ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.12 by root, Wed Oct 31 09:23:17 2007 UTC vs.
Revision 1.62 by root, Sun Nov 4 20:38:07 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
3#include <unistd.h> 59#include <unistd.h>
4#include <fcntl.h> 60#include <fcntl.h>
5#include <signal.h> 61#include <signal.h>
62#include <stddef.h>
6 63
7#include <stdio.h> 64#include <stdio.h>
8 65
9#include <assert.h> 66#include <assert.h>
10#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
11#include <sys/time.h> 72#include <sys/time.h>
12#include <time.h> 73#include <time.h>
13 74
14#define HAVE_EPOLL 1 75/**/
15 76
16#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
17# ifdef CLOCK_MONOTONIC
18# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
19# endif 102# endif
20#endif 103#endif
21 104
22#ifndef HAVE_SELECT
23# define HAVE_SELECT 1
24#endif
25
26#ifndef HAVE_EPOLL
27# define HAVE_EPOLL 0
28#endif
29
30#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
31# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
32#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
33 122
34#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
35#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
36 127
37#include "ev.h" 128#include "ev.h"
38 129
39struct ev_watcher { 130#if __GNUC__ >= 3
40 EV_WATCHER (ev_watcher); 131# define expect(expr,value) __builtin_expect ((expr),(value))
41}; 132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
42 137
43struct ev_watcher_list { 138#define expect_false(expr) expect ((expr) != 0, 0)
44 EV_WATCHER_LIST (ev_watcher_list); 139#define expect_true(expr) expect ((expr) != 0, 1)
45};
46 140
47struct ev_watcher_time { 141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
48 EV_WATCHER_TIME (ev_watcher_time); 142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
49};
50 143
51typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
52typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
53typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
54 147
55static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
56ev_tstamp ev_now;
57int ev_method;
58
59static int have_monotonic; /* runtime */
60
61static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
62static void (*method_modify)(int fd, int oev, int nev);
63static void (*method_poll)(ev_tstamp timeout);
64 149
65/*****************************************************************************/ 150/*****************************************************************************/
66 151
67ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
68ev_time (void) 186ev_time (void)
69{ 187{
70#if HAVE_REALTIME 188#if EV_USE_REALTIME
71 struct timespec ts; 189 struct timespec ts;
72 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
73 return ts.tv_sec + ts.tv_nsec * 1e-9; 191 return ts.tv_sec + ts.tv_nsec * 1e-9;
74#else 192#else
75 struct timeval tv; 193 struct timeval tv;
76 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
77 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
78#endif 196#endif
79} 197}
80 198
81static ev_tstamp 199inline ev_tstamp
82get_clock (void) 200get_clock (void)
83{ 201{
84#if HAVE_MONOTONIC 202#if EV_USE_MONOTONIC
85 if (have_monotonic) 203 if (expect_true (have_monotonic))
86 { 204 {
87 struct timespec ts; 205 struct timespec ts;
88 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
89 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
90 } 208 }
91#endif 209#endif
92 210
93 return ev_time (); 211 return ev_time ();
94} 212}
95 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
220#define array_roundsize(base,n) ((n) | 4 & ~3)
221
96#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
97 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
98 { \ 224 { \
99 int newcnt = cur ? cur << 1 : 16; \ 225 int newcnt = cur; \
100 fprintf (stderr, "resize(" # base ") from %d to %d\n", cur, newcnt);\ 226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
101 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
102 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
103 cur = newcnt; \ 234 cur = newcnt; \
104 } 235 }
105 236
106/*****************************************************************************/ 237/*****************************************************************************/
107 238
108typedef struct
109{
110 struct ev_io *head;
111 unsigned char wev, rev; /* want, received event set */
112} ANFD;
113
114static ANFD *anfds;
115static int anfdmax;
116
117static int *fdchanges;
118static int fdchangemax, fdchangecnt;
119
120static void 239static void
121anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
122{ 241{
123 while (count--) 242 while (count--)
124 { 243 {
125 base->head = 0; 244 base->head = 0;
126 base->wev = base->rev = EV_NONE; 245 base->events = EV_NONE;
246 base->reify = 0;
247
127 ++base; 248 ++base;
128 } 249 }
129} 250}
130 251
131typedef struct
132{
133 W w;
134 int events;
135} ANPENDING;
136
137static ANPENDING *pendings;
138static int pendingmax, pendingcnt;
139
140static void 252static void
141event (W w, int events) 253event (EV_P_ W w, int events)
142{ 254{
255 if (w->pending)
256 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
258 return;
259 }
260
143 w->pending = ++pendingcnt; 261 w->pending = ++pendingcnt [ABSPRI (w)];
144 array_needsize (pendings, pendingmax, pendingcnt, ); 262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
145 pendings [pendingcnt - 1].w = w; 263 pendings [ABSPRI (w)][w->pending - 1].w = w;
146 pendings [pendingcnt - 1].events = events; 264 pendings [ABSPRI (w)][w->pending - 1].events = events;
147} 265}
148 266
149static void 267static void
268queue_events (EV_P_ W *events, int eventcnt, int type)
269{
270 int i;
271
272 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type);
274}
275
276static void
150fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
151{ 278{
152 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
153 struct ev_io *w; 280 struct ev_io *w;
154 281
155 for (w = anfd->head; w; w = w->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
156 { 283 {
157 int ev = w->events & events; 284 int ev = w->events & events;
158 285
159 if (ev) 286 if (ev)
160 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
161 } 288 }
162} 289}
163 290
291/*****************************************************************************/
292
164static void 293static void
165queue_events (W *events, int eventcnt, int type) 294fd_reify (EV_P)
166{ 295{
167 int i; 296 int i;
168 297
169 for (i = 0; i < eventcnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
170 event (events [i], type); 299 {
300 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd;
302 struct ev_io *w;
303
304 int events = 0;
305
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events;
308
309 anfd->reify = 0;
310
311 if (anfd->events != events)
312 {
313 method_modify (EV_A_ fd, anfd->events, events);
314 anfd->events = events;
315 }
316 }
317
318 fdchangecnt = 0;
319}
320
321static void
322fd_change (EV_P_ int fd)
323{
324 if (anfds [fd].reify || fdchangecnt < 0)
325 return;
326
327 anfds [fd].reify = 1;
328
329 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
331 fdchanges [fdchangecnt - 1] = fd;
332}
333
334static void
335fd_kill (EV_P_ int fd)
336{
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
344}
345
346/* called on EBADF to verify fds */
347static void
348fd_ebadf (EV_P)
349{
350 int fd;
351
352 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd);
356}
357
358/* called on ENOMEM in select/poll to kill some fds and retry */
359static void
360fd_enomem (EV_P)
361{
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
366 {
367 close (fd);
368 fd_kill (EV_A_ fd);
369 return;
370 }
371}
372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
171} 386}
172 387
173/*****************************************************************************/ 388/*****************************************************************************/
174 389
175static struct ev_timer **timers;
176static int timermax, timercnt;
177
178static struct ev_periodic **periodics;
179static int periodicmax, periodiccnt;
180
181static void 390static void
182upheap (WT *timers, int k) 391upheap (WT *heap, int k)
183{ 392{
184 WT w = timers [k]; 393 WT w = heap [k];
185 394
186 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
187 { 396 {
188 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
189 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
190 k >>= 1; 399 k >>= 1;
191 } 400 }
192 401
193 timers [k] = w; 402 heap [k] = w;
194 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
195 404
196} 405}
197 406
198static void 407static void
199downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
200{ 409{
201 WT w = timers [k]; 410 WT w = heap [k];
202 411
203 while (k < (N >> 1)) 412 while (k < (N >> 1))
204 { 413 {
205 int j = k << 1; 414 int j = k << 1;
206 415
207 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
208 ++j; 417 ++j;
209 418
210 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
211 break; 420 break;
212 421
213 timers [k] = timers [j]; 422 heap [k] = heap [j];
214 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
215 k = j; 424 k = j;
216 } 425 }
217 426
218 timers [k] = w; 427 heap [k] = w;
219 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
220} 429}
221 430
222/*****************************************************************************/ 431/*****************************************************************************/
223 432
224typedef struct 433typedef struct
225{ 434{
226 struct ev_signal *head; 435 struct ev_watcher_list *head;
227 sig_atomic_t gotsig; 436 sig_atomic_t volatile gotsig;
228} ANSIG; 437} ANSIG;
229 438
230static ANSIG *signals; 439static ANSIG *signals;
231static int signalmax; 440static int signalmax;
232 441
233static int sigpipe [2]; 442static int sigpipe [2];
234static sig_atomic_t gotsig; 443static sig_atomic_t volatile gotsig;
235static struct ev_io sigev; 444static struct ev_io sigev;
236 445
237static void 446static void
238signals_init (ANSIG *base, int count) 447signals_init (ANSIG *base, int count)
239{ 448{
240 while (count--) 449 while (count--)
241 { 450 {
242 base->head = 0; 451 base->head = 0;
243 base->gotsig = 0; 452 base->gotsig = 0;
453
244 ++base; 454 ++base;
245 } 455 }
246} 456}
247 457
248static void 458static void
250{ 460{
251 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
252 462
253 if (!gotsig) 463 if (!gotsig)
254 { 464 {
465 int old_errno = errno;
255 gotsig = 1; 466 gotsig = 1;
256 write (sigpipe [1], &gotsig, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
257 } 469 }
258} 470}
259 471
260static void 472static void
261sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
262{ 474{
263 struct ev_signal *w; 475 struct ev_watcher_list *w;
264 int sig; 476 int signum;
265 477
478 read (sigpipe [0], &revents, 1);
266 gotsig = 0; 479 gotsig = 0;
267 read (sigpipe [0], &revents, 1);
268 480
269 for (sig = signalmax; sig--; ) 481 for (signum = signalmax; signum--; )
270 if (signals [sig].gotsig) 482 if (signals [signum].gotsig)
271 { 483 {
272 signals [sig].gotsig = 0; 484 signals [signum].gotsig = 0;
273 485
274 for (w = signals [sig].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
275 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
276 } 488 }
277} 489}
278 490
279static void 491static void
280siginit (void) 492siginit (EV_P)
281{ 493{
494#ifndef WIN32
282 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
283 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
284 497
285 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
286 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
287 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
288 502
289 evio_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
290 evio_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
291} 506}
292 507
293/*****************************************************************************/ 508/*****************************************************************************/
294 509
295static struct ev_idle **idles; 510#ifndef WIN32
296static int idlemax, idlecnt;
297 511
298static struct ev_check **checks; 512static struct ev_child *childs [PID_HASHSIZE];
299static int checkmax, checkcnt; 513static struct ev_signal childev;
514
515#ifndef WCONTINUED
516# define WCONTINUED 0
517#endif
518
519static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521{
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 w->priority = sw->priority; /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
537 int pid, status;
538
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 {
541 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL);
543
544 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
547}
548
549#endif
300 550
301/*****************************************************************************/ 551/*****************************************************************************/
302 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
303#if HAVE_EPOLL 556#if EV_USE_EPOLL
304# include "ev_epoll.c" 557# include "ev_epoll.c"
305#endif 558#endif
559#if EV_USE_POLL
560# include "ev_poll.c"
561#endif
306#if HAVE_SELECT 562#if EV_USE_SELECT
307# include "ev_select.c" 563# include "ev_select.c"
308#endif 564#endif
309 565
310int ev_init (int flags) 566int
567ev_version_major (void)
311{ 568{
569 return EV_VERSION_MAJOR;
570}
571
572int
573ev_version_minor (void)
574{
575 return EV_VERSION_MINOR;
576}
577
578/* return true if we are running with elevated privileges and should ignore env variables */
579static int
580enable_secure (void)
581{
582#ifdef WIN32
583 return 0;
584#else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587#endif
588}
589
590int
591ev_method (EV_P)
592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
599 if (!method)
600 {
312#if HAVE_MONOTONIC 601#if EV_USE_MONOTONIC
313 { 602 {
314 struct timespec ts; 603 struct timespec ts;
315 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
316 have_monotonic = 1; 605 have_monotonic = 1;
317 } 606 }
318#endif 607#endif
319 608
320 ev_now = ev_time (); 609 rt_now = ev_time ();
321 now = get_clock (); 610 mn_now = get_clock ();
322 diff = ev_now - now; 611 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now;
323 613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
627#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif
633#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif
636 }
637}
638
639void
640loop_destroy (EV_P)
641{
642#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif
645#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647#endif
648#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
650#endif
651#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
653#endif
654#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif
657
658 method = 0;
659 /*TODO*/
660}
661
662void
663loop_fork (EV_P)
664{
665 /*TODO*/
666#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif
669#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif
672}
673
674#if EV_MULTIPLICITY
675struct ev_loop *
676ev_loop_new (int methods)
677{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
679
680 loop_init (EV_A_ methods);
681
682 if (ev_method (EV_A))
683 return loop;
684
685 return 0;
686}
687
688void
689ev_loop_destroy (EV_P)
690{
691 loop_destroy (EV_A);
692 free (loop);
693}
694
695void
696ev_loop_fork (EV_P)
697{
698 loop_fork (EV_A);
699}
700
701#endif
702
703#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop *
708#else
709static int default_loop;
710
711int
712#endif
713ev_default_loop (int methods)
714{
715 if (sigpipe [0] == sigpipe [1])
324 if (pipe (sigpipe)) 716 if (pipe (sigpipe))
325 return 0; 717 return 0;
326 718
327 ev_method = EVMETHOD_NONE; 719 if (!default_loop)
328#if HAVE_EPOLL
329 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
330#endif
331#if HAVE_SELECT
332 if (ev_method == EVMETHOD_NONE) select_init (flags);
333#endif
334
335 if (ev_method)
336 { 720 {
721#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct;
723#else
724 default_loop = 1;
725#endif
726
727 loop_init (EV_A_ methods);
728
729 if (ev_method (EV_A))
730 {
337 evw_init (&sigev, sigcb); 731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
338 siginit (); 733 siginit (EV_A);
339 }
340 734
341 return ev_method; 735#ifndef WIN32
342} 736 ev_signal_init (&childev, childcb, SIGCHLD);
343 737 ev_set_priority (&childev, EV_MAXPRI);
344/*****************************************************************************/ 738 ev_signal_start (EV_A_ &childev);
345 739 ev_unref (EV_A); /* child watcher should not keep loop alive */
346void ev_prefork (void)
347{
348 /* nop */
349}
350
351void ev_postfork_parent (void)
352{
353 /* nop */
354}
355
356void ev_postfork_child (void)
357{
358#if HAVE_EPOLL
359 if (ev_method == EVMETHOD_EPOLL)
360 epoll_postfork_child ();
361#endif 740#endif
741 }
742 else
743 default_loop = 0;
744 }
362 745
746 return default_loop;
747}
748
749void
750ev_default_destroy (void)
751{
752#if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop;
754#endif
755
756 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev);
758
759 ev_ref (EV_A); /* signal watcher */
363 evio_stop (&sigev); 760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764
765 loop_destroy (EV_A);
766}
767
768void
769ev_default_fork (void)
770{
771#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop;
773#endif
774
775 loop_fork (EV_A);
776
777 ev_io_stop (EV_A_ &sigev);
364 close (sigpipe [0]); 778 close (sigpipe [0]);
365 close (sigpipe [1]); 779 close (sigpipe [1]);
366 pipe (sigpipe); 780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
367 siginit (); 783 siginit (EV_A);
368} 784}
369 785
370/*****************************************************************************/ 786/*****************************************************************************/
371 787
372static void 788static void
373fd_reify (void) 789call_pending (EV_P)
374{ 790{
375 int i; 791 int pri;
376 792
377 for (i = 0; i < fdchangecnt; ++i) 793 for (pri = NUMPRI; pri--; )
378 { 794 while (pendingcnt [pri])
379 int fd = fdchanges [i];
380 ANFD *anfd = anfds + fd;
381 struct ev_io *w;
382
383 int wev = 0;
384
385 for (w = anfd->head; w; w = w->next)
386 wev |= w->events;
387
388 if (anfd->wev != wev)
389 { 795 {
390 method_modify (fd, anfd->wev, wev); 796 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
391 anfd->wev = wev;
392 }
393 }
394 797
395 fdchangecnt = 0;
396}
397
398static void
399call_pending ()
400{
401 int i;
402
403 for (i = 0; i < pendingcnt; ++i)
404 {
405 ANPENDING *p = pendings + i;
406
407 if (p->w) 798 if (p->w)
408 { 799 {
409 p->w->pending = 0; 800 p->w->pending = 0;
410 p->w->cb (p->w, p->events); 801 p->w->cb (EV_A_ p->w, p->events);
411 } 802 }
412 } 803 }
413
414 pendingcnt = 0;
415} 804}
416 805
417static void 806static void
418timers_reify () 807timers_reify (EV_P)
419{ 808{
420 while (timercnt && timers [0]->at <= now) 809 while (timercnt && timers [0]->at <= mn_now)
421 { 810 {
422 struct ev_timer *w = timers [0]; 811 struct ev_timer *w = timers [0];
812
813 assert (("inactive timer on timer heap detected", ev_is_active (w)));
423 814
424 /* first reschedule or stop timer */ 815 /* first reschedule or stop timer */
425 if (w->repeat) 816 if (w->repeat)
426 { 817 {
818 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
427 w->at = now + w->repeat; 819 w->at = mn_now + w->repeat;
428 assert (("timer timeout in the past, negative repeat?", w->at > now));
429 downheap ((WT *)timers, timercnt, 0); 820 downheap ((WT *)timers, timercnt, 0);
430 } 821 }
431 else 822 else
432 evtimer_stop (w); /* nonrepeating: stop timer */ 823 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
433 824
434 event ((W)w, EV_TIMEOUT); 825 event (EV_A_ (W)w, EV_TIMEOUT);
435 } 826 }
436} 827}
437 828
438static void 829static void
439periodics_reify () 830periodics_reify (EV_P)
440{ 831{
441 while (periodiccnt && periodics [0]->at <= ev_now) 832 while (periodiccnt && periodics [0]->at <= rt_now)
442 { 833 {
443 struct ev_periodic *w = periodics [0]; 834 struct ev_periodic *w = periodics [0];
835
836 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
444 837
445 /* first reschedule or stop timer */ 838 /* first reschedule or stop timer */
446 if (w->interval) 839 if (w->interval)
447 { 840 {
448 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 841 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
449 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 842 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
450 downheap ((WT *)periodics, periodiccnt, 0); 843 downheap ((WT *)periodics, periodiccnt, 0);
451 } 844 }
452 else 845 else
453 evperiodic_stop (w); /* nonrepeating: stop timer */ 846 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
454 847
455 event ((W)w, EV_TIMEOUT); 848 event (EV_A_ (W)w, EV_PERIODIC);
456 } 849 }
457} 850}
458 851
459static void 852static void
460time_jump (ev_tstamp diff) 853periodics_reschedule (EV_P)
461{ 854{
462 int i; 855 int i;
463 856
464 /* adjust periodics */ 857 /* adjust periodics after time jump */
465 for (i = 0; i < periodiccnt; ++i) 858 for (i = 0; i < periodiccnt; ++i)
466 { 859 {
467 struct ev_periodic *w = periodics [i]; 860 struct ev_periodic *w = periodics [i];
468 861
469 if (w->interval) 862 if (w->interval)
470 { 863 {
471 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 864 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
472 865
473 if (fabs (diff) >= 1e-4) 866 if (fabs (diff) >= 1e-4)
474 { 867 {
475 evperiodic_stop (w); 868 ev_periodic_stop (EV_A_ w);
476 evperiodic_start (w); 869 ev_periodic_start (EV_A_ w);
477 870
478 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 871 i = 0; /* restart loop, inefficient, but time jumps should be rare */
479 } 872 }
480 } 873 }
481 } 874 }
482
483 /* adjust timers. this is easy, as the offset is the same for all */
484 for (i = 0; i < timercnt; ++i)
485 timers [i]->at += diff;
486} 875}
487 876
877inline int
878time_update_monotonic (EV_P)
879{
880 mn_now = get_clock ();
881
882 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
883 {
884 rt_now = rtmn_diff + mn_now;
885 return 0;
886 }
887 else
888 {
889 now_floor = mn_now;
890 rt_now = ev_time ();
891 return 1;
892 }
893}
894
488static void 895static void
489time_update () 896time_update (EV_P)
490{ 897{
491 int i; 898 int i;
492 899
493 ev_now = ev_time (); 900#if EV_USE_MONOTONIC
494
495 if (have_monotonic) 901 if (expect_true (have_monotonic))
496 { 902 {
497 ev_tstamp odiff = diff; 903 if (time_update_monotonic (EV_A))
498
499 for (i = 4; --i; ) /* loop a few times, before making important decisions */
500 { 904 {
501 now = get_clock (); 905 ev_tstamp odiff = rtmn_diff;
906
907 for (i = 4; --i; ) /* loop a few times, before making important decisions */
908 {
502 diff = ev_now - now; 909 rtmn_diff = rt_now - mn_now;
503 910
504 if (fabs (odiff - diff) < MIN_TIMEJUMP) 911 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
505 return; /* all is well */ 912 return; /* all is well */
506 913
507 ev_now = ev_time (); 914 rt_now = ev_time ();
915 mn_now = get_clock ();
916 now_floor = mn_now;
917 }
918
919 periodics_reschedule (EV_A);
920 /* no timer adjustment, as the monotonic clock doesn't jump */
921 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
508 } 922 }
509
510 time_jump (diff - odiff);
511 } 923 }
512 else 924 else
925#endif
513 { 926 {
514 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 927 rt_now = ev_time ();
515 time_jump (ev_now - now);
516 928
929 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
930 {
931 periodics_reschedule (EV_A);
932
933 /* adjust timers. this is easy, as the offset is the same for all */
934 for (i = 0; i < timercnt; ++i)
935 timers [i]->at += rt_now - mn_now;
936 }
937
517 now = ev_now; 938 mn_now = rt_now;
518 } 939 }
519} 940}
520 941
521int ev_loop_done; 942void
943ev_ref (EV_P)
944{
945 ++activecnt;
946}
522 947
948void
949ev_unref (EV_P)
950{
951 --activecnt;
952}
953
954static int loop_done;
955
956void
523void ev_loop (int flags) 957ev_loop (EV_P_ int flags)
524{ 958{
525 double block; 959 double block;
526 ev_loop_done = flags & EVLOOP_ONESHOT; 960 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
527
528 if (checkcnt)
529 {
530 queue_events ((W *)checks, checkcnt, EV_CHECK);
531 call_pending ();
532 }
533 961
534 do 962 do
535 { 963 {
964 /* queue check watchers (and execute them) */
965 if (expect_false (preparecnt))
966 {
967 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
968 call_pending (EV_A);
969 }
970
536 /* update fd-related kernel structures */ 971 /* update fd-related kernel structures */
537 fd_reify (); 972 fd_reify (EV_A);
538 973
539 /* calculate blocking time */ 974 /* calculate blocking time */
540 975
541 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 976 /* we only need this for !monotonic clockor timers, but as we basically
977 always have timers, we just calculate it always */
978#if EV_USE_MONOTONIC
979 if (expect_true (have_monotonic))
980 time_update_monotonic (EV_A);
981 else
982#endif
983 {
542 ev_now = ev_time (); 984 rt_now = ev_time ();
985 mn_now = rt_now;
986 }
543 987
544 if (flags & EVLOOP_NONBLOCK || idlecnt) 988 if (flags & EVLOOP_NONBLOCK || idlecnt)
545 block = 0.; 989 block = 0.;
546 else 990 else
547 { 991 {
548 block = MAX_BLOCKTIME; 992 block = MAX_BLOCKTIME;
549 993
550 if (timercnt) 994 if (timercnt)
551 { 995 {
552 ev_tstamp to = timers [0]->at - get_clock () + method_fudge; 996 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
553 if (block > to) block = to; 997 if (block > to) block = to;
554 } 998 }
555 999
556 if (periodiccnt) 1000 if (periodiccnt)
557 { 1001 {
558 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1002 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
559 if (block > to) block = to; 1003 if (block > to) block = to;
560 } 1004 }
561 1005
562 if (block < 0.) block = 0.; 1006 if (block < 0.) block = 0.;
563 } 1007 }
564 1008
565 method_poll (block); 1009 method_poll (EV_A_ block);
566 1010
567 /* update ev_now, do magic */ 1011 /* update rt_now, do magic */
568 time_update (); 1012 time_update (EV_A);
569 1013
570 /* queue pending timers and reschedule them */ 1014 /* queue pending timers and reschedule them */
1015 timers_reify (EV_A); /* relative timers called last */
571 periodics_reify (); /* absolute timers first */ 1016 periodics_reify (EV_A); /* absolute timers called first */
572 timers_reify (); /* relative timers second */
573 1017
574 /* queue idle watchers unless io or timers are pending */ 1018 /* queue idle watchers unless io or timers are pending */
575 if (!pendingcnt) 1019 if (!pendingcnt)
576 queue_events ((W *)idles, idlecnt, EV_IDLE); 1020 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
577 1021
578 /* queue check and possibly idle watchers */ 1022 /* queue check watchers, to be executed first */
1023 if (checkcnt)
579 queue_events ((W *)checks, checkcnt, EV_CHECK); 1024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
580 1025
581 call_pending (); 1026 call_pending (EV_A);
582 } 1027 }
583 while (!ev_loop_done); 1028 while (activecnt && !loop_done);
1029
1030 if (loop_done != 2)
1031 loop_done = 0;
1032}
1033
1034void
1035ev_unloop (EV_P_ int how)
1036{
1037 loop_done = how;
584} 1038}
585 1039
586/*****************************************************************************/ 1040/*****************************************************************************/
587 1041
588static void 1042inline void
589wlist_add (WL *head, WL elem) 1043wlist_add (WL *head, WL elem)
590{ 1044{
591 elem->next = *head; 1045 elem->next = *head;
592 *head = elem; 1046 *head = elem;
593} 1047}
594 1048
595static void 1049inline void
596wlist_del (WL *head, WL elem) 1050wlist_del (WL *head, WL elem)
597{ 1051{
598 while (*head) 1052 while (*head)
599 { 1053 {
600 if (*head == elem) 1054 if (*head == elem)
605 1059
606 head = &(*head)->next; 1060 head = &(*head)->next;
607 } 1061 }
608} 1062}
609 1063
610static void 1064inline void
1065ev_clear_pending (EV_P_ W w)
1066{
1067 if (w->pending)
1068 {
1069 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1070 w->pending = 0;
1071 }
1072}
1073
1074inline void
611ev_start (W w, int active) 1075ev_start (EV_P_ W w, int active)
612{ 1076{
613 w->pending = 0; 1077 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1078 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1079
614 w->active = active; 1080 w->active = active;
1081 ev_ref (EV_A);
615} 1082}
616 1083
617static void 1084inline void
618ev_stop (W w) 1085ev_stop (EV_P_ W w)
619{ 1086{
620 if (w->pending) 1087 ev_unref (EV_A);
621 pendings [w->pending - 1].w = 0;
622
623 w->active = 0; 1088 w->active = 0;
624} 1089}
625 1090
626/*****************************************************************************/ 1091/*****************************************************************************/
627 1092
628void 1093void
629evio_start (struct ev_io *w) 1094ev_io_start (EV_P_ struct ev_io *w)
630{ 1095{
1096 int fd = w->fd;
1097
631 if (ev_is_active (w)) 1098 if (ev_is_active (w))
632 return; 1099 return;
633 1100
634 int fd = w->fd; 1101 assert (("ev_io_start called with negative fd", fd >= 0));
635 1102
636 ev_start ((W)w, 1); 1103 ev_start (EV_A_ (W)w, 1);
637 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1104 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
638 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1105 wlist_add ((WL *)&anfds[fd].head, (WL)w);
639 1106
640 ++fdchangecnt; 1107 fd_change (EV_A_ fd);
641 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
642 fdchanges [fdchangecnt - 1] = fd;
643} 1108}
644 1109
645void 1110void
646evio_stop (struct ev_io *w) 1111ev_io_stop (EV_P_ struct ev_io *w)
647{ 1112{
1113 ev_clear_pending (EV_A_ (W)w);
648 if (!ev_is_active (w)) 1114 if (!ev_is_active (w))
649 return; 1115 return;
650 1116
651 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1117 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
652 ev_stop ((W)w); 1118 ev_stop (EV_A_ (W)w);
653 1119
654 ++fdchangecnt; 1120 fd_change (EV_A_ w->fd);
655 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
656 fdchanges [fdchangecnt - 1] = w->fd;
657} 1121}
658 1122
659
660void 1123void
661evtimer_start (struct ev_timer *w) 1124ev_timer_start (EV_P_ struct ev_timer *w)
662{ 1125{
663 if (ev_is_active (w)) 1126 if (ev_is_active (w))
664 return; 1127 return;
665 1128
666 w->at += now; 1129 w->at += mn_now;
667 1130
1131 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1132
668 ev_start ((W)w, ++timercnt); 1133 ev_start (EV_A_ (W)w, ++timercnt);
669 array_needsize (timers, timermax, timercnt, ); 1134 array_needsize (timers, timermax, timercnt, );
670 timers [timercnt - 1] = w; 1135 timers [timercnt - 1] = w;
671 upheap ((WT *)timers, timercnt - 1); 1136 upheap ((WT *)timers, timercnt - 1);
672}
673 1137
1138 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1139}
1140
674void 1141void
675evtimer_stop (struct ev_timer *w) 1142ev_timer_stop (EV_P_ struct ev_timer *w)
676{ 1143{
1144 ev_clear_pending (EV_A_ (W)w);
677 if (!ev_is_active (w)) 1145 if (!ev_is_active (w))
678 return; 1146 return;
679 1147
1148 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1149
680 if (w->active < timercnt--) 1150 if (((W)w)->active < timercnt--)
681 { 1151 {
682 timers [w->active - 1] = timers [timercnt]; 1152 timers [((W)w)->active - 1] = timers [timercnt];
683 downheap ((WT *)timers, timercnt, w->active - 1); 1153 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
684 } 1154 }
685 1155
1156 w->at = w->repeat;
1157
686 ev_stop ((W)w); 1158 ev_stop (EV_A_ (W)w);
687} 1159}
688 1160
689void 1161void
690evperiodic_start (struct ev_periodic *w) 1162ev_timer_again (EV_P_ struct ev_timer *w)
691{ 1163{
692 if (ev_is_active (w)) 1164 if (ev_is_active (w))
1165 {
1166 if (w->repeat)
1167 {
1168 w->at = mn_now + w->repeat;
1169 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1170 }
1171 else
1172 ev_timer_stop (EV_A_ w);
1173 }
1174 else if (w->repeat)
1175 ev_timer_start (EV_A_ w);
1176}
1177
1178void
1179ev_periodic_start (EV_P_ struct ev_periodic *w)
1180{
1181 if (ev_is_active (w))
693 return; 1182 return;
1183
1184 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
694 1185
695 /* this formula differs from the one in periodic_reify because we do not always round up */ 1186 /* this formula differs from the one in periodic_reify because we do not always round up */
696 if (w->interval) 1187 if (w->interval)
697 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1188 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
698 1189
699 ev_start ((W)w, ++periodiccnt); 1190 ev_start (EV_A_ (W)w, ++periodiccnt);
700 array_needsize (periodics, periodicmax, periodiccnt, ); 1191 array_needsize (periodics, periodicmax, periodiccnt, );
701 periodics [periodiccnt - 1] = w; 1192 periodics [periodiccnt - 1] = w;
702 upheap ((WT *)periodics, periodiccnt - 1); 1193 upheap ((WT *)periodics, periodiccnt - 1);
703}
704 1194
1195 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1196}
1197
705void 1198void
706evperiodic_stop (struct ev_periodic *w) 1199ev_periodic_stop (EV_P_ struct ev_periodic *w)
707{ 1200{
1201 ev_clear_pending (EV_A_ (W)w);
708 if (!ev_is_active (w)) 1202 if (!ev_is_active (w))
709 return; 1203 return;
710 1204
1205 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1206
711 if (w->active < periodiccnt--) 1207 if (((W)w)->active < periodiccnt--)
712 { 1208 {
713 periodics [w->active - 1] = periodics [periodiccnt]; 1209 periodics [((W)w)->active - 1] = periodics [periodiccnt];
714 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1210 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
715 } 1211 }
716 1212
717 ev_stop ((W)w); 1213 ev_stop (EV_A_ (W)w);
718} 1214}
719 1215
720void 1216void
721evsignal_start (struct ev_signal *w) 1217ev_idle_start (EV_P_ struct ev_idle *w)
722{ 1218{
723 if (ev_is_active (w)) 1219 if (ev_is_active (w))
724 return; 1220 return;
725 1221
1222 ev_start (EV_A_ (W)w, ++idlecnt);
1223 array_needsize (idles, idlemax, idlecnt, );
1224 idles [idlecnt - 1] = w;
1225}
1226
1227void
1228ev_idle_stop (EV_P_ struct ev_idle *w)
1229{
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w))
1232 return;
1233
1234 idles [((W)w)->active - 1] = idles [--idlecnt];
1235 ev_stop (EV_A_ (W)w);
1236}
1237
1238void
1239ev_prepare_start (EV_P_ struct ev_prepare *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++preparecnt);
1245 array_needsize (prepares, preparemax, preparecnt, );
1246 prepares [preparecnt - 1] = w;
1247}
1248
1249void
1250ev_prepare_stop (EV_P_ struct ev_prepare *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1257 ev_stop (EV_A_ (W)w);
1258}
1259
1260void
1261ev_check_start (EV_P_ struct ev_check *w)
1262{
1263 if (ev_is_active (w))
1264 return;
1265
1266 ev_start (EV_A_ (W)w, ++checkcnt);
1267 array_needsize (checks, checkmax, checkcnt, );
1268 checks [checkcnt - 1] = w;
1269}
1270
1271void
1272ev_check_stop (EV_P_ struct ev_check *w)
1273{
1274 ev_clear_pending (EV_A_ (W)w);
1275 if (ev_is_active (w))
1276 return;
1277
1278 checks [((W)w)->active - 1] = checks [--checkcnt];
1279 ev_stop (EV_A_ (W)w);
1280}
1281
1282#ifndef SA_RESTART
1283# define SA_RESTART 0
1284#endif
1285
1286void
1287ev_signal_start (EV_P_ struct ev_signal *w)
1288{
1289#if EV_MULTIPLICITY
1290 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1291#endif
1292 if (ev_is_active (w))
1293 return;
1294
1295 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1296
726 ev_start ((W)w, 1); 1297 ev_start (EV_A_ (W)w, 1);
727 array_needsize (signals, signalmax, w->signum, signals_init); 1298 array_needsize (signals, signalmax, w->signum, signals_init);
728 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1299 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
729 1300
730 if (!w->next) 1301 if (!w->next)
731 { 1302 {
732 struct sigaction sa; 1303 struct sigaction sa;
733 sa.sa_handler = sighandler; 1304 sa.sa_handler = sighandler;
734 sigfillset (&sa.sa_mask); 1305 sigfillset (&sa.sa_mask);
735 sa.sa_flags = 0; 1306 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
736 sigaction (w->signum, &sa, 0); 1307 sigaction (w->signum, &sa, 0);
737 } 1308 }
738} 1309}
739 1310
740void 1311void
741evsignal_stop (struct ev_signal *w) 1312ev_signal_stop (EV_P_ struct ev_signal *w)
742{ 1313{
1314 ev_clear_pending (EV_A_ (W)w);
743 if (!ev_is_active (w)) 1315 if (!ev_is_active (w))
744 return; 1316 return;
745 1317
746 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1318 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
747 ev_stop ((W)w); 1319 ev_stop (EV_A_ (W)w);
748 1320
749 if (!signals [w->signum - 1].head) 1321 if (!signals [w->signum - 1].head)
750 signal (w->signum, SIG_DFL); 1322 signal (w->signum, SIG_DFL);
751} 1323}
752 1324
753void evidle_start (struct ev_idle *w) 1325void
1326ev_child_start (EV_P_ struct ev_child *w)
754{ 1327{
1328#if EV_MULTIPLICITY
1329 assert (("child watchers are only supported in the default loop", loop == default_loop));
1330#endif
755 if (ev_is_active (w)) 1331 if (ev_is_active (w))
756 return; 1332 return;
757 1333
758 ev_start ((W)w, ++idlecnt); 1334 ev_start (EV_A_ (W)w, 1);
759 array_needsize (idles, idlemax, idlecnt, ); 1335 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
760 idles [idlecnt - 1] = w;
761} 1336}
762 1337
763void evidle_stop (struct ev_idle *w) 1338void
1339ev_child_stop (EV_P_ struct ev_child *w)
764{ 1340{
765 idles [w->active - 1] = idles [--idlecnt]; 1341 ev_clear_pending (EV_A_ (W)w);
766 ev_stop ((W)w);
767}
768
769void evcheck_start (struct ev_check *w)
770{
771 if (ev_is_active (w)) 1342 if (ev_is_active (w))
772 return; 1343 return;
773 1344
774 ev_start ((W)w, ++checkcnt); 1345 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
775 array_needsize (checks, checkmax, checkcnt, );
776 checks [checkcnt - 1] = w;
777}
778
779void evcheck_stop (struct ev_check *w)
780{
781 checks [w->active - 1] = checks [--checkcnt];
782 ev_stop ((W)w); 1346 ev_stop (EV_A_ (W)w);
783} 1347}
784 1348
785/*****************************************************************************/ 1349/*****************************************************************************/
786 1350
787#if 1 1351struct ev_once
788 1352{
789struct ev_io wio; 1353 struct ev_io io;
790
791static void
792sin_cb (struct ev_io *w, int revents)
793{
794 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
795}
796
797static void
798ocb (struct ev_timer *w, int revents)
799{
800 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
801 evtimer_stop (w);
802 evtimer_start (w);
803}
804
805static void
806scb (struct ev_signal *w, int revents)
807{
808 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
809 evio_stop (&wio);
810 evio_start (&wio);
811}
812
813static void
814gcb (struct ev_signal *w, int revents)
815{
816 fprintf (stderr, "generic %x\n", revents);
817
818}
819
820int main (void)
821{
822 ev_init (0);
823
824 evio_init (&wio, sin_cb, 0, EV_READ);
825 evio_start (&wio);
826
827 struct ev_timer t[10000];
828
829#if 0
830 int i;
831 for (i = 0; i < 10000; ++i)
832 {
833 struct ev_timer *w = t + i;
834 evw_init (w, ocb, i);
835 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
836 evtimer_start (w);
837 if (drand48 () < 0.5)
838 evtimer_stop (w);
839 }
840#endif
841
842 struct ev_timer t1; 1354 struct ev_timer to;
843 evtimer_init (&t1, ocb, 5, 10); 1355 void (*cb)(int revents, void *arg);
844 evtimer_start (&t1); 1356 void *arg;
1357};
845 1358
846 struct ev_signal sig; 1359static void
847 evsignal_init (&sig, scb, SIGQUIT); 1360once_cb (EV_P_ struct ev_once *once, int revents)
848 evsignal_start (&sig); 1361{
1362 void (*cb)(int revents, void *arg) = once->cb;
1363 void *arg = once->arg;
849 1364
850 struct ev_check cw; 1365 ev_io_stop (EV_A_ &once->io);
851 evcheck_init (&cw, gcb); 1366 ev_timer_stop (EV_A_ &once->to);
852 evcheck_start (&cw); 1367 free (once);
853 1368
854 struct ev_idle iw; 1369 cb (revents, arg);
855 evidle_init (&iw, gcb);
856 evidle_start (&iw);
857
858 ev_loop (0);
859
860 return 0;
861} 1370}
862 1371
863#endif 1372static void
1373once_cb_io (EV_P_ struct ev_io *w, int revents)
1374{
1375 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1376}
864 1377
1378static void
1379once_cb_to (EV_P_ struct ev_timer *w, int revents)
1380{
1381 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1382}
865 1383
1384void
1385ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1386{
1387 struct ev_once *once = malloc (sizeof (struct ev_once));
866 1388
1389 if (!once)
1390 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1391 else
1392 {
1393 once->cb = cb;
1394 once->arg = arg;
867 1395
1396 ev_watcher_init (&once->io, once_cb_io);
1397 if (fd >= 0)
1398 {
1399 ev_io_set (&once->io, fd, events);
1400 ev_io_start (EV_A_ &once->io);
1401 }
1402
1403 ev_watcher_init (&once->to, once_cb_to);
1404 if (timeout >= 0.)
1405 {
1406 ev_timer_set (&once->to, timeout, 0.);
1407 ev_timer_start (EV_A_ &once->to);
1408 }
1409 }
1410}
1411

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines