ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.119 by root, Fri Nov 16 01:43:52 2007 UTC vs.
Revision 1.316 by root, Fri Sep 18 21:02:12 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
46# endif 76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
47 81
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
50# endif 95# endif
96# endif
51 97
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
54# endif 103# endif
55 104# endif
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
58# endif 111# endif
59 112# endif
113
114# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
62# endif 119# endif
63 120# endif
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
65# define EV_USE_PORT 1 124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
66# endif 127# endif
128# endif
67 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
68#endif 154#endif
69 155
70#include <math.h> 156#include <math.h>
71#include <stdlib.h> 157#include <stdlib.h>
72#include <fcntl.h> 158#include <fcntl.h>
79#include <sys/types.h> 165#include <sys/types.h>
80#include <time.h> 166#include <time.h>
81 167
82#include <signal.h> 168#include <signal.h>
83 169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
175
84#ifndef _WIN32 176#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 177# include <sys/time.h>
87# include <sys/wait.h> 178# include <sys/wait.h>
179# include <unistd.h>
88#else 180#else
181# include <io.h>
89# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 183# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
93# endif 186# endif
94#endif 187#endif
95 188
96/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
97 225
98#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
99# define EV_USE_MONOTONIC 1 228# define EV_USE_MONOTONIC 1
229# else
230# define EV_USE_MONOTONIC 0
231# endif
100#endif 232#endif
101 233
102#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 1 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
104#endif 244#endif
105 245
106#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
108# define EV_SELECT_USE_FD_SET 1
109#endif 248#endif
110 249
111#ifndef EV_USE_POLL 250#ifndef EV_USE_POLL
112# ifdef _WIN32 251# ifdef _WIN32
113# define EV_USE_POLL 0 252# define EV_USE_POLL 0
115# define EV_USE_POLL 1 254# define EV_USE_POLL 1
116# endif 255# endif
117#endif 256#endif
118 257
119#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
120# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
121#endif 264#endif
122 265
123#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
125#endif 268#endif
126 269
127#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
128# define EV_USE_PORT 0 271# define EV_USE_PORT 0
129#endif 272#endif
130 273
131/**/ 274#ifndef EV_USE_INOTIFY
132 275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
133/* darwin simply cannot be helped */ 276# define EV_USE_INOTIFY 1
134#ifdef __APPLE__ 277# else
135# undef EV_USE_POLL 278# define EV_USE_INOTIFY 0
136# undef EV_USE_KQUEUE
137#endif 279# endif
280#endif
281
282#ifndef EV_PID_HASHSIZE
283# if EV_MINIMAL
284# define EV_PID_HASHSIZE 1
285# else
286# define EV_PID_HASHSIZE 16
287# endif
288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# if EV_MINIMAL
292# define EV_INOTIFY_HASHSIZE 1
293# else
294# define EV_INOTIFY_HASHSIZE 16
295# endif
296#endif
297
298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
138 347
139#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
140# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
141# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
142#endif 351#endif
144#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
145# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
146# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
147#endif 356#endif
148 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
149#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
150# include <winsock.h> 381# include <winsock.h>
151#endif 382#endif
152 383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
434
153/**/ 435/**/
154 436
437#if EV_VERIFY >= 3
438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439#else
440# define EV_FREQUENT_CHECK do { } while (0)
441#endif
442
443/*
444 * This is used to avoid floating point rounding problems.
445 * It is added to ev_rt_now when scheduling periodics
446 * to ensure progress, time-wise, even when rounding
447 * errors are against us.
448 * This value is good at least till the year 4000.
449 * Better solutions welcome.
450 */
451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
452
155#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
156#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
157#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
158/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
159 455
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
166#if __GNUC__ >= 3 456#if __GNUC__ >= 4
167# define expect(expr,value) __builtin_expect ((expr),(value)) 457# define expect(expr,value) __builtin_expect ((expr),(value))
168# define inline inline 458# define noinline __attribute__ ((noinline))
169#else 459#else
170# define expect(expr,value) (expr) 460# define expect(expr,value) (expr)
171# define inline static 461# define noinline
462# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
463# define inline
464# endif
172#endif 465#endif
173 466
174#define expect_false(expr) expect ((expr) != 0, 0) 467#define expect_false(expr) expect ((expr) != 0, 0)
175#define expect_true(expr) expect ((expr) != 0, 1) 468#define expect_true(expr) expect ((expr) != 0, 1)
469#define inline_size static inline
176 470
471#if EV_MINIMAL
472# define inline_speed static noinline
473#else
474# define inline_speed static inline
475#endif
476
177#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 477#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
478
479#if EV_MINPRI == EV_MAXPRI
480# define ABSPRI(w) (((W)w), 0)
481#else
178#define ABSPRI(w) ((w)->priority - EV_MINPRI) 482# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
483#endif
179 484
180#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 485#define EMPTY /* required for microsofts broken pseudo-c compiler */
181#define EMPTY2(a,b) /* used to suppress some warnings */ 486#define EMPTY2(a,b) /* used to suppress some warnings */
182 487
183typedef struct ev_watcher *W; 488typedef ev_watcher *W;
184typedef struct ev_watcher_list *WL; 489typedef ev_watcher_list *WL;
185typedef struct ev_watcher_time *WT; 490typedef ev_watcher_time *WT;
186 491
492#define ev_active(w) ((W)(w))->active
493#define ev_at(w) ((WT)(w))->at
494
495#if EV_USE_REALTIME
496/* sig_atomic_t is used to avoid per-thread variables or locking but still */
497/* giving it a reasonably high chance of working on typical architetcures */
498static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
499#endif
500
501#if EV_USE_MONOTONIC
187static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 502static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
503#endif
504
505#ifndef EV_FD_TO_WIN32_HANDLE
506# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
507#endif
508#ifndef EV_WIN32_HANDLE_TO_FD
509# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
510#endif
511#ifndef EV_WIN32_CLOSE_FD
512# define EV_WIN32_CLOSE_FD(fd) close (fd)
513#endif
188 514
189#ifdef _WIN32 515#ifdef _WIN32
190# include "ev_win32.c" 516# include "ev_win32.c"
191#endif 517#endif
192 518
193/*****************************************************************************/ 519/*****************************************************************************/
194 520
195static void (*syserr_cb)(const char *msg); 521static void (*syserr_cb)(const char *msg);
196 522
523void
197void ev_set_syserr_cb (void (*cb)(const char *msg)) 524ev_set_syserr_cb (void (*cb)(const char *msg))
198{ 525{
199 syserr_cb = cb; 526 syserr_cb = cb;
200} 527}
201 528
202static void 529static void noinline
203syserr (const char *msg) 530ev_syserr (const char *msg)
204{ 531{
205 if (!msg) 532 if (!msg)
206 msg = "(libev) system error"; 533 msg = "(libev) system error";
207 534
208 if (syserr_cb) 535 if (syserr_cb)
212 perror (msg); 539 perror (msg);
213 abort (); 540 abort ();
214 } 541 }
215} 542}
216 543
544static void *
545ev_realloc_emul (void *ptr, long size)
546{
547 /* some systems, notably openbsd and darwin, fail to properly
548 * implement realloc (x, 0) (as required by both ansi c-98 and
549 * the single unix specification, so work around them here.
550 */
551
552 if (size)
553 return realloc (ptr, size);
554
555 free (ptr);
556 return 0;
557}
558
217static void *(*alloc)(void *ptr, long size); 559static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
218 560
561void
219void ev_set_allocator (void *(*cb)(void *ptr, long size)) 562ev_set_allocator (void *(*cb)(void *ptr, long size))
220{ 563{
221 alloc = cb; 564 alloc = cb;
222} 565}
223 566
224static void * 567inline_speed void *
225ev_realloc (void *ptr, long size) 568ev_realloc (void *ptr, long size)
226{ 569{
227 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 570 ptr = alloc (ptr, size);
228 571
229 if (!ptr && size) 572 if (!ptr && size)
230 { 573 {
231 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 574 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
232 abort (); 575 abort ();
238#define ev_malloc(size) ev_realloc (0, (size)) 581#define ev_malloc(size) ev_realloc (0, (size))
239#define ev_free(ptr) ev_realloc ((ptr), 0) 582#define ev_free(ptr) ev_realloc ((ptr), 0)
240 583
241/*****************************************************************************/ 584/*****************************************************************************/
242 585
586/* set in reify when reification needed */
587#define EV_ANFD_REIFY 1
588
589/* file descriptor info structure */
243typedef struct 590typedef struct
244{ 591{
245 WL head; 592 WL head;
246 unsigned char events; 593 unsigned char events; /* the events watched for */
594 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
595 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
247 unsigned char reify; 596 unsigned char unused;
597#if EV_USE_EPOLL
598 unsigned int egen; /* generation counter to counter epoll bugs */
599#endif
248#if EV_SELECT_IS_WINSOCKET 600#if EV_SELECT_IS_WINSOCKET
249 SOCKET handle; 601 SOCKET handle;
250#endif 602#endif
251} ANFD; 603} ANFD;
252 604
605/* stores the pending event set for a given watcher */
253typedef struct 606typedef struct
254{ 607{
255 W w; 608 W w;
256 int events; 609 int events; /* the pending event set for the given watcher */
257} ANPENDING; 610} ANPENDING;
611
612#if EV_USE_INOTIFY
613/* hash table entry per inotify-id */
614typedef struct
615{
616 WL head;
617} ANFS;
618#endif
619
620/* Heap Entry */
621#if EV_HEAP_CACHE_AT
622 /* a heap element */
623 typedef struct {
624 ev_tstamp at;
625 WT w;
626 } ANHE;
627
628 #define ANHE_w(he) (he).w /* access watcher, read-write */
629 #define ANHE_at(he) (he).at /* access cached at, read-only */
630 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
631#else
632 /* a heap element */
633 typedef WT ANHE;
634
635 #define ANHE_w(he) (he)
636 #define ANHE_at(he) (he)->at
637 #define ANHE_at_cache(he)
638#endif
258 639
259#if EV_MULTIPLICITY 640#if EV_MULTIPLICITY
260 641
261 struct ev_loop 642 struct ev_loop
262 { 643 {
280 661
281 static int ev_default_loop_ptr; 662 static int ev_default_loop_ptr;
282 663
283#endif 664#endif
284 665
666#if EV_MINIMAL < 2
667# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
668# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
669# define EV_INVOKE_PENDING invoke_cb (EV_A)
670#else
671# define EV_RELEASE_CB (void)0
672# define EV_ACQUIRE_CB (void)0
673# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
674#endif
675
676#define EVUNLOOP_RECURSE 0x80
677
285/*****************************************************************************/ 678/*****************************************************************************/
286 679
680#ifndef EV_HAVE_EV_TIME
287ev_tstamp 681ev_tstamp
288ev_time (void) 682ev_time (void)
289{ 683{
290#if EV_USE_REALTIME 684#if EV_USE_REALTIME
685 if (expect_true (have_realtime))
686 {
291 struct timespec ts; 687 struct timespec ts;
292 clock_gettime (CLOCK_REALTIME, &ts); 688 clock_gettime (CLOCK_REALTIME, &ts);
293 return ts.tv_sec + ts.tv_nsec * 1e-9; 689 return ts.tv_sec + ts.tv_nsec * 1e-9;
294#else 690 }
691#endif
692
295 struct timeval tv; 693 struct timeval tv;
296 gettimeofday (&tv, 0); 694 gettimeofday (&tv, 0);
297 return tv.tv_sec + tv.tv_usec * 1e-6; 695 return tv.tv_sec + tv.tv_usec * 1e-6;
298#endif
299} 696}
697#endif
300 698
301inline ev_tstamp 699inline_size ev_tstamp
302get_clock (void) 700get_clock (void)
303{ 701{
304#if EV_USE_MONOTONIC 702#if EV_USE_MONOTONIC
305 if (expect_true (have_monotonic)) 703 if (expect_true (have_monotonic))
306 { 704 {
319{ 717{
320 return ev_rt_now; 718 return ev_rt_now;
321} 719}
322#endif 720#endif
323 721
324#define array_roundsize(type,n) (((n) | 4) & ~3) 722void
723ev_sleep (ev_tstamp delay)
724{
725 if (delay > 0.)
726 {
727#if EV_USE_NANOSLEEP
728 struct timespec ts;
729
730 ts.tv_sec = (time_t)delay;
731 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
732
733 nanosleep (&ts, 0);
734#elif defined(_WIN32)
735 Sleep ((unsigned long)(delay * 1e3));
736#else
737 struct timeval tv;
738
739 tv.tv_sec = (time_t)delay;
740 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
741
742 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
743 /* something not guaranteed by newer posix versions, but guaranteed */
744 /* by older ones */
745 select (0, 0, 0, 0, &tv);
746#endif
747 }
748}
749
750/*****************************************************************************/
751
752#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
753
754/* find a suitable new size for the given array, */
755/* hopefully by rounding to a ncie-to-malloc size */
756inline_size int
757array_nextsize (int elem, int cur, int cnt)
758{
759 int ncur = cur + 1;
760
761 do
762 ncur <<= 1;
763 while (cnt > ncur);
764
765 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
766 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
767 {
768 ncur *= elem;
769 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
770 ncur = ncur - sizeof (void *) * 4;
771 ncur /= elem;
772 }
773
774 return ncur;
775}
776
777static noinline void *
778array_realloc (int elem, void *base, int *cur, int cnt)
779{
780 *cur = array_nextsize (elem, *cur, cnt);
781 return ev_realloc (base, elem * *cur);
782}
783
784#define array_init_zero(base,count) \
785 memset ((void *)(base), 0, sizeof (*(base)) * (count))
325 786
326#define array_needsize(type,base,cur,cnt,init) \ 787#define array_needsize(type,base,cur,cnt,init) \
327 if (expect_false ((cnt) > cur)) \ 788 if (expect_false ((cnt) > (cur))) \
328 { \ 789 { \
329 int newcnt = cur; \ 790 int ocur_ = (cur); \
330 do \ 791 (base) = (type *)array_realloc \
331 { \ 792 (sizeof (type), (base), &(cur), (cnt)); \
332 newcnt = array_roundsize (type, newcnt << 1); \ 793 init ((base) + (ocur_), (cur) - ocur_); \
333 } \
334 while ((cnt) > newcnt); \
335 \
336 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
337 init (base + cur, newcnt - cur); \
338 cur = newcnt; \
339 } 794 }
340 795
796#if 0
341#define array_slim(type,stem) \ 797#define array_slim(type,stem) \
342 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 798 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
343 { \ 799 { \
344 stem ## max = array_roundsize (stem ## cnt >> 1); \ 800 stem ## max = array_roundsize (stem ## cnt >> 1); \
345 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 801 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
346 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 802 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
347 } 803 }
804#endif
348 805
349#define array_free(stem, idx) \ 806#define array_free(stem, idx) \
350 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 807 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
351 808
352/*****************************************************************************/ 809/*****************************************************************************/
353 810
354static void 811/* dummy callback for pending events */
355anfds_init (ANFD *base, int count) 812static void noinline
813pendingcb (EV_P_ ev_prepare *w, int revents)
356{ 814{
357 while (count--)
358 {
359 base->head = 0;
360 base->events = EV_NONE;
361 base->reify = 0;
362
363 ++base;
364 }
365} 815}
366 816
367void 817void noinline
368ev_feed_event (EV_P_ void *w, int revents) 818ev_feed_event (EV_P_ void *w, int revents)
369{ 819{
370 W w_ = (W)w; 820 W w_ = (W)w;
821 int pri = ABSPRI (w_);
371 822
372 if (w_->pending) 823 if (expect_false (w_->pending))
824 pendings [pri][w_->pending - 1].events |= revents;
825 else
373 { 826 {
827 w_->pending = ++pendingcnt [pri];
828 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
829 pendings [pri][w_->pending - 1].w = w_;
374 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 830 pendings [pri][w_->pending - 1].events = revents;
375 return;
376 } 831 }
377
378 w_->pending = ++pendingcnt [ABSPRI (w_)];
379 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
380 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
381 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
382} 832}
383 833
384static void 834inline_speed void
835feed_reverse (EV_P_ W w)
836{
837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
838 rfeeds [rfeedcnt++] = w;
839}
840
841inline_size void
842feed_reverse_done (EV_P_ int revents)
843{
844 do
845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
846 while (rfeedcnt);
847}
848
849inline_speed void
385queue_events (EV_P_ W *events, int eventcnt, int type) 850queue_events (EV_P_ W *events, int eventcnt, int type)
386{ 851{
387 int i; 852 int i;
388 853
389 for (i = 0; i < eventcnt; ++i) 854 for (i = 0; i < eventcnt; ++i)
390 ev_feed_event (EV_A_ events [i], type); 855 ev_feed_event (EV_A_ events [i], type);
391} 856}
392 857
858/*****************************************************************************/
859
393inline void 860inline_speed void
394fd_event (EV_P_ int fd, int revents) 861fd_event_nc (EV_P_ int fd, int revents)
395{ 862{
396 ANFD *anfd = anfds + fd; 863 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 864 ev_io *w;
398 865
399 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
400 { 867 {
401 int ev = w->events & revents; 868 int ev = w->events & revents;
402 869
403 if (ev) 870 if (ev)
404 ev_feed_event (EV_A_ (W)w, ev); 871 ev_feed_event (EV_A_ (W)w, ev);
405 } 872 }
406} 873}
407 874
875/* do not submit kernel events for fds that have reify set */
876/* because that means they changed while we were polling for new events */
877inline_speed void
878fd_event (EV_P_ int fd, int revents)
879{
880 ANFD *anfd = anfds + fd;
881
882 if (expect_true (!anfd->reify))
883 fd_event_nc (EV_A_ fd, revents);
884}
885
408void 886void
409ev_feed_fd_event (EV_P_ int fd, int revents) 887ev_feed_fd_event (EV_P_ int fd, int revents)
410{ 888{
889 if (fd >= 0 && fd < anfdmax)
411 fd_event (EV_A_ fd, revents); 890 fd_event_nc (EV_A_ fd, revents);
412} 891}
413 892
414/*****************************************************************************/ 893/* make sure the external fd watch events are in-sync */
415 894/* with the kernel/libev internal state */
416static void 895inline_size void
417fd_reify (EV_P) 896fd_reify (EV_P)
418{ 897{
419 int i; 898 int i;
420 899
421 for (i = 0; i < fdchangecnt; ++i) 900 for (i = 0; i < fdchangecnt; ++i)
422 { 901 {
423 int fd = fdchanges [i]; 902 int fd = fdchanges [i];
424 ANFD *anfd = anfds + fd; 903 ANFD *anfd = anfds + fd;
425 struct ev_io *w; 904 ev_io *w;
426 905
427 int events = 0; 906 unsigned char events = 0;
428 907
429 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
430 events |= w->events; 909 events |= (unsigned char)w->events;
431 910
432#if EV_SELECT_IS_WINSOCKET 911#if EV_SELECT_IS_WINSOCKET
433 if (events) 912 if (events)
434 { 913 {
435 unsigned long argp; 914 unsigned long arg;
436 anfd->handle = _get_osfhandle (fd); 915 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
437 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 916 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
438 } 917 }
439#endif 918#endif
440 919
920 {
921 unsigned char o_events = anfd->events;
922 unsigned char o_reify = anfd->reify;
923
441 anfd->reify = 0; 924 anfd->reify = 0;
442
443 method_modify (EV_A_ fd, anfd->events, events);
444 anfd->events = events; 925 anfd->events = events;
926
927 if (o_events != events || o_reify & EV__IOFDSET)
928 backend_modify (EV_A_ fd, o_events, events);
929 }
445 } 930 }
446 931
447 fdchangecnt = 0; 932 fdchangecnt = 0;
448} 933}
449 934
450static void 935/* something about the given fd changed */
936inline_size void
451fd_change (EV_P_ int fd) 937fd_change (EV_P_ int fd, int flags)
452{ 938{
453 if (anfds [fd].reify) 939 unsigned char reify = anfds [fd].reify;
454 return;
455
456 anfds [fd].reify = 1; 940 anfds [fd].reify |= flags;
457 941
942 if (expect_true (!reify))
943 {
458 ++fdchangecnt; 944 ++fdchangecnt;
459 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 945 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
460 fdchanges [fdchangecnt - 1] = fd; 946 fdchanges [fdchangecnt - 1] = fd;
947 }
461} 948}
462 949
463static void 950/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
951inline_speed void
464fd_kill (EV_P_ int fd) 952fd_kill (EV_P_ int fd)
465{ 953{
466 struct ev_io *w; 954 ev_io *w;
467 955
468 while ((w = (struct ev_io *)anfds [fd].head)) 956 while ((w = (ev_io *)anfds [fd].head))
469 { 957 {
470 ev_io_stop (EV_A_ w); 958 ev_io_stop (EV_A_ w);
471 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 959 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
472 } 960 }
473} 961}
474 962
475static int 963/* check whether the given fd is atcually valid, for error recovery */
964inline_size int
476fd_valid (int fd) 965fd_valid (int fd)
477{ 966{
478#ifdef _WIN32 967#ifdef _WIN32
479 return _get_osfhandle (fd) != -1; 968 return _get_osfhandle (fd) != -1;
480#else 969#else
481 return fcntl (fd, F_GETFD) != -1; 970 return fcntl (fd, F_GETFD) != -1;
482#endif 971#endif
483} 972}
484 973
485/* called on EBADF to verify fds */ 974/* called on EBADF to verify fds */
486static void 975static void noinline
487fd_ebadf (EV_P) 976fd_ebadf (EV_P)
488{ 977{
489 int fd; 978 int fd;
490 979
491 for (fd = 0; fd < anfdmax; ++fd) 980 for (fd = 0; fd < anfdmax; ++fd)
492 if (anfds [fd].events) 981 if (anfds [fd].events)
493 if (!fd_valid (fd) == -1 && errno == EBADF) 982 if (!fd_valid (fd) && errno == EBADF)
494 fd_kill (EV_A_ fd); 983 fd_kill (EV_A_ fd);
495} 984}
496 985
497/* called on ENOMEM in select/poll to kill some fds and retry */ 986/* called on ENOMEM in select/poll to kill some fds and retry */
498static void 987static void noinline
499fd_enomem (EV_P) 988fd_enomem (EV_P)
500{ 989{
501 int fd; 990 int fd;
502 991
503 for (fd = anfdmax; fd--; ) 992 for (fd = anfdmax; fd--; )
504 if (anfds [fd].events) 993 if (anfds [fd].events)
505 { 994 {
506 fd_kill (EV_A_ fd); 995 fd_kill (EV_A_ fd);
507 return; 996 break;
508 } 997 }
509} 998}
510 999
511/* usually called after fork if method needs to re-arm all fds from scratch */ 1000/* usually called after fork if backend needs to re-arm all fds from scratch */
512static void 1001static void noinline
513fd_rearm_all (EV_P) 1002fd_rearm_all (EV_P)
514{ 1003{
515 int fd; 1004 int fd;
516 1005
517 /* this should be highly optimised to not do anything but set a flag */
518 for (fd = 0; fd < anfdmax; ++fd) 1006 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 1007 if (anfds [fd].events)
520 { 1008 {
521 anfds [fd].events = 0; 1009 anfds [fd].events = 0;
522 fd_change (EV_A_ fd); 1010 anfds [fd].emask = 0;
1011 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
523 } 1012 }
524} 1013}
525 1014
526/*****************************************************************************/ 1015/*****************************************************************************/
527 1016
528static void 1017/*
529upheap (WT *heap, int k) 1018 * the heap functions want a real array index. array index 0 uis guaranteed to not
530{ 1019 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
531 WT w = heap [k]; 1020 * the branching factor of the d-tree.
1021 */
532 1022
533 while (k && heap [k >> 1]->at > w->at) 1023/*
534 { 1024 * at the moment we allow libev the luxury of two heaps,
535 heap [k] = heap [k >> 1]; 1025 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
536 ((W)heap [k])->active = k + 1; 1026 * which is more cache-efficient.
537 k >>= 1; 1027 * the difference is about 5% with 50000+ watchers.
538 } 1028 */
1029#if EV_USE_4HEAP
539 1030
540 heap [k] = w; 1031#define DHEAP 4
541 ((W)heap [k])->active = k + 1; 1032#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1033#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1034#define UPHEAP_DONE(p,k) ((p) == (k))
542 1035
543} 1036/* away from the root */
544 1037inline_speed void
545static void
546downheap (WT *heap, int N, int k) 1038downheap (ANHE *heap, int N, int k)
547{ 1039{
548 WT w = heap [k]; 1040 ANHE he = heap [k];
1041 ANHE *E = heap + N + HEAP0;
549 1042
550 while (k < (N >> 1)) 1043 for (;;)
551 { 1044 {
552 int j = k << 1; 1045 ev_tstamp minat;
1046 ANHE *minpos;
1047 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
553 1048
554 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1049 /* find minimum child */
1050 if (expect_true (pos + DHEAP - 1 < E))
555 ++j; 1051 {
556 1052 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
557 if (w->at <= heap [j]->at) 1053 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1056 }
1057 else if (pos < E)
1058 {
1059 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1060 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1061 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1062 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1063 }
1064 else
558 break; 1065 break;
559 1066
1067 if (ANHE_at (he) <= minat)
1068 break;
1069
1070 heap [k] = *minpos;
1071 ev_active (ANHE_w (*minpos)) = k;
1072
1073 k = minpos - heap;
1074 }
1075
1076 heap [k] = he;
1077 ev_active (ANHE_w (he)) = k;
1078}
1079
1080#else /* 4HEAP */
1081
1082#define HEAP0 1
1083#define HPARENT(k) ((k) >> 1)
1084#define UPHEAP_DONE(p,k) (!(p))
1085
1086/* away from the root */
1087inline_speed void
1088downheap (ANHE *heap, int N, int k)
1089{
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int c = k << 1;
1095
1096 if (c >= N + HEAP0)
1097 break;
1098
1099 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1100 ? 1 : 0;
1101
1102 if (ANHE_at (he) <= ANHE_at (heap [c]))
1103 break;
1104
560 heap [k] = heap [j]; 1105 heap [k] = heap [c];
561 ((W)heap [k])->active = k + 1; 1106 ev_active (ANHE_w (heap [k])) = k;
1107
562 k = j; 1108 k = c;
563 } 1109 }
564 1110
565 heap [k] = w; 1111 heap [k] = he;
566 ((W)heap [k])->active = k + 1; 1112 ev_active (ANHE_w (he)) = k;
567} 1113}
1114#endif
568 1115
1116/* towards the root */
1117inline_speed void
1118upheap (ANHE *heap, int k)
1119{
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int p = HPARENT (k);
1125
1126 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1127 break;
1128
1129 heap [k] = heap [p];
1130 ev_active (ANHE_w (heap [k])) = k;
1131 k = p;
1132 }
1133
1134 heap [k] = he;
1135 ev_active (ANHE_w (he)) = k;
1136}
1137
1138/* move an element suitably so it is in a correct place */
569inline void 1139inline_size void
570adjustheap (WT *heap, int N, int k) 1140adjustheap (ANHE *heap, int N, int k)
571{ 1141{
1142 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
572 upheap (heap, k); 1143 upheap (heap, k);
1144 else
573 downheap (heap, N, k); 1145 downheap (heap, N, k);
1146}
1147
1148/* rebuild the heap: this function is used only once and executed rarely */
1149inline_size void
1150reheap (ANHE *heap, int N)
1151{
1152 int i;
1153
1154 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1155 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1156 for (i = 0; i < N; ++i)
1157 upheap (heap, i + HEAP0);
574} 1158}
575 1159
576/*****************************************************************************/ 1160/*****************************************************************************/
577 1161
1162/* associate signal watchers to a signal signal */
578typedef struct 1163typedef struct
579{ 1164{
1165 EV_ATOMIC_T pending;
1166#if EV_MULTIPLICITY
1167 EV_P;
1168#endif
580 WL head; 1169 WL head;
581 sig_atomic_t volatile gotsig;
582} ANSIG; 1170} ANSIG;
583 1171
584static ANSIG *signals; 1172static ANSIG signals [EV_NSIG - 1];
585static int signalmax;
586 1173
587static int sigpipe [2]; 1174/*****************************************************************************/
588static sig_atomic_t volatile gotsig;
589static struct ev_io sigev;
590 1175
591static void 1176/* used to prepare libev internal fd's */
592signals_init (ANSIG *base, int count) 1177/* this is not fork-safe */
593{
594 while (count--)
595 {
596 base->head = 0;
597 base->gotsig = 0;
598
599 ++base;
600 }
601}
602
603static void
604sighandler (int signum)
605{
606#if _WIN32
607 signal (signum, sighandler);
608#endif
609
610 signals [signum - 1].gotsig = 1;
611
612 if (!gotsig)
613 {
614 int old_errno = errno;
615 gotsig = 1;
616 write (sigpipe [1], &signum, 1);
617 errno = old_errno;
618 }
619}
620
621void
622ev_feed_signal_event (EV_P_ int signum)
623{
624 WL w;
625
626#if EV_MULTIPLICITY
627 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
628#endif
629
630 --signum;
631
632 if (signum < 0 || signum >= signalmax)
633 return;
634
635 signals [signum].gotsig = 0;
636
637 for (w = signals [signum].head; w; w = w->next)
638 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
639}
640
641static void
642sigcb (EV_P_ struct ev_io *iow, int revents)
643{
644 int signum;
645
646 read (sigpipe [0], &revents, 1);
647 gotsig = 0;
648
649 for (signum = signalmax; signum--; )
650 if (signals [signum].gotsig)
651 ev_feed_signal_event (EV_A_ signum + 1);
652}
653
654inline void 1178inline_speed void
655fd_intern (int fd) 1179fd_intern (int fd)
656{ 1180{
657#ifdef _WIN32 1181#ifdef _WIN32
658 int arg = 1; 1182 unsigned long arg = 1;
659 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1183 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
660#else 1184#else
661 fcntl (fd, F_SETFD, FD_CLOEXEC); 1185 fcntl (fd, F_SETFD, FD_CLOEXEC);
662 fcntl (fd, F_SETFL, O_NONBLOCK); 1186 fcntl (fd, F_SETFL, O_NONBLOCK);
663#endif 1187#endif
664} 1188}
665 1189
1190static void noinline
1191evpipe_init (EV_P)
1192{
1193 if (!ev_is_active (&pipe_w))
1194 {
1195#if EV_USE_EVENTFD
1196 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1197 if (evfd < 0 && errno == EINVAL)
1198 evfd = eventfd (0, 0);
1199
1200 if (evfd >= 0)
1201 {
1202 evpipe [0] = -1;
1203 fd_intern (evfd); /* doing it twice doesn't hurt */
1204 ev_io_set (&pipe_w, evfd, EV_READ);
1205 }
1206 else
1207#endif
1208 {
1209 while (pipe (evpipe))
1210 ev_syserr ("(libev) error creating signal/async pipe");
1211
1212 fd_intern (evpipe [0]);
1213 fd_intern (evpipe [1]);
1214 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1215 }
1216
1217 ev_io_start (EV_A_ &pipe_w);
1218 ev_unref (EV_A); /* watcher should not keep loop alive */
1219 }
1220}
1221
1222inline_size void
1223evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1224{
1225 if (!*flag)
1226 {
1227 int old_errno = errno; /* save errno because write might clobber it */
1228
1229 *flag = 1;
1230
1231#if EV_USE_EVENTFD
1232 if (evfd >= 0)
1233 {
1234 uint64_t counter = 1;
1235 write (evfd, &counter, sizeof (uint64_t));
1236 }
1237 else
1238#endif
1239 write (evpipe [1], &old_errno, 1);
1240
1241 errno = old_errno;
1242 }
1243}
1244
1245/* called whenever the libev signal pipe */
1246/* got some events (signal, async) */
666static void 1247static void
667siginit (EV_P) 1248pipecb (EV_P_ ev_io *iow, int revents)
668{ 1249{
669 fd_intern (sigpipe [0]); 1250 int i;
670 fd_intern (sigpipe [1]);
671 1251
672 ev_io_set (&sigev, sigpipe [0], EV_READ); 1252#if EV_USE_EVENTFD
673 ev_io_start (EV_A_ &sigev); 1253 if (evfd >= 0)
674 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1254 {
1255 uint64_t counter;
1256 read (evfd, &counter, sizeof (uint64_t));
1257 }
1258 else
1259#endif
1260 {
1261 char dummy;
1262 read (evpipe [0], &dummy, 1);
1263 }
1264
1265 if (sig_pending)
1266 {
1267 sig_pending = 0;
1268
1269 for (i = EV_NSIG - 1; i--; )
1270 if (expect_false (signals [i].pending))
1271 ev_feed_signal_event (EV_A_ i + 1);
1272 }
1273
1274#if EV_ASYNC_ENABLE
1275 if (async_pending)
1276 {
1277 async_pending = 0;
1278
1279 for (i = asynccnt; i--; )
1280 if (asyncs [i]->sent)
1281 {
1282 asyncs [i]->sent = 0;
1283 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1284 }
1285 }
1286#endif
675} 1287}
676 1288
677/*****************************************************************************/ 1289/*****************************************************************************/
678 1290
679static struct ev_child *childs [PID_HASHSIZE]; 1291static void
1292ev_sighandler (int signum)
1293{
1294#if EV_MULTIPLICITY
1295 EV_P = signals [signum - 1].loop;
1296#endif
1297
1298#if _WIN32
1299 signal (signum, ev_sighandler);
1300#endif
1301
1302 signals [signum - 1].pending = 1;
1303 evpipe_write (EV_A_ &sig_pending);
1304}
1305
1306void noinline
1307ev_feed_signal_event (EV_P_ int signum)
1308{
1309 WL w;
1310
1311 if (expect_false (signum <= 0 || signum > EV_NSIG))
1312 return;
1313
1314 --signum;
1315
1316#if EV_MULTIPLICITY
1317 /* it is permissible to try to feed a signal to the wrong loop */
1318 /* or, likely more useful, feeding a signal nobody is waiting for */
1319
1320 if (expect_false (signals [signum].loop != EV_A))
1321 return;
1322#endif
1323
1324 signals [signum].pending = 0;
1325
1326 for (w = signals [signum].head; w; w = w->next)
1327 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1328}
1329
1330#if EV_USE_SIGNALFD
1331static void
1332sigfdcb (EV_P_ ev_io *iow, int revents)
1333{
1334 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1335
1336 for (;;)
1337 {
1338 ssize_t res = read (sigfd, si, sizeof (si));
1339
1340 /* not ISO-C, as res might be -1, but works with SuS */
1341 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1342 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1343
1344 if (res < (ssize_t)sizeof (si))
1345 break;
1346 }
1347}
1348#endif
1349
1350/*****************************************************************************/
1351
1352static WL childs [EV_PID_HASHSIZE];
680 1353
681#ifndef _WIN32 1354#ifndef _WIN32
682 1355
683static struct ev_signal childev; 1356static ev_signal childev;
1357
1358#ifndef WIFCONTINUED
1359# define WIFCONTINUED(status) 0
1360#endif
1361
1362/* handle a single child status event */
1363inline_speed void
1364child_reap (EV_P_ int chain, int pid, int status)
1365{
1366 ev_child *w;
1367 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1368
1369 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1370 {
1371 if ((w->pid == pid || !w->pid)
1372 && (!traced || (w->flags & 1)))
1373 {
1374 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1375 w->rpid = pid;
1376 w->rstatus = status;
1377 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1378 }
1379 }
1380}
684 1381
685#ifndef WCONTINUED 1382#ifndef WCONTINUED
686# define WCONTINUED 0 1383# define WCONTINUED 0
687#endif 1384#endif
688 1385
1386/* called on sigchld etc., calls waitpid */
689static void 1387static void
690child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
691{
692 struct ev_child *w;
693
694 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
695 if (w->pid == pid || !w->pid)
696 {
697 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
698 w->rpid = pid;
699 w->rstatus = status;
700 ev_feed_event (EV_A_ (W)w, EV_CHILD);
701 }
702}
703
704static void
705childcb (EV_P_ struct ev_signal *sw, int revents) 1388childcb (EV_P_ ev_signal *sw, int revents)
706{ 1389{
707 int pid, status; 1390 int pid, status;
708 1391
1392 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
709 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1393 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
710 { 1394 if (!WCONTINUED
1395 || errno != EINVAL
1396 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1397 return;
1398
711 /* make sure we are called again until all childs have been reaped */ 1399 /* make sure we are called again until all children have been reaped */
1400 /* we need to do it this way so that the callback gets called before we continue */
712 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1401 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
713 1402
714 child_reap (EV_A_ sw, pid, pid, status); 1403 child_reap (EV_A_ pid, pid, status);
1404 if (EV_PID_HASHSIZE > 1)
715 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1405 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
716 }
717} 1406}
718 1407
719#endif 1408#endif
720 1409
721/*****************************************************************************/ 1410/*****************************************************************************/
747{ 1436{
748 return EV_VERSION_MINOR; 1437 return EV_VERSION_MINOR;
749} 1438}
750 1439
751/* return true if we are running with elevated privileges and should ignore env variables */ 1440/* return true if we are running with elevated privileges and should ignore env variables */
752static int 1441int inline_size
753enable_secure (void) 1442enable_secure (void)
754{ 1443{
755#ifdef _WIN32 1444#ifdef _WIN32
756 return 0; 1445 return 0;
757#else 1446#else
759 || getgid () != getegid (); 1448 || getgid () != getegid ();
760#endif 1449#endif
761} 1450}
762 1451
763unsigned int 1452unsigned int
764ev_method (EV_P) 1453ev_supported_backends (void)
765{ 1454{
766 return method; 1455 unsigned int flags = 0;
767}
768 1456
769static void 1457 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1458 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1459 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1460 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1461 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1462
1463 return flags;
1464}
1465
1466unsigned int
1467ev_recommended_backends (void)
1468{
1469 unsigned int flags = ev_supported_backends ();
1470
1471#ifndef __NetBSD__
1472 /* kqueue is borked on everything but netbsd apparently */
1473 /* it usually doesn't work correctly on anything but sockets and pipes */
1474 flags &= ~EVBACKEND_KQUEUE;
1475#endif
1476#ifdef __APPLE__
1477 /* only select works correctly on that "unix-certified" platform */
1478 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1479 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1480#endif
1481
1482 return flags;
1483}
1484
1485unsigned int
1486ev_embeddable_backends (void)
1487{
1488 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1489
1490 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1491 /* please fix it and tell me how to detect the fix */
1492 flags &= ~EVBACKEND_EPOLL;
1493
1494 return flags;
1495}
1496
1497unsigned int
1498ev_backend (EV_P)
1499{
1500 return backend;
1501}
1502
1503#if EV_MINIMAL < 2
1504unsigned int
1505ev_loop_count (EV_P)
1506{
1507 return loop_count;
1508}
1509
1510unsigned int
1511ev_loop_depth (EV_P)
1512{
1513 return loop_depth;
1514}
1515
1516void
1517ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1518{
1519 io_blocktime = interval;
1520}
1521
1522void
1523ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1524{
1525 timeout_blocktime = interval;
1526}
1527
1528void
1529ev_set_userdata (EV_P_ void *data)
1530{
1531 userdata = data;
1532}
1533
1534void *
1535ev_userdata (EV_P)
1536{
1537 return userdata;
1538}
1539
1540void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1541{
1542 invoke_cb = invoke_pending_cb;
1543}
1544
1545void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1546{
1547 release_cb = release;
1548 acquire_cb = acquire;
1549}
1550#endif
1551
1552/* initialise a loop structure, must be zero-initialised */
1553static void noinline
770loop_init (EV_P_ unsigned int flags) 1554loop_init (EV_P_ unsigned int flags)
771{ 1555{
772 if (!method) 1556 if (!backend)
773 { 1557 {
1558#if EV_USE_REALTIME
1559 if (!have_realtime)
1560 {
1561 struct timespec ts;
1562
1563 if (!clock_gettime (CLOCK_REALTIME, &ts))
1564 have_realtime = 1;
1565 }
1566#endif
1567
774#if EV_USE_MONOTONIC 1568#if EV_USE_MONOTONIC
1569 if (!have_monotonic)
1570 {
1571 struct timespec ts;
1572
1573 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1574 have_monotonic = 1;
1575 }
1576#endif
1577
1578 /* pid check not overridable via env */
1579#ifndef _WIN32
1580 if (flags & EVFLAG_FORKCHECK)
1581 curpid = getpid ();
1582#endif
1583
1584 if (!(flags & EVFLAG_NOENV)
1585 && !enable_secure ()
1586 && getenv ("LIBEV_FLAGS"))
1587 flags = atoi (getenv ("LIBEV_FLAGS"));
1588
1589 ev_rt_now = ev_time ();
1590 mn_now = get_clock ();
1591 now_floor = mn_now;
1592 rtmn_diff = ev_rt_now - mn_now;
1593#if EV_MINIMAL < 2
1594 invoke_cb = ev_invoke_pending;
1595#endif
1596
1597 io_blocktime = 0.;
1598 timeout_blocktime = 0.;
1599 backend = 0;
1600 backend_fd = -1;
1601 sig_pending = 0;
1602#if EV_ASYNC_ENABLE
1603 async_pending = 0;
1604#endif
1605#if EV_USE_INOTIFY
1606 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1607#endif
1608#if EV_USE_SIGNALFD
1609 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1610#endif
1611
1612 if (!(flags & 0x0000ffffU))
1613 flags |= ev_recommended_backends ();
1614
1615#if EV_USE_PORT
1616 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1617#endif
1618#if EV_USE_KQUEUE
1619 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1620#endif
1621#if EV_USE_EPOLL
1622 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1623#endif
1624#if EV_USE_POLL
1625 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1626#endif
1627#if EV_USE_SELECT
1628 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1629#endif
1630
1631 ev_prepare_init (&pending_w, pendingcb);
1632
1633 ev_init (&pipe_w, pipecb);
1634 ev_set_priority (&pipe_w, EV_MAXPRI);
1635 }
1636}
1637
1638/* free up a loop structure */
1639static void noinline
1640loop_destroy (EV_P)
1641{
1642 int i;
1643
1644 if (ev_is_active (&pipe_w))
1645 {
1646 /*ev_ref (EV_A);*/
1647 /*ev_io_stop (EV_A_ &pipe_w);*/
1648
1649#if EV_USE_EVENTFD
1650 if (evfd >= 0)
1651 close (evfd);
1652#endif
1653
1654 if (evpipe [0] >= 0)
1655 {
1656 EV_WIN32_CLOSE_FD (evpipe [0]);
1657 EV_WIN32_CLOSE_FD (evpipe [1]);
1658 }
1659 }
1660
1661#if EV_USE_SIGNALFD
1662 if (ev_is_active (&sigfd_w))
1663 {
1664 /*ev_ref (EV_A);*/
1665 /*ev_io_stop (EV_A_ &sigfd_w);*/
1666
1667 close (sigfd);
1668 }
1669#endif
1670
1671#if EV_USE_INOTIFY
1672 if (fs_fd >= 0)
1673 close (fs_fd);
1674#endif
1675
1676 if (backend_fd >= 0)
1677 close (backend_fd);
1678
1679#if EV_USE_PORT
1680 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1681#endif
1682#if EV_USE_KQUEUE
1683 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1684#endif
1685#if EV_USE_EPOLL
1686 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1687#endif
1688#if EV_USE_POLL
1689 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1690#endif
1691#if EV_USE_SELECT
1692 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1693#endif
1694
1695 for (i = NUMPRI; i--; )
1696 {
1697 array_free (pending, [i]);
1698#if EV_IDLE_ENABLE
1699 array_free (idle, [i]);
1700#endif
1701 }
1702
1703 ev_free (anfds); anfds = 0; anfdmax = 0;
1704
1705 /* have to use the microsoft-never-gets-it-right macro */
1706 array_free (rfeed, EMPTY);
1707 array_free (fdchange, EMPTY);
1708 array_free (timer, EMPTY);
1709#if EV_PERIODIC_ENABLE
1710 array_free (periodic, EMPTY);
1711#endif
1712#if EV_FORK_ENABLE
1713 array_free (fork, EMPTY);
1714#endif
1715 array_free (prepare, EMPTY);
1716 array_free (check, EMPTY);
1717#if EV_ASYNC_ENABLE
1718 array_free (async, EMPTY);
1719#endif
1720
1721 backend = 0;
1722}
1723
1724#if EV_USE_INOTIFY
1725inline_size void infy_fork (EV_P);
1726#endif
1727
1728inline_size void
1729loop_fork (EV_P)
1730{
1731#if EV_USE_PORT
1732 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1733#endif
1734#if EV_USE_KQUEUE
1735 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1736#endif
1737#if EV_USE_EPOLL
1738 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1739#endif
1740#if EV_USE_INOTIFY
1741 infy_fork (EV_A);
1742#endif
1743
1744 if (ev_is_active (&pipe_w))
1745 {
1746 /* this "locks" the handlers against writing to the pipe */
1747 /* while we modify the fd vars */
1748 sig_pending = 1;
1749#if EV_ASYNC_ENABLE
1750 async_pending = 1;
1751#endif
1752
1753 ev_ref (EV_A);
1754 ev_io_stop (EV_A_ &pipe_w);
1755
1756#if EV_USE_EVENTFD
1757 if (evfd >= 0)
1758 close (evfd);
1759#endif
1760
1761 if (evpipe [0] >= 0)
1762 {
1763 EV_WIN32_CLOSE_FD (evpipe [0]);
1764 EV_WIN32_CLOSE_FD (evpipe [1]);
1765 }
1766
1767 evpipe_init (EV_A);
1768 /* now iterate over everything, in case we missed something */
1769 pipecb (EV_A_ &pipe_w, EV_READ);
1770 }
1771
1772 postfork = 0;
1773}
1774
1775#if EV_MULTIPLICITY
1776
1777struct ev_loop *
1778ev_loop_new (unsigned int flags)
1779{
1780 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1781
1782 memset (EV_A, 0, sizeof (struct ev_loop));
1783 loop_init (EV_A_ flags);
1784
1785 if (ev_backend (EV_A))
1786 return EV_A;
1787
1788 return 0;
1789}
1790
1791void
1792ev_loop_destroy (EV_P)
1793{
1794 loop_destroy (EV_A);
1795 ev_free (loop);
1796}
1797
1798void
1799ev_loop_fork (EV_P)
1800{
1801 postfork = 1; /* must be in line with ev_default_fork */
1802}
1803#endif /* multiplicity */
1804
1805#if EV_VERIFY
1806static void noinline
1807verify_watcher (EV_P_ W w)
1808{
1809 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1810
1811 if (w->pending)
1812 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1813}
1814
1815static void noinline
1816verify_heap (EV_P_ ANHE *heap, int N)
1817{
1818 int i;
1819
1820 for (i = HEAP0; i < N + HEAP0; ++i)
1821 {
1822 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1823 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1824 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1825
1826 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1827 }
1828}
1829
1830static void noinline
1831array_verify (EV_P_ W *ws, int cnt)
1832{
1833 while (cnt--)
1834 {
1835 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1836 verify_watcher (EV_A_ ws [cnt]);
1837 }
1838}
1839#endif
1840
1841#if EV_MINIMAL < 2
1842void
1843ev_loop_verify (EV_P)
1844{
1845#if EV_VERIFY
1846 int i;
1847 WL w;
1848
1849 assert (activecnt >= -1);
1850
1851 assert (fdchangemax >= fdchangecnt);
1852 for (i = 0; i < fdchangecnt; ++i)
1853 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1854
1855 assert (anfdmax >= 0);
1856 for (i = 0; i < anfdmax; ++i)
1857 for (w = anfds [i].head; w; w = w->next)
775 { 1858 {
776 struct timespec ts; 1859 verify_watcher (EV_A_ (W)w);
777 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1860 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
778 have_monotonic = 1; 1861 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
779 } 1862 }
780#endif
781 1863
782 ev_rt_now = ev_time (); 1864 assert (timermax >= timercnt);
783 mn_now = get_clock (); 1865 verify_heap (EV_A_ timers, timercnt);
784 now_floor = mn_now;
785 rtmn_diff = ev_rt_now - mn_now;
786 1866
787 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1867#if EV_PERIODIC_ENABLE
788 flags = atoi (getenv ("LIBEV_FLAGS")); 1868 assert (periodicmax >= periodiccnt);
789 1869 verify_heap (EV_A_ periodics, periodiccnt);
790 if (!(flags & 0x0000ffff))
791 flags |= 0x0000ffff;
792
793 method = 0;
794#if EV_USE_PORT
795 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
796#endif
797#if EV_USE_KQUEUE
798 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
799#endif
800#if EV_USE_EPOLL
801 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
802#endif
803#if EV_USE_POLL
804 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
805#endif
806#if EV_USE_SELECT
807 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
808#endif
809
810 ev_init (&sigev, sigcb);
811 ev_set_priority (&sigev, EV_MAXPRI);
812 }
813}
814
815void
816loop_destroy (EV_P)
817{
818 int i;
819
820#if EV_USE_PORT
821 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
822#endif
823#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
825#endif
826#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
828#endif
829#if EV_USE_POLL
830 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
831#endif
832#if EV_USE_SELECT
833 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
834#endif 1870#endif
835 1871
836 for (i = NUMPRI; i--; ) 1872 for (i = NUMPRI; i--; )
837 array_free (pending, [i]); 1873 {
1874 assert (pendingmax [i] >= pendingcnt [i]);
1875#if EV_IDLE_ENABLE
1876 assert (idleall >= 0);
1877 assert (idlemax [i] >= idlecnt [i]);
1878 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1879#endif
1880 }
838 1881
839 /* have to use the microsoft-never-gets-it-right macro */ 1882#if EV_FORK_ENABLE
840 array_free (fdchange, EMPTY0); 1883 assert (forkmax >= forkcnt);
841 array_free (timer, EMPTY0); 1884 array_verify (EV_A_ (W *)forks, forkcnt);
842#if EV_PERIODICS 1885#endif
843 array_free (periodic, EMPTY0); 1886
1887#if EV_ASYNC_ENABLE
1888 assert (asyncmax >= asynccnt);
1889 array_verify (EV_A_ (W *)asyncs, asynccnt);
1890#endif
1891
1892 assert (preparemax >= preparecnt);
1893 array_verify (EV_A_ (W *)prepares, preparecnt);
1894
1895 assert (checkmax >= checkcnt);
1896 array_verify (EV_A_ (W *)checks, checkcnt);
1897
1898# if 0
1899 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1900 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
844#endif 1901# endif
845 array_free (idle, EMPTY0);
846 array_free (prepare, EMPTY0);
847 array_free (check, EMPTY0);
848
849 method = 0;
850}
851
852static void
853loop_fork (EV_P)
854{
855#if EV_USE_PORT
856 if (method == EVMETHOD_PORT ) port_fork (EV_A);
857#endif 1902#endif
858#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
860#endif
861#if EV_USE_EPOLL
862 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
863#endif
864
865 if (ev_is_active (&sigev))
866 {
867 /* default loop */
868
869 ev_ref (EV_A);
870 ev_io_stop (EV_A_ &sigev);
871 close (sigpipe [0]);
872 close (sigpipe [1]);
873
874 while (pipe (sigpipe))
875 syserr ("(libev) error creating pipe");
876
877 siginit (EV_A);
878 }
879
880 postfork = 0;
881} 1903}
1904#endif
882 1905
883#if EV_MULTIPLICITY 1906#if EV_MULTIPLICITY
884struct ev_loop * 1907struct ev_loop *
885ev_loop_new (unsigned int flags)
886{
887 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
888
889 memset (loop, 0, sizeof (struct ev_loop));
890
891 loop_init (EV_A_ flags);
892
893 if (ev_method (EV_A))
894 return loop;
895
896 return 0;
897}
898
899void
900ev_loop_destroy (EV_P)
901{
902 loop_destroy (EV_A);
903 ev_free (loop);
904}
905
906void
907ev_loop_fork (EV_P)
908{
909 postfork = 1;
910}
911
912#endif
913
914#if EV_MULTIPLICITY
915struct ev_loop *
916ev_default_loop_ (unsigned int flags) 1908ev_default_loop_init (unsigned int flags)
917#else 1909#else
918int 1910int
919ev_default_loop (unsigned int flags) 1911ev_default_loop (unsigned int flags)
920#endif 1912#endif
921{ 1913{
922 if (sigpipe [0] == sigpipe [1])
923 if (pipe (sigpipe))
924 return 0;
925
926 if (!ev_default_loop_ptr) 1914 if (!ev_default_loop_ptr)
927 { 1915 {
928#if EV_MULTIPLICITY 1916#if EV_MULTIPLICITY
929 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1917 EV_P = ev_default_loop_ptr = &default_loop_struct;
930#else 1918#else
931 ev_default_loop_ptr = 1; 1919 ev_default_loop_ptr = 1;
932#endif 1920#endif
933 1921
934 loop_init (EV_A_ flags); 1922 loop_init (EV_A_ flags);
935 1923
936 if (ev_method (EV_A)) 1924 if (ev_backend (EV_A))
937 { 1925 {
938 siginit (EV_A);
939
940#ifndef _WIN32 1926#ifndef _WIN32
941 ev_signal_init (&childev, childcb, SIGCHLD); 1927 ev_signal_init (&childev, childcb, SIGCHLD);
942 ev_set_priority (&childev, EV_MAXPRI); 1928 ev_set_priority (&childev, EV_MAXPRI);
943 ev_signal_start (EV_A_ &childev); 1929 ev_signal_start (EV_A_ &childev);
944 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1930 ev_unref (EV_A); /* child watcher should not keep loop alive */
953 1939
954void 1940void
955ev_default_destroy (void) 1941ev_default_destroy (void)
956{ 1942{
957#if EV_MULTIPLICITY 1943#if EV_MULTIPLICITY
958 struct ev_loop *loop = ev_default_loop_ptr; 1944 EV_P = ev_default_loop_ptr;
959#endif 1945#endif
1946
1947 ev_default_loop_ptr = 0;
960 1948
961#ifndef _WIN32 1949#ifndef _WIN32
962 ev_ref (EV_A); /* child watcher */ 1950 ev_ref (EV_A); /* child watcher */
963 ev_signal_stop (EV_A_ &childev); 1951 ev_signal_stop (EV_A_ &childev);
964#endif 1952#endif
965 1953
966 ev_ref (EV_A); /* signal watcher */
967 ev_io_stop (EV_A_ &sigev);
968
969 close (sigpipe [0]); sigpipe [0] = 0;
970 close (sigpipe [1]); sigpipe [1] = 0;
971
972 loop_destroy (EV_A); 1954 loop_destroy (EV_A);
973} 1955}
974 1956
975void 1957void
976ev_default_fork (void) 1958ev_default_fork (void)
977{ 1959{
978#if EV_MULTIPLICITY 1960#if EV_MULTIPLICITY
979 struct ev_loop *loop = ev_default_loop_ptr; 1961 EV_P = ev_default_loop_ptr;
980#endif 1962#endif
981 1963
982 if (method) 1964 postfork = 1; /* must be in line with ev_loop_fork */
983 postfork = 1;
984} 1965}
985 1966
986/*****************************************************************************/ 1967/*****************************************************************************/
987 1968
988static int 1969void
989any_pending (EV_P) 1970ev_invoke (EV_P_ void *w, int revents)
1971{
1972 EV_CB_INVOKE ((W)w, revents);
1973}
1974
1975unsigned int
1976ev_pending_count (EV_P)
990{ 1977{
991 int pri; 1978 int pri;
1979 unsigned int count = 0;
992 1980
993 for (pri = NUMPRI; pri--; ) 1981 for (pri = NUMPRI; pri--; )
994 if (pendingcnt [pri]) 1982 count += pendingcnt [pri];
995 return 1;
996 1983
997 return 0; 1984 return count;
998} 1985}
999 1986
1000static void 1987void noinline
1001call_pending (EV_P) 1988ev_invoke_pending (EV_P)
1002{ 1989{
1003 int pri; 1990 int pri;
1004 1991
1005 for (pri = NUMPRI; pri--; ) 1992 for (pri = NUMPRI; pri--; )
1006 while (pendingcnt [pri]) 1993 while (pendingcnt [pri])
1007 { 1994 {
1008 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1995 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1009 1996
1010 if (p->w) 1997 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1011 { 1998 /* ^ this is no longer true, as pending_w could be here */
1999
1012 p->w->pending = 0; 2000 p->w->pending = 0;
1013 EV_CB_INVOKE (p->w, p->events); 2001 EV_CB_INVOKE (p->w, p->events);
1014 } 2002 EV_FREQUENT_CHECK;
1015 } 2003 }
1016} 2004}
1017 2005
1018static void 2006#if EV_IDLE_ENABLE
2007/* make idle watchers pending. this handles the "call-idle */
2008/* only when higher priorities are idle" logic */
2009inline_size void
2010idle_reify (EV_P)
2011{
2012 if (expect_false (idleall))
2013 {
2014 int pri;
2015
2016 for (pri = NUMPRI; pri--; )
2017 {
2018 if (pendingcnt [pri])
2019 break;
2020
2021 if (idlecnt [pri])
2022 {
2023 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2024 break;
2025 }
2026 }
2027 }
2028}
2029#endif
2030
2031/* make timers pending */
2032inline_size void
1019timers_reify (EV_P) 2033timers_reify (EV_P)
1020{ 2034{
2035 EV_FREQUENT_CHECK;
2036
1021 while (timercnt && ((WT)timers [0])->at <= mn_now) 2037 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1022 { 2038 {
1023 struct ev_timer *w = timers [0]; 2039 do
1024
1025 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1026
1027 /* first reschedule or stop timer */
1028 if (w->repeat)
1029 { 2040 {
2041 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2042
2043 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2044
2045 /* first reschedule or stop timer */
2046 if (w->repeat)
2047 {
2048 ev_at (w) += w->repeat;
2049 if (ev_at (w) < mn_now)
2050 ev_at (w) = mn_now;
2051
1030 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2052 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1031 2053
1032 ((WT)w)->at += w->repeat; 2054 ANHE_at_cache (timers [HEAP0]);
1033 if (((WT)w)->at < mn_now)
1034 ((WT)w)->at = mn_now;
1035
1036 downheap ((WT *)timers, timercnt, 0); 2055 downheap (timers, timercnt, HEAP0);
2056 }
2057 else
2058 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2059
2060 EV_FREQUENT_CHECK;
2061 feed_reverse (EV_A_ (W)w);
1037 } 2062 }
1038 else 2063 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1039 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1040 2064
1041 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2065 feed_reverse_done (EV_A_ EV_TIMEOUT);
1042 } 2066 }
1043} 2067}
1044 2068
1045#if EV_PERIODICS 2069#if EV_PERIODIC_ENABLE
1046static void 2070/* make periodics pending */
2071inline_size void
1047periodics_reify (EV_P) 2072periodics_reify (EV_P)
1048{ 2073{
2074 EV_FREQUENT_CHECK;
2075
1049 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2076 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1050 { 2077 {
1051 struct ev_periodic *w = periodics [0]; 2078 int feed_count = 0;
1052 2079
2080 do
2081 {
2082 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2083
1053 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2084 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1054 2085
1055 /* first reschedule or stop timer */ 2086 /* first reschedule or stop timer */
2087 if (w->reschedule_cb)
2088 {
2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090
2091 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2092
2093 ANHE_at_cache (periodics [HEAP0]);
2094 downheap (periodics, periodiccnt, HEAP0);
2095 }
2096 else if (w->interval)
2097 {
2098 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2099 /* if next trigger time is not sufficiently in the future, put it there */
2100 /* this might happen because of floating point inexactness */
2101 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2102 {
2103 ev_at (w) += w->interval;
2104
2105 /* if interval is unreasonably low we might still have a time in the past */
2106 /* so correct this. this will make the periodic very inexact, but the user */
2107 /* has effectively asked to get triggered more often than possible */
2108 if (ev_at (w) < ev_rt_now)
2109 ev_at (w) = ev_rt_now;
2110 }
2111
2112 ANHE_at_cache (periodics [HEAP0]);
2113 downheap (periodics, periodiccnt, HEAP0);
2114 }
2115 else
2116 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2117
2118 EV_FREQUENT_CHECK;
2119 feed_reverse (EV_A_ (W)w);
2120 }
2121 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2122
2123 feed_reverse_done (EV_A_ EV_PERIODIC);
2124 }
2125}
2126
2127/* simply recalculate all periodics */
2128/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2129static void noinline
2130periodics_reschedule (EV_P)
2131{
2132 int i;
2133
2134 /* adjust periodics after time jump */
2135 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2136 {
2137 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2138
1056 if (w->reschedule_cb) 2139 if (w->reschedule_cb)
2140 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2141 else if (w->interval)
2142 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2143
2144 ANHE_at_cache (periodics [i]);
2145 }
2146
2147 reheap (periodics, periodiccnt);
2148}
2149#endif
2150
2151/* adjust all timers by a given offset */
2152static void noinline
2153timers_reschedule (EV_P_ ev_tstamp adjust)
2154{
2155 int i;
2156
2157 for (i = 0; i < timercnt; ++i)
2158 {
2159 ANHE *he = timers + i + HEAP0;
2160 ANHE_w (*he)->at += adjust;
2161 ANHE_at_cache (*he);
2162 }
2163}
2164
2165/* fetch new monotonic and realtime times from the kernel */
2166/* also detetc if there was a timejump, and act accordingly */
2167inline_speed void
2168time_update (EV_P_ ev_tstamp max_block)
2169{
2170#if EV_USE_MONOTONIC
2171 if (expect_true (have_monotonic))
2172 {
2173 int i;
2174 ev_tstamp odiff = rtmn_diff;
2175
2176 mn_now = get_clock ();
2177
2178 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2179 /* interpolate in the meantime */
2180 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1057 { 2181 {
1058 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2182 ev_rt_now = rtmn_diff + mn_now;
1059 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2183 return;
1060 downheap ((WT *)periodics, periodiccnt, 0);
1061 } 2184 }
1062 else if (w->interval)
1063 {
1064 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1065 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1066 downheap ((WT *)periodics, periodiccnt, 0);
1067 }
1068 else
1069 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1070 2185
1071 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1072 }
1073}
1074
1075static void
1076periodics_reschedule (EV_P)
1077{
1078 int i;
1079
1080 /* adjust periodics after time jump */
1081 for (i = 0; i < periodiccnt; ++i)
1082 {
1083 struct ev_periodic *w = periodics [i];
1084
1085 if (w->reschedule_cb)
1086 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1087 else if (w->interval)
1088 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1089 }
1090
1091 /* now rebuild the heap */
1092 for (i = periodiccnt >> 1; i--; )
1093 downheap ((WT *)periodics, periodiccnt, i);
1094}
1095#endif
1096
1097inline int
1098time_update_monotonic (EV_P)
1099{
1100 mn_now = get_clock ();
1101
1102 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1103 {
1104 ev_rt_now = rtmn_diff + mn_now;
1105 return 0;
1106 }
1107 else
1108 {
1109 now_floor = mn_now; 2186 now_floor = mn_now;
1110 ev_rt_now = ev_time (); 2187 ev_rt_now = ev_time ();
1111 return 1;
1112 }
1113}
1114 2188
1115static void 2189 /* loop a few times, before making important decisions.
1116time_update (EV_P) 2190 * on the choice of "4": one iteration isn't enough,
1117{ 2191 * in case we get preempted during the calls to
1118 int i; 2192 * ev_time and get_clock. a second call is almost guaranteed
1119 2193 * to succeed in that case, though. and looping a few more times
1120#if EV_USE_MONOTONIC 2194 * doesn't hurt either as we only do this on time-jumps or
1121 if (expect_true (have_monotonic)) 2195 * in the unlikely event of having been preempted here.
1122 { 2196 */
1123 if (time_update_monotonic (EV_A)) 2197 for (i = 4; --i; )
1124 { 2198 {
1125 ev_tstamp odiff = rtmn_diff;
1126
1127 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1128 {
1129 rtmn_diff = ev_rt_now - mn_now; 2199 rtmn_diff = ev_rt_now - mn_now;
1130 2200
1131 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2201 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1132 return; /* all is well */ 2202 return; /* all is well */
1133 2203
1134 ev_rt_now = ev_time (); 2204 ev_rt_now = ev_time ();
1135 mn_now = get_clock (); 2205 mn_now = get_clock ();
1136 now_floor = mn_now; 2206 now_floor = mn_now;
1137 } 2207 }
1138 2208
2209 /* no timer adjustment, as the monotonic clock doesn't jump */
2210 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1139# if EV_PERIODICS 2211# if EV_PERIODIC_ENABLE
2212 periodics_reschedule (EV_A);
2213# endif
2214 }
2215 else
2216#endif
2217 {
2218 ev_rt_now = ev_time ();
2219
2220 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2221 {
2222 /* adjust timers. this is easy, as the offset is the same for all of them */
2223 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2224#if EV_PERIODIC_ENABLE
1140 periodics_reschedule (EV_A); 2225 periodics_reschedule (EV_A);
1141# endif 2226#endif
1142 /* no timer adjustment, as the monotonic clock doesn't jump */
1143 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1144 } 2227 }
1145 }
1146 else
1147#endif
1148 {
1149 ev_rt_now = ev_time ();
1150
1151 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1152 {
1153#if EV_PERIODICS
1154 periodics_reschedule (EV_A);
1155#endif
1156
1157 /* adjust timers. this is easy, as the offset is the same for all */
1158 for (i = 0; i < timercnt; ++i)
1159 ((WT)timers [i])->at += ev_rt_now - mn_now;
1160 }
1161 2228
1162 mn_now = ev_rt_now; 2229 mn_now = ev_rt_now;
1163 } 2230 }
1164} 2231}
1165 2232
1166void 2233void
1167ev_ref (EV_P)
1168{
1169 ++activecnt;
1170}
1171
1172void
1173ev_unref (EV_P)
1174{
1175 --activecnt;
1176}
1177
1178static int loop_done;
1179
1180void
1181ev_loop (EV_P_ int flags) 2234ev_loop (EV_P_ int flags)
1182{ 2235{
1183 double block; 2236#if EV_MINIMAL < 2
1184 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2237 ++loop_depth;
2238#endif
1185 2239
1186 while (activecnt) 2240 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2241
2242 loop_done = EVUNLOOP_CANCEL;
2243
2244 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2245
2246 do
1187 { 2247 {
2248#if EV_VERIFY >= 2
2249 ev_loop_verify (EV_A);
2250#endif
2251
2252#ifndef _WIN32
2253 if (expect_false (curpid)) /* penalise the forking check even more */
2254 if (expect_false (getpid () != curpid))
2255 {
2256 curpid = getpid ();
2257 postfork = 1;
2258 }
2259#endif
2260
2261#if EV_FORK_ENABLE
2262 /* we might have forked, so queue fork handlers */
2263 if (expect_false (postfork))
2264 if (forkcnt)
2265 {
2266 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2267 EV_INVOKE_PENDING;
2268 }
2269#endif
2270
1188 /* queue check watchers (and execute them) */ 2271 /* queue prepare watchers (and execute them) */
1189 if (expect_false (preparecnt)) 2272 if (expect_false (preparecnt))
1190 { 2273 {
1191 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2274 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1192 call_pending (EV_A); 2275 EV_INVOKE_PENDING;
1193 } 2276 }
2277
2278 if (expect_false (loop_done))
2279 break;
1194 2280
1195 /* we might have forked, so reify kernel state if necessary */ 2281 /* we might have forked, so reify kernel state if necessary */
1196 if (expect_false (postfork)) 2282 if (expect_false (postfork))
1197 loop_fork (EV_A); 2283 loop_fork (EV_A);
1198 2284
1199 /* update fd-related kernel structures */ 2285 /* update fd-related kernel structures */
1200 fd_reify (EV_A); 2286 fd_reify (EV_A);
1201 2287
1202 /* calculate blocking time */ 2288 /* calculate blocking time */
2289 {
2290 ev_tstamp waittime = 0.;
2291 ev_tstamp sleeptime = 0.;
1203 2292
1204 /* we only need this for !monotonic clock or timers, but as we basically 2293 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1205 always have timers, we just calculate it always */
1206#if EV_USE_MONOTONIC
1207 if (expect_true (have_monotonic))
1208 time_update_monotonic (EV_A);
1209 else
1210#endif
1211 { 2294 {
1212 ev_rt_now = ev_time (); 2295 /* remember old timestamp for io_blocktime calculation */
1213 mn_now = ev_rt_now; 2296 ev_tstamp prev_mn_now = mn_now;
1214 }
1215 2297
1216 if (flags & EVLOOP_NONBLOCK || idlecnt) 2298 /* update time to cancel out callback processing overhead */
1217 block = 0.; 2299 time_update (EV_A_ 1e100);
1218 else 2300
1219 {
1220 block = MAX_BLOCKTIME; 2301 waittime = MAX_BLOCKTIME;
1221 2302
1222 if (timercnt) 2303 if (timercnt)
1223 { 2304 {
1224 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2305 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1225 if (block > to) block = to; 2306 if (waittime > to) waittime = to;
1226 } 2307 }
1227 2308
1228#if EV_PERIODICS 2309#if EV_PERIODIC_ENABLE
1229 if (periodiccnt) 2310 if (periodiccnt)
1230 { 2311 {
1231 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2312 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1232 if (block > to) block = to; 2313 if (waittime > to) waittime = to;
1233 } 2314 }
1234#endif 2315#endif
1235 2316
1236 if (block < 0.) block = 0.; 2317 /* don't let timeouts decrease the waittime below timeout_blocktime */
2318 if (expect_false (waittime < timeout_blocktime))
2319 waittime = timeout_blocktime;
2320
2321 /* extra check because io_blocktime is commonly 0 */
2322 if (expect_false (io_blocktime))
2323 {
2324 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2325
2326 if (sleeptime > waittime - backend_fudge)
2327 sleeptime = waittime - backend_fudge;
2328
2329 if (expect_true (sleeptime > 0.))
2330 {
2331 ev_sleep (sleeptime);
2332 waittime -= sleeptime;
2333 }
2334 }
1237 } 2335 }
1238 2336
1239 method_poll (EV_A_ block); 2337#if EV_MINIMAL < 2
2338 ++loop_count;
2339#endif
2340 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2341 backend_poll (EV_A_ waittime);
2342 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1240 2343
1241 /* update ev_rt_now, do magic */ 2344 /* update ev_rt_now, do magic */
1242 time_update (EV_A); 2345 time_update (EV_A_ waittime + sleeptime);
2346 }
1243 2347
1244 /* queue pending timers and reschedule them */ 2348 /* queue pending timers and reschedule them */
1245 timers_reify (EV_A); /* relative timers called last */ 2349 timers_reify (EV_A); /* relative timers called last */
1246#if EV_PERIODICS 2350#if EV_PERIODIC_ENABLE
1247 periodics_reify (EV_A); /* absolute timers called first */ 2351 periodics_reify (EV_A); /* absolute timers called first */
1248#endif 2352#endif
1249 2353
2354#if EV_IDLE_ENABLE
1250 /* queue idle watchers unless io or timers are pending */ 2355 /* queue idle watchers unless other events are pending */
1251 if (idlecnt && !any_pending (EV_A)) 2356 idle_reify (EV_A);
1252 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2357#endif
1253 2358
1254 /* queue check watchers, to be executed first */ 2359 /* queue check watchers, to be executed first */
1255 if (checkcnt) 2360 if (expect_false (checkcnt))
1256 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2361 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1257 2362
1258 call_pending (EV_A); 2363 EV_INVOKE_PENDING;
1259
1260 if (loop_done)
1261 break;
1262 } 2364 }
2365 while (expect_true (
2366 activecnt
2367 && !loop_done
2368 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2369 ));
1263 2370
1264 if (loop_done != 2) 2371 if (loop_done == EVUNLOOP_ONE)
1265 loop_done = 0; 2372 loop_done = EVUNLOOP_CANCEL;
2373
2374#if EV_MINIMAL < 2
2375 --loop_depth;
2376#endif
1266} 2377}
1267 2378
1268void 2379void
1269ev_unloop (EV_P_ int how) 2380ev_unloop (EV_P_ int how)
1270{ 2381{
1271 loop_done = how; 2382 loop_done = how;
1272} 2383}
1273 2384
2385void
2386ev_ref (EV_P)
2387{
2388 ++activecnt;
2389}
2390
2391void
2392ev_unref (EV_P)
2393{
2394 --activecnt;
2395}
2396
2397void
2398ev_now_update (EV_P)
2399{
2400 time_update (EV_A_ 1e100);
2401}
2402
2403void
2404ev_suspend (EV_P)
2405{
2406 ev_now_update (EV_A);
2407}
2408
2409void
2410ev_resume (EV_P)
2411{
2412 ev_tstamp mn_prev = mn_now;
2413
2414 ev_now_update (EV_A);
2415 timers_reschedule (EV_A_ mn_now - mn_prev);
2416#if EV_PERIODIC_ENABLE
2417 /* TODO: really do this? */
2418 periodics_reschedule (EV_A);
2419#endif
2420}
2421
1274/*****************************************************************************/ 2422/*****************************************************************************/
2423/* singly-linked list management, used when the expected list length is short */
1275 2424
1276inline void 2425inline_size void
1277wlist_add (WL *head, WL elem) 2426wlist_add (WL *head, WL elem)
1278{ 2427{
1279 elem->next = *head; 2428 elem->next = *head;
1280 *head = elem; 2429 *head = elem;
1281} 2430}
1282 2431
1283inline void 2432inline_size void
1284wlist_del (WL *head, WL elem) 2433wlist_del (WL *head, WL elem)
1285{ 2434{
1286 while (*head) 2435 while (*head)
1287 { 2436 {
1288 if (*head == elem) 2437 if (expect_true (*head == elem))
1289 { 2438 {
1290 *head = elem->next; 2439 *head = elem->next;
1291 return; 2440 break;
1292 } 2441 }
1293 2442
1294 head = &(*head)->next; 2443 head = &(*head)->next;
1295 } 2444 }
1296} 2445}
1297 2446
2447/* internal, faster, version of ev_clear_pending */
1298inline void 2448inline_speed void
1299ev_clear_pending (EV_P_ W w) 2449clear_pending (EV_P_ W w)
1300{ 2450{
1301 if (w->pending) 2451 if (w->pending)
1302 { 2452 {
1303 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2453 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1304 w->pending = 0; 2454 w->pending = 0;
1305 } 2455 }
1306} 2456}
1307 2457
2458int
2459ev_clear_pending (EV_P_ void *w)
2460{
2461 W w_ = (W)w;
2462 int pending = w_->pending;
2463
2464 if (expect_true (pending))
2465 {
2466 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2467 p->w = (W)&pending_w;
2468 w_->pending = 0;
2469 return p->events;
2470 }
2471 else
2472 return 0;
2473}
2474
1308inline void 2475inline_size void
2476pri_adjust (EV_P_ W w)
2477{
2478 int pri = ev_priority (w);
2479 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2480 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2481 ev_set_priority (w, pri);
2482}
2483
2484inline_speed void
1309ev_start (EV_P_ W w, int active) 2485ev_start (EV_P_ W w, int active)
1310{ 2486{
1311 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2487 pri_adjust (EV_A_ w);
1312 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1313
1314 w->active = active; 2488 w->active = active;
1315 ev_ref (EV_A); 2489 ev_ref (EV_A);
1316} 2490}
1317 2491
1318inline void 2492inline_size void
1319ev_stop (EV_P_ W w) 2493ev_stop (EV_P_ W w)
1320{ 2494{
1321 ev_unref (EV_A); 2495 ev_unref (EV_A);
1322 w->active = 0; 2496 w->active = 0;
1323} 2497}
1324 2498
1325/*****************************************************************************/ 2499/*****************************************************************************/
1326 2500
1327void 2501void noinline
1328ev_io_start (EV_P_ struct ev_io *w) 2502ev_io_start (EV_P_ ev_io *w)
1329{ 2503{
1330 int fd = w->fd; 2504 int fd = w->fd;
1331 2505
1332 if (ev_is_active (w)) 2506 if (expect_false (ev_is_active (w)))
1333 return; 2507 return;
1334 2508
1335 assert (("ev_io_start called with negative fd", fd >= 0)); 2509 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2510 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2511
2512 EV_FREQUENT_CHECK;
1336 2513
1337 ev_start (EV_A_ (W)w, 1); 2514 ev_start (EV_A_ (W)w, 1);
1338 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2515 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1339 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2516 wlist_add (&anfds[fd].head, (WL)w);
1340 2517
1341 fd_change (EV_A_ fd); 2518 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1342} 2519 w->events &= ~EV__IOFDSET;
1343 2520
1344void 2521 EV_FREQUENT_CHECK;
2522}
2523
2524void noinline
1345ev_io_stop (EV_P_ struct ev_io *w) 2525ev_io_stop (EV_P_ ev_io *w)
1346{ 2526{
1347 ev_clear_pending (EV_A_ (W)w); 2527 clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 2528 if (expect_false (!ev_is_active (w)))
1349 return; 2529 return;
1350 2530
1351 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2531 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1352 2532
2533 EV_FREQUENT_CHECK;
2534
1353 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2535 wlist_del (&anfds[w->fd].head, (WL)w);
1354 ev_stop (EV_A_ (W)w); 2536 ev_stop (EV_A_ (W)w);
1355 2537
1356 fd_change (EV_A_ w->fd); 2538 fd_change (EV_A_ w->fd, 1);
1357}
1358 2539
1359void 2540 EV_FREQUENT_CHECK;
2541}
2542
2543void noinline
1360ev_timer_start (EV_P_ struct ev_timer *w) 2544ev_timer_start (EV_P_ ev_timer *w)
1361{ 2545{
1362 if (ev_is_active (w)) 2546 if (expect_false (ev_is_active (w)))
1363 return; 2547 return;
1364 2548
1365 ((WT)w)->at += mn_now; 2549 ev_at (w) += mn_now;
1366 2550
1367 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2551 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1368 2552
2553 EV_FREQUENT_CHECK;
2554
2555 ++timercnt;
1369 ev_start (EV_A_ (W)w, ++timercnt); 2556 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1370 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2557 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1371 timers [timercnt - 1] = w; 2558 ANHE_w (timers [ev_active (w)]) = (WT)w;
1372 upheap ((WT *)timers, timercnt - 1); 2559 ANHE_at_cache (timers [ev_active (w)]);
2560 upheap (timers, ev_active (w));
1373 2561
2562 EV_FREQUENT_CHECK;
2563
1374 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2564 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1375} 2565}
1376 2566
1377void 2567void noinline
1378ev_timer_stop (EV_P_ struct ev_timer *w) 2568ev_timer_stop (EV_P_ ev_timer *w)
1379{ 2569{
1380 ev_clear_pending (EV_A_ (W)w); 2570 clear_pending (EV_A_ (W)w);
1381 if (!ev_is_active (w)) 2571 if (expect_false (!ev_is_active (w)))
1382 return; 2572 return;
1383 2573
2574 EV_FREQUENT_CHECK;
2575
2576 {
2577 int active = ev_active (w);
2578
1384 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2579 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1385 2580
1386 if (((W)w)->active < timercnt--) 2581 --timercnt;
2582
2583 if (expect_true (active < timercnt + HEAP0))
1387 { 2584 {
1388 timers [((W)w)->active - 1] = timers [timercnt]; 2585 timers [active] = timers [timercnt + HEAP0];
1389 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2586 adjustheap (timers, timercnt, active);
1390 } 2587 }
2588 }
1391 2589
1392 ((WT)w)->at -= mn_now; 2590 EV_FREQUENT_CHECK;
2591
2592 ev_at (w) -= mn_now;
1393 2593
1394 ev_stop (EV_A_ (W)w); 2594 ev_stop (EV_A_ (W)w);
1395} 2595}
1396 2596
1397void 2597void noinline
1398ev_timer_again (EV_P_ struct ev_timer *w) 2598ev_timer_again (EV_P_ ev_timer *w)
1399{ 2599{
2600 EV_FREQUENT_CHECK;
2601
1400 if (ev_is_active (w)) 2602 if (ev_is_active (w))
1401 { 2603 {
1402 if (w->repeat) 2604 if (w->repeat)
1403 { 2605 {
1404 ((WT)w)->at = mn_now + w->repeat; 2606 ev_at (w) = mn_now + w->repeat;
2607 ANHE_at_cache (timers [ev_active (w)]);
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2608 adjustheap (timers, timercnt, ev_active (w));
1406 } 2609 }
1407 else 2610 else
1408 ev_timer_stop (EV_A_ w); 2611 ev_timer_stop (EV_A_ w);
1409 } 2612 }
1410 else if (w->repeat) 2613 else if (w->repeat)
1411 { 2614 {
1412 w->at = w->repeat; 2615 ev_at (w) = w->repeat;
1413 ev_timer_start (EV_A_ w); 2616 ev_timer_start (EV_A_ w);
1414 } 2617 }
1415}
1416 2618
2619 EV_FREQUENT_CHECK;
2620}
2621
2622ev_tstamp
2623ev_timer_remaining (EV_P_ ev_timer *w)
2624{
2625 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2626}
2627
1417#if EV_PERIODICS 2628#if EV_PERIODIC_ENABLE
1418void 2629void noinline
1419ev_periodic_start (EV_P_ struct ev_periodic *w) 2630ev_periodic_start (EV_P_ ev_periodic *w)
1420{ 2631{
1421 if (ev_is_active (w)) 2632 if (expect_false (ev_is_active (w)))
1422 return; 2633 return;
1423 2634
1424 if (w->reschedule_cb) 2635 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2636 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval) 2637 else if (w->interval)
1427 { 2638 {
1428 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2639 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1429 /* this formula differs from the one in periodic_reify because we do not always round up */ 2640 /* this formula differs from the one in periodic_reify because we do not always round up */
1430 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2641 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 } 2642 }
2643 else
2644 ev_at (w) = w->offset;
1432 2645
2646 EV_FREQUENT_CHECK;
2647
2648 ++periodiccnt;
1433 ev_start (EV_A_ (W)w, ++periodiccnt); 2649 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1434 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2650 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1435 periodics [periodiccnt - 1] = w; 2651 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1436 upheap ((WT *)periodics, periodiccnt - 1); 2652 ANHE_at_cache (periodics [ev_active (w)]);
2653 upheap (periodics, ev_active (w));
1437 2654
2655 EV_FREQUENT_CHECK;
2656
1438 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2657 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1439} 2658}
1440 2659
1441void 2660void noinline
1442ev_periodic_stop (EV_P_ struct ev_periodic *w) 2661ev_periodic_stop (EV_P_ ev_periodic *w)
1443{ 2662{
1444 ev_clear_pending (EV_A_ (W)w); 2663 clear_pending (EV_A_ (W)w);
1445 if (!ev_is_active (w)) 2664 if (expect_false (!ev_is_active (w)))
1446 return; 2665 return;
1447 2666
2667 EV_FREQUENT_CHECK;
2668
2669 {
2670 int active = ev_active (w);
2671
1448 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2672 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1449 2673
1450 if (((W)w)->active < periodiccnt--) 2674 --periodiccnt;
2675
2676 if (expect_true (active < periodiccnt + HEAP0))
1451 { 2677 {
1452 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2678 periodics [active] = periodics [periodiccnt + HEAP0];
1453 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2679 adjustheap (periodics, periodiccnt, active);
1454 } 2680 }
2681 }
2682
2683 EV_FREQUENT_CHECK;
1455 2684
1456 ev_stop (EV_A_ (W)w); 2685 ev_stop (EV_A_ (W)w);
1457} 2686}
1458 2687
1459void 2688void noinline
1460ev_periodic_again (EV_P_ struct ev_periodic *w) 2689ev_periodic_again (EV_P_ ev_periodic *w)
1461{ 2690{
1462 /* TODO: use adjustheap and recalculation */ 2691 /* TODO: use adjustheap and recalculation */
1463 ev_periodic_stop (EV_A_ w); 2692 ev_periodic_stop (EV_A_ w);
1464 ev_periodic_start (EV_A_ w); 2693 ev_periodic_start (EV_A_ w);
1465} 2694}
1466#endif 2695#endif
1467 2696
1468void
1469ev_idle_start (EV_P_ struct ev_idle *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++idlecnt);
1475 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1476 idles [idlecnt - 1] = w;
1477}
1478
1479void
1480ev_idle_stop (EV_P_ struct ev_idle *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 idles [((W)w)->active - 1] = idles [--idlecnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490void
1491ev_prepare_start (EV_P_ struct ev_prepare *w)
1492{
1493 if (ev_is_active (w))
1494 return;
1495
1496 ev_start (EV_A_ (W)w, ++preparecnt);
1497 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1498 prepares [preparecnt - 1] = w;
1499}
1500
1501void
1502ev_prepare_stop (EV_P_ struct ev_prepare *w)
1503{
1504 ev_clear_pending (EV_A_ (W)w);
1505 if (!ev_is_active (w))
1506 return;
1507
1508 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1509 ev_stop (EV_A_ (W)w);
1510}
1511
1512void
1513ev_check_start (EV_P_ struct ev_check *w)
1514{
1515 if (ev_is_active (w))
1516 return;
1517
1518 ev_start (EV_A_ (W)w, ++checkcnt);
1519 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1520 checks [checkcnt - 1] = w;
1521}
1522
1523void
1524ev_check_stop (EV_P_ struct ev_check *w)
1525{
1526 ev_clear_pending (EV_A_ (W)w);
1527 if (!ev_is_active (w))
1528 return;
1529
1530 checks [((W)w)->active - 1] = checks [--checkcnt];
1531 ev_stop (EV_A_ (W)w);
1532}
1533
1534#ifndef SA_RESTART 2697#ifndef SA_RESTART
1535# define SA_RESTART 0 2698# define SA_RESTART 0
1536#endif 2699#endif
1537 2700
1538void 2701void noinline
1539ev_signal_start (EV_P_ struct ev_signal *w) 2702ev_signal_start (EV_P_ ev_signal *w)
1540{ 2703{
2704 if (expect_false (ev_is_active (w)))
2705 return;
2706
2707 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2708
1541#if EV_MULTIPLICITY 2709#if EV_MULTIPLICITY
1542 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2710 assert (("libev: a signal must not be attached to two different loops",
2711 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2712
2713 signals [w->signum - 1].loop = EV_A;
2714#endif
2715
2716 EV_FREQUENT_CHECK;
2717
2718#if EV_USE_SIGNALFD
2719 if (sigfd == -2)
2720 {
2721 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2722 if (sigfd < 0 && errno == EINVAL)
2723 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2724
2725 if (sigfd >= 0)
2726 {
2727 fd_intern (sigfd); /* doing it twice will not hurt */
2728
2729 sigemptyset (&sigfd_set);
2730
2731 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2732 ev_set_priority (&sigfd_w, EV_MAXPRI);
2733 ev_io_start (EV_A_ &sigfd_w);
2734 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2735 }
2736 }
2737
2738 if (sigfd >= 0)
2739 {
2740 /* TODO: check .head */
2741 sigaddset (&sigfd_set, w->signum);
2742 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2743
2744 signalfd (sigfd, &sigfd_set, 0);
2745 }
2746#endif
2747
2748 ev_start (EV_A_ (W)w, 1);
2749 wlist_add (&signals [w->signum - 1].head, (WL)w);
2750
2751 if (!((WL)w)->next)
2752# if EV_USE_SIGNALFD
2753 if (sigfd < 0) /*TODO*/
1543#endif 2754# endif
1544 if (ev_is_active (w)) 2755 {
2756# if _WIN32
2757 signal (w->signum, ev_sighandler);
2758# else
2759 struct sigaction sa;
2760
2761 evpipe_init (EV_A);
2762
2763 sa.sa_handler = ev_sighandler;
2764 sigfillset (&sa.sa_mask);
2765 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2766 sigaction (w->signum, &sa, 0);
2767
2768 sigemptyset (&sa.sa_mask);
2769 sigaddset (&sa.sa_mask, w->signum);
2770 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2771#endif
2772 }
2773
2774 EV_FREQUENT_CHECK;
2775}
2776
2777void noinline
2778ev_signal_stop (EV_P_ ev_signal *w)
2779{
2780 clear_pending (EV_A_ (W)w);
2781 if (expect_false (!ev_is_active (w)))
1545 return; 2782 return;
1546 2783
1547 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2784 EV_FREQUENT_CHECK;
2785
2786 wlist_del (&signals [w->signum - 1].head, (WL)w);
2787 ev_stop (EV_A_ (W)w);
2788
2789 if (!signals [w->signum - 1].head)
2790 {
2791#if EV_MULTIPLICITY
2792 signals [w->signum - 1].loop = 0; /* unattach from signal */
2793#endif
2794#if EV_USE_SIGNALFD
2795 if (sigfd >= 0)
2796 {
2797 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2798 sigdelset (&sigfd_set, w->signum);
2799 signalfd (sigfd, &sigfd_set, 0);
2800 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2801 /*TODO: maybe unblock signal? */
2802 }
2803 else
2804#endif
2805 signal (w->signum, SIG_DFL);
2806 }
2807
2808 EV_FREQUENT_CHECK;
2809}
2810
2811void
2812ev_child_start (EV_P_ ev_child *w)
2813{
2814#if EV_MULTIPLICITY
2815 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2816#endif
2817 if (expect_false (ev_is_active (w)))
2818 return;
2819
2820 EV_FREQUENT_CHECK;
1548 2821
1549 ev_start (EV_A_ (W)w, 1); 2822 ev_start (EV_A_ (W)w, 1);
1550 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2823 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1551 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1552 2824
1553 if (!((WL)w)->next) 2825 EV_FREQUENT_CHECK;
2826}
2827
2828void
2829ev_child_stop (EV_P_ ev_child *w)
2830{
2831 clear_pending (EV_A_ (W)w);
2832 if (expect_false (!ev_is_active (w)))
2833 return;
2834
2835 EV_FREQUENT_CHECK;
2836
2837 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2838 ev_stop (EV_A_ (W)w);
2839
2840 EV_FREQUENT_CHECK;
2841}
2842
2843#if EV_STAT_ENABLE
2844
2845# ifdef _WIN32
2846# undef lstat
2847# define lstat(a,b) _stati64 (a,b)
2848# endif
2849
2850#define DEF_STAT_INTERVAL 5.0074891
2851#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2852#define MIN_STAT_INTERVAL 0.1074891
2853
2854static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2855
2856#if EV_USE_INOTIFY
2857# define EV_INOTIFY_BUFSIZE 8192
2858
2859static void noinline
2860infy_add (EV_P_ ev_stat *w)
2861{
2862 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2863
2864 if (w->wd < 0)
2865 {
2866 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2867 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2868
2869 /* monitor some parent directory for speedup hints */
2870 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2871 /* but an efficiency issue only */
2872 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2873 {
2874 char path [4096];
2875 strcpy (path, w->path);
2876
2877 do
2878 {
2879 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2880 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2881
2882 char *pend = strrchr (path, '/');
2883
2884 if (!pend || pend == path)
2885 break;
2886
2887 *pend = 0;
2888 w->wd = inotify_add_watch (fs_fd, path, mask);
2889 }
2890 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2891 }
1554 { 2892 }
2893
2894 if (w->wd >= 0)
2895 {
2896 struct statfs sfs;
2897
2898 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2899
2900 /* now local changes will be tracked by inotify, but remote changes won't */
2901 /* unless the filesystem it known to be local, we therefore still poll */
2902 /* also do poll on <2.6.25, but with normal frequency */
2903
2904 if (fs_2625 && !statfs (w->path, &sfs))
2905 if (sfs.f_type == 0x1373 /* devfs */
2906 || sfs.f_type == 0xEF53 /* ext2/3 */
2907 || sfs.f_type == 0x3153464a /* jfs */
2908 || sfs.f_type == 0x52654973 /* reiser3 */
2909 || sfs.f_type == 0x01021994 /* tempfs */
2910 || sfs.f_type == 0x58465342 /* xfs */)
2911 return;
2912
2913 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2914 ev_timer_again (EV_A_ &w->timer);
2915 }
2916}
2917
2918static void noinline
2919infy_del (EV_P_ ev_stat *w)
2920{
2921 int slot;
2922 int wd = w->wd;
2923
2924 if (wd < 0)
2925 return;
2926
2927 w->wd = -2;
2928 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2929 wlist_del (&fs_hash [slot].head, (WL)w);
2930
2931 /* remove this watcher, if others are watching it, they will rearm */
2932 inotify_rm_watch (fs_fd, wd);
2933}
2934
2935static void noinline
2936infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2937{
2938 if (slot < 0)
2939 /* overflow, need to check for all hash slots */
2940 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2941 infy_wd (EV_A_ slot, wd, ev);
2942 else
2943 {
2944 WL w_;
2945
2946 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2947 {
2948 ev_stat *w = (ev_stat *)w_;
2949 w_ = w_->next; /* lets us remove this watcher and all before it */
2950
2951 if (w->wd == wd || wd == -1)
2952 {
2953 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2954 {
2955 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2956 w->wd = -1;
2957 infy_add (EV_A_ w); /* re-add, no matter what */
2958 }
2959
2960 stat_timer_cb (EV_A_ &w->timer, 0);
2961 }
2962 }
2963 }
2964}
2965
2966static void
2967infy_cb (EV_P_ ev_io *w, int revents)
2968{
2969 char buf [EV_INOTIFY_BUFSIZE];
2970 struct inotify_event *ev = (struct inotify_event *)buf;
2971 int ofs;
2972 int len = read (fs_fd, buf, sizeof (buf));
2973
2974 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2975 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2976}
2977
2978inline_size void
2979check_2625 (EV_P)
2980{
2981 /* kernels < 2.6.25 are borked
2982 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2983 */
2984 struct utsname buf;
2985 int major, minor, micro;
2986
2987 if (uname (&buf))
2988 return;
2989
2990 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2991 return;
2992
2993 if (major < 2
2994 || (major == 2 && minor < 6)
2995 || (major == 2 && minor == 6 && micro < 25))
2996 return;
2997
2998 fs_2625 = 1;
2999}
3000
3001inline_size int
3002infy_newfd (void)
3003{
3004#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3005 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3006 if (fd >= 0)
3007 return fd;
3008#endif
3009 return inotify_init ();
3010}
3011
3012inline_size void
3013infy_init (EV_P)
3014{
3015 if (fs_fd != -2)
3016 return;
3017
3018 fs_fd = -1;
3019
3020 check_2625 (EV_A);
3021
3022 fs_fd = infy_newfd ();
3023
3024 if (fs_fd >= 0)
3025 {
3026 fd_intern (fs_fd);
3027 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3028 ev_set_priority (&fs_w, EV_MAXPRI);
3029 ev_io_start (EV_A_ &fs_w);
3030 }
3031}
3032
3033inline_size void
3034infy_fork (EV_P)
3035{
3036 int slot;
3037
3038 if (fs_fd < 0)
3039 return;
3040
3041 ev_io_stop (EV_A_ &fs_w);
3042 close (fs_fd);
3043 fs_fd = infy_newfd ();
3044
3045 if (fs_fd >= 0)
3046 {
3047 fd_intern (fs_fd);
3048 ev_io_set (&fs_w, fs_fd, EV_READ);
3049 ev_io_start (EV_A_ &fs_w);
3050 }
3051
3052 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3053 {
3054 WL w_ = fs_hash [slot].head;
3055 fs_hash [slot].head = 0;
3056
3057 while (w_)
3058 {
3059 ev_stat *w = (ev_stat *)w_;
3060 w_ = w_->next; /* lets us add this watcher */
3061
3062 w->wd = -1;
3063
3064 if (fs_fd >= 0)
3065 infy_add (EV_A_ w); /* re-add, no matter what */
3066 else
3067 ev_timer_again (EV_A_ &w->timer);
3068 }
3069 }
3070}
3071
3072#endif
3073
1555#if _WIN32 3074#ifdef _WIN32
1556 signal (w->signum, sighandler); 3075# define EV_LSTAT(p,b) _stati64 (p, b)
1557#else 3076#else
1558 struct sigaction sa; 3077# define EV_LSTAT(p,b) lstat (p, b)
1559 sa.sa_handler = sighandler;
1560 sigfillset (&sa.sa_mask);
1561 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1562 sigaction (w->signum, &sa, 0);
1563#endif 3078#endif
1564 }
1565}
1566 3079
1567void 3080void
1568ev_signal_stop (EV_P_ struct ev_signal *w) 3081ev_stat_stat (EV_P_ ev_stat *w)
1569{ 3082{
1570 ev_clear_pending (EV_A_ (W)w); 3083 if (lstat (w->path, &w->attr) < 0)
1571 if (!ev_is_active (w)) 3084 w->attr.st_nlink = 0;
3085 else if (!w->attr.st_nlink)
3086 w->attr.st_nlink = 1;
3087}
3088
3089static void noinline
3090stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3091{
3092 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3093
3094 /* we copy this here each the time so that */
3095 /* prev has the old value when the callback gets invoked */
3096 w->prev = w->attr;
3097 ev_stat_stat (EV_A_ w);
3098
3099 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3100 if (
3101 w->prev.st_dev != w->attr.st_dev
3102 || w->prev.st_ino != w->attr.st_ino
3103 || w->prev.st_mode != w->attr.st_mode
3104 || w->prev.st_nlink != w->attr.st_nlink
3105 || w->prev.st_uid != w->attr.st_uid
3106 || w->prev.st_gid != w->attr.st_gid
3107 || w->prev.st_rdev != w->attr.st_rdev
3108 || w->prev.st_size != w->attr.st_size
3109 || w->prev.st_atime != w->attr.st_atime
3110 || w->prev.st_mtime != w->attr.st_mtime
3111 || w->prev.st_ctime != w->attr.st_ctime
3112 ) {
3113 #if EV_USE_INOTIFY
3114 if (fs_fd >= 0)
3115 {
3116 infy_del (EV_A_ w);
3117 infy_add (EV_A_ w);
3118 ev_stat_stat (EV_A_ w); /* avoid race... */
3119 }
3120 #endif
3121
3122 ev_feed_event (EV_A_ w, EV_STAT);
3123 }
3124}
3125
3126void
3127ev_stat_start (EV_P_ ev_stat *w)
3128{
3129 if (expect_false (ev_is_active (w)))
1572 return; 3130 return;
1573 3131
1574 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3132 ev_stat_stat (EV_A_ w);
3133
3134 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3135 w->interval = MIN_STAT_INTERVAL;
3136
3137 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3138 ev_set_priority (&w->timer, ev_priority (w));
3139
3140#if EV_USE_INOTIFY
3141 infy_init (EV_A);
3142
3143 if (fs_fd >= 0)
3144 infy_add (EV_A_ w);
3145 else
3146#endif
3147 ev_timer_again (EV_A_ &w->timer);
3148
3149 ev_start (EV_A_ (W)w, 1);
3150
3151 EV_FREQUENT_CHECK;
3152}
3153
3154void
3155ev_stat_stop (EV_P_ ev_stat *w)
3156{
3157 clear_pending (EV_A_ (W)w);
3158 if (expect_false (!ev_is_active (w)))
3159 return;
3160
3161 EV_FREQUENT_CHECK;
3162
3163#if EV_USE_INOTIFY
3164 infy_del (EV_A_ w);
3165#endif
3166 ev_timer_stop (EV_A_ &w->timer);
3167
1575 ev_stop (EV_A_ (W)w); 3168 ev_stop (EV_A_ (W)w);
1576 3169
1577 if (!signals [w->signum - 1].head) 3170 EV_FREQUENT_CHECK;
1578 signal (w->signum, SIG_DFL);
1579} 3171}
3172#endif
1580 3173
3174#if EV_IDLE_ENABLE
1581void 3175void
1582ev_child_start (EV_P_ struct ev_child *w) 3176ev_idle_start (EV_P_ ev_idle *w)
1583{ 3177{
1584#if EV_MULTIPLICITY
1585 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1586#endif
1587 if (ev_is_active (w)) 3178 if (expect_false (ev_is_active (w)))
1588 return; 3179 return;
1589 3180
3181 pri_adjust (EV_A_ (W)w);
3182
3183 EV_FREQUENT_CHECK;
3184
3185 {
3186 int active = ++idlecnt [ABSPRI (w)];
3187
3188 ++idleall;
3189 ev_start (EV_A_ (W)w, active);
3190
3191 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3192 idles [ABSPRI (w)][active - 1] = w;
3193 }
3194
3195 EV_FREQUENT_CHECK;
3196}
3197
3198void
3199ev_idle_stop (EV_P_ ev_idle *w)
3200{
3201 clear_pending (EV_A_ (W)w);
3202 if (expect_false (!ev_is_active (w)))
3203 return;
3204
3205 EV_FREQUENT_CHECK;
3206
3207 {
3208 int active = ev_active (w);
3209
3210 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3211 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3212
3213 ev_stop (EV_A_ (W)w);
3214 --idleall;
3215 }
3216
3217 EV_FREQUENT_CHECK;
3218}
3219#endif
3220
3221void
3222ev_prepare_start (EV_P_ ev_prepare *w)
3223{
3224 if (expect_false (ev_is_active (w)))
3225 return;
3226
3227 EV_FREQUENT_CHECK;
3228
3229 ev_start (EV_A_ (W)w, ++preparecnt);
3230 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3231 prepares [preparecnt - 1] = w;
3232
3233 EV_FREQUENT_CHECK;
3234}
3235
3236void
3237ev_prepare_stop (EV_P_ ev_prepare *w)
3238{
3239 clear_pending (EV_A_ (W)w);
3240 if (expect_false (!ev_is_active (w)))
3241 return;
3242
3243 EV_FREQUENT_CHECK;
3244
3245 {
3246 int active = ev_active (w);
3247
3248 prepares [active - 1] = prepares [--preparecnt];
3249 ev_active (prepares [active - 1]) = active;
3250 }
3251
3252 ev_stop (EV_A_ (W)w);
3253
3254 EV_FREQUENT_CHECK;
3255}
3256
3257void
3258ev_check_start (EV_P_ ev_check *w)
3259{
3260 if (expect_false (ev_is_active (w)))
3261 return;
3262
3263 EV_FREQUENT_CHECK;
3264
3265 ev_start (EV_A_ (W)w, ++checkcnt);
3266 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3267 checks [checkcnt - 1] = w;
3268
3269 EV_FREQUENT_CHECK;
3270}
3271
3272void
3273ev_check_stop (EV_P_ ev_check *w)
3274{
3275 clear_pending (EV_A_ (W)w);
3276 if (expect_false (!ev_is_active (w)))
3277 return;
3278
3279 EV_FREQUENT_CHECK;
3280
3281 {
3282 int active = ev_active (w);
3283
3284 checks [active - 1] = checks [--checkcnt];
3285 ev_active (checks [active - 1]) = active;
3286 }
3287
3288 ev_stop (EV_A_ (W)w);
3289
3290 EV_FREQUENT_CHECK;
3291}
3292
3293#if EV_EMBED_ENABLE
3294void noinline
3295ev_embed_sweep (EV_P_ ev_embed *w)
3296{
3297 ev_loop (w->other, EVLOOP_NONBLOCK);
3298}
3299
3300static void
3301embed_io_cb (EV_P_ ev_io *io, int revents)
3302{
3303 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3304
3305 if (ev_cb (w))
3306 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3307 else
3308 ev_loop (w->other, EVLOOP_NONBLOCK);
3309}
3310
3311static void
3312embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3313{
3314 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3315
3316 {
3317 EV_P = w->other;
3318
3319 while (fdchangecnt)
3320 {
3321 fd_reify (EV_A);
3322 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3323 }
3324 }
3325}
3326
3327static void
3328embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3329{
3330 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3331
3332 ev_embed_stop (EV_A_ w);
3333
3334 {
3335 EV_P = w->other;
3336
3337 ev_loop_fork (EV_A);
3338 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3339 }
3340
3341 ev_embed_start (EV_A_ w);
3342}
3343
3344#if 0
3345static void
3346embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3347{
3348 ev_idle_stop (EV_A_ idle);
3349}
3350#endif
3351
3352void
3353ev_embed_start (EV_P_ ev_embed *w)
3354{
3355 if (expect_false (ev_is_active (w)))
3356 return;
3357
3358 {
3359 EV_P = w->other;
3360 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3361 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3362 }
3363
3364 EV_FREQUENT_CHECK;
3365
3366 ev_set_priority (&w->io, ev_priority (w));
3367 ev_io_start (EV_A_ &w->io);
3368
3369 ev_prepare_init (&w->prepare, embed_prepare_cb);
3370 ev_set_priority (&w->prepare, EV_MINPRI);
3371 ev_prepare_start (EV_A_ &w->prepare);
3372
3373 ev_fork_init (&w->fork, embed_fork_cb);
3374 ev_fork_start (EV_A_ &w->fork);
3375
3376 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3377
1590 ev_start (EV_A_ (W)w, 1); 3378 ev_start (EV_A_ (W)w, 1);
1591 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1592}
1593 3379
3380 EV_FREQUENT_CHECK;
3381}
3382
1594void 3383void
1595ev_child_stop (EV_P_ struct ev_child *w) 3384ev_embed_stop (EV_P_ ev_embed *w)
1596{ 3385{
1597 ev_clear_pending (EV_A_ (W)w); 3386 clear_pending (EV_A_ (W)w);
1598 if (!ev_is_active (w)) 3387 if (expect_false (!ev_is_active (w)))
1599 return; 3388 return;
1600 3389
1601 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3390 EV_FREQUENT_CHECK;
3391
3392 ev_io_stop (EV_A_ &w->io);
3393 ev_prepare_stop (EV_A_ &w->prepare);
3394 ev_fork_stop (EV_A_ &w->fork);
3395
3396 EV_FREQUENT_CHECK;
3397}
3398#endif
3399
3400#if EV_FORK_ENABLE
3401void
3402ev_fork_start (EV_P_ ev_fork *w)
3403{
3404 if (expect_false (ev_is_active (w)))
3405 return;
3406
3407 EV_FREQUENT_CHECK;
3408
3409 ev_start (EV_A_ (W)w, ++forkcnt);
3410 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3411 forks [forkcnt - 1] = w;
3412
3413 EV_FREQUENT_CHECK;
3414}
3415
3416void
3417ev_fork_stop (EV_P_ ev_fork *w)
3418{
3419 clear_pending (EV_A_ (W)w);
3420 if (expect_false (!ev_is_active (w)))
3421 return;
3422
3423 EV_FREQUENT_CHECK;
3424
3425 {
3426 int active = ev_active (w);
3427
3428 forks [active - 1] = forks [--forkcnt];
3429 ev_active (forks [active - 1]) = active;
3430 }
3431
1602 ev_stop (EV_A_ (W)w); 3432 ev_stop (EV_A_ (W)w);
3433
3434 EV_FREQUENT_CHECK;
1603} 3435}
3436#endif
3437
3438#if EV_ASYNC_ENABLE
3439void
3440ev_async_start (EV_P_ ev_async *w)
3441{
3442 if (expect_false (ev_is_active (w)))
3443 return;
3444
3445 evpipe_init (EV_A);
3446
3447 EV_FREQUENT_CHECK;
3448
3449 ev_start (EV_A_ (W)w, ++asynccnt);
3450 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3451 asyncs [asynccnt - 1] = w;
3452
3453 EV_FREQUENT_CHECK;
3454}
3455
3456void
3457ev_async_stop (EV_P_ ev_async *w)
3458{
3459 clear_pending (EV_A_ (W)w);
3460 if (expect_false (!ev_is_active (w)))
3461 return;
3462
3463 EV_FREQUENT_CHECK;
3464
3465 {
3466 int active = ev_active (w);
3467
3468 asyncs [active - 1] = asyncs [--asynccnt];
3469 ev_active (asyncs [active - 1]) = active;
3470 }
3471
3472 ev_stop (EV_A_ (W)w);
3473
3474 EV_FREQUENT_CHECK;
3475}
3476
3477void
3478ev_async_send (EV_P_ ev_async *w)
3479{
3480 w->sent = 1;
3481 evpipe_write (EV_A_ &async_pending);
3482}
3483#endif
1604 3484
1605/*****************************************************************************/ 3485/*****************************************************************************/
1606 3486
1607struct ev_once 3487struct ev_once
1608{ 3488{
1609 struct ev_io io; 3489 ev_io io;
1610 struct ev_timer to; 3490 ev_timer to;
1611 void (*cb)(int revents, void *arg); 3491 void (*cb)(int revents, void *arg);
1612 void *arg; 3492 void *arg;
1613}; 3493};
1614 3494
1615static void 3495static void
1616once_cb (EV_P_ struct ev_once *once, int revents) 3496once_cb (EV_P_ struct ev_once *once, int revents)
1617{ 3497{
1618 void (*cb)(int revents, void *arg) = once->cb; 3498 void (*cb)(int revents, void *arg) = once->cb;
1619 void *arg = once->arg; 3499 void *arg = once->arg;
1620 3500
1621 ev_io_stop (EV_A_ &once->io); 3501 ev_io_stop (EV_A_ &once->io);
1622 ev_timer_stop (EV_A_ &once->to); 3502 ev_timer_stop (EV_A_ &once->to);
1623 ev_free (once); 3503 ev_free (once);
1624 3504
1625 cb (revents, arg); 3505 cb (revents, arg);
1626} 3506}
1627 3507
1628static void 3508static void
1629once_cb_io (EV_P_ struct ev_io *w, int revents) 3509once_cb_io (EV_P_ ev_io *w, int revents)
1630{ 3510{
1631 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3511 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3512
3513 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1632} 3514}
1633 3515
1634static void 3516static void
1635once_cb_to (EV_P_ struct ev_timer *w, int revents) 3517once_cb_to (EV_P_ ev_timer *w, int revents)
1636{ 3518{
1637 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3519 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3520
3521 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1638} 3522}
1639 3523
1640void 3524void
1641ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3525ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1642{ 3526{
1643 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3527 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1644 3528
1645 if (!once) 3529 if (expect_false (!once))
3530 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3531 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1647 else 3532 return;
1648 { 3533 }
3534
1649 once->cb = cb; 3535 once->cb = cb;
1650 once->arg = arg; 3536 once->arg = arg;
1651 3537
1652 ev_init (&once->io, once_cb_io); 3538 ev_init (&once->io, once_cb_io);
1653 if (fd >= 0) 3539 if (fd >= 0)
3540 {
3541 ev_io_set (&once->io, fd, events);
3542 ev_io_start (EV_A_ &once->io);
3543 }
3544
3545 ev_init (&once->to, once_cb_to);
3546 if (timeout >= 0.)
3547 {
3548 ev_timer_set (&once->to, timeout, 0.);
3549 ev_timer_start (EV_A_ &once->to);
3550 }
3551}
3552
3553/*****************************************************************************/
3554
3555#if EV_WALK_ENABLE
3556void
3557ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3558{
3559 int i, j;
3560 ev_watcher_list *wl, *wn;
3561
3562 if (types & (EV_IO | EV_EMBED))
3563 for (i = 0; i < anfdmax; ++i)
3564 for (wl = anfds [i].head; wl; )
1654 { 3565 {
1655 ev_io_set (&once->io, fd, events); 3566 wn = wl->next;
1656 ev_io_start (EV_A_ &once->io); 3567
3568#if EV_EMBED_ENABLE
3569 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3570 {
3571 if (types & EV_EMBED)
3572 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3573 }
3574 else
3575#endif
3576#if EV_USE_INOTIFY
3577 if (ev_cb ((ev_io *)wl) == infy_cb)
3578 ;
3579 else
3580#endif
3581 if ((ev_io *)wl != &pipe_w)
3582 if (types & EV_IO)
3583 cb (EV_A_ EV_IO, wl);
3584
3585 wl = wn;
1657 } 3586 }
1658 3587
1659 ev_init (&once->to, once_cb_to); 3588 if (types & (EV_TIMER | EV_STAT))
1660 if (timeout >= 0.) 3589 for (i = timercnt + HEAP0; i-- > HEAP0; )
3590#if EV_STAT_ENABLE
3591 /*TODO: timer is not always active*/
3592 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1661 { 3593 {
1662 ev_timer_set (&once->to, timeout, 0.); 3594 if (types & EV_STAT)
1663 ev_timer_start (EV_A_ &once->to); 3595 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1664 } 3596 }
1665 } 3597 else
3598#endif
3599 if (types & EV_TIMER)
3600 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3601
3602#if EV_PERIODIC_ENABLE
3603 if (types & EV_PERIODIC)
3604 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3605 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3606#endif
3607
3608#if EV_IDLE_ENABLE
3609 if (types & EV_IDLE)
3610 for (j = NUMPRI; i--; )
3611 for (i = idlecnt [j]; i--; )
3612 cb (EV_A_ EV_IDLE, idles [j][i]);
3613#endif
3614
3615#if EV_FORK_ENABLE
3616 if (types & EV_FORK)
3617 for (i = forkcnt; i--; )
3618 if (ev_cb (forks [i]) != embed_fork_cb)
3619 cb (EV_A_ EV_FORK, forks [i]);
3620#endif
3621
3622#if EV_ASYNC_ENABLE
3623 if (types & EV_ASYNC)
3624 for (i = asynccnt; i--; )
3625 cb (EV_A_ EV_ASYNC, asyncs [i]);
3626#endif
3627
3628 if (types & EV_PREPARE)
3629 for (i = preparecnt; i--; )
3630#if EV_EMBED_ENABLE
3631 if (ev_cb (prepares [i]) != embed_prepare_cb)
3632#endif
3633 cb (EV_A_ EV_PREPARE, prepares [i]);
3634
3635 if (types & EV_CHECK)
3636 for (i = checkcnt; i--; )
3637 cb (EV_A_ EV_CHECK, checks [i]);
3638
3639 if (types & EV_SIGNAL)
3640 for (i = 0; i < EV_NSIG - 1; ++i)
3641 for (wl = signals [i].head; wl; )
3642 {
3643 wn = wl->next;
3644 cb (EV_A_ EV_SIGNAL, wl);
3645 wl = wn;
3646 }
3647
3648 if (types & EV_CHILD)
3649 for (i = EV_PID_HASHSIZE; i--; )
3650 for (wl = childs [i]; wl; )
3651 {
3652 wn = wl->next;
3653 cb (EV_A_ EV_CHILD, wl);
3654 wl = wn;
3655 }
3656/* EV_STAT 0x00001000 /* stat data changed */
3657/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1666} 3658}
3659#endif
3660
3661#if EV_MULTIPLICITY
3662 #include "ev_wrap.h"
3663#endif
1667 3664
1668#ifdef __cplusplus 3665#ifdef __cplusplus
1669} 3666}
1670#endif 3667#endif
1671 3668

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines