ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.119 by root, Fri Nov 16 01:43:52 2007 UTC vs.
Revision 1.330 by root, Tue Mar 9 08:46:17 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
46# endif 76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
47 81
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
50# endif 95# endif
96# endif
51 97
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
54# endif 103# endif
55 104# endif
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
58# endif 111# endif
59 112# endif
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
61# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
62# endif 119# endif
63 120# endif
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
65# define EV_USE_PORT 1 124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
66# endif 127# endif
128# endif
67 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
68#endif 154#endif
69 155
70#include <math.h> 156#include <math.h>
71#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
72#include <fcntl.h> 159#include <fcntl.h>
73#include <stddef.h> 160#include <stddef.h>
74 161
75#include <stdio.h> 162#include <stdio.h>
76 163
77#include <assert.h> 164#include <assert.h>
78#include <errno.h> 165#include <errno.h>
79#include <sys/types.h> 166#include <sys/types.h>
80#include <time.h> 167#include <time.h>
168#include <limits.h>
81 169
82#include <signal.h> 170#include <signal.h>
83 171
172#ifdef EV_H
173# include EV_H
174#else
175# include "ev.h"
176#endif
177
84#ifndef _WIN32 178#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 179# include <sys/time.h>
87# include <sys/wait.h> 180# include <sys/wait.h>
181# include <unistd.h>
88#else 182#else
183# include <io.h>
89# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 185# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
93# endif 188# endif
94#endif 189#endif
95 190
96/**/ 191/* this block tries to deduce configuration from header-defined symbols and defaults */
192
193/* try to deduce the maximum number of signals on this platform */
194#if defined (EV_NSIG)
195/* use what's provided */
196#elif defined (NSIG)
197# define EV_NSIG (NSIG)
198#elif defined(_NSIG)
199# define EV_NSIG (_NSIG)
200#elif defined (SIGMAX)
201# define EV_NSIG (SIGMAX+1)
202#elif defined (SIG_MAX)
203# define EV_NSIG (SIG_MAX+1)
204#elif defined (_SIG_MAX)
205# define EV_NSIG (_SIG_MAX+1)
206#elif defined (MAXSIG)
207# define EV_NSIG (MAXSIG+1)
208#elif defined (MAX_SIG)
209# define EV_NSIG (MAX_SIG+1)
210#elif defined (SIGARRAYSIZE)
211# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
212#elif defined (_sys_nsig)
213# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
214#else
215# error "unable to find value for NSIG, please report"
216/* to make it compile regardless, just remove the above line */
217# define EV_NSIG 65
218#endif
219
220#ifndef EV_USE_CLOCK_SYSCALL
221# if __linux && __GLIBC__ >= 2
222# define EV_USE_CLOCK_SYSCALL 1
223# else
224# define EV_USE_CLOCK_SYSCALL 0
225# endif
226#endif
97 227
98#ifndef EV_USE_MONOTONIC 228#ifndef EV_USE_MONOTONIC
229# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
99# define EV_USE_MONOTONIC 1 230# define EV_USE_MONOTONIC 1
231# else
232# define EV_USE_MONOTONIC 0
233# endif
100#endif 234#endif
101 235
102#ifndef EV_USE_REALTIME 236#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 1 237# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
238#endif
239
240#ifndef EV_USE_NANOSLEEP
241# if _POSIX_C_SOURCE >= 199309L
242# define EV_USE_NANOSLEEP 1
243# else
244# define EV_USE_NANOSLEEP 0
245# endif
104#endif 246#endif
105 247
106#ifndef EV_USE_SELECT 248#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 249# define EV_USE_SELECT 1
108# define EV_SELECT_USE_FD_SET 1
109#endif 250#endif
110 251
111#ifndef EV_USE_POLL 252#ifndef EV_USE_POLL
112# ifdef _WIN32 253# ifdef _WIN32
113# define EV_USE_POLL 0 254# define EV_USE_POLL 0
115# define EV_USE_POLL 1 256# define EV_USE_POLL 1
116# endif 257# endif
117#endif 258#endif
118 259
119#ifndef EV_USE_EPOLL 260#ifndef EV_USE_EPOLL
261# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
262# define EV_USE_EPOLL 1
263# else
120# define EV_USE_EPOLL 0 264# define EV_USE_EPOLL 0
265# endif
121#endif 266#endif
122 267
123#ifndef EV_USE_KQUEUE 268#ifndef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0 269# define EV_USE_KQUEUE 0
125#endif 270#endif
126 271
127#ifndef EV_USE_PORT 272#ifndef EV_USE_PORT
128# define EV_USE_PORT 0 273# define EV_USE_PORT 0
129#endif 274#endif
130 275
131/**/ 276#ifndef EV_USE_INOTIFY
277# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
278# define EV_USE_INOTIFY 1
279# else
280# define EV_USE_INOTIFY 0
281# endif
282#endif
132 283
133/* darwin simply cannot be helped */ 284#ifndef EV_PID_HASHSIZE
134#ifdef __APPLE__ 285# if EV_MINIMAL
286# define EV_PID_HASHSIZE 1
287# else
288# define EV_PID_HASHSIZE 16
289# endif
290#endif
291
292#ifndef EV_INOTIFY_HASHSIZE
293# if EV_MINIMAL
294# define EV_INOTIFY_HASHSIZE 1
295# else
296# define EV_INOTIFY_HASHSIZE 16
297# endif
298#endif
299
300#ifndef EV_USE_EVENTFD
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
302# define EV_USE_EVENTFD 1
303# else
304# define EV_USE_EVENTFD 0
305# endif
306#endif
307
308#ifndef EV_USE_SIGNALFD
309# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
310# define EV_USE_SIGNALFD 1
311# else
312# define EV_USE_SIGNALFD 0
313# endif
314#endif
315
316#if 0 /* debugging */
317# define EV_VERIFY 3
318# define EV_USE_4HEAP 1
319# define EV_HEAP_CACHE_AT 1
320#endif
321
322#ifndef EV_VERIFY
323# define EV_VERIFY !EV_MINIMAL
324#endif
325
326#ifndef EV_USE_4HEAP
327# define EV_USE_4HEAP !EV_MINIMAL
328#endif
329
330#ifndef EV_HEAP_CACHE_AT
331# define EV_HEAP_CACHE_AT !EV_MINIMAL
332#endif
333
334/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
335/* which makes programs even slower. might work on other unices, too. */
336#if EV_USE_CLOCK_SYSCALL
337# include <syscall.h>
338# ifdef SYS_clock_gettime
339# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
340# undef EV_USE_MONOTONIC
341# define EV_USE_MONOTONIC 1
342# else
343# undef EV_USE_CLOCK_SYSCALL
344# define EV_USE_CLOCK_SYSCALL 0
345# endif
346#endif
347
348/* this block fixes any misconfiguration where we know we run into trouble otherwise */
349
350#ifdef _AIX
351/* AIX has a completely broken poll.h header */
135# undef EV_USE_POLL 352# undef EV_USE_POLL
136# undef EV_USE_KQUEUE 353# define EV_USE_POLL 0
137#endif 354#endif
138 355
139#ifndef CLOCK_MONOTONIC 356#ifndef CLOCK_MONOTONIC
140# undef EV_USE_MONOTONIC 357# undef EV_USE_MONOTONIC
141# define EV_USE_MONOTONIC 0 358# define EV_USE_MONOTONIC 0
144#ifndef CLOCK_REALTIME 361#ifndef CLOCK_REALTIME
145# undef EV_USE_REALTIME 362# undef EV_USE_REALTIME
146# define EV_USE_REALTIME 0 363# define EV_USE_REALTIME 0
147#endif 364#endif
148 365
366#if !EV_STAT_ENABLE
367# undef EV_USE_INOTIFY
368# define EV_USE_INOTIFY 0
369#endif
370
371#if !EV_USE_NANOSLEEP
372# ifndef _WIN32
373# include <sys/select.h>
374# endif
375#endif
376
377#if EV_USE_INOTIFY
378# include <sys/utsname.h>
379# include <sys/statfs.h>
380# include <sys/inotify.h>
381/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
382# ifndef IN_DONT_FOLLOW
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385# endif
386#endif
387
149#if EV_SELECT_IS_WINSOCKET 388#if EV_SELECT_IS_WINSOCKET
150# include <winsock.h> 389# include <winsock.h>
151#endif 390#endif
152 391
392#if EV_USE_EVENTFD
393/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
394# include <stdint.h>
395# ifndef EFD_NONBLOCK
396# define EFD_NONBLOCK O_NONBLOCK
397# endif
398# ifndef EFD_CLOEXEC
399# ifdef O_CLOEXEC
400# define EFD_CLOEXEC O_CLOEXEC
401# else
402# define EFD_CLOEXEC 02000000
403# endif
404# endif
405# ifdef __cplusplus
406extern "C" {
407# endif
408int (eventfd) (unsigned int initval, int flags);
409# ifdef __cplusplus
410}
411# endif
412#endif
413
414#if EV_USE_SIGNALFD
415/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
416# include <stdint.h>
417# ifndef SFD_NONBLOCK
418# define SFD_NONBLOCK O_NONBLOCK
419# endif
420# ifndef SFD_CLOEXEC
421# ifdef O_CLOEXEC
422# define SFD_CLOEXEC O_CLOEXEC
423# else
424# define SFD_CLOEXEC 02000000
425# endif
426# endif
427# ifdef __cplusplus
428extern "C" {
429# endif
430int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437# ifdef __cplusplus
438}
439# endif
440#endif
441
442
153/**/ 443/**/
154 444
445#if EV_VERIFY >= 3
446# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
447#else
448# define EV_FREQUENT_CHECK do { } while (0)
449#endif
450
451/*
452 * This is used to avoid floating point rounding problems.
453 * It is added to ev_rt_now when scheduling periodics
454 * to ensure progress, time-wise, even when rounding
455 * errors are against us.
456 * This value is good at least till the year 4000.
457 * Better solutions welcome.
458 */
459#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
460
155#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
156#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
157#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
158/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
159 463
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
166#if __GNUC__ >= 3 464#if __GNUC__ >= 4
167# define expect(expr,value) __builtin_expect ((expr),(value)) 465# define expect(expr,value) __builtin_expect ((expr),(value))
168# define inline inline 466# define noinline __attribute__ ((noinline))
169#else 467#else
170# define expect(expr,value) (expr) 468# define expect(expr,value) (expr)
171# define inline static 469# define noinline
470# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
471# define inline
472# endif
172#endif 473#endif
173 474
174#define expect_false(expr) expect ((expr) != 0, 0) 475#define expect_false(expr) expect ((expr) != 0, 0)
175#define expect_true(expr) expect ((expr) != 0, 1) 476#define expect_true(expr) expect ((expr) != 0, 1)
477#define inline_size static inline
176 478
479#if EV_MINIMAL
480# define inline_speed static noinline
481#else
482# define inline_speed static inline
483#endif
484
177#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 485#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
486
487#if EV_MINPRI == EV_MAXPRI
488# define ABSPRI(w) (((W)w), 0)
489#else
178#define ABSPRI(w) ((w)->priority - EV_MINPRI) 490# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
491#endif
179 492
180#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 493#define EMPTY /* required for microsofts broken pseudo-c compiler */
181#define EMPTY2(a,b) /* used to suppress some warnings */ 494#define EMPTY2(a,b) /* used to suppress some warnings */
182 495
183typedef struct ev_watcher *W; 496typedef ev_watcher *W;
184typedef struct ev_watcher_list *WL; 497typedef ev_watcher_list *WL;
185typedef struct ev_watcher_time *WT; 498typedef ev_watcher_time *WT;
186 499
500#define ev_active(w) ((W)(w))->active
501#define ev_at(w) ((WT)(w))->at
502
503#if EV_USE_REALTIME
504/* sig_atomic_t is used to avoid per-thread variables or locking but still */
505/* giving it a reasonably high chance of working on typical architetcures */
506static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
507#endif
508
509#if EV_USE_MONOTONIC
187static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 510static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
511#endif
512
513#ifndef EV_FD_TO_WIN32_HANDLE
514# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
515#endif
516#ifndef EV_WIN32_HANDLE_TO_FD
517# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
518#endif
519#ifndef EV_WIN32_CLOSE_FD
520# define EV_WIN32_CLOSE_FD(fd) close (fd)
521#endif
188 522
189#ifdef _WIN32 523#ifdef _WIN32
190# include "ev_win32.c" 524# include "ev_win32.c"
191#endif 525#endif
192 526
193/*****************************************************************************/ 527/*****************************************************************************/
194 528
195static void (*syserr_cb)(const char *msg); 529static void (*syserr_cb)(const char *msg);
196 530
531void
197void ev_set_syserr_cb (void (*cb)(const char *msg)) 532ev_set_syserr_cb (void (*cb)(const char *msg))
198{ 533{
199 syserr_cb = cb; 534 syserr_cb = cb;
200} 535}
201 536
202static void 537static void noinline
203syserr (const char *msg) 538ev_syserr (const char *msg)
204{ 539{
205 if (!msg) 540 if (!msg)
206 msg = "(libev) system error"; 541 msg = "(libev) system error";
207 542
208 if (syserr_cb) 543 if (syserr_cb)
209 syserr_cb (msg); 544 syserr_cb (msg);
210 else 545 else
211 { 546 {
547#if EV_AVOID_STDIO
548 write (STDERR_FILENO, msg, strlen (msg));
549 write (STDERR_FILENO, ": ", 2);
550 msg = strerror (errno);
551 write (STDERR_FILENO, msg, strlen (msg));
552 write (STDERR_FILENO, "\n", 1);
553#else
212 perror (msg); 554 perror (msg);
555#endif
213 abort (); 556 abort ();
214 } 557 }
215} 558}
216 559
560static void *
561ev_realloc_emul (void *ptr, long size)
562{
563 /* some systems, notably openbsd and darwin, fail to properly
564 * implement realloc (x, 0) (as required by both ansi c-98 and
565 * the single unix specification, so work around them here.
566 */
567
568 if (size)
569 return realloc (ptr, size);
570
571 free (ptr);
572 return 0;
573}
574
217static void *(*alloc)(void *ptr, long size); 575static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
218 576
577void
219void ev_set_allocator (void *(*cb)(void *ptr, long size)) 578ev_set_allocator (void *(*cb)(void *ptr, long size))
220{ 579{
221 alloc = cb; 580 alloc = cb;
222} 581}
223 582
224static void * 583inline_speed void *
225ev_realloc (void *ptr, long size) 584ev_realloc (void *ptr, long size)
226{ 585{
227 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 586 ptr = alloc (ptr, size);
228 587
229 if (!ptr && size) 588 if (!ptr && size)
230 { 589 {
590#if EV_AVOID_STDIO
591 write (STDERR_FILENO, "libev: memory allocation failed, aborting.",
592 sizeof ("libev: memory allocation failed, aborting.") - 1);
593#else
231 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 594 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
595#endif
232 abort (); 596 abort ();
233 } 597 }
234 598
235 return ptr; 599 return ptr;
236} 600}
238#define ev_malloc(size) ev_realloc (0, (size)) 602#define ev_malloc(size) ev_realloc (0, (size))
239#define ev_free(ptr) ev_realloc ((ptr), 0) 603#define ev_free(ptr) ev_realloc ((ptr), 0)
240 604
241/*****************************************************************************/ 605/*****************************************************************************/
242 606
607/* set in reify when reification needed */
608#define EV_ANFD_REIFY 1
609
610/* file descriptor info structure */
243typedef struct 611typedef struct
244{ 612{
245 WL head; 613 WL head;
246 unsigned char events; 614 unsigned char events; /* the events watched for */
615 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
616 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
247 unsigned char reify; 617 unsigned char unused;
618#if EV_USE_EPOLL
619 unsigned int egen; /* generation counter to counter epoll bugs */
620#endif
248#if EV_SELECT_IS_WINSOCKET 621#if EV_SELECT_IS_WINSOCKET
249 SOCKET handle; 622 SOCKET handle;
250#endif 623#endif
251} ANFD; 624} ANFD;
252 625
626/* stores the pending event set for a given watcher */
253typedef struct 627typedef struct
254{ 628{
255 W w; 629 W w;
256 int events; 630 int events; /* the pending event set for the given watcher */
257} ANPENDING; 631} ANPENDING;
632
633#if EV_USE_INOTIFY
634/* hash table entry per inotify-id */
635typedef struct
636{
637 WL head;
638} ANFS;
639#endif
640
641/* Heap Entry */
642#if EV_HEAP_CACHE_AT
643 /* a heap element */
644 typedef struct {
645 ev_tstamp at;
646 WT w;
647 } ANHE;
648
649 #define ANHE_w(he) (he).w /* access watcher, read-write */
650 #define ANHE_at(he) (he).at /* access cached at, read-only */
651 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
652#else
653 /* a heap element */
654 typedef WT ANHE;
655
656 #define ANHE_w(he) (he)
657 #define ANHE_at(he) (he)->at
658 #define ANHE_at_cache(he)
659#endif
258 660
259#if EV_MULTIPLICITY 661#if EV_MULTIPLICITY
260 662
261 struct ev_loop 663 struct ev_loop
262 { 664 {
280 682
281 static int ev_default_loop_ptr; 683 static int ev_default_loop_ptr;
282 684
283#endif 685#endif
284 686
687#if EV_MINIMAL < 2
688# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
689# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
690# define EV_INVOKE_PENDING invoke_cb (EV_A)
691#else
692# define EV_RELEASE_CB (void)0
693# define EV_ACQUIRE_CB (void)0
694# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
695#endif
696
697#define EVUNLOOP_RECURSE 0x80
698
285/*****************************************************************************/ 699/*****************************************************************************/
286 700
701#ifndef EV_HAVE_EV_TIME
287ev_tstamp 702ev_tstamp
288ev_time (void) 703ev_time (void)
289{ 704{
290#if EV_USE_REALTIME 705#if EV_USE_REALTIME
706 if (expect_true (have_realtime))
707 {
291 struct timespec ts; 708 struct timespec ts;
292 clock_gettime (CLOCK_REALTIME, &ts); 709 clock_gettime (CLOCK_REALTIME, &ts);
293 return ts.tv_sec + ts.tv_nsec * 1e-9; 710 return ts.tv_sec + ts.tv_nsec * 1e-9;
294#else 711 }
712#endif
713
295 struct timeval tv; 714 struct timeval tv;
296 gettimeofday (&tv, 0); 715 gettimeofday (&tv, 0);
297 return tv.tv_sec + tv.tv_usec * 1e-6; 716 return tv.tv_sec + tv.tv_usec * 1e-6;
298#endif
299} 717}
718#endif
300 719
301inline ev_tstamp 720inline_size ev_tstamp
302get_clock (void) 721get_clock (void)
303{ 722{
304#if EV_USE_MONOTONIC 723#if EV_USE_MONOTONIC
305 if (expect_true (have_monotonic)) 724 if (expect_true (have_monotonic))
306 { 725 {
319{ 738{
320 return ev_rt_now; 739 return ev_rt_now;
321} 740}
322#endif 741#endif
323 742
324#define array_roundsize(type,n) (((n) | 4) & ~3) 743void
744ev_sleep (ev_tstamp delay)
745{
746 if (delay > 0.)
747 {
748#if EV_USE_NANOSLEEP
749 struct timespec ts;
750
751 ts.tv_sec = (time_t)delay;
752 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
753
754 nanosleep (&ts, 0);
755#elif defined(_WIN32)
756 Sleep ((unsigned long)(delay * 1e3));
757#else
758 struct timeval tv;
759
760 tv.tv_sec = (time_t)delay;
761 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
762
763 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
764 /* something not guaranteed by newer posix versions, but guaranteed */
765 /* by older ones */
766 select (0, 0, 0, 0, &tv);
767#endif
768 }
769}
770
771/*****************************************************************************/
772
773#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
774
775/* find a suitable new size for the given array, */
776/* hopefully by rounding to a ncie-to-malloc size */
777inline_size int
778array_nextsize (int elem, int cur, int cnt)
779{
780 int ncur = cur + 1;
781
782 do
783 ncur <<= 1;
784 while (cnt > ncur);
785
786 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
787 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
788 {
789 ncur *= elem;
790 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
791 ncur = ncur - sizeof (void *) * 4;
792 ncur /= elem;
793 }
794
795 return ncur;
796}
797
798static noinline void *
799array_realloc (int elem, void *base, int *cur, int cnt)
800{
801 *cur = array_nextsize (elem, *cur, cnt);
802 return ev_realloc (base, elem * *cur);
803}
804
805#define array_init_zero(base,count) \
806 memset ((void *)(base), 0, sizeof (*(base)) * (count))
325 807
326#define array_needsize(type,base,cur,cnt,init) \ 808#define array_needsize(type,base,cur,cnt,init) \
327 if (expect_false ((cnt) > cur)) \ 809 if (expect_false ((cnt) > (cur))) \
328 { \ 810 { \
329 int newcnt = cur; \ 811 int ocur_ = (cur); \
330 do \ 812 (base) = (type *)array_realloc \
331 { \ 813 (sizeof (type), (base), &(cur), (cnt)); \
332 newcnt = array_roundsize (type, newcnt << 1); \ 814 init ((base) + (ocur_), (cur) - ocur_); \
333 } \
334 while ((cnt) > newcnt); \
335 \
336 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
337 init (base + cur, newcnt - cur); \
338 cur = newcnt; \
339 } 815 }
340 816
817#if 0
341#define array_slim(type,stem) \ 818#define array_slim(type,stem) \
342 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 819 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
343 { \ 820 { \
344 stem ## max = array_roundsize (stem ## cnt >> 1); \ 821 stem ## max = array_roundsize (stem ## cnt >> 1); \
345 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 822 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
346 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 823 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
347 } 824 }
825#endif
348 826
349#define array_free(stem, idx) \ 827#define array_free(stem, idx) \
350 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 828 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
351 829
352/*****************************************************************************/ 830/*****************************************************************************/
353 831
354static void 832/* dummy callback for pending events */
355anfds_init (ANFD *base, int count) 833static void noinline
834pendingcb (EV_P_ ev_prepare *w, int revents)
356{ 835{
357 while (count--)
358 {
359 base->head = 0;
360 base->events = EV_NONE;
361 base->reify = 0;
362
363 ++base;
364 }
365} 836}
366 837
367void 838void noinline
368ev_feed_event (EV_P_ void *w, int revents) 839ev_feed_event (EV_P_ void *w, int revents)
369{ 840{
370 W w_ = (W)w; 841 W w_ = (W)w;
842 int pri = ABSPRI (w_);
371 843
372 if (w_->pending) 844 if (expect_false (w_->pending))
845 pendings [pri][w_->pending - 1].events |= revents;
846 else
373 { 847 {
848 w_->pending = ++pendingcnt [pri];
849 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
850 pendings [pri][w_->pending - 1].w = w_;
374 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 851 pendings [pri][w_->pending - 1].events = revents;
375 return;
376 } 852 }
377
378 w_->pending = ++pendingcnt [ABSPRI (w_)];
379 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
380 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
381 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
382} 853}
383 854
384static void 855inline_speed void
856feed_reverse (EV_P_ W w)
857{
858 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
859 rfeeds [rfeedcnt++] = w;
860}
861
862inline_size void
863feed_reverse_done (EV_P_ int revents)
864{
865 do
866 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
867 while (rfeedcnt);
868}
869
870inline_speed void
385queue_events (EV_P_ W *events, int eventcnt, int type) 871queue_events (EV_P_ W *events, int eventcnt, int type)
386{ 872{
387 int i; 873 int i;
388 874
389 for (i = 0; i < eventcnt; ++i) 875 for (i = 0; i < eventcnt; ++i)
390 ev_feed_event (EV_A_ events [i], type); 876 ev_feed_event (EV_A_ events [i], type);
391} 877}
392 878
879/*****************************************************************************/
880
393inline void 881inline_speed void
394fd_event (EV_P_ int fd, int revents) 882fd_event_nc (EV_P_ int fd, int revents)
395{ 883{
396 ANFD *anfd = anfds + fd; 884 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 885 ev_io *w;
398 886
399 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 887 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
400 { 888 {
401 int ev = w->events & revents; 889 int ev = w->events & revents;
402 890
403 if (ev) 891 if (ev)
404 ev_feed_event (EV_A_ (W)w, ev); 892 ev_feed_event (EV_A_ (W)w, ev);
405 } 893 }
406} 894}
407 895
896/* do not submit kernel events for fds that have reify set */
897/* because that means they changed while we were polling for new events */
898inline_speed void
899fd_event (EV_P_ int fd, int revents)
900{
901 ANFD *anfd = anfds + fd;
902
903 if (expect_true (!anfd->reify))
904 fd_event_nc (EV_A_ fd, revents);
905}
906
408void 907void
409ev_feed_fd_event (EV_P_ int fd, int revents) 908ev_feed_fd_event (EV_P_ int fd, int revents)
410{ 909{
910 if (fd >= 0 && fd < anfdmax)
411 fd_event (EV_A_ fd, revents); 911 fd_event_nc (EV_A_ fd, revents);
412} 912}
413 913
414/*****************************************************************************/ 914/* make sure the external fd watch events are in-sync */
415 915/* with the kernel/libev internal state */
416static void 916inline_size void
417fd_reify (EV_P) 917fd_reify (EV_P)
418{ 918{
419 int i; 919 int i;
420 920
421 for (i = 0; i < fdchangecnt; ++i) 921 for (i = 0; i < fdchangecnt; ++i)
422 { 922 {
423 int fd = fdchanges [i]; 923 int fd = fdchanges [i];
424 ANFD *anfd = anfds + fd; 924 ANFD *anfd = anfds + fd;
425 struct ev_io *w; 925 ev_io *w;
426 926
427 int events = 0; 927 unsigned char events = 0;
428 928
429 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 929 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
430 events |= w->events; 930 events |= (unsigned char)w->events;
431 931
432#if EV_SELECT_IS_WINSOCKET 932#if EV_SELECT_IS_WINSOCKET
433 if (events) 933 if (events)
434 { 934 {
435 unsigned long argp; 935 unsigned long arg;
436 anfd->handle = _get_osfhandle (fd); 936 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
437 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 937 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
438 } 938 }
439#endif 939#endif
440 940
941 {
942 unsigned char o_events = anfd->events;
943 unsigned char o_reify = anfd->reify;
944
441 anfd->reify = 0; 945 anfd->reify = 0;
442
443 method_modify (EV_A_ fd, anfd->events, events);
444 anfd->events = events; 946 anfd->events = events;
947
948 if (o_events != events || o_reify & EV__IOFDSET)
949 backend_modify (EV_A_ fd, o_events, events);
950 }
445 } 951 }
446 952
447 fdchangecnt = 0; 953 fdchangecnt = 0;
448} 954}
449 955
450static void 956/* something about the given fd changed */
957inline_size void
451fd_change (EV_P_ int fd) 958fd_change (EV_P_ int fd, int flags)
452{ 959{
453 if (anfds [fd].reify) 960 unsigned char reify = anfds [fd].reify;
454 return;
455
456 anfds [fd].reify = 1; 961 anfds [fd].reify |= flags;
457 962
963 if (expect_true (!reify))
964 {
458 ++fdchangecnt; 965 ++fdchangecnt;
459 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 966 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
460 fdchanges [fdchangecnt - 1] = fd; 967 fdchanges [fdchangecnt - 1] = fd;
968 }
461} 969}
462 970
463static void 971/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
972inline_speed void
464fd_kill (EV_P_ int fd) 973fd_kill (EV_P_ int fd)
465{ 974{
466 struct ev_io *w; 975 ev_io *w;
467 976
468 while ((w = (struct ev_io *)anfds [fd].head)) 977 while ((w = (ev_io *)anfds [fd].head))
469 { 978 {
470 ev_io_stop (EV_A_ w); 979 ev_io_stop (EV_A_ w);
471 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 980 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
472 } 981 }
473} 982}
474 983
475static int 984/* check whether the given fd is atcually valid, for error recovery */
985inline_size int
476fd_valid (int fd) 986fd_valid (int fd)
477{ 987{
478#ifdef _WIN32 988#ifdef _WIN32
479 return _get_osfhandle (fd) != -1; 989 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
480#else 990#else
481 return fcntl (fd, F_GETFD) != -1; 991 return fcntl (fd, F_GETFD) != -1;
482#endif 992#endif
483} 993}
484 994
485/* called on EBADF to verify fds */ 995/* called on EBADF to verify fds */
486static void 996static void noinline
487fd_ebadf (EV_P) 997fd_ebadf (EV_P)
488{ 998{
489 int fd; 999 int fd;
490 1000
491 for (fd = 0; fd < anfdmax; ++fd) 1001 for (fd = 0; fd < anfdmax; ++fd)
492 if (anfds [fd].events) 1002 if (anfds [fd].events)
493 if (!fd_valid (fd) == -1 && errno == EBADF) 1003 if (!fd_valid (fd) && errno == EBADF)
494 fd_kill (EV_A_ fd); 1004 fd_kill (EV_A_ fd);
495} 1005}
496 1006
497/* called on ENOMEM in select/poll to kill some fds and retry */ 1007/* called on ENOMEM in select/poll to kill some fds and retry */
498static void 1008static void noinline
499fd_enomem (EV_P) 1009fd_enomem (EV_P)
500{ 1010{
501 int fd; 1011 int fd;
502 1012
503 for (fd = anfdmax; fd--; ) 1013 for (fd = anfdmax; fd--; )
504 if (anfds [fd].events) 1014 if (anfds [fd].events)
505 { 1015 {
506 fd_kill (EV_A_ fd); 1016 fd_kill (EV_A_ fd);
507 return; 1017 break;
508 } 1018 }
509} 1019}
510 1020
511/* usually called after fork if method needs to re-arm all fds from scratch */ 1021/* usually called after fork if backend needs to re-arm all fds from scratch */
512static void 1022static void noinline
513fd_rearm_all (EV_P) 1023fd_rearm_all (EV_P)
514{ 1024{
515 int fd; 1025 int fd;
516 1026
517 /* this should be highly optimised to not do anything but set a flag */
518 for (fd = 0; fd < anfdmax; ++fd) 1027 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 1028 if (anfds [fd].events)
520 { 1029 {
521 anfds [fd].events = 0; 1030 anfds [fd].events = 0;
522 fd_change (EV_A_ fd); 1031 anfds [fd].emask = 0;
1032 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
523 } 1033 }
524} 1034}
525 1035
526/*****************************************************************************/ 1036/*****************************************************************************/
527 1037
528static void 1038/*
529upheap (WT *heap, int k) 1039 * the heap functions want a real array index. array index 0 uis guaranteed to not
530{ 1040 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
531 WT w = heap [k]; 1041 * the branching factor of the d-tree.
1042 */
532 1043
533 while (k && heap [k >> 1]->at > w->at) 1044/*
534 { 1045 * at the moment we allow libev the luxury of two heaps,
535 heap [k] = heap [k >> 1]; 1046 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
536 ((W)heap [k])->active = k + 1; 1047 * which is more cache-efficient.
537 k >>= 1; 1048 * the difference is about 5% with 50000+ watchers.
538 } 1049 */
1050#if EV_USE_4HEAP
539 1051
540 heap [k] = w; 1052#define DHEAP 4
541 ((W)heap [k])->active = k + 1; 1053#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1054#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1055#define UPHEAP_DONE(p,k) ((p) == (k))
542 1056
543} 1057/* away from the root */
544 1058inline_speed void
545static void
546downheap (WT *heap, int N, int k) 1059downheap (ANHE *heap, int N, int k)
547{ 1060{
548 WT w = heap [k]; 1061 ANHE he = heap [k];
1062 ANHE *E = heap + N + HEAP0;
549 1063
550 while (k < (N >> 1)) 1064 for (;;)
551 { 1065 {
552 int j = k << 1; 1066 ev_tstamp minat;
1067 ANHE *minpos;
1068 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
553 1069
554 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1070 /* find minimum child */
1071 if (expect_true (pos + DHEAP - 1 < E))
555 ++j; 1072 {
556 1073 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
557 if (w->at <= heap [j]->at) 1074 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1075 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1076 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1077 }
1078 else if (pos < E)
1079 {
1080 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1081 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1082 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1083 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1084 }
1085 else
558 break; 1086 break;
559 1087
1088 if (ANHE_at (he) <= minat)
1089 break;
1090
1091 heap [k] = *minpos;
1092 ev_active (ANHE_w (*minpos)) = k;
1093
1094 k = minpos - heap;
1095 }
1096
1097 heap [k] = he;
1098 ev_active (ANHE_w (he)) = k;
1099}
1100
1101#else /* 4HEAP */
1102
1103#define HEAP0 1
1104#define HPARENT(k) ((k) >> 1)
1105#define UPHEAP_DONE(p,k) (!(p))
1106
1107/* away from the root */
1108inline_speed void
1109downheap (ANHE *heap, int N, int k)
1110{
1111 ANHE he = heap [k];
1112
1113 for (;;)
1114 {
1115 int c = k << 1;
1116
1117 if (c >= N + HEAP0)
1118 break;
1119
1120 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1121 ? 1 : 0;
1122
1123 if (ANHE_at (he) <= ANHE_at (heap [c]))
1124 break;
1125
560 heap [k] = heap [j]; 1126 heap [k] = heap [c];
561 ((W)heap [k])->active = k + 1; 1127 ev_active (ANHE_w (heap [k])) = k;
1128
562 k = j; 1129 k = c;
563 } 1130 }
564 1131
565 heap [k] = w; 1132 heap [k] = he;
566 ((W)heap [k])->active = k + 1; 1133 ev_active (ANHE_w (he)) = k;
567} 1134}
1135#endif
568 1136
1137/* towards the root */
1138inline_speed void
1139upheap (ANHE *heap, int k)
1140{
1141 ANHE he = heap [k];
1142
1143 for (;;)
1144 {
1145 int p = HPARENT (k);
1146
1147 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1148 break;
1149
1150 heap [k] = heap [p];
1151 ev_active (ANHE_w (heap [k])) = k;
1152 k = p;
1153 }
1154
1155 heap [k] = he;
1156 ev_active (ANHE_w (he)) = k;
1157}
1158
1159/* move an element suitably so it is in a correct place */
569inline void 1160inline_size void
570adjustheap (WT *heap, int N, int k) 1161adjustheap (ANHE *heap, int N, int k)
571{ 1162{
1163 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
572 upheap (heap, k); 1164 upheap (heap, k);
1165 else
573 downheap (heap, N, k); 1166 downheap (heap, N, k);
1167}
1168
1169/* rebuild the heap: this function is used only once and executed rarely */
1170inline_size void
1171reheap (ANHE *heap, int N)
1172{
1173 int i;
1174
1175 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1176 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1177 for (i = 0; i < N; ++i)
1178 upheap (heap, i + HEAP0);
574} 1179}
575 1180
576/*****************************************************************************/ 1181/*****************************************************************************/
577 1182
1183/* associate signal watchers to a signal signal */
578typedef struct 1184typedef struct
579{ 1185{
1186 EV_ATOMIC_T pending;
1187#if EV_MULTIPLICITY
1188 EV_P;
1189#endif
580 WL head; 1190 WL head;
581 sig_atomic_t volatile gotsig;
582} ANSIG; 1191} ANSIG;
583 1192
584static ANSIG *signals; 1193static ANSIG signals [EV_NSIG - 1];
585static int signalmax;
586 1194
587static int sigpipe [2]; 1195/*****************************************************************************/
588static sig_atomic_t volatile gotsig;
589static struct ev_io sigev;
590 1196
591static void 1197/* used to prepare libev internal fd's */
592signals_init (ANSIG *base, int count) 1198/* this is not fork-safe */
593{
594 while (count--)
595 {
596 base->head = 0;
597 base->gotsig = 0;
598
599 ++base;
600 }
601}
602
603static void
604sighandler (int signum)
605{
606#if _WIN32
607 signal (signum, sighandler);
608#endif
609
610 signals [signum - 1].gotsig = 1;
611
612 if (!gotsig)
613 {
614 int old_errno = errno;
615 gotsig = 1;
616 write (sigpipe [1], &signum, 1);
617 errno = old_errno;
618 }
619}
620
621void
622ev_feed_signal_event (EV_P_ int signum)
623{
624 WL w;
625
626#if EV_MULTIPLICITY
627 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
628#endif
629
630 --signum;
631
632 if (signum < 0 || signum >= signalmax)
633 return;
634
635 signals [signum].gotsig = 0;
636
637 for (w = signals [signum].head; w; w = w->next)
638 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
639}
640
641static void
642sigcb (EV_P_ struct ev_io *iow, int revents)
643{
644 int signum;
645
646 read (sigpipe [0], &revents, 1);
647 gotsig = 0;
648
649 for (signum = signalmax; signum--; )
650 if (signals [signum].gotsig)
651 ev_feed_signal_event (EV_A_ signum + 1);
652}
653
654inline void 1199inline_speed void
655fd_intern (int fd) 1200fd_intern (int fd)
656{ 1201{
657#ifdef _WIN32 1202#ifdef _WIN32
658 int arg = 1; 1203 unsigned long arg = 1;
659 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1204 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
660#else 1205#else
661 fcntl (fd, F_SETFD, FD_CLOEXEC); 1206 fcntl (fd, F_SETFD, FD_CLOEXEC);
662 fcntl (fd, F_SETFL, O_NONBLOCK); 1207 fcntl (fd, F_SETFL, O_NONBLOCK);
663#endif 1208#endif
664} 1209}
665 1210
1211static void noinline
1212evpipe_init (EV_P)
1213{
1214 if (!ev_is_active (&pipe_w))
1215 {
1216#if EV_USE_EVENTFD
1217 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1218 if (evfd < 0 && errno == EINVAL)
1219 evfd = eventfd (0, 0);
1220
1221 if (evfd >= 0)
1222 {
1223 evpipe [0] = -1;
1224 fd_intern (evfd); /* doing it twice doesn't hurt */
1225 ev_io_set (&pipe_w, evfd, EV_READ);
1226 }
1227 else
1228#endif
1229 {
1230 while (pipe (evpipe))
1231 ev_syserr ("(libev) error creating signal/async pipe");
1232
1233 fd_intern (evpipe [0]);
1234 fd_intern (evpipe [1]);
1235 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1236 }
1237
1238 ev_io_start (EV_A_ &pipe_w);
1239 ev_unref (EV_A); /* watcher should not keep loop alive */
1240 }
1241}
1242
1243inline_size void
1244evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1245{
1246 if (!*flag)
1247 {
1248 int old_errno = errno; /* save errno because write might clobber it */
1249
1250 *flag = 1;
1251
1252#if EV_USE_EVENTFD
1253 if (evfd >= 0)
1254 {
1255 uint64_t counter = 1;
1256 write (evfd, &counter, sizeof (uint64_t));
1257 }
1258 else
1259#endif
1260 write (evpipe [1], &old_errno, 1);
1261
1262 errno = old_errno;
1263 }
1264}
1265
1266/* called whenever the libev signal pipe */
1267/* got some events (signal, async) */
666static void 1268static void
667siginit (EV_P) 1269pipecb (EV_P_ ev_io *iow, int revents)
668{ 1270{
669 fd_intern (sigpipe [0]); 1271 int i;
670 fd_intern (sigpipe [1]);
671 1272
672 ev_io_set (&sigev, sigpipe [0], EV_READ); 1273#if EV_USE_EVENTFD
673 ev_io_start (EV_A_ &sigev); 1274 if (evfd >= 0)
674 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1275 {
1276 uint64_t counter;
1277 read (evfd, &counter, sizeof (uint64_t));
1278 }
1279 else
1280#endif
1281 {
1282 char dummy;
1283 read (evpipe [0], &dummy, 1);
1284 }
1285
1286 if (sig_pending)
1287 {
1288 sig_pending = 0;
1289
1290 for (i = EV_NSIG - 1; i--; )
1291 if (expect_false (signals [i].pending))
1292 ev_feed_signal_event (EV_A_ i + 1);
1293 }
1294
1295#if EV_ASYNC_ENABLE
1296 if (async_pending)
1297 {
1298 async_pending = 0;
1299
1300 for (i = asynccnt; i--; )
1301 if (asyncs [i]->sent)
1302 {
1303 asyncs [i]->sent = 0;
1304 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1305 }
1306 }
1307#endif
675} 1308}
676 1309
677/*****************************************************************************/ 1310/*****************************************************************************/
678 1311
679static struct ev_child *childs [PID_HASHSIZE]; 1312static void
1313ev_sighandler (int signum)
1314{
1315#if EV_MULTIPLICITY
1316 EV_P = signals [signum - 1].loop;
1317#endif
1318
1319#ifdef _WIN32
1320 signal (signum, ev_sighandler);
1321#endif
1322
1323 signals [signum - 1].pending = 1;
1324 evpipe_write (EV_A_ &sig_pending);
1325}
1326
1327void noinline
1328ev_feed_signal_event (EV_P_ int signum)
1329{
1330 WL w;
1331
1332 if (expect_false (signum <= 0 || signum > EV_NSIG))
1333 return;
1334
1335 --signum;
1336
1337#if EV_MULTIPLICITY
1338 /* it is permissible to try to feed a signal to the wrong loop */
1339 /* or, likely more useful, feeding a signal nobody is waiting for */
1340
1341 if (expect_false (signals [signum].loop != EV_A))
1342 return;
1343#endif
1344
1345 signals [signum].pending = 0;
1346
1347 for (w = signals [signum].head; w; w = w->next)
1348 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1349}
1350
1351#if EV_USE_SIGNALFD
1352static void
1353sigfdcb (EV_P_ ev_io *iow, int revents)
1354{
1355 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1356
1357 for (;;)
1358 {
1359 ssize_t res = read (sigfd, si, sizeof (si));
1360
1361 /* not ISO-C, as res might be -1, but works with SuS */
1362 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1363 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1364
1365 if (res < (ssize_t)sizeof (si))
1366 break;
1367 }
1368}
1369#endif
1370
1371/*****************************************************************************/
1372
1373static WL childs [EV_PID_HASHSIZE];
680 1374
681#ifndef _WIN32 1375#ifndef _WIN32
682 1376
683static struct ev_signal childev; 1377static ev_signal childev;
1378
1379#ifndef WIFCONTINUED
1380# define WIFCONTINUED(status) 0
1381#endif
1382
1383/* handle a single child status event */
1384inline_speed void
1385child_reap (EV_P_ int chain, int pid, int status)
1386{
1387 ev_child *w;
1388 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1389
1390 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1391 {
1392 if ((w->pid == pid || !w->pid)
1393 && (!traced || (w->flags & 1)))
1394 {
1395 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1396 w->rpid = pid;
1397 w->rstatus = status;
1398 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1399 }
1400 }
1401}
684 1402
685#ifndef WCONTINUED 1403#ifndef WCONTINUED
686# define WCONTINUED 0 1404# define WCONTINUED 0
687#endif 1405#endif
688 1406
1407/* called on sigchld etc., calls waitpid */
689static void 1408static void
690child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
691{
692 struct ev_child *w;
693
694 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
695 if (w->pid == pid || !w->pid)
696 {
697 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
698 w->rpid = pid;
699 w->rstatus = status;
700 ev_feed_event (EV_A_ (W)w, EV_CHILD);
701 }
702}
703
704static void
705childcb (EV_P_ struct ev_signal *sw, int revents) 1409childcb (EV_P_ ev_signal *sw, int revents)
706{ 1410{
707 int pid, status; 1411 int pid, status;
708 1412
1413 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
709 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1414 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
710 { 1415 if (!WCONTINUED
1416 || errno != EINVAL
1417 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1418 return;
1419
711 /* make sure we are called again until all childs have been reaped */ 1420 /* make sure we are called again until all children have been reaped */
1421 /* we need to do it this way so that the callback gets called before we continue */
712 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1422 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
713 1423
714 child_reap (EV_A_ sw, pid, pid, status); 1424 child_reap (EV_A_ pid, pid, status);
1425 if (EV_PID_HASHSIZE > 1)
715 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1426 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
716 }
717} 1427}
718 1428
719#endif 1429#endif
720 1430
721/*****************************************************************************/ 1431/*****************************************************************************/
747{ 1457{
748 return EV_VERSION_MINOR; 1458 return EV_VERSION_MINOR;
749} 1459}
750 1460
751/* return true if we are running with elevated privileges and should ignore env variables */ 1461/* return true if we are running with elevated privileges and should ignore env variables */
752static int 1462int inline_size
753enable_secure (void) 1463enable_secure (void)
754{ 1464{
755#ifdef _WIN32 1465#ifdef _WIN32
756 return 0; 1466 return 0;
757#else 1467#else
759 || getgid () != getegid (); 1469 || getgid () != getegid ();
760#endif 1470#endif
761} 1471}
762 1472
763unsigned int 1473unsigned int
764ev_method (EV_P) 1474ev_supported_backends (void)
765{ 1475{
766 return method; 1476 unsigned int flags = 0;
767}
768 1477
769static void 1478 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1479 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1480 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1481 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1482 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1483
1484 return flags;
1485}
1486
1487unsigned int
1488ev_recommended_backends (void)
1489{
1490 unsigned int flags = ev_supported_backends ();
1491
1492#ifndef __NetBSD__
1493 /* kqueue is borked on everything but netbsd apparently */
1494 /* it usually doesn't work correctly on anything but sockets and pipes */
1495 flags &= ~EVBACKEND_KQUEUE;
1496#endif
1497#ifdef __APPLE__
1498 /* only select works correctly on that "unix-certified" platform */
1499 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1500 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1501#endif
1502
1503 return flags;
1504}
1505
1506unsigned int
1507ev_embeddable_backends (void)
1508{
1509 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1510
1511 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1512 /* please fix it and tell me how to detect the fix */
1513 flags &= ~EVBACKEND_EPOLL;
1514
1515 return flags;
1516}
1517
1518unsigned int
1519ev_backend (EV_P)
1520{
1521 return backend;
1522}
1523
1524#if EV_MINIMAL < 2
1525unsigned int
1526ev_loop_count (EV_P)
1527{
1528 return loop_count;
1529}
1530
1531unsigned int
1532ev_loop_depth (EV_P)
1533{
1534 return loop_depth;
1535}
1536
1537void
1538ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1539{
1540 io_blocktime = interval;
1541}
1542
1543void
1544ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1545{
1546 timeout_blocktime = interval;
1547}
1548
1549void
1550ev_set_userdata (EV_P_ void *data)
1551{
1552 userdata = data;
1553}
1554
1555void *
1556ev_userdata (EV_P)
1557{
1558 return userdata;
1559}
1560
1561void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1562{
1563 invoke_cb = invoke_pending_cb;
1564}
1565
1566void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1567{
1568 release_cb = release;
1569 acquire_cb = acquire;
1570}
1571#endif
1572
1573/* initialise a loop structure, must be zero-initialised */
1574static void noinline
770loop_init (EV_P_ unsigned int flags) 1575loop_init (EV_P_ unsigned int flags)
771{ 1576{
772 if (!method) 1577 if (!backend)
773 { 1578 {
1579#if EV_USE_REALTIME
1580 if (!have_realtime)
1581 {
1582 struct timespec ts;
1583
1584 if (!clock_gettime (CLOCK_REALTIME, &ts))
1585 have_realtime = 1;
1586 }
1587#endif
1588
774#if EV_USE_MONOTONIC 1589#if EV_USE_MONOTONIC
1590 if (!have_monotonic)
1591 {
1592 struct timespec ts;
1593
1594 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1595 have_monotonic = 1;
1596 }
1597#endif
1598
1599 /* pid check not overridable via env */
1600#ifndef _WIN32
1601 if (flags & EVFLAG_FORKCHECK)
1602 curpid = getpid ();
1603#endif
1604
1605 if (!(flags & EVFLAG_NOENV)
1606 && !enable_secure ()
1607 && getenv ("LIBEV_FLAGS"))
1608 flags = atoi (getenv ("LIBEV_FLAGS"));
1609
1610 ev_rt_now = ev_time ();
1611 mn_now = get_clock ();
1612 now_floor = mn_now;
1613 rtmn_diff = ev_rt_now - mn_now;
1614#if EV_MINIMAL < 2
1615 invoke_cb = ev_invoke_pending;
1616#endif
1617
1618 io_blocktime = 0.;
1619 timeout_blocktime = 0.;
1620 backend = 0;
1621 backend_fd = -1;
1622 sig_pending = 0;
1623#if EV_ASYNC_ENABLE
1624 async_pending = 0;
1625#endif
1626#if EV_USE_INOTIFY
1627 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1628#endif
1629#if EV_USE_SIGNALFD
1630 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1631#endif
1632
1633 if (!(flags & 0x0000ffffU))
1634 flags |= ev_recommended_backends ();
1635
1636#if EV_USE_PORT
1637 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1638#endif
1639#if EV_USE_KQUEUE
1640 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1641#endif
1642#if EV_USE_EPOLL
1643 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1644#endif
1645#if EV_USE_POLL
1646 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1647#endif
1648#if EV_USE_SELECT
1649 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1650#endif
1651
1652 ev_prepare_init (&pending_w, pendingcb);
1653
1654 ev_init (&pipe_w, pipecb);
1655 ev_set_priority (&pipe_w, EV_MAXPRI);
1656 }
1657}
1658
1659/* free up a loop structure */
1660static void noinline
1661loop_destroy (EV_P)
1662{
1663 int i;
1664
1665 if (ev_is_active (&pipe_w))
1666 {
1667 /*ev_ref (EV_A);*/
1668 /*ev_io_stop (EV_A_ &pipe_w);*/
1669
1670#if EV_USE_EVENTFD
1671 if (evfd >= 0)
1672 close (evfd);
1673#endif
1674
1675 if (evpipe [0] >= 0)
1676 {
1677 EV_WIN32_CLOSE_FD (evpipe [0]);
1678 EV_WIN32_CLOSE_FD (evpipe [1]);
1679 }
1680 }
1681
1682#if EV_USE_SIGNALFD
1683 if (ev_is_active (&sigfd_w))
1684 close (sigfd);
1685#endif
1686
1687#if EV_USE_INOTIFY
1688 if (fs_fd >= 0)
1689 close (fs_fd);
1690#endif
1691
1692 if (backend_fd >= 0)
1693 close (backend_fd);
1694
1695#if EV_USE_PORT
1696 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1697#endif
1698#if EV_USE_KQUEUE
1699 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1700#endif
1701#if EV_USE_EPOLL
1702 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1703#endif
1704#if EV_USE_POLL
1705 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1706#endif
1707#if EV_USE_SELECT
1708 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1709#endif
1710
1711 for (i = NUMPRI; i--; )
1712 {
1713 array_free (pending, [i]);
1714#if EV_IDLE_ENABLE
1715 array_free (idle, [i]);
1716#endif
1717 }
1718
1719 ev_free (anfds); anfds = 0; anfdmax = 0;
1720
1721 /* have to use the microsoft-never-gets-it-right macro */
1722 array_free (rfeed, EMPTY);
1723 array_free (fdchange, EMPTY);
1724 array_free (timer, EMPTY);
1725#if EV_PERIODIC_ENABLE
1726 array_free (periodic, EMPTY);
1727#endif
1728#if EV_FORK_ENABLE
1729 array_free (fork, EMPTY);
1730#endif
1731 array_free (prepare, EMPTY);
1732 array_free (check, EMPTY);
1733#if EV_ASYNC_ENABLE
1734 array_free (async, EMPTY);
1735#endif
1736
1737 backend = 0;
1738}
1739
1740#if EV_USE_INOTIFY
1741inline_size void infy_fork (EV_P);
1742#endif
1743
1744inline_size void
1745loop_fork (EV_P)
1746{
1747#if EV_USE_PORT
1748 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1749#endif
1750#if EV_USE_KQUEUE
1751 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1752#endif
1753#if EV_USE_EPOLL
1754 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1755#endif
1756#if EV_USE_INOTIFY
1757 infy_fork (EV_A);
1758#endif
1759
1760 if (ev_is_active (&pipe_w))
1761 {
1762 /* this "locks" the handlers against writing to the pipe */
1763 /* while we modify the fd vars */
1764 sig_pending = 1;
1765#if EV_ASYNC_ENABLE
1766 async_pending = 1;
1767#endif
1768
1769 ev_ref (EV_A);
1770 ev_io_stop (EV_A_ &pipe_w);
1771
1772#if EV_USE_EVENTFD
1773 if (evfd >= 0)
1774 close (evfd);
1775#endif
1776
1777 if (evpipe [0] >= 0)
1778 {
1779 EV_WIN32_CLOSE_FD (evpipe [0]);
1780 EV_WIN32_CLOSE_FD (evpipe [1]);
1781 }
1782
1783 evpipe_init (EV_A);
1784 /* now iterate over everything, in case we missed something */
1785 pipecb (EV_A_ &pipe_w, EV_READ);
1786 }
1787
1788 postfork = 0;
1789}
1790
1791#if EV_MULTIPLICITY
1792
1793struct ev_loop *
1794ev_loop_new (unsigned int flags)
1795{
1796 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1797
1798 memset (EV_A, 0, sizeof (struct ev_loop));
1799 loop_init (EV_A_ flags);
1800
1801 if (ev_backend (EV_A))
1802 return EV_A;
1803
1804 return 0;
1805}
1806
1807void
1808ev_loop_destroy (EV_P)
1809{
1810 loop_destroy (EV_A);
1811 ev_free (loop);
1812}
1813
1814void
1815ev_loop_fork (EV_P)
1816{
1817 postfork = 1; /* must be in line with ev_default_fork */
1818}
1819#endif /* multiplicity */
1820
1821#if EV_VERIFY
1822static void noinline
1823verify_watcher (EV_P_ W w)
1824{
1825 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1826
1827 if (w->pending)
1828 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1829}
1830
1831static void noinline
1832verify_heap (EV_P_ ANHE *heap, int N)
1833{
1834 int i;
1835
1836 for (i = HEAP0; i < N + HEAP0; ++i)
1837 {
1838 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1839 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1840 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1841
1842 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1843 }
1844}
1845
1846static void noinline
1847array_verify (EV_P_ W *ws, int cnt)
1848{
1849 while (cnt--)
1850 {
1851 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1852 verify_watcher (EV_A_ ws [cnt]);
1853 }
1854}
1855#endif
1856
1857#if EV_MINIMAL < 2
1858void
1859ev_loop_verify (EV_P)
1860{
1861#if EV_VERIFY
1862 int i;
1863 WL w;
1864
1865 assert (activecnt >= -1);
1866
1867 assert (fdchangemax >= fdchangecnt);
1868 for (i = 0; i < fdchangecnt; ++i)
1869 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1870
1871 assert (anfdmax >= 0);
1872 for (i = 0; i < anfdmax; ++i)
1873 for (w = anfds [i].head; w; w = w->next)
775 { 1874 {
776 struct timespec ts; 1875 verify_watcher (EV_A_ (W)w);
777 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1876 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
778 have_monotonic = 1; 1877 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
779 } 1878 }
780#endif
781 1879
782 ev_rt_now = ev_time (); 1880 assert (timermax >= timercnt);
783 mn_now = get_clock (); 1881 verify_heap (EV_A_ timers, timercnt);
784 now_floor = mn_now;
785 rtmn_diff = ev_rt_now - mn_now;
786 1882
787 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1883#if EV_PERIODIC_ENABLE
788 flags = atoi (getenv ("LIBEV_FLAGS")); 1884 assert (periodicmax >= periodiccnt);
789 1885 verify_heap (EV_A_ periodics, periodiccnt);
790 if (!(flags & 0x0000ffff))
791 flags |= 0x0000ffff;
792
793 method = 0;
794#if EV_USE_PORT
795 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
796#endif
797#if EV_USE_KQUEUE
798 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
799#endif
800#if EV_USE_EPOLL
801 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
802#endif
803#if EV_USE_POLL
804 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
805#endif
806#if EV_USE_SELECT
807 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
808#endif
809
810 ev_init (&sigev, sigcb);
811 ev_set_priority (&sigev, EV_MAXPRI);
812 }
813}
814
815void
816loop_destroy (EV_P)
817{
818 int i;
819
820#if EV_USE_PORT
821 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
822#endif
823#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
825#endif
826#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
828#endif
829#if EV_USE_POLL
830 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
831#endif
832#if EV_USE_SELECT
833 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
834#endif 1886#endif
835 1887
836 for (i = NUMPRI; i--; ) 1888 for (i = NUMPRI; i--; )
837 array_free (pending, [i]); 1889 {
1890 assert (pendingmax [i] >= pendingcnt [i]);
1891#if EV_IDLE_ENABLE
1892 assert (idleall >= 0);
1893 assert (idlemax [i] >= idlecnt [i]);
1894 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1895#endif
1896 }
838 1897
839 /* have to use the microsoft-never-gets-it-right macro */ 1898#if EV_FORK_ENABLE
840 array_free (fdchange, EMPTY0); 1899 assert (forkmax >= forkcnt);
841 array_free (timer, EMPTY0); 1900 array_verify (EV_A_ (W *)forks, forkcnt);
842#if EV_PERIODICS 1901#endif
843 array_free (periodic, EMPTY0); 1902
1903#if EV_ASYNC_ENABLE
1904 assert (asyncmax >= asynccnt);
1905 array_verify (EV_A_ (W *)asyncs, asynccnt);
1906#endif
1907
1908 assert (preparemax >= preparecnt);
1909 array_verify (EV_A_ (W *)prepares, preparecnt);
1910
1911 assert (checkmax >= checkcnt);
1912 array_verify (EV_A_ (W *)checks, checkcnt);
1913
1914# if 0
1915 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1916 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
844#endif 1917# endif
845 array_free (idle, EMPTY0);
846 array_free (prepare, EMPTY0);
847 array_free (check, EMPTY0);
848
849 method = 0;
850}
851
852static void
853loop_fork (EV_P)
854{
855#if EV_USE_PORT
856 if (method == EVMETHOD_PORT ) port_fork (EV_A);
857#endif 1918#endif
858#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
860#endif
861#if EV_USE_EPOLL
862 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
863#endif
864
865 if (ev_is_active (&sigev))
866 {
867 /* default loop */
868
869 ev_ref (EV_A);
870 ev_io_stop (EV_A_ &sigev);
871 close (sigpipe [0]);
872 close (sigpipe [1]);
873
874 while (pipe (sigpipe))
875 syserr ("(libev) error creating pipe");
876
877 siginit (EV_A);
878 }
879
880 postfork = 0;
881} 1919}
1920#endif
882 1921
883#if EV_MULTIPLICITY 1922#if EV_MULTIPLICITY
884struct ev_loop * 1923struct ev_loop *
885ev_loop_new (unsigned int flags)
886{
887 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
888
889 memset (loop, 0, sizeof (struct ev_loop));
890
891 loop_init (EV_A_ flags);
892
893 if (ev_method (EV_A))
894 return loop;
895
896 return 0;
897}
898
899void
900ev_loop_destroy (EV_P)
901{
902 loop_destroy (EV_A);
903 ev_free (loop);
904}
905
906void
907ev_loop_fork (EV_P)
908{
909 postfork = 1;
910}
911
912#endif
913
914#if EV_MULTIPLICITY
915struct ev_loop *
916ev_default_loop_ (unsigned int flags) 1924ev_default_loop_init (unsigned int flags)
917#else 1925#else
918int 1926int
919ev_default_loop (unsigned int flags) 1927ev_default_loop (unsigned int flags)
920#endif 1928#endif
921{ 1929{
922 if (sigpipe [0] == sigpipe [1])
923 if (pipe (sigpipe))
924 return 0;
925
926 if (!ev_default_loop_ptr) 1930 if (!ev_default_loop_ptr)
927 { 1931 {
928#if EV_MULTIPLICITY 1932#if EV_MULTIPLICITY
929 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1933 EV_P = ev_default_loop_ptr = &default_loop_struct;
930#else 1934#else
931 ev_default_loop_ptr = 1; 1935 ev_default_loop_ptr = 1;
932#endif 1936#endif
933 1937
934 loop_init (EV_A_ flags); 1938 loop_init (EV_A_ flags);
935 1939
936 if (ev_method (EV_A)) 1940 if (ev_backend (EV_A))
937 { 1941 {
938 siginit (EV_A);
939
940#ifndef _WIN32 1942#ifndef _WIN32
941 ev_signal_init (&childev, childcb, SIGCHLD); 1943 ev_signal_init (&childev, childcb, SIGCHLD);
942 ev_set_priority (&childev, EV_MAXPRI); 1944 ev_set_priority (&childev, EV_MAXPRI);
943 ev_signal_start (EV_A_ &childev); 1945 ev_signal_start (EV_A_ &childev);
944 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1946 ev_unref (EV_A); /* child watcher should not keep loop alive */
953 1955
954void 1956void
955ev_default_destroy (void) 1957ev_default_destroy (void)
956{ 1958{
957#if EV_MULTIPLICITY 1959#if EV_MULTIPLICITY
958 struct ev_loop *loop = ev_default_loop_ptr; 1960 EV_P = ev_default_loop_ptr;
959#endif 1961#endif
1962
1963 ev_default_loop_ptr = 0;
960 1964
961#ifndef _WIN32 1965#ifndef _WIN32
962 ev_ref (EV_A); /* child watcher */ 1966 ev_ref (EV_A); /* child watcher */
963 ev_signal_stop (EV_A_ &childev); 1967 ev_signal_stop (EV_A_ &childev);
964#endif 1968#endif
965 1969
966 ev_ref (EV_A); /* signal watcher */
967 ev_io_stop (EV_A_ &sigev);
968
969 close (sigpipe [0]); sigpipe [0] = 0;
970 close (sigpipe [1]); sigpipe [1] = 0;
971
972 loop_destroy (EV_A); 1970 loop_destroy (EV_A);
973} 1971}
974 1972
975void 1973void
976ev_default_fork (void) 1974ev_default_fork (void)
977{ 1975{
978#if EV_MULTIPLICITY 1976#if EV_MULTIPLICITY
979 struct ev_loop *loop = ev_default_loop_ptr; 1977 EV_P = ev_default_loop_ptr;
980#endif 1978#endif
981 1979
982 if (method) 1980 postfork = 1; /* must be in line with ev_loop_fork */
983 postfork = 1;
984} 1981}
985 1982
986/*****************************************************************************/ 1983/*****************************************************************************/
987 1984
988static int 1985void
989any_pending (EV_P) 1986ev_invoke (EV_P_ void *w, int revents)
1987{
1988 EV_CB_INVOKE ((W)w, revents);
1989}
1990
1991unsigned int
1992ev_pending_count (EV_P)
990{ 1993{
991 int pri; 1994 int pri;
1995 unsigned int count = 0;
992 1996
993 for (pri = NUMPRI; pri--; ) 1997 for (pri = NUMPRI; pri--; )
994 if (pendingcnt [pri]) 1998 count += pendingcnt [pri];
995 return 1;
996 1999
997 return 0; 2000 return count;
998} 2001}
999 2002
1000static void 2003void noinline
1001call_pending (EV_P) 2004ev_invoke_pending (EV_P)
1002{ 2005{
1003 int pri; 2006 int pri;
1004 2007
1005 for (pri = NUMPRI; pri--; ) 2008 for (pri = NUMPRI; pri--; )
1006 while (pendingcnt [pri]) 2009 while (pendingcnt [pri])
1007 { 2010 {
1008 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2011 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1009 2012
1010 if (p->w) 2013 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1011 { 2014 /* ^ this is no longer true, as pending_w could be here */
2015
1012 p->w->pending = 0; 2016 p->w->pending = 0;
1013 EV_CB_INVOKE (p->w, p->events); 2017 EV_CB_INVOKE (p->w, p->events);
1014 } 2018 EV_FREQUENT_CHECK;
1015 } 2019 }
1016} 2020}
1017 2021
1018static void 2022#if EV_IDLE_ENABLE
2023/* make idle watchers pending. this handles the "call-idle */
2024/* only when higher priorities are idle" logic */
2025inline_size void
2026idle_reify (EV_P)
2027{
2028 if (expect_false (idleall))
2029 {
2030 int pri;
2031
2032 for (pri = NUMPRI; pri--; )
2033 {
2034 if (pendingcnt [pri])
2035 break;
2036
2037 if (idlecnt [pri])
2038 {
2039 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2040 break;
2041 }
2042 }
2043 }
2044}
2045#endif
2046
2047/* make timers pending */
2048inline_size void
1019timers_reify (EV_P) 2049timers_reify (EV_P)
1020{ 2050{
2051 EV_FREQUENT_CHECK;
2052
1021 while (timercnt && ((WT)timers [0])->at <= mn_now) 2053 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1022 { 2054 {
1023 struct ev_timer *w = timers [0]; 2055 do
1024
1025 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1026
1027 /* first reschedule or stop timer */
1028 if (w->repeat)
1029 { 2056 {
2057 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2058
2059 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2060
2061 /* first reschedule or stop timer */
2062 if (w->repeat)
2063 {
2064 ev_at (w) += w->repeat;
2065 if (ev_at (w) < mn_now)
2066 ev_at (w) = mn_now;
2067
1030 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2068 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1031 2069
1032 ((WT)w)->at += w->repeat; 2070 ANHE_at_cache (timers [HEAP0]);
1033 if (((WT)w)->at < mn_now)
1034 ((WT)w)->at = mn_now;
1035
1036 downheap ((WT *)timers, timercnt, 0); 2071 downheap (timers, timercnt, HEAP0);
2072 }
2073 else
2074 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2075
2076 EV_FREQUENT_CHECK;
2077 feed_reverse (EV_A_ (W)w);
1037 } 2078 }
1038 else 2079 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1039 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1040 2080
1041 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2081 feed_reverse_done (EV_A_ EV_TIMEOUT);
1042 } 2082 }
1043} 2083}
1044 2084
1045#if EV_PERIODICS 2085#if EV_PERIODIC_ENABLE
1046static void 2086/* make periodics pending */
2087inline_size void
1047periodics_reify (EV_P) 2088periodics_reify (EV_P)
1048{ 2089{
2090 EV_FREQUENT_CHECK;
2091
1049 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2092 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1050 { 2093 {
1051 struct ev_periodic *w = periodics [0]; 2094 int feed_count = 0;
1052 2095
2096 do
2097 {
2098 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2099
1053 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2100 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1054 2101
1055 /* first reschedule or stop timer */ 2102 /* first reschedule or stop timer */
2103 if (w->reschedule_cb)
2104 {
2105 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2106
2107 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2108
2109 ANHE_at_cache (periodics [HEAP0]);
2110 downheap (periodics, periodiccnt, HEAP0);
2111 }
2112 else if (w->interval)
2113 {
2114 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2115 /* if next trigger time is not sufficiently in the future, put it there */
2116 /* this might happen because of floating point inexactness */
2117 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2118 {
2119 ev_at (w) += w->interval;
2120
2121 /* if interval is unreasonably low we might still have a time in the past */
2122 /* so correct this. this will make the periodic very inexact, but the user */
2123 /* has effectively asked to get triggered more often than possible */
2124 if (ev_at (w) < ev_rt_now)
2125 ev_at (w) = ev_rt_now;
2126 }
2127
2128 ANHE_at_cache (periodics [HEAP0]);
2129 downheap (periodics, periodiccnt, HEAP0);
2130 }
2131 else
2132 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2133
2134 EV_FREQUENT_CHECK;
2135 feed_reverse (EV_A_ (W)w);
2136 }
2137 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2138
2139 feed_reverse_done (EV_A_ EV_PERIODIC);
2140 }
2141}
2142
2143/* simply recalculate all periodics */
2144/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2145static void noinline
2146periodics_reschedule (EV_P)
2147{
2148 int i;
2149
2150 /* adjust periodics after time jump */
2151 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2152 {
2153 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2154
1056 if (w->reschedule_cb) 2155 if (w->reschedule_cb)
2156 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2157 else if (w->interval)
2158 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2159
2160 ANHE_at_cache (periodics [i]);
2161 }
2162
2163 reheap (periodics, periodiccnt);
2164}
2165#endif
2166
2167/* adjust all timers by a given offset */
2168static void noinline
2169timers_reschedule (EV_P_ ev_tstamp adjust)
2170{
2171 int i;
2172
2173 for (i = 0; i < timercnt; ++i)
2174 {
2175 ANHE *he = timers + i + HEAP0;
2176 ANHE_w (*he)->at += adjust;
2177 ANHE_at_cache (*he);
2178 }
2179}
2180
2181/* fetch new monotonic and realtime times from the kernel */
2182/* also detect if there was a timejump, and act accordingly */
2183inline_speed void
2184time_update (EV_P_ ev_tstamp max_block)
2185{
2186#if EV_USE_MONOTONIC
2187 if (expect_true (have_monotonic))
2188 {
2189 int i;
2190 ev_tstamp odiff = rtmn_diff;
2191
2192 mn_now = get_clock ();
2193
2194 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2195 /* interpolate in the meantime */
2196 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1057 { 2197 {
1058 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2198 ev_rt_now = rtmn_diff + mn_now;
1059 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2199 return;
1060 downheap ((WT *)periodics, periodiccnt, 0);
1061 } 2200 }
1062 else if (w->interval)
1063 {
1064 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1065 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1066 downheap ((WT *)periodics, periodiccnt, 0);
1067 }
1068 else
1069 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1070 2201
1071 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1072 }
1073}
1074
1075static void
1076periodics_reschedule (EV_P)
1077{
1078 int i;
1079
1080 /* adjust periodics after time jump */
1081 for (i = 0; i < periodiccnt; ++i)
1082 {
1083 struct ev_periodic *w = periodics [i];
1084
1085 if (w->reschedule_cb)
1086 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1087 else if (w->interval)
1088 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1089 }
1090
1091 /* now rebuild the heap */
1092 for (i = periodiccnt >> 1; i--; )
1093 downheap ((WT *)periodics, periodiccnt, i);
1094}
1095#endif
1096
1097inline int
1098time_update_monotonic (EV_P)
1099{
1100 mn_now = get_clock ();
1101
1102 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1103 {
1104 ev_rt_now = rtmn_diff + mn_now;
1105 return 0;
1106 }
1107 else
1108 {
1109 now_floor = mn_now; 2202 now_floor = mn_now;
1110 ev_rt_now = ev_time (); 2203 ev_rt_now = ev_time ();
1111 return 1;
1112 }
1113}
1114 2204
1115static void 2205 /* loop a few times, before making important decisions.
1116time_update (EV_P) 2206 * on the choice of "4": one iteration isn't enough,
1117{ 2207 * in case we get preempted during the calls to
1118 int i; 2208 * ev_time and get_clock. a second call is almost guaranteed
1119 2209 * to succeed in that case, though. and looping a few more times
1120#if EV_USE_MONOTONIC 2210 * doesn't hurt either as we only do this on time-jumps or
1121 if (expect_true (have_monotonic)) 2211 * in the unlikely event of having been preempted here.
1122 { 2212 */
1123 if (time_update_monotonic (EV_A)) 2213 for (i = 4; --i; )
1124 { 2214 {
1125 ev_tstamp odiff = rtmn_diff;
1126
1127 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1128 {
1129 rtmn_diff = ev_rt_now - mn_now; 2215 rtmn_diff = ev_rt_now - mn_now;
1130 2216
1131 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2217 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1132 return; /* all is well */ 2218 return; /* all is well */
1133 2219
1134 ev_rt_now = ev_time (); 2220 ev_rt_now = ev_time ();
1135 mn_now = get_clock (); 2221 mn_now = get_clock ();
1136 now_floor = mn_now; 2222 now_floor = mn_now;
1137 } 2223 }
1138 2224
2225 /* no timer adjustment, as the monotonic clock doesn't jump */
2226 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1139# if EV_PERIODICS 2227# if EV_PERIODIC_ENABLE
2228 periodics_reschedule (EV_A);
2229# endif
2230 }
2231 else
2232#endif
2233 {
2234 ev_rt_now = ev_time ();
2235
2236 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2237 {
2238 /* adjust timers. this is easy, as the offset is the same for all of them */
2239 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2240#if EV_PERIODIC_ENABLE
1140 periodics_reschedule (EV_A); 2241 periodics_reschedule (EV_A);
1141# endif 2242#endif
1142 /* no timer adjustment, as the monotonic clock doesn't jump */
1143 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1144 } 2243 }
1145 }
1146 else
1147#endif
1148 {
1149 ev_rt_now = ev_time ();
1150
1151 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1152 {
1153#if EV_PERIODICS
1154 periodics_reschedule (EV_A);
1155#endif
1156
1157 /* adjust timers. this is easy, as the offset is the same for all */
1158 for (i = 0; i < timercnt; ++i)
1159 ((WT)timers [i])->at += ev_rt_now - mn_now;
1160 }
1161 2244
1162 mn_now = ev_rt_now; 2245 mn_now = ev_rt_now;
1163 } 2246 }
1164} 2247}
1165 2248
1166void 2249void
1167ev_ref (EV_P)
1168{
1169 ++activecnt;
1170}
1171
1172void
1173ev_unref (EV_P)
1174{
1175 --activecnt;
1176}
1177
1178static int loop_done;
1179
1180void
1181ev_loop (EV_P_ int flags) 2250ev_loop (EV_P_ int flags)
1182{ 2251{
1183 double block; 2252#if EV_MINIMAL < 2
1184 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2253 ++loop_depth;
2254#endif
1185 2255
1186 while (activecnt) 2256 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2257
2258 loop_done = EVUNLOOP_CANCEL;
2259
2260 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2261
2262 do
1187 { 2263 {
2264#if EV_VERIFY >= 2
2265 ev_loop_verify (EV_A);
2266#endif
2267
2268#ifndef _WIN32
2269 if (expect_false (curpid)) /* penalise the forking check even more */
2270 if (expect_false (getpid () != curpid))
2271 {
2272 curpid = getpid ();
2273 postfork = 1;
2274 }
2275#endif
2276
2277#if EV_FORK_ENABLE
2278 /* we might have forked, so queue fork handlers */
2279 if (expect_false (postfork))
2280 if (forkcnt)
2281 {
2282 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2283 EV_INVOKE_PENDING;
2284 }
2285#endif
2286
1188 /* queue check watchers (and execute them) */ 2287 /* queue prepare watchers (and execute them) */
1189 if (expect_false (preparecnt)) 2288 if (expect_false (preparecnt))
1190 { 2289 {
1191 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2290 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1192 call_pending (EV_A); 2291 EV_INVOKE_PENDING;
1193 } 2292 }
2293
2294 if (expect_false (loop_done))
2295 break;
1194 2296
1195 /* we might have forked, so reify kernel state if necessary */ 2297 /* we might have forked, so reify kernel state if necessary */
1196 if (expect_false (postfork)) 2298 if (expect_false (postfork))
1197 loop_fork (EV_A); 2299 loop_fork (EV_A);
1198 2300
1199 /* update fd-related kernel structures */ 2301 /* update fd-related kernel structures */
1200 fd_reify (EV_A); 2302 fd_reify (EV_A);
1201 2303
1202 /* calculate blocking time */ 2304 /* calculate blocking time */
2305 {
2306 ev_tstamp waittime = 0.;
2307 ev_tstamp sleeptime = 0.;
1203 2308
1204 /* we only need this for !monotonic clock or timers, but as we basically 2309 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1205 always have timers, we just calculate it always */
1206#if EV_USE_MONOTONIC
1207 if (expect_true (have_monotonic))
1208 time_update_monotonic (EV_A);
1209 else
1210#endif
1211 { 2310 {
1212 ev_rt_now = ev_time (); 2311 /* remember old timestamp for io_blocktime calculation */
1213 mn_now = ev_rt_now; 2312 ev_tstamp prev_mn_now = mn_now;
1214 }
1215 2313
1216 if (flags & EVLOOP_NONBLOCK || idlecnt) 2314 /* update time to cancel out callback processing overhead */
1217 block = 0.; 2315 time_update (EV_A_ 1e100);
1218 else 2316
1219 {
1220 block = MAX_BLOCKTIME; 2317 waittime = MAX_BLOCKTIME;
1221 2318
1222 if (timercnt) 2319 if (timercnt)
1223 { 2320 {
1224 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2321 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1225 if (block > to) block = to; 2322 if (waittime > to) waittime = to;
1226 } 2323 }
1227 2324
1228#if EV_PERIODICS 2325#if EV_PERIODIC_ENABLE
1229 if (periodiccnt) 2326 if (periodiccnt)
1230 { 2327 {
1231 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2328 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1232 if (block > to) block = to; 2329 if (waittime > to) waittime = to;
1233 } 2330 }
1234#endif 2331#endif
1235 2332
1236 if (block < 0.) block = 0.; 2333 /* don't let timeouts decrease the waittime below timeout_blocktime */
2334 if (expect_false (waittime < timeout_blocktime))
2335 waittime = timeout_blocktime;
2336
2337 /* extra check because io_blocktime is commonly 0 */
2338 if (expect_false (io_blocktime))
2339 {
2340 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2341
2342 if (sleeptime > waittime - backend_fudge)
2343 sleeptime = waittime - backend_fudge;
2344
2345 if (expect_true (sleeptime > 0.))
2346 {
2347 ev_sleep (sleeptime);
2348 waittime -= sleeptime;
2349 }
2350 }
1237 } 2351 }
1238 2352
1239 method_poll (EV_A_ block); 2353#if EV_MINIMAL < 2
2354 ++loop_count;
2355#endif
2356 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2357 backend_poll (EV_A_ waittime);
2358 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1240 2359
1241 /* update ev_rt_now, do magic */ 2360 /* update ev_rt_now, do magic */
1242 time_update (EV_A); 2361 time_update (EV_A_ waittime + sleeptime);
2362 }
1243 2363
1244 /* queue pending timers and reschedule them */ 2364 /* queue pending timers and reschedule them */
1245 timers_reify (EV_A); /* relative timers called last */ 2365 timers_reify (EV_A); /* relative timers called last */
1246#if EV_PERIODICS 2366#if EV_PERIODIC_ENABLE
1247 periodics_reify (EV_A); /* absolute timers called first */ 2367 periodics_reify (EV_A); /* absolute timers called first */
1248#endif 2368#endif
1249 2369
2370#if EV_IDLE_ENABLE
1250 /* queue idle watchers unless io or timers are pending */ 2371 /* queue idle watchers unless other events are pending */
1251 if (idlecnt && !any_pending (EV_A)) 2372 idle_reify (EV_A);
1252 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2373#endif
1253 2374
1254 /* queue check watchers, to be executed first */ 2375 /* queue check watchers, to be executed first */
1255 if (checkcnt) 2376 if (expect_false (checkcnt))
1256 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2377 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1257 2378
1258 call_pending (EV_A); 2379 EV_INVOKE_PENDING;
1259
1260 if (loop_done)
1261 break;
1262 } 2380 }
2381 while (expect_true (
2382 activecnt
2383 && !loop_done
2384 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2385 ));
1263 2386
1264 if (loop_done != 2) 2387 if (loop_done == EVUNLOOP_ONE)
1265 loop_done = 0; 2388 loop_done = EVUNLOOP_CANCEL;
2389
2390#if EV_MINIMAL < 2
2391 --loop_depth;
2392#endif
1266} 2393}
1267 2394
1268void 2395void
1269ev_unloop (EV_P_ int how) 2396ev_unloop (EV_P_ int how)
1270{ 2397{
1271 loop_done = how; 2398 loop_done = how;
1272} 2399}
1273 2400
2401void
2402ev_ref (EV_P)
2403{
2404 ++activecnt;
2405}
2406
2407void
2408ev_unref (EV_P)
2409{
2410 --activecnt;
2411}
2412
2413void
2414ev_now_update (EV_P)
2415{
2416 time_update (EV_A_ 1e100);
2417}
2418
2419void
2420ev_suspend (EV_P)
2421{
2422 ev_now_update (EV_A);
2423}
2424
2425void
2426ev_resume (EV_P)
2427{
2428 ev_tstamp mn_prev = mn_now;
2429
2430 ev_now_update (EV_A);
2431 timers_reschedule (EV_A_ mn_now - mn_prev);
2432#if EV_PERIODIC_ENABLE
2433 /* TODO: really do this? */
2434 periodics_reschedule (EV_A);
2435#endif
2436}
2437
1274/*****************************************************************************/ 2438/*****************************************************************************/
2439/* singly-linked list management, used when the expected list length is short */
1275 2440
1276inline void 2441inline_size void
1277wlist_add (WL *head, WL elem) 2442wlist_add (WL *head, WL elem)
1278{ 2443{
1279 elem->next = *head; 2444 elem->next = *head;
1280 *head = elem; 2445 *head = elem;
1281} 2446}
1282 2447
1283inline void 2448inline_size void
1284wlist_del (WL *head, WL elem) 2449wlist_del (WL *head, WL elem)
1285{ 2450{
1286 while (*head) 2451 while (*head)
1287 { 2452 {
1288 if (*head == elem) 2453 if (expect_true (*head == elem))
1289 { 2454 {
1290 *head = elem->next; 2455 *head = elem->next;
1291 return; 2456 break;
1292 } 2457 }
1293 2458
1294 head = &(*head)->next; 2459 head = &(*head)->next;
1295 } 2460 }
1296} 2461}
1297 2462
2463/* internal, faster, version of ev_clear_pending */
1298inline void 2464inline_speed void
1299ev_clear_pending (EV_P_ W w) 2465clear_pending (EV_P_ W w)
1300{ 2466{
1301 if (w->pending) 2467 if (w->pending)
1302 { 2468 {
1303 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2469 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1304 w->pending = 0; 2470 w->pending = 0;
1305 } 2471 }
1306} 2472}
1307 2473
2474int
2475ev_clear_pending (EV_P_ void *w)
2476{
2477 W w_ = (W)w;
2478 int pending = w_->pending;
2479
2480 if (expect_true (pending))
2481 {
2482 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2483 p->w = (W)&pending_w;
2484 w_->pending = 0;
2485 return p->events;
2486 }
2487 else
2488 return 0;
2489}
2490
1308inline void 2491inline_size void
2492pri_adjust (EV_P_ W w)
2493{
2494 int pri = ev_priority (w);
2495 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2496 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2497 ev_set_priority (w, pri);
2498}
2499
2500inline_speed void
1309ev_start (EV_P_ W w, int active) 2501ev_start (EV_P_ W w, int active)
1310{ 2502{
1311 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2503 pri_adjust (EV_A_ w);
1312 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1313
1314 w->active = active; 2504 w->active = active;
1315 ev_ref (EV_A); 2505 ev_ref (EV_A);
1316} 2506}
1317 2507
1318inline void 2508inline_size void
1319ev_stop (EV_P_ W w) 2509ev_stop (EV_P_ W w)
1320{ 2510{
1321 ev_unref (EV_A); 2511 ev_unref (EV_A);
1322 w->active = 0; 2512 w->active = 0;
1323} 2513}
1324 2514
1325/*****************************************************************************/ 2515/*****************************************************************************/
1326 2516
1327void 2517void noinline
1328ev_io_start (EV_P_ struct ev_io *w) 2518ev_io_start (EV_P_ ev_io *w)
1329{ 2519{
1330 int fd = w->fd; 2520 int fd = w->fd;
1331 2521
1332 if (ev_is_active (w)) 2522 if (expect_false (ev_is_active (w)))
1333 return; 2523 return;
1334 2524
1335 assert (("ev_io_start called with negative fd", fd >= 0)); 2525 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2526 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2527
2528 EV_FREQUENT_CHECK;
1336 2529
1337 ev_start (EV_A_ (W)w, 1); 2530 ev_start (EV_A_ (W)w, 1);
1338 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2531 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1339 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2532 wlist_add (&anfds[fd].head, (WL)w);
1340 2533
1341 fd_change (EV_A_ fd); 2534 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1342} 2535 w->events &= ~EV__IOFDSET;
1343 2536
1344void 2537 EV_FREQUENT_CHECK;
2538}
2539
2540void noinline
1345ev_io_stop (EV_P_ struct ev_io *w) 2541ev_io_stop (EV_P_ ev_io *w)
1346{ 2542{
1347 ev_clear_pending (EV_A_ (W)w); 2543 clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 2544 if (expect_false (!ev_is_active (w)))
1349 return; 2545 return;
1350 2546
1351 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2547 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1352 2548
2549 EV_FREQUENT_CHECK;
2550
1353 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2551 wlist_del (&anfds[w->fd].head, (WL)w);
1354 ev_stop (EV_A_ (W)w); 2552 ev_stop (EV_A_ (W)w);
1355 2553
1356 fd_change (EV_A_ w->fd); 2554 fd_change (EV_A_ w->fd, 1);
1357}
1358 2555
1359void 2556 EV_FREQUENT_CHECK;
2557}
2558
2559void noinline
1360ev_timer_start (EV_P_ struct ev_timer *w) 2560ev_timer_start (EV_P_ ev_timer *w)
1361{ 2561{
1362 if (ev_is_active (w)) 2562 if (expect_false (ev_is_active (w)))
1363 return; 2563 return;
1364 2564
1365 ((WT)w)->at += mn_now; 2565 ev_at (w) += mn_now;
1366 2566
1367 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2567 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1368 2568
2569 EV_FREQUENT_CHECK;
2570
2571 ++timercnt;
1369 ev_start (EV_A_ (W)w, ++timercnt); 2572 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1370 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2573 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1371 timers [timercnt - 1] = w; 2574 ANHE_w (timers [ev_active (w)]) = (WT)w;
1372 upheap ((WT *)timers, timercnt - 1); 2575 ANHE_at_cache (timers [ev_active (w)]);
2576 upheap (timers, ev_active (w));
1373 2577
2578 EV_FREQUENT_CHECK;
2579
1374 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2580 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1375} 2581}
1376 2582
1377void 2583void noinline
1378ev_timer_stop (EV_P_ struct ev_timer *w) 2584ev_timer_stop (EV_P_ ev_timer *w)
1379{ 2585{
1380 ev_clear_pending (EV_A_ (W)w); 2586 clear_pending (EV_A_ (W)w);
1381 if (!ev_is_active (w)) 2587 if (expect_false (!ev_is_active (w)))
1382 return; 2588 return;
1383 2589
2590 EV_FREQUENT_CHECK;
2591
2592 {
2593 int active = ev_active (w);
2594
1384 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2595 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1385 2596
1386 if (((W)w)->active < timercnt--) 2597 --timercnt;
2598
2599 if (expect_true (active < timercnt + HEAP0))
1387 { 2600 {
1388 timers [((W)w)->active - 1] = timers [timercnt]; 2601 timers [active] = timers [timercnt + HEAP0];
1389 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2602 adjustheap (timers, timercnt, active);
1390 } 2603 }
2604 }
1391 2605
1392 ((WT)w)->at -= mn_now; 2606 ev_at (w) -= mn_now;
1393 2607
1394 ev_stop (EV_A_ (W)w); 2608 ev_stop (EV_A_ (W)w);
1395}
1396 2609
1397void 2610 EV_FREQUENT_CHECK;
2611}
2612
2613void noinline
1398ev_timer_again (EV_P_ struct ev_timer *w) 2614ev_timer_again (EV_P_ ev_timer *w)
1399{ 2615{
2616 EV_FREQUENT_CHECK;
2617
1400 if (ev_is_active (w)) 2618 if (ev_is_active (w))
1401 { 2619 {
1402 if (w->repeat) 2620 if (w->repeat)
1403 { 2621 {
1404 ((WT)w)->at = mn_now + w->repeat; 2622 ev_at (w) = mn_now + w->repeat;
2623 ANHE_at_cache (timers [ev_active (w)]);
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2624 adjustheap (timers, timercnt, ev_active (w));
1406 } 2625 }
1407 else 2626 else
1408 ev_timer_stop (EV_A_ w); 2627 ev_timer_stop (EV_A_ w);
1409 } 2628 }
1410 else if (w->repeat) 2629 else if (w->repeat)
1411 { 2630 {
1412 w->at = w->repeat; 2631 ev_at (w) = w->repeat;
1413 ev_timer_start (EV_A_ w); 2632 ev_timer_start (EV_A_ w);
1414 } 2633 }
1415}
1416 2634
2635 EV_FREQUENT_CHECK;
2636}
2637
2638ev_tstamp
2639ev_timer_remaining (EV_P_ ev_timer *w)
2640{
2641 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2642}
2643
1417#if EV_PERIODICS 2644#if EV_PERIODIC_ENABLE
1418void 2645void noinline
1419ev_periodic_start (EV_P_ struct ev_periodic *w) 2646ev_periodic_start (EV_P_ ev_periodic *w)
1420{ 2647{
1421 if (ev_is_active (w)) 2648 if (expect_false (ev_is_active (w)))
1422 return; 2649 return;
1423 2650
1424 if (w->reschedule_cb) 2651 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2652 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval) 2653 else if (w->interval)
1427 { 2654 {
1428 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2655 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1429 /* this formula differs from the one in periodic_reify because we do not always round up */ 2656 /* this formula differs from the one in periodic_reify because we do not always round up */
1430 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 } 2658 }
2659 else
2660 ev_at (w) = w->offset;
1432 2661
2662 EV_FREQUENT_CHECK;
2663
2664 ++periodiccnt;
1433 ev_start (EV_A_ (W)w, ++periodiccnt); 2665 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1434 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2666 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1435 periodics [periodiccnt - 1] = w; 2667 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1436 upheap ((WT *)periodics, periodiccnt - 1); 2668 ANHE_at_cache (periodics [ev_active (w)]);
2669 upheap (periodics, ev_active (w));
1437 2670
2671 EV_FREQUENT_CHECK;
2672
1438 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2673 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1439} 2674}
1440 2675
1441void 2676void noinline
1442ev_periodic_stop (EV_P_ struct ev_periodic *w) 2677ev_periodic_stop (EV_P_ ev_periodic *w)
1443{ 2678{
1444 ev_clear_pending (EV_A_ (W)w); 2679 clear_pending (EV_A_ (W)w);
1445 if (!ev_is_active (w)) 2680 if (expect_false (!ev_is_active (w)))
1446 return; 2681 return;
1447 2682
2683 EV_FREQUENT_CHECK;
2684
2685 {
2686 int active = ev_active (w);
2687
1448 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2688 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1449 2689
1450 if (((W)w)->active < periodiccnt--) 2690 --periodiccnt;
2691
2692 if (expect_true (active < periodiccnt + HEAP0))
1451 { 2693 {
1452 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2694 periodics [active] = periodics [periodiccnt + HEAP0];
1453 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2695 adjustheap (periodics, periodiccnt, active);
1454 } 2696 }
2697 }
1455 2698
1456 ev_stop (EV_A_ (W)w); 2699 ev_stop (EV_A_ (W)w);
1457}
1458 2700
1459void 2701 EV_FREQUENT_CHECK;
2702}
2703
2704void noinline
1460ev_periodic_again (EV_P_ struct ev_periodic *w) 2705ev_periodic_again (EV_P_ ev_periodic *w)
1461{ 2706{
1462 /* TODO: use adjustheap and recalculation */ 2707 /* TODO: use adjustheap and recalculation */
1463 ev_periodic_stop (EV_A_ w); 2708 ev_periodic_stop (EV_A_ w);
1464 ev_periodic_start (EV_A_ w); 2709 ev_periodic_start (EV_A_ w);
1465} 2710}
1466#endif 2711#endif
1467 2712
1468void
1469ev_idle_start (EV_P_ struct ev_idle *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++idlecnt);
1475 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1476 idles [idlecnt - 1] = w;
1477}
1478
1479void
1480ev_idle_stop (EV_P_ struct ev_idle *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 idles [((W)w)->active - 1] = idles [--idlecnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490void
1491ev_prepare_start (EV_P_ struct ev_prepare *w)
1492{
1493 if (ev_is_active (w))
1494 return;
1495
1496 ev_start (EV_A_ (W)w, ++preparecnt);
1497 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1498 prepares [preparecnt - 1] = w;
1499}
1500
1501void
1502ev_prepare_stop (EV_P_ struct ev_prepare *w)
1503{
1504 ev_clear_pending (EV_A_ (W)w);
1505 if (!ev_is_active (w))
1506 return;
1507
1508 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1509 ev_stop (EV_A_ (W)w);
1510}
1511
1512void
1513ev_check_start (EV_P_ struct ev_check *w)
1514{
1515 if (ev_is_active (w))
1516 return;
1517
1518 ev_start (EV_A_ (W)w, ++checkcnt);
1519 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1520 checks [checkcnt - 1] = w;
1521}
1522
1523void
1524ev_check_stop (EV_P_ struct ev_check *w)
1525{
1526 ev_clear_pending (EV_A_ (W)w);
1527 if (!ev_is_active (w))
1528 return;
1529
1530 checks [((W)w)->active - 1] = checks [--checkcnt];
1531 ev_stop (EV_A_ (W)w);
1532}
1533
1534#ifndef SA_RESTART 2713#ifndef SA_RESTART
1535# define SA_RESTART 0 2714# define SA_RESTART 0
1536#endif 2715#endif
1537 2716
1538void 2717void noinline
1539ev_signal_start (EV_P_ struct ev_signal *w) 2718ev_signal_start (EV_P_ ev_signal *w)
1540{ 2719{
2720 if (expect_false (ev_is_active (w)))
2721 return;
2722
2723 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2724
1541#if EV_MULTIPLICITY 2725#if EV_MULTIPLICITY
1542 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2726 assert (("libev: a signal must not be attached to two different loops",
2727 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2728
2729 signals [w->signum - 1].loop = EV_A;
2730#endif
2731
2732 EV_FREQUENT_CHECK;
2733
2734#if EV_USE_SIGNALFD
2735 if (sigfd == -2)
2736 {
2737 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2738 if (sigfd < 0 && errno == EINVAL)
2739 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2740
2741 if (sigfd >= 0)
2742 {
2743 fd_intern (sigfd); /* doing it twice will not hurt */
2744
2745 sigemptyset (&sigfd_set);
2746
2747 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2748 ev_set_priority (&sigfd_w, EV_MAXPRI);
2749 ev_io_start (EV_A_ &sigfd_w);
2750 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2751 }
2752 }
2753
2754 if (sigfd >= 0)
2755 {
2756 /* TODO: check .head */
2757 sigaddset (&sigfd_set, w->signum);
2758 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2759
2760 signalfd (sigfd, &sigfd_set, 0);
2761 }
2762#endif
2763
2764 ev_start (EV_A_ (W)w, 1);
2765 wlist_add (&signals [w->signum - 1].head, (WL)w);
2766
2767 if (!((WL)w)->next)
2768# if EV_USE_SIGNALFD
2769 if (sigfd < 0) /*TODO*/
1543#endif 2770# endif
1544 if (ev_is_active (w)) 2771 {
2772# ifdef _WIN32
2773 evpipe_init (EV_A);
2774
2775 signal (w->signum, ev_sighandler);
2776# else
2777 struct sigaction sa;
2778
2779 evpipe_init (EV_A);
2780
2781 sa.sa_handler = ev_sighandler;
2782 sigfillset (&sa.sa_mask);
2783 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2784 sigaction (w->signum, &sa, 0);
2785
2786 sigemptyset (&sa.sa_mask);
2787 sigaddset (&sa.sa_mask, w->signum);
2788 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2789#endif
2790 }
2791
2792 EV_FREQUENT_CHECK;
2793}
2794
2795void noinline
2796ev_signal_stop (EV_P_ ev_signal *w)
2797{
2798 clear_pending (EV_A_ (W)w);
2799 if (expect_false (!ev_is_active (w)))
1545 return; 2800 return;
1546 2801
1547 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2802 EV_FREQUENT_CHECK;
2803
2804 wlist_del (&signals [w->signum - 1].head, (WL)w);
2805 ev_stop (EV_A_ (W)w);
2806
2807 if (!signals [w->signum - 1].head)
2808 {
2809#if EV_MULTIPLICITY
2810 signals [w->signum - 1].loop = 0; /* unattach from signal */
2811#endif
2812#if EV_USE_SIGNALFD
2813 if (sigfd >= 0)
2814 {
2815 sigset_t ss;
2816
2817 sigemptyset (&ss);
2818 sigaddset (&ss, w->signum);
2819 sigdelset (&sigfd_set, w->signum);
2820
2821 signalfd (sigfd, &sigfd_set, 0);
2822 sigprocmask (SIG_UNBLOCK, &ss, 0);
2823 }
2824 else
2825#endif
2826 signal (w->signum, SIG_DFL);
2827 }
2828
2829 EV_FREQUENT_CHECK;
2830}
2831
2832void
2833ev_child_start (EV_P_ ev_child *w)
2834{
2835#if EV_MULTIPLICITY
2836 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2837#endif
2838 if (expect_false (ev_is_active (w)))
2839 return;
2840
2841 EV_FREQUENT_CHECK;
1548 2842
1549 ev_start (EV_A_ (W)w, 1); 2843 ev_start (EV_A_ (W)w, 1);
1550 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2844 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1551 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1552 2845
1553 if (!((WL)w)->next) 2846 EV_FREQUENT_CHECK;
2847}
2848
2849void
2850ev_child_stop (EV_P_ ev_child *w)
2851{
2852 clear_pending (EV_A_ (W)w);
2853 if (expect_false (!ev_is_active (w)))
2854 return;
2855
2856 EV_FREQUENT_CHECK;
2857
2858 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2859 ev_stop (EV_A_ (W)w);
2860
2861 EV_FREQUENT_CHECK;
2862}
2863
2864#if EV_STAT_ENABLE
2865
2866# ifdef _WIN32
2867# undef lstat
2868# define lstat(a,b) _stati64 (a,b)
2869# endif
2870
2871#define DEF_STAT_INTERVAL 5.0074891
2872#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2873#define MIN_STAT_INTERVAL 0.1074891
2874
2875static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2876
2877#if EV_USE_INOTIFY
2878
2879/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2880# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2881
2882static void noinline
2883infy_add (EV_P_ ev_stat *w)
2884{
2885 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2886
2887 if (w->wd >= 0)
2888 {
2889 struct statfs sfs;
2890
2891 /* now local changes will be tracked by inotify, but remote changes won't */
2892 /* unless the filesystem is known to be local, we therefore still poll */
2893 /* also do poll on <2.6.25, but with normal frequency */
2894
2895 if (!fs_2625)
2896 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2897 else if (!statfs (w->path, &sfs)
2898 && (sfs.f_type == 0x1373 /* devfs */
2899 || sfs.f_type == 0xEF53 /* ext2/3 */
2900 || sfs.f_type == 0x3153464a /* jfs */
2901 || sfs.f_type == 0x52654973 /* reiser3 */
2902 || sfs.f_type == 0x01021994 /* tempfs */
2903 || sfs.f_type == 0x58465342 /* xfs */))
2904 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2905 else
2906 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1554 { 2907 }
2908 else
2909 {
2910 /* can't use inotify, continue to stat */
2911 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2912
2913 /* if path is not there, monitor some parent directory for speedup hints */
2914 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2915 /* but an efficiency issue only */
2916 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2917 {
2918 char path [4096];
2919 strcpy (path, w->path);
2920
2921 do
2922 {
2923 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2924 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2925
2926 char *pend = strrchr (path, '/');
2927
2928 if (!pend || pend == path)
2929 break;
2930
2931 *pend = 0;
2932 w->wd = inotify_add_watch (fs_fd, path, mask);
2933 }
2934 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2935 }
2936 }
2937
2938 if (w->wd >= 0)
2939 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2940
2941 /* now re-arm timer, if required */
2942 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2943 ev_timer_again (EV_A_ &w->timer);
2944 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2945}
2946
2947static void noinline
2948infy_del (EV_P_ ev_stat *w)
2949{
2950 int slot;
2951 int wd = w->wd;
2952
2953 if (wd < 0)
2954 return;
2955
2956 w->wd = -2;
2957 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2958 wlist_del (&fs_hash [slot].head, (WL)w);
2959
2960 /* remove this watcher, if others are watching it, they will rearm */
2961 inotify_rm_watch (fs_fd, wd);
2962}
2963
2964static void noinline
2965infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2966{
2967 if (slot < 0)
2968 /* overflow, need to check for all hash slots */
2969 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2970 infy_wd (EV_A_ slot, wd, ev);
2971 else
2972 {
2973 WL w_;
2974
2975 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2976 {
2977 ev_stat *w = (ev_stat *)w_;
2978 w_ = w_->next; /* lets us remove this watcher and all before it */
2979
2980 if (w->wd == wd || wd == -1)
2981 {
2982 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2983 {
2984 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2985 w->wd = -1;
2986 infy_add (EV_A_ w); /* re-add, no matter what */
2987 }
2988
2989 stat_timer_cb (EV_A_ &w->timer, 0);
2990 }
2991 }
2992 }
2993}
2994
2995static void
2996infy_cb (EV_P_ ev_io *w, int revents)
2997{
2998 char buf [EV_INOTIFY_BUFSIZE];
2999 int ofs;
3000 int len = read (fs_fd, buf, sizeof (buf));
3001
3002 for (ofs = 0; ofs < len; )
3003 {
3004 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3005 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3006 ofs += sizeof (struct inotify_event) + ev->len;
3007 }
3008}
3009
3010inline_size unsigned int
3011ev_linux_version (void)
3012{
3013 struct utsname buf;
3014 unsigned int v;
3015 int i;
3016 char *p = buf.release;
3017
3018 if (uname (&buf))
3019 return 0;
3020
3021 for (i = 3+1; --i; )
3022 {
3023 unsigned int c = 0;
3024
3025 for (;;)
3026 {
3027 if (*p >= '0' && *p <= '9')
3028 c = c * 10 + *p++ - '0';
3029 else
3030 {
3031 p += *p == '.';
3032 break;
3033 }
3034 }
3035
3036 v = (v << 8) | c;
3037 }
3038
3039 return v;
3040}
3041
3042inline_size void
3043ev_check_2625 (EV_P)
3044{
3045 /* kernels < 2.6.25 are borked
3046 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3047 */
3048 if (ev_linux_version () < 0x020619)
3049 return;
3050
3051 fs_2625 = 1;
3052}
3053
3054inline_size int
3055infy_newfd (void)
3056{
3057#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3058 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3059 if (fd >= 0)
3060 return fd;
3061#endif
3062 return inotify_init ();
3063}
3064
3065inline_size void
3066infy_init (EV_P)
3067{
3068 if (fs_fd != -2)
3069 return;
3070
3071 fs_fd = -1;
3072
3073 ev_check_2625 (EV_A);
3074
3075 fs_fd = infy_newfd ();
3076
3077 if (fs_fd >= 0)
3078 {
3079 fd_intern (fs_fd);
3080 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3081 ev_set_priority (&fs_w, EV_MAXPRI);
3082 ev_io_start (EV_A_ &fs_w);
3083 ev_unref (EV_A);
3084 }
3085}
3086
3087inline_size void
3088infy_fork (EV_P)
3089{
3090 int slot;
3091
3092 if (fs_fd < 0)
3093 return;
3094
3095 ev_ref (EV_A);
3096 ev_io_stop (EV_A_ &fs_w);
3097 close (fs_fd);
3098 fs_fd = infy_newfd ();
3099
3100 if (fs_fd >= 0)
3101 {
3102 fd_intern (fs_fd);
3103 ev_io_set (&fs_w, fs_fd, EV_READ);
3104 ev_io_start (EV_A_ &fs_w);
3105 ev_unref (EV_A);
3106 }
3107
3108 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3109 {
3110 WL w_ = fs_hash [slot].head;
3111 fs_hash [slot].head = 0;
3112
3113 while (w_)
3114 {
3115 ev_stat *w = (ev_stat *)w_;
3116 w_ = w_->next; /* lets us add this watcher */
3117
3118 w->wd = -1;
3119
3120 if (fs_fd >= 0)
3121 infy_add (EV_A_ w); /* re-add, no matter what */
3122 else
3123 {
3124 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3125 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3126 ev_timer_again (EV_A_ &w->timer);
3127 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3128 }
3129 }
3130 }
3131}
3132
3133#endif
3134
1555#if _WIN32 3135#ifdef _WIN32
1556 signal (w->signum, sighandler); 3136# define EV_LSTAT(p,b) _stati64 (p, b)
1557#else 3137#else
1558 struct sigaction sa; 3138# define EV_LSTAT(p,b) lstat (p, b)
1559 sa.sa_handler = sighandler;
1560 sigfillset (&sa.sa_mask);
1561 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1562 sigaction (w->signum, &sa, 0);
1563#endif 3139#endif
1564 }
1565}
1566 3140
1567void 3141void
1568ev_signal_stop (EV_P_ struct ev_signal *w) 3142ev_stat_stat (EV_P_ ev_stat *w)
1569{ 3143{
1570 ev_clear_pending (EV_A_ (W)w); 3144 if (lstat (w->path, &w->attr) < 0)
1571 if (!ev_is_active (w)) 3145 w->attr.st_nlink = 0;
3146 else if (!w->attr.st_nlink)
3147 w->attr.st_nlink = 1;
3148}
3149
3150static void noinline
3151stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3152{
3153 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3154
3155 ev_statdata prev = w->attr;
3156 ev_stat_stat (EV_A_ w);
3157
3158 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3159 if (
3160 prev.st_dev != w->attr.st_dev
3161 || prev.st_ino != w->attr.st_ino
3162 || prev.st_mode != w->attr.st_mode
3163 || prev.st_nlink != w->attr.st_nlink
3164 || prev.st_uid != w->attr.st_uid
3165 || prev.st_gid != w->attr.st_gid
3166 || prev.st_rdev != w->attr.st_rdev
3167 || prev.st_size != w->attr.st_size
3168 || prev.st_atime != w->attr.st_atime
3169 || prev.st_mtime != w->attr.st_mtime
3170 || prev.st_ctime != w->attr.st_ctime
3171 ) {
3172 /* we only update w->prev on actual differences */
3173 /* in case we test more often than invoke the callback, */
3174 /* to ensure that prev is always different to attr */
3175 w->prev = prev;
3176
3177 #if EV_USE_INOTIFY
3178 if (fs_fd >= 0)
3179 {
3180 infy_del (EV_A_ w);
3181 infy_add (EV_A_ w);
3182 ev_stat_stat (EV_A_ w); /* avoid race... */
3183 }
3184 #endif
3185
3186 ev_feed_event (EV_A_ w, EV_STAT);
3187 }
3188}
3189
3190void
3191ev_stat_start (EV_P_ ev_stat *w)
3192{
3193 if (expect_false (ev_is_active (w)))
1572 return; 3194 return;
1573 3195
1574 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3196 ev_stat_stat (EV_A_ w);
3197
3198 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3199 w->interval = MIN_STAT_INTERVAL;
3200
3201 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3202 ev_set_priority (&w->timer, ev_priority (w));
3203
3204#if EV_USE_INOTIFY
3205 infy_init (EV_A);
3206
3207 if (fs_fd >= 0)
3208 infy_add (EV_A_ w);
3209 else
3210#endif
3211 {
3212 ev_timer_again (EV_A_ &w->timer);
3213 ev_unref (EV_A);
3214 }
3215
3216 ev_start (EV_A_ (W)w, 1);
3217
3218 EV_FREQUENT_CHECK;
3219}
3220
3221void
3222ev_stat_stop (EV_P_ ev_stat *w)
3223{
3224 clear_pending (EV_A_ (W)w);
3225 if (expect_false (!ev_is_active (w)))
3226 return;
3227
3228 EV_FREQUENT_CHECK;
3229
3230#if EV_USE_INOTIFY
3231 infy_del (EV_A_ w);
3232#endif
3233
3234 if (ev_is_active (&w->timer))
3235 {
3236 ev_ref (EV_A);
3237 ev_timer_stop (EV_A_ &w->timer);
3238 }
3239
1575 ev_stop (EV_A_ (W)w); 3240 ev_stop (EV_A_ (W)w);
1576 3241
1577 if (!signals [w->signum - 1].head) 3242 EV_FREQUENT_CHECK;
1578 signal (w->signum, SIG_DFL);
1579} 3243}
3244#endif
1580 3245
3246#if EV_IDLE_ENABLE
1581void 3247void
1582ev_child_start (EV_P_ struct ev_child *w) 3248ev_idle_start (EV_P_ ev_idle *w)
1583{ 3249{
1584#if EV_MULTIPLICITY
1585 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1586#endif
1587 if (ev_is_active (w)) 3250 if (expect_false (ev_is_active (w)))
1588 return; 3251 return;
1589 3252
3253 pri_adjust (EV_A_ (W)w);
3254
3255 EV_FREQUENT_CHECK;
3256
3257 {
3258 int active = ++idlecnt [ABSPRI (w)];
3259
3260 ++idleall;
3261 ev_start (EV_A_ (W)w, active);
3262
3263 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3264 idles [ABSPRI (w)][active - 1] = w;
3265 }
3266
3267 EV_FREQUENT_CHECK;
3268}
3269
3270void
3271ev_idle_stop (EV_P_ ev_idle *w)
3272{
3273 clear_pending (EV_A_ (W)w);
3274 if (expect_false (!ev_is_active (w)))
3275 return;
3276
3277 EV_FREQUENT_CHECK;
3278
3279 {
3280 int active = ev_active (w);
3281
3282 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3283 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3284
3285 ev_stop (EV_A_ (W)w);
3286 --idleall;
3287 }
3288
3289 EV_FREQUENT_CHECK;
3290}
3291#endif
3292
3293void
3294ev_prepare_start (EV_P_ ev_prepare *w)
3295{
3296 if (expect_false (ev_is_active (w)))
3297 return;
3298
3299 EV_FREQUENT_CHECK;
3300
3301 ev_start (EV_A_ (W)w, ++preparecnt);
3302 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3303 prepares [preparecnt - 1] = w;
3304
3305 EV_FREQUENT_CHECK;
3306}
3307
3308void
3309ev_prepare_stop (EV_P_ ev_prepare *w)
3310{
3311 clear_pending (EV_A_ (W)w);
3312 if (expect_false (!ev_is_active (w)))
3313 return;
3314
3315 EV_FREQUENT_CHECK;
3316
3317 {
3318 int active = ev_active (w);
3319
3320 prepares [active - 1] = prepares [--preparecnt];
3321 ev_active (prepares [active - 1]) = active;
3322 }
3323
3324 ev_stop (EV_A_ (W)w);
3325
3326 EV_FREQUENT_CHECK;
3327}
3328
3329void
3330ev_check_start (EV_P_ ev_check *w)
3331{
3332 if (expect_false (ev_is_active (w)))
3333 return;
3334
3335 EV_FREQUENT_CHECK;
3336
3337 ev_start (EV_A_ (W)w, ++checkcnt);
3338 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3339 checks [checkcnt - 1] = w;
3340
3341 EV_FREQUENT_CHECK;
3342}
3343
3344void
3345ev_check_stop (EV_P_ ev_check *w)
3346{
3347 clear_pending (EV_A_ (W)w);
3348 if (expect_false (!ev_is_active (w)))
3349 return;
3350
3351 EV_FREQUENT_CHECK;
3352
3353 {
3354 int active = ev_active (w);
3355
3356 checks [active - 1] = checks [--checkcnt];
3357 ev_active (checks [active - 1]) = active;
3358 }
3359
3360 ev_stop (EV_A_ (W)w);
3361
3362 EV_FREQUENT_CHECK;
3363}
3364
3365#if EV_EMBED_ENABLE
3366void noinline
3367ev_embed_sweep (EV_P_ ev_embed *w)
3368{
3369 ev_loop (w->other, EVLOOP_NONBLOCK);
3370}
3371
3372static void
3373embed_io_cb (EV_P_ ev_io *io, int revents)
3374{
3375 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3376
3377 if (ev_cb (w))
3378 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3379 else
3380 ev_loop (w->other, EVLOOP_NONBLOCK);
3381}
3382
3383static void
3384embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3385{
3386 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3387
3388 {
3389 EV_P = w->other;
3390
3391 while (fdchangecnt)
3392 {
3393 fd_reify (EV_A);
3394 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3395 }
3396 }
3397}
3398
3399static void
3400embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3401{
3402 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3403
3404 ev_embed_stop (EV_A_ w);
3405
3406 {
3407 EV_P = w->other;
3408
3409 ev_loop_fork (EV_A);
3410 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3411 }
3412
3413 ev_embed_start (EV_A_ w);
3414}
3415
3416#if 0
3417static void
3418embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3419{
3420 ev_idle_stop (EV_A_ idle);
3421}
3422#endif
3423
3424void
3425ev_embed_start (EV_P_ ev_embed *w)
3426{
3427 if (expect_false (ev_is_active (w)))
3428 return;
3429
3430 {
3431 EV_P = w->other;
3432 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3433 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3434 }
3435
3436 EV_FREQUENT_CHECK;
3437
3438 ev_set_priority (&w->io, ev_priority (w));
3439 ev_io_start (EV_A_ &w->io);
3440
3441 ev_prepare_init (&w->prepare, embed_prepare_cb);
3442 ev_set_priority (&w->prepare, EV_MINPRI);
3443 ev_prepare_start (EV_A_ &w->prepare);
3444
3445 ev_fork_init (&w->fork, embed_fork_cb);
3446 ev_fork_start (EV_A_ &w->fork);
3447
3448 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3449
1590 ev_start (EV_A_ (W)w, 1); 3450 ev_start (EV_A_ (W)w, 1);
1591 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1592}
1593 3451
3452 EV_FREQUENT_CHECK;
3453}
3454
1594void 3455void
1595ev_child_stop (EV_P_ struct ev_child *w) 3456ev_embed_stop (EV_P_ ev_embed *w)
1596{ 3457{
1597 ev_clear_pending (EV_A_ (W)w); 3458 clear_pending (EV_A_ (W)w);
1598 if (!ev_is_active (w)) 3459 if (expect_false (!ev_is_active (w)))
1599 return; 3460 return;
1600 3461
1601 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3462 EV_FREQUENT_CHECK;
3463
3464 ev_io_stop (EV_A_ &w->io);
3465 ev_prepare_stop (EV_A_ &w->prepare);
3466 ev_fork_stop (EV_A_ &w->fork);
3467
1602 ev_stop (EV_A_ (W)w); 3468 ev_stop (EV_A_ (W)w);
3469
3470 EV_FREQUENT_CHECK;
1603} 3471}
3472#endif
3473
3474#if EV_FORK_ENABLE
3475void
3476ev_fork_start (EV_P_ ev_fork *w)
3477{
3478 if (expect_false (ev_is_active (w)))
3479 return;
3480
3481 EV_FREQUENT_CHECK;
3482
3483 ev_start (EV_A_ (W)w, ++forkcnt);
3484 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3485 forks [forkcnt - 1] = w;
3486
3487 EV_FREQUENT_CHECK;
3488}
3489
3490void
3491ev_fork_stop (EV_P_ ev_fork *w)
3492{
3493 clear_pending (EV_A_ (W)w);
3494 if (expect_false (!ev_is_active (w)))
3495 return;
3496
3497 EV_FREQUENT_CHECK;
3498
3499 {
3500 int active = ev_active (w);
3501
3502 forks [active - 1] = forks [--forkcnt];
3503 ev_active (forks [active - 1]) = active;
3504 }
3505
3506 ev_stop (EV_A_ (W)w);
3507
3508 EV_FREQUENT_CHECK;
3509}
3510#endif
3511
3512#if EV_ASYNC_ENABLE
3513void
3514ev_async_start (EV_P_ ev_async *w)
3515{
3516 if (expect_false (ev_is_active (w)))
3517 return;
3518
3519 evpipe_init (EV_A);
3520
3521 EV_FREQUENT_CHECK;
3522
3523 ev_start (EV_A_ (W)w, ++asynccnt);
3524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3525 asyncs [asynccnt - 1] = w;
3526
3527 EV_FREQUENT_CHECK;
3528}
3529
3530void
3531ev_async_stop (EV_P_ ev_async *w)
3532{
3533 clear_pending (EV_A_ (W)w);
3534 if (expect_false (!ev_is_active (w)))
3535 return;
3536
3537 EV_FREQUENT_CHECK;
3538
3539 {
3540 int active = ev_active (w);
3541
3542 asyncs [active - 1] = asyncs [--asynccnt];
3543 ev_active (asyncs [active - 1]) = active;
3544 }
3545
3546 ev_stop (EV_A_ (W)w);
3547
3548 EV_FREQUENT_CHECK;
3549}
3550
3551void
3552ev_async_send (EV_P_ ev_async *w)
3553{
3554 w->sent = 1;
3555 evpipe_write (EV_A_ &async_pending);
3556}
3557#endif
1604 3558
1605/*****************************************************************************/ 3559/*****************************************************************************/
1606 3560
1607struct ev_once 3561struct ev_once
1608{ 3562{
1609 struct ev_io io; 3563 ev_io io;
1610 struct ev_timer to; 3564 ev_timer to;
1611 void (*cb)(int revents, void *arg); 3565 void (*cb)(int revents, void *arg);
1612 void *arg; 3566 void *arg;
1613}; 3567};
1614 3568
1615static void 3569static void
1616once_cb (EV_P_ struct ev_once *once, int revents) 3570once_cb (EV_P_ struct ev_once *once, int revents)
1617{ 3571{
1618 void (*cb)(int revents, void *arg) = once->cb; 3572 void (*cb)(int revents, void *arg) = once->cb;
1619 void *arg = once->arg; 3573 void *arg = once->arg;
1620 3574
1621 ev_io_stop (EV_A_ &once->io); 3575 ev_io_stop (EV_A_ &once->io);
1622 ev_timer_stop (EV_A_ &once->to); 3576 ev_timer_stop (EV_A_ &once->to);
1623 ev_free (once); 3577 ev_free (once);
1624 3578
1625 cb (revents, arg); 3579 cb (revents, arg);
1626} 3580}
1627 3581
1628static void 3582static void
1629once_cb_io (EV_P_ struct ev_io *w, int revents) 3583once_cb_io (EV_P_ ev_io *w, int revents)
1630{ 3584{
1631 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3585 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3586
3587 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1632} 3588}
1633 3589
1634static void 3590static void
1635once_cb_to (EV_P_ struct ev_timer *w, int revents) 3591once_cb_to (EV_P_ ev_timer *w, int revents)
1636{ 3592{
1637 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3593 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3594
3595 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1638} 3596}
1639 3597
1640void 3598void
1641ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3599ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1642{ 3600{
1643 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3601 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1644 3602
1645 if (!once) 3603 if (expect_false (!once))
3604 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3605 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1647 else 3606 return;
1648 { 3607 }
3608
1649 once->cb = cb; 3609 once->cb = cb;
1650 once->arg = arg; 3610 once->arg = arg;
1651 3611
1652 ev_init (&once->io, once_cb_io); 3612 ev_init (&once->io, once_cb_io);
1653 if (fd >= 0) 3613 if (fd >= 0)
3614 {
3615 ev_io_set (&once->io, fd, events);
3616 ev_io_start (EV_A_ &once->io);
3617 }
3618
3619 ev_init (&once->to, once_cb_to);
3620 if (timeout >= 0.)
3621 {
3622 ev_timer_set (&once->to, timeout, 0.);
3623 ev_timer_start (EV_A_ &once->to);
3624 }
3625}
3626
3627/*****************************************************************************/
3628
3629#if EV_WALK_ENABLE
3630void
3631ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3632{
3633 int i, j;
3634 ev_watcher_list *wl, *wn;
3635
3636 if (types & (EV_IO | EV_EMBED))
3637 for (i = 0; i < anfdmax; ++i)
3638 for (wl = anfds [i].head; wl; )
1654 { 3639 {
1655 ev_io_set (&once->io, fd, events); 3640 wn = wl->next;
1656 ev_io_start (EV_A_ &once->io); 3641
3642#if EV_EMBED_ENABLE
3643 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3644 {
3645 if (types & EV_EMBED)
3646 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3647 }
3648 else
3649#endif
3650#if EV_USE_INOTIFY
3651 if (ev_cb ((ev_io *)wl) == infy_cb)
3652 ;
3653 else
3654#endif
3655 if ((ev_io *)wl != &pipe_w)
3656 if (types & EV_IO)
3657 cb (EV_A_ EV_IO, wl);
3658
3659 wl = wn;
1657 } 3660 }
1658 3661
1659 ev_init (&once->to, once_cb_to); 3662 if (types & (EV_TIMER | EV_STAT))
1660 if (timeout >= 0.) 3663 for (i = timercnt + HEAP0; i-- > HEAP0; )
3664#if EV_STAT_ENABLE
3665 /*TODO: timer is not always active*/
3666 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1661 { 3667 {
1662 ev_timer_set (&once->to, timeout, 0.); 3668 if (types & EV_STAT)
1663 ev_timer_start (EV_A_ &once->to); 3669 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1664 } 3670 }
1665 } 3671 else
3672#endif
3673 if (types & EV_TIMER)
3674 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3675
3676#if EV_PERIODIC_ENABLE
3677 if (types & EV_PERIODIC)
3678 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3679 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3680#endif
3681
3682#if EV_IDLE_ENABLE
3683 if (types & EV_IDLE)
3684 for (j = NUMPRI; i--; )
3685 for (i = idlecnt [j]; i--; )
3686 cb (EV_A_ EV_IDLE, idles [j][i]);
3687#endif
3688
3689#if EV_FORK_ENABLE
3690 if (types & EV_FORK)
3691 for (i = forkcnt; i--; )
3692 if (ev_cb (forks [i]) != embed_fork_cb)
3693 cb (EV_A_ EV_FORK, forks [i]);
3694#endif
3695
3696#if EV_ASYNC_ENABLE
3697 if (types & EV_ASYNC)
3698 for (i = asynccnt; i--; )
3699 cb (EV_A_ EV_ASYNC, asyncs [i]);
3700#endif
3701
3702 if (types & EV_PREPARE)
3703 for (i = preparecnt; i--; )
3704#if EV_EMBED_ENABLE
3705 if (ev_cb (prepares [i]) != embed_prepare_cb)
3706#endif
3707 cb (EV_A_ EV_PREPARE, prepares [i]);
3708
3709 if (types & EV_CHECK)
3710 for (i = checkcnt; i--; )
3711 cb (EV_A_ EV_CHECK, checks [i]);
3712
3713 if (types & EV_SIGNAL)
3714 for (i = 0; i < EV_NSIG - 1; ++i)
3715 for (wl = signals [i].head; wl; )
3716 {
3717 wn = wl->next;
3718 cb (EV_A_ EV_SIGNAL, wl);
3719 wl = wn;
3720 }
3721
3722 if (types & EV_CHILD)
3723 for (i = EV_PID_HASHSIZE; i--; )
3724 for (wl = childs [i]; wl; )
3725 {
3726 wn = wl->next;
3727 cb (EV_A_ EV_CHILD, wl);
3728 wl = wn;
3729 }
3730/* EV_STAT 0x00001000 /* stat data changed */
3731/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1666} 3732}
3733#endif
3734
3735#if EV_MULTIPLICITY
3736 #include "ev_wrap.h"
3737#endif
1667 3738
1668#ifdef __cplusplus 3739#ifdef __cplusplus
1669} 3740}
1670#endif 3741#endif
1671 3742

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines