* this formula differs from the one in periodic_reify because we do not always round up */ 2252 /* this formula differs from the one in periodic_reify because we do not always round up */
1430 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2253 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 } 2254 }
2255 else
2256 ev_at (w) = w->offset;
1432 2257
2258 EV_FREQUENT_CHECK;
2259
2260 ++periodiccnt;
1433 ev_start (EV_A_ (W)w, ++periodiccnt); 2261 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1434 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2262 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1435 periodics [periodiccnt - 1] = w; 2263 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1436 upheap ((WT *)periodics, periodiccnt - 1); 2264 ANHE_at_cache (periodics [ev_active (w)]);
2265 upheap (periodics, ev_active (w));
1437 2266
2267 EV_FREQUENT_CHECK;
2268
1438 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2269 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1439} 2270}
1440 2271
1441void 2272void noinline
1442ev_periodic_stop (EV_P_ struct ev_periodic *w) 2273ev_periodic_stop (EV_P_ ev_periodic *w)
1443{ 2274{
1444 ev_clear_pending (EV_A_ (W)w); 2275 clear_pending (EV_A_ (W)w);
1445 if (!ev_is_active (w)) 2276 if (expect_false (!ev_is_active (w)))
1446 return; 2277 return;
1447 2278
2279 EV_FREQUENT_CHECK;
2280
2281 {
2282 int active = ev_active (w);
2283
1448 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2284 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1449 2285
1450 if (((W)w)->active < periodiccnt--) 2286 --periodiccnt;
2287
2288 if (expect_true (active < periodiccnt + HEAP0))
1451 { 2289 {
1452 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2290 periodics [active] = periodics [periodiccnt + HEAP0];
1453 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2291 adjustheap (periodics, periodiccnt, active);
1454 } 2292 }
2293 }
2294
2295 EV_FREQUENT_CHECK;
1455 2296
1456 ev_stop (EV_A_ (W)w); 2297 ev_stop (EV_A_ (W)w);
1457} 2298}
1458 2299
1459void 2300void noinline
1460ev_periodic_again (EV_P_ struct ev_periodic *w) 2301ev_periodic_again (EV_P_ ev_periodic *w)
1461{ 2302{
1462 /* TODO: use adjustheap and recalculation */ 2303 /* TODO: use adjustheap and recalculation */
1463 ev_periodic_stop (EV_A_ w); 2304 ev_periodic_stop (EV_A_ w);
1464 ev_periodic_start (EV_A_ w); 2305 ev_periodic_start (EV_A_ w);
1465} 2306}
1466#endif 2307#endif
1467 2308
1468void
1469ev_idle_start (EV_P_ struct ev_idle *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++idlecnt);
1475 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1476 idles [idlecnt - 1] = w;
1477}
1478
1479void
1480ev_idle_stop (EV_P_ struct ev_idle *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 idles [((W)w)->active - 1] = idles [--idlecnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490void
1491ev_prepare_start (EV_P_ struct ev_prepare *w)
1492{
1493 if (ev_is_active (w))
1494 return;
1495
1496 ev_start (EV_A_ (W)w, ++preparecnt);
1497 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1498 prepares [preparecnt - 1] = w;
1499}
1500
1501void
1502ev_prepare_stop (EV_P_ struct ev_prepare *w)
1503{
1504 ev_clear_pending (EV_A_ (W)w);
1505 if (!ev_is_active (w))
1506 return;
1507
1508 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1509 ev_stop (EV_A_ (W)w);
1510}
1511
1512void
1513ev_check_start (EV_P_ struct ev_check *w)
1514{
1515 if (ev_is_active (w))
1516 return;
1517
1518 ev_start (EV_A_ (W)w, ++checkcnt);
1519 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1520 checks [checkcnt - 1] = w;
1521}
1522
1523void
1524ev_check_stop (EV_P_ struct ev_check *w)
1525{
1526 ev_clear_pending (EV_A_ (W)w);
1527 if (!ev_is_active (w))
1528 return;
1529
1530 checks [((W)w)->active - 1] = checks [--checkcnt];
1531 ev_stop (EV_A_ (W)w);
1532}
1533
1534#ifndef SA_RESTART 2309#ifndef SA_RESTART
1535# define SA_RESTART 0 2310# define SA_RESTART 0
1536#endif 2311#endif
1537 2312
1538void 2313void noinline
1539ev_signal_start (EV_P_ struct ev_signal *w) 2314ev_signal_start (EV_P_ ev_signal *w)
1540{ 2315{
1541#if EV_MULTIPLICITY 2316#if EV_MULTIPLICITY
1542 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2317 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1543#endif 2318#endif
1544 if (ev_is_active (w)) 2319 if (expect_false (ev_is_active (w)))
1545 return; 2320 return;
1546 2321
1547 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2322 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1548 2323
2324 evpipe_init (EV_A);
2325
2326 EV_FREQUENT_CHECK;
2327
2328 {
2329#ifndef _WIN32
2330 sigset_t full, prev;
2331 sigfillset (&full);
2332 sigprocmask (SIG_SETMASK, &full, &prev);
2333#endif
2334
2335 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2336
2337#ifndef _WIN32
2338 sigprocmask (SIG_SETMASK, &prev, 0);
2339#endif
2340 }
2341
1549 ev_start (EV_A_ (W)w, 1); 2342 ev_start (EV_A_ (W)w, 1);
1550 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1551 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2343 wlist_add (&signals [w->signum - 1].head, (WL)w);
1552 2344
1553 if (!((WL)w)->next) 2345 if (!((WL)w)->next)
1554 { 2346 {
1555#if _WIN32 2347#if _WIN32
1556 signal (w->signum, sighandler); 2348 signal (w->signum, ev_sighandler);
1557#else 2349#else
1558 struct sigaction sa; 2350 struct sigaction sa;
1559 sa.sa_handler = sighandler; 2351 sa.sa_handler = ev_sighandler;
1560 sigfillset (&sa.sa_mask); 2352 sigfillset (&sa.sa_mask);
1561 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2353 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1562 sigaction (w->signum, &sa, 0); 2354 sigaction (w->signum, &sa, 0);
1563#endif 2355#endif
1564 } 2356 }
1565}
1566 2357
1567void 2358 EV_FREQUENT_CHECK;
2359}
2360
2361void noinline
1568ev_signal_stop (EV_P_ struct ev_signal *w) 2362ev_signal_stop (EV_P_ ev_signal *w)
1569{ 2363{
1570 ev_clear_pending (EV_A_ (W)w); 2364 clear_pending (EV_A_ (W)w);
1571 if (!ev_is_active (w)) 2365 if (expect_false (!ev_is_active (w)))
1572 return; 2366 return;
1573 2367
2368 EV_FREQUENT_CHECK;
2369
1574 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2370 wlist_del (&signals [w->signum - 1].head, (WL)w);
1575 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
1576 2372
1577 if (!signals [w->signum - 1].head) 2373 if (!signals [w->signum - 1].head)
1578 signal (w->signum, SIG_DFL); 2374 signal (w->signum, SIG_DFL);
1579}
1580 2375
2376 EV_FREQUENT_CHECK;
2377}
2378
1581void 2379void
1582ev_child_start (EV_P_ struct ev_child *w) 2380ev_child_start (EV_P_ ev_child *w)
1583{ 2381{
1584#if EV_MULTIPLICITY 2382#if EV_MULTIPLICITY
1585 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2383 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1586#endif 2384#endif
1587 if (ev_is_active (w)) 2385 if (expect_false (ev_is_active (w)))
1588 return; 2386 return;
1589 2387
2388 EV_FREQUENT_CHECK;
2389
1590 ev_start (EV_A_ (W)w, 1); 2390 ev_start (EV_A_ (W)w, 1);
1591 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2391 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1592}
1593 2392
2393 EV_FREQUENT_CHECK;
2394}
2395
1594void 2396void
1595ev_child_stop (EV_P_ struct ev_child *w) 2397ev_child_stop (EV_P_ ev_child *w)
1596{ 2398{
1597 ev_clear_pending (EV_A_ (W)w); 2399 clear_pending (EV_A_ (W)w);
1598 if (!ev_is_active (w)) 2400 if (expect_false (!ev_is_active (w)))
1599 return; 2401 return;
1600 2402
2403 EV_FREQUENT_CHECK;
2404
1601 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2405 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1602 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
2407
2408 EV_FREQUENT_CHECK;
1603} 2409}
2410
2411#if EV_STAT_ENABLE
2412
2413# ifdef _WIN32
2414# undef lstat
2415# define lstat(a,b) _stati64 (a,b)
2416# endif
2417
2418#define DEF_STAT_INTERVAL 5.0074891
2419#define MIN_STAT_INTERVAL 0.1074891
2420
2421static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2422
2423#if EV_USE_INOTIFY
2424# define EV_INOTIFY_BUFSIZE 8192
2425
2426static void noinline
2427infy_add (EV_P_ ev_stat *w)
2428{
2429 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2430
2431 if (w->wd < 0)
2432 {
2433 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2434
2435 /* monitor some parent directory for speedup hints */
2436 /* note that exceeding the hardcoded limit is not a correctness issue, */
2437 /* but an efficiency issue only */
2438 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2439 {
2440 char path [4096];
2441 strcpy (path, w->path);
2442
2443 do
2444 {
2445 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2446 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2447
2448 char *pend = strrchr (path, '/');
2449
2450 if (!pend)
2451 break; /* whoops, no '/', complain to your admin */
2452
2453 *pend = 0;
2454 w->wd = inotify_add_watch (fs_fd, path, mask);
2455 }
2456 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2457 }
2458 }
2459 else
2460 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2461
2462 if (w->wd >= 0)
2463 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2464}
2465
2466static void noinline
2467infy_del (EV_P_ ev_stat *w)
2468{
2469 int slot;
2470 int wd = w->wd;
2471
2472 if (wd < 0)
2473 return;
2474
2475 w->wd = -2;
2476 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2477 wlist_del (&fs_hash [slot].head, (WL)w);
2478
2479 /* remove this watcher, if others are watching it, they will rearm */
2480 inotify_rm_watch (fs_fd, wd);
2481}
2482
2483static void noinline
2484infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2485{
2486 if (slot < 0)
2487 /* overflow, need to check for all hahs slots */
2488 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2489 infy_wd (EV_A_ slot, wd, ev);
2490 else
2491 {
2492 WL w_;
2493
2494 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2495 {
2496 ev_stat *w = (ev_stat *)w_;
2497 w_ = w_->next; /* lets us remove this watcher and all before it */
2498
2499 if (w->wd == wd || wd == -1)
2500 {
2501 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2502 {
2503 w->wd = -1;
2504 infy_add (EV_A_ w); /* re-add, no matter what */
2505 }
2506
2507 stat_timer_cb (EV_A_ &w->timer, 0);
2508 }
2509 }
2510 }
2511}
2512
2513static void
2514infy_cb (EV_P_ ev_io *w, int revents)
2515{
2516 char buf [EV_INOTIFY_BUFSIZE];
2517 struct inotify_event *ev = (struct inotify_event *)buf;
2518 int ofs;
2519 int len = read (fs_fd, buf, sizeof (buf));
2520
2521 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2522 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2523}
2524
2525void inline_size
2526infy_init (EV_P)
2527{
2528 if (fs_fd != -2)
2529 return;
2530
2531 fs_fd = inotify_init ();
2532
2533 if (fs_fd >= 0)
2534 {
2535 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2536 ev_set_priority (&fs_w, EV_MAXPRI);
2537 ev_io_start (EV_A_ &fs_w);
2538 }
2539}
2540
2541void inline_size
2542infy_fork (EV_P)
2543{
2544 int slot;
2545
2546 if (fs_fd < 0)
2547 return;
2548
2549 close (fs_fd);
2550 fs_fd = inotify_init ();
2551
2552 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2553 {
2554 WL w_ = fs_hash [slot].head;
2555 fs_hash [slot].head = 0;
2556
2557 while (w_)
2558 {
2559 ev_stat *w = (ev_stat *)w_;
2560 w_ = w_->next; /* lets us add this watcher */
2561
2562 w->wd = -1;
2563
2564 if (fs_fd >= 0)
2565 infy_add (EV_A_ w); /* re-add, no matter what */
2566 else
2567 ev_timer_start (EV_A_ &w->timer);
2568 }
2569
2570 }
2571}
2572
2573#endif
2574
2575#ifdef _WIN32
2576# define EV_LSTAT(p,b) _stati64 (p, b)
2577#else
2578# define EV_LSTAT(p,b) lstat (p, b)
2579#endif
2580
2581void
2582ev_stat_stat (EV_P_ ev_stat *w)
2583{
2584 if (lstat (w->path, &w->attr) < 0)
2585 w->attr.st_nlink = 0;
2586 else if (!w->attr.st_nlink)
2587 w->attr.st_nlink = 1;
2588}
2589
2590static void noinline
2591stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2592{
2593 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2594
2595 /* we copy this here each the time so that */
2596 /* prev has the old value when the callback gets invoked */
2597 w->prev = w->attr;
2598 ev_stat_stat (EV_A_ w);
2599
2600 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2601 if (
2602 w->prev.st_dev != w->attr.st_dev
2603 || w->prev.st_ino != w->attr.st_ino
2604 || w->prev.st_mode != w->attr.st_mode
2605 || w->prev.st_nlink != w->attr.st_nlink
2606 || w->prev.st_uid != w->attr.st_uid
2607 || w->prev.st_gid != w->attr.st_gid
2608 || w->prev.st_rdev != w->attr.st_rdev
2609 || w->prev.st_size != w->attr.st_size
2610 || w->prev.st_atime != w->attr.st_atime
2611 || w->prev.st_mtime != w->attr.st_mtime
2612 || w->prev.st_ctime != w->attr.st_ctime
2613 ) {
2614 #if EV_USE_INOTIFY
2615 infy_del (EV_A_ w);
2616 infy_add (EV_A_ w);
2617 ev_stat_stat (EV_A_ w); /* avoid race... */
2618 #endif
2619
2620 ev_feed_event (EV_A_ w, EV_STAT);
2621 }
2622}
2623
2624void
2625ev_stat_start (EV_P_ ev_stat *w)
2626{
2627 if (expect_false (ev_is_active (w)))
2628 return;
2629
2630 /* since we use memcmp, we need to clear any padding data etc. */
2631 memset (&w->prev, 0, sizeof (ev_statdata));
2632 memset (&w->attr, 0, sizeof (ev_statdata));
2633
2634 ev_stat_stat (EV_A_ w);
2635
2636 if (w->interval < MIN_STAT_INTERVAL)
2637 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2638
2639 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2640 ev_set_priority (&w->timer, ev_priority (w));
2641
2642#if EV_USE_INOTIFY
2643 infy_init (EV_A);
2644
2645 if (fs_fd >= 0)
2646 infy_add (EV_A_ w);
2647 else
2648#endif
2649 ev_timer_start (EV_A_ &w->timer);
2650
2651 ev_start (EV_A_ (W)w, 1);
2652
2653 EV_FREQUENT_CHECK;
2654}
2655
2656void
2657ev_stat_stop (EV_P_ ev_stat *w)
2658{
2659 clear_pending (EV_A_ (W)w);
2660 if (expect_false (!ev_is_active (w)))
2661 return;
2662
2663 EV_FREQUENT_CHECK;
2664
2665#if EV_USE_INOTIFY
2666 infy_del (EV_A_ w);
2667#endif
2668 ev_timer_stop (EV_A_ &w->timer);
2669
2670 ev_stop (EV_A_ (W)w);
2671
2672 EV_FREQUENT_CHECK;
2673}
2674#endif
2675
2676#if EV_IDLE_ENABLE
2677void
2678ev_idle_start (EV_P_ ev_idle *w)
2679{
2680 if (expect_false (ev_is_active (w)))
2681 return;
2682
2683 pri_adjust (EV_A_ (W)w);
2684
2685 EV_FREQUENT_CHECK;
2686
2687 {
2688 int active = ++idlecnt [ABSPRI (w)];
2689
2690 ++idleall;
2691 ev_start (EV_A_ (W)w, active);
2692
2693 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2694 idles [ABSPRI (w)][active - 1] = w;
2695 }
2696
2697 EV_FREQUENT_CHECK;
2698}
2699
2700void
2701ev_idle_stop (EV_P_ ev_idle *w)
2702{
2703 clear_pending (EV_A_ (W)w);
2704 if (expect_false (!ev_is_active (w)))
2705 return;
2706
2707 EV_FREQUENT_CHECK;
2708
2709 {
2710 int active = ev_active (w);
2711
2712 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2713 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2714
2715 ev_stop (EV_A_ (W)w);
2716 --idleall;
2717 }
2718
2719 EV_FREQUENT_CHECK;
2720}
2721#endif
2722
2723void
2724ev_prepare_start (EV_P_ ev_prepare *w)
2725{
2726 if (expect_false (ev_is_active (w)))
2727 return;
2728
2729 EV_FREQUENT_CHECK;
2730
2731 ev_start (EV_A_ (W)w, ++preparecnt);
2732 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2733 prepares [preparecnt - 1] = w;
2734
2735 EV_FREQUENT_CHECK;
2736}
2737
2738void
2739ev_prepare_stop (EV_P_ ev_prepare *w)
2740{
2741 clear_pending (EV_A_ (W)w);
2742 if (expect_false (!ev_is_active (w)))
2743 return;
2744
2745 EV_FREQUENT_CHECK;
2746
2747 {
2748 int active = ev_active (w);
2749
2750 prepares [active - 1] = prepares [--preparecnt];
2751 ev_active (prepares [active - 1]) = active;
2752 }
2753
2754 ev_stop (EV_A_ (W)w);
2755
2756 EV_FREQUENT_CHECK;
2757}
2758
2759void
2760ev_check_start (EV_P_ ev_check *w)
2761{
2762 if (expect_false (ev_is_active (w)))
2763 return;
2764
2765 EV_FREQUENT_CHECK;
2766
2767 ev_start (EV_A_ (W)w, ++checkcnt);
2768 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2769 checks [checkcnt - 1] = w;
2770
2771 EV_FREQUENT_CHECK;
2772}
2773
2774void
2775ev_check_stop (EV_P_ ev_check *w)
2776{
2777 clear_pending (EV_A_ (W)w);
2778 if (expect_false (!ev_is_active (w)))
2779 return;
2780
2781 EV_FREQUENT_CHECK;
2782
2783 {
2784 int active = ev_active (w);
2785
2786 checks [active - 1] = checks [--checkcnt];
2787 ev_active (checks [active - 1]) = active;
2788 }
2789
2790 ev_stop (EV_A_ (W)w);
2791
2792 EV_FREQUENT_CHECK;
2793}
2794
2795#if EV_EMBED_ENABLE
2796void noinline
2797ev_embed_sweep (EV_P_ ev_embed *w)
2798{
2799 ev_loop (w->other, EVLOOP_NONBLOCK);
2800}
2801
2802static void
2803embed_io_cb (EV_P_ ev_io *io, int revents)
2804{
2805 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2806
2807 if (ev_cb (w))
2808 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2809 else
2810 ev_loop (w->other, EVLOOP_NONBLOCK);
2811}
2812
2813static void
2814embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2815{
2816 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2817
2818 {
2819 struct ev_loop *loop = w->other;
2820
2821 while (fdchangecnt)
2822 {
2823 fd_reify (EV_A);
2824 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2825 }
2826 }
2827}
2828
2829#if 0
2830static void
2831embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2832{
2833 ev_idle_stop (EV_A_ idle);
2834}
2835#endif
2836
2837void
2838ev_embed_start (EV_P_ ev_embed *w)
2839{
2840 if (expect_false (ev_is_active (w)))
2841 return;
2842
2843 {
2844 struct ev_loop *loop = w->other;
2845 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2846 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2847 }
2848
2849 EV_FREQUENT_CHECK;
2850
2851 ev_set_priority (&w->io, ev_priority (w));
2852 ev_io_start (EV_A_ &w->io);
2853
2854 ev_prepare_init (&w->prepare, embed_prepare_cb);
2855 ev_set_priority (&w->prepare, EV_MINPRI);
2856 ev_prepare_start (EV_A_ &w->prepare);
2857
2858 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2859
2860 ev_start (EV_A_ (W)w, 1);
2861
2862 EV_FREQUENT_CHECK;
2863}
2864
2865void
2866ev_embed_stop (EV_P_ ev_embed *w)
2867{
2868 clear_pending (EV_A_ (W)w);
2869 if (expect_false (!ev_is_active (w)))
2870 return;
2871
2872 EV_FREQUENT_CHECK;
2873
2874 ev_io_stop (EV_A_ &w->io);
2875 ev_prepare_stop (EV_A_ &w->prepare);
2876
2877 ev_stop (EV_A_ (W)w);
2878
2879 EV_FREQUENT_CHECK;
2880}
2881#endif
2882
2883#if EV_FORK_ENABLE
2884void
2885ev_fork_start (EV_P_ ev_fork *w)
2886{
2887 if (expect_false (ev_is_active (w)))
2888 return;
2889
2890 EV_FREQUENT_CHECK;
2891
2892 ev_start (EV_A_ (W)w, ++forkcnt);
2893 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2894 forks [forkcnt - 1] = w;
2895
2896 EV_FREQUENT_CHECK;
2897}
2898
2899void
2900ev_fork_stop (EV_P_ ev_fork *w)
2901{
2902 clear_pending (EV_A_ (W)w);
2903 if (expect_false (!ev_is_active (w)))
2904 return;
2905
2906 EV_FREQUENT_CHECK;
2907
2908 {
2909 int active = ev_active (w);
2910
2911 forks [active - 1] = forks [--forkcnt];
2912 ev_active (forks [active - 1]) = active;
2913 }
2914
2915 ev_stop (EV_A_ (W)w);
2916
2917 EV_FREQUENT_CHECK;
2918}
2919#endif
2920
2921#if EV_ASYNC_ENABLE
2922void
2923ev_async_start (EV_P_ ev_async *w)
2924{
2925 if (expect_false (ev_is_active (w)))
2926 return;
2927
2928 evpipe_init (EV_A);
2929
2930 EV_FREQUENT_CHECK;
2931
2932 ev_start (EV_A_ (W)w, ++asynccnt);
2933 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2934 asyncs [asynccnt - 1] = w;
2935
2936 EV_FREQUENT_CHECK;
2937}
2938
2939void
2940ev_async_stop (EV_P_ ev_async *w)
2941{
2942 clear_pending (EV_A_ (W)w);
2943 if (expect_false (!ev_is_active (w)))
2944 return;
2945
2946 EV_FREQUENT_CHECK;
2947
2948 {
2949 int active = ev_active (w);
2950
2951 asyncs [active - 1] = asyncs [--asynccnt];
2952 ev_active (asyncs [active - 1]) = active;
2953 }
2954
2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2958}
2959
2960void
2961ev_async_send (EV_P_ ev_async *w)
2962{
2963 w->sent = 1;
2964 evpipe_write (EV_A_ &gotasync);
2965}
2966#endif
1604 2967
1605/*****************************************************************************/ 2968/*****************************************************************************/
1606 2969
1607struct ev_once 2970struct ev_once
1608{ 2971{
1609 struct ev_io io; 2972 ev_io io;
1610 struct ev_timer to; 2973 ev_timer to;
1611 void (*cb)(int revents, void *arg); 2974 void (*cb)(int revents, void *arg);
1612 void *arg; 2975 void *arg;
1613}; 2976};
1614 2977
1615static void 2978static void
1624 2987
1625 cb (revents, arg); 2988 cb (revents, arg);
1626} 2989}
1627 2990
1628static void 2991static void
1629once_cb_io (EV_P_ struct ev_io *w, int revents) 2992once_cb_io (EV_P_ ev_io *w, int revents)
1630{ 2993{
1631 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2994 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1632} 2995}
1633 2996
1634static void 2997static void
1635once_cb_to (EV_P_ struct ev_timer *w, int revents) 2998once_cb_to (EV_P_ ev_timer *w, int revents)
1636{ 2999{
1637 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3000 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1638} 3001}
1639 3002
1640void 3003void
1641ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3004ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1642{ 3005{
1643 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3006 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1644 3007
1645 if (!once) 3008 if (expect_false (!once))
3009 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3010 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1647 else 3011 return;
1648 { 3012 }
3013
1649 once->cb = cb; 3014 once->cb = cb;
1650 once->arg = arg; 3015 once->arg = arg;
1651 3016
1652 ev_init (&once->io, once_cb_io); 3017 ev_init (&once->io, once_cb_io);
1653 if (fd >= 0) 3018 if (fd >= 0)
1654 { 3019 {
1655 ev_io_set (&once->io, fd, events); 3020 ev_io_set (&once->io, fd, events);
1656 ev_io_start (EV_A_ &once->io); 3021 ev_io_start (EV_A_ &once->io);
1657 } 3022 }
1658 3023
1659 ev_init (&once->to, once_cb_to); 3024 ev_init (&once->to, once_cb_to);
1660 if (timeout >= 0.) 3025 if (timeout >= 0.)
1661 { 3026 {
1662 ev_timer_set (&once->to, timeout, 0.); 3027 ev_timer_set (&once->to, timeout, 0.);
1663 ev_timer_start (EV_A_ &once->to); 3028 ev_timer_start (EV_A_ &once->to);
1664 }
1665 } 3029 }
1666} 3030}
3031
3032#if EV_MULTIPLICITY
3033 #include "ev_wrap.h"
3034#endif
1667 3035
1668#ifdef __cplusplus 3036#ifdef __cplusplus
1669} 3037}
1670#endif 3038#endif
1671 3039

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines