ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.120 by root, Fri Nov 16 01:54:25 2007 UTC vs.
Revision 1.237 by root, Wed May 7 15:16:56 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
63 99
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
66# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
67 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
68#endif 132#endif
69 133
70#include <math.h> 134#include <math.h>
71#include <stdlib.h> 135#include <stdlib.h>
72#include <fcntl.h> 136#include <fcntl.h>
79#include <sys/types.h> 143#include <sys/types.h>
80#include <time.h> 144#include <time.h>
81 145
82#include <signal.h> 146#include <signal.h>
83 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
84#ifndef _WIN32 154#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 155# include <sys/time.h>
87# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
88#else 158#else
89# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 160# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
93# endif 163# endif
94#endif 164#endif
95 165
96/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
97 167
98#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
99# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
100#endif 170#endif
101 171
102#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 1 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
104#endif 178#endif
105 179
106#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
108# define EV_SELECT_USE_FD_SET 1
109#endif 182#endif
110 183
111#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
112# ifdef _WIN32 185# ifdef _WIN32
113# define EV_USE_POLL 0 186# define EV_USE_POLL 0
115# define EV_USE_POLL 1 188# define EV_USE_POLL 1
116# endif 189# endif
117#endif 190#endif
118 191
119#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
120# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
121#endif 198#endif
122 199
123#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
125#endif 202#endif
126 203
127#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
128# define EV_USE_PORT 0 205# define EV_USE_PORT 0
129#endif 206#endif
130 207
131/**/ 208#ifndef EV_USE_INOTIFY
132 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
133/* darwin simply cannot be helped */ 210# define EV_USE_INOTIFY 1
134#ifdef __APPLE__ 211# else
135# undef EV_USE_POLL 212# define EV_USE_INOTIFY 0
136# undef EV_USE_KQUEUE
137#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
138 241
139#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
140# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
141# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
142#endif 245#endif
144#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
145# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
146# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
147#endif 250#endif
148 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
149#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
150# include <winsock.h> 268# include <winsock.h>
151#endif 269#endif
152 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
153/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
154 294
155#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
156#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
157#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
158/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
159 298
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
166#if __GNUC__ >= 3 299#if __GNUC__ >= 4
167# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
168# define inline inline 301# define noinline __attribute__ ((noinline))
169#else 302#else
170# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
171# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
172#endif 308#endif
173 309
174#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
175#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
176 319
177#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
178#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
179 322
180#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
181#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
182 325
183typedef struct ev_watcher *W; 326typedef ev_watcher *W;
184typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
185typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
186 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
187static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
188 338
189#ifdef _WIN32 339#ifdef _WIN32
190# include "ev_win32.c" 340# include "ev_win32.c"
191#endif 341#endif
192 342
193/*****************************************************************************/ 343/*****************************************************************************/
194 344
195static void (*syserr_cb)(const char *msg); 345static void (*syserr_cb)(const char *msg);
196 346
347void
197void ev_set_syserr_cb (void (*cb)(const char *msg)) 348ev_set_syserr_cb (void (*cb)(const char *msg))
198{ 349{
199 syserr_cb = cb; 350 syserr_cb = cb;
200} 351}
201 352
202static void 353static void noinline
203syserr (const char *msg) 354syserr (const char *msg)
204{ 355{
205 if (!msg) 356 if (!msg)
206 msg = "(libev) system error"; 357 msg = "(libev) system error";
207 358
212 perror (msg); 363 perror (msg);
213 abort (); 364 abort ();
214 } 365 }
215} 366}
216 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
217static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
218 384
385void
219void ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
220{ 387{
221 alloc = cb; 388 alloc = cb;
222} 389}
223 390
224static void * 391inline_speed void *
225ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
226{ 393{
227 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
228 395
229 if (!ptr && size) 396 if (!ptr && size)
230 { 397 {
231 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
232 abort (); 399 abort ();
253typedef struct 420typedef struct
254{ 421{
255 W w; 422 W w;
256 int events; 423 int events;
257} ANPENDING; 424} ANPENDING;
425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
258 432
259#if EV_MULTIPLICITY 433#if EV_MULTIPLICITY
260 434
261 struct ev_loop 435 struct ev_loop
262 { 436 {
296 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
297 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
298#endif 472#endif
299} 473}
300 474
301inline ev_tstamp 475ev_tstamp inline_size
302get_clock (void) 476get_clock (void)
303{ 477{
304#if EV_USE_MONOTONIC 478#if EV_USE_MONOTONIC
305 if (expect_true (have_monotonic)) 479 if (expect_true (have_monotonic))
306 { 480 {
319{ 493{
320 return ev_rt_now; 494 return ev_rt_now;
321} 495}
322#endif 496#endif
323 497
324#define array_roundsize(type,n) (((n) | 4) & ~3) 498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526
527int inline_size
528array_nextsize (int elem, int cur, int cnt)
529{
530 int ncur = cur + 1;
531
532 do
533 ncur <<= 1;
534 while (cnt > ncur);
535
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 {
539 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4;
542 ncur /= elem;
543 }
544
545 return ncur;
546}
547
548static noinline void *
549array_realloc (int elem, void *base, int *cur, int cnt)
550{
551 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur);
553}
325 554
326#define array_needsize(type,base,cur,cnt,init) \ 555#define array_needsize(type,base,cur,cnt,init) \
327 if (expect_false ((cnt) > cur)) \ 556 if (expect_false ((cnt) > (cur))) \
328 { \ 557 { \
329 int newcnt = cur; \ 558 int ocur_ = (cur); \
330 do \ 559 (base) = (type *)array_realloc \
331 { \ 560 (sizeof (type), (base), &(cur), (cnt)); \
332 newcnt = array_roundsize (type, newcnt << 1); \ 561 init ((base) + (ocur_), (cur) - ocur_); \
333 } \
334 while ((cnt) > newcnt); \
335 \
336 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
337 init (base + cur, newcnt - cur); \
338 cur = newcnt; \
339 } 562 }
340 563
564#if 0
341#define array_slim(type,stem) \ 565#define array_slim(type,stem) \
342 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 566 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
343 { \ 567 { \
344 stem ## max = array_roundsize (stem ## cnt >> 1); \ 568 stem ## max = array_roundsize (stem ## cnt >> 1); \
345 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 569 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
346 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
347 } 571 }
572#endif
348 573
349#define array_free(stem, idx) \ 574#define array_free(stem, idx) \
350 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
351 576
352/*****************************************************************************/ 577/*****************************************************************************/
353 578
354static void 579void noinline
580ev_feed_event (EV_P_ void *w, int revents)
581{
582 W w_ = (W)w;
583 int pri = ABSPRI (w_);
584
585 if (expect_false (w_->pending))
586 pendings [pri][w_->pending - 1].events |= revents;
587 else
588 {
589 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents;
593 }
594}
595
596void inline_speed
597queue_events (EV_P_ W *events, int eventcnt, int type)
598{
599 int i;
600
601 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type);
603}
604
605/*****************************************************************************/
606
607void inline_size
355anfds_init (ANFD *base, int count) 608anfds_init (ANFD *base, int count)
356{ 609{
357 while (count--) 610 while (count--)
358 { 611 {
359 base->head = 0; 612 base->head = 0;
362 615
363 ++base; 616 ++base;
364 } 617 }
365} 618}
366 619
367void 620void inline_speed
368ev_feed_event (EV_P_ void *w, int revents)
369{
370 W w_ = (W)w;
371
372 if (w_->pending)
373 {
374 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
375 return;
376 }
377
378 w_->pending = ++pendingcnt [ABSPRI (w_)];
379 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
380 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
381 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
382}
383
384static void
385queue_events (EV_P_ W *events, int eventcnt, int type)
386{
387 int i;
388
389 for (i = 0; i < eventcnt; ++i)
390 ev_feed_event (EV_A_ events [i], type);
391}
392
393inline void
394fd_event (EV_P_ int fd, int revents) 621fd_event (EV_P_ int fd, int revents)
395{ 622{
396 ANFD *anfd = anfds + fd; 623 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 624 ev_io *w;
398 625
399 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
400 { 627 {
401 int ev = w->events & revents; 628 int ev = w->events & revents;
402 629
403 if (ev) 630 if (ev)
404 ev_feed_event (EV_A_ (W)w, ev); 631 ev_feed_event (EV_A_ (W)w, ev);
406} 633}
407 634
408void 635void
409ev_feed_fd_event (EV_P_ int fd, int revents) 636ev_feed_fd_event (EV_P_ int fd, int revents)
410{ 637{
638 if (fd >= 0 && fd < anfdmax)
411 fd_event (EV_A_ fd, revents); 639 fd_event (EV_A_ fd, revents);
412} 640}
413 641
414/*****************************************************************************/ 642void inline_size
415
416static void
417fd_reify (EV_P) 643fd_reify (EV_P)
418{ 644{
419 int i; 645 int i;
420 646
421 for (i = 0; i < fdchangecnt; ++i) 647 for (i = 0; i < fdchangecnt; ++i)
422 { 648 {
423 int fd = fdchanges [i]; 649 int fd = fdchanges [i];
424 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
425 struct ev_io *w; 651 ev_io *w;
426 652
427 int events = 0; 653 unsigned char events = 0;
428 654
429 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
430 events |= w->events; 656 events |= (unsigned char)w->events;
431 657
432#if EV_SELECT_IS_WINSOCKET 658#if EV_SELECT_IS_WINSOCKET
433 if (events) 659 if (events)
434 { 660 {
435 unsigned long argp; 661 unsigned long argp;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
436 anfd->handle = _get_osfhandle (fd); 665 anfd->handle = _get_osfhandle (fd);
666 #endif
437 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
438 } 668 }
439#endif 669#endif
440 670
671 {
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
441 anfd->reify = 0; 675 anfd->reify = 0;
442
443 method_modify (EV_A_ fd, anfd->events, events);
444 anfd->events = events; 676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events);
680 }
445 } 681 }
446 682
447 fdchangecnt = 0; 683 fdchangecnt = 0;
448} 684}
449 685
450static void 686void inline_size
451fd_change (EV_P_ int fd) 687fd_change (EV_P_ int fd, int flags)
452{ 688{
453 if (anfds [fd].reify) 689 unsigned char reify = anfds [fd].reify;
454 return;
455
456 anfds [fd].reify = 1; 690 anfds [fd].reify |= flags;
457 691
692 if (expect_true (!reify))
693 {
458 ++fdchangecnt; 694 ++fdchangecnt;
459 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
460 fdchanges [fdchangecnt - 1] = fd; 696 fdchanges [fdchangecnt - 1] = fd;
697 }
461} 698}
462 699
463static void 700void inline_speed
464fd_kill (EV_P_ int fd) 701fd_kill (EV_P_ int fd)
465{ 702{
466 struct ev_io *w; 703 ev_io *w;
467 704
468 while ((w = (struct ev_io *)anfds [fd].head)) 705 while ((w = (ev_io *)anfds [fd].head))
469 { 706 {
470 ev_io_stop (EV_A_ w); 707 ev_io_stop (EV_A_ w);
471 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
472 } 709 }
473} 710}
474 711
475static int 712int inline_size
476fd_valid (int fd) 713fd_valid (int fd)
477{ 714{
478#ifdef _WIN32 715#ifdef _WIN32
479 return _get_osfhandle (fd) != -1; 716 return _get_osfhandle (fd) != -1;
480#else 717#else
481 return fcntl (fd, F_GETFD) != -1; 718 return fcntl (fd, F_GETFD) != -1;
482#endif 719#endif
483} 720}
484 721
485/* called on EBADF to verify fds */ 722/* called on EBADF to verify fds */
486static void 723static void noinline
487fd_ebadf (EV_P) 724fd_ebadf (EV_P)
488{ 725{
489 int fd; 726 int fd;
490 727
491 for (fd = 0; fd < anfdmax; ++fd) 728 for (fd = 0; fd < anfdmax; ++fd)
493 if (!fd_valid (fd) == -1 && errno == EBADF) 730 if (!fd_valid (fd) == -1 && errno == EBADF)
494 fd_kill (EV_A_ fd); 731 fd_kill (EV_A_ fd);
495} 732}
496 733
497/* called on ENOMEM in select/poll to kill some fds and retry */ 734/* called on ENOMEM in select/poll to kill some fds and retry */
498static void 735static void noinline
499fd_enomem (EV_P) 736fd_enomem (EV_P)
500{ 737{
501 int fd; 738 int fd;
502 739
503 for (fd = anfdmax; fd--; ) 740 for (fd = anfdmax; fd--; )
506 fd_kill (EV_A_ fd); 743 fd_kill (EV_A_ fd);
507 return; 744 return;
508 } 745 }
509} 746}
510 747
511/* usually called after fork if method needs to re-arm all fds from scratch */ 748/* usually called after fork if backend needs to re-arm all fds from scratch */
512static void 749static void noinline
513fd_rearm_all (EV_P) 750fd_rearm_all (EV_P)
514{ 751{
515 int fd; 752 int fd;
516 753
517 /* this should be highly optimised to not do anything but set a flag */
518 for (fd = 0; fd < anfdmax; ++fd) 754 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 755 if (anfds [fd].events)
520 { 756 {
521 anfds [fd].events = 0; 757 anfds [fd].events = 0;
522 fd_change (EV_A_ fd); 758 fd_change (EV_A_ fd, EV_IOFDSET | 1);
523 } 759 }
524} 760}
525 761
526/*****************************************************************************/ 762/*****************************************************************************/
527 763
528static void 764/*
765 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers.
769 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP
772
773#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */
775
776/* towards the root */
777void inline_speed
529upheap (WT *heap, int k) 778upheap (WT *heap, int k)
530{ 779{
531 WT w = heap [k]; 780 WT w = heap [k];
532 781
533 while (k && heap [k >> 1]->at > w->at) 782 for (;;)
534 { 783 {
784 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
785
786 if (p >= HEAP0 || heap [p]->at <= w->at)
787 break;
788
535 heap [k] = heap [k >> 1]; 789 heap [k] = heap [p];
536 ((W)heap [k])->active = k + 1; 790 ev_active (heap [k]) = k;
537 k >>= 1; 791 k = p;
538 } 792 }
539 793
540 heap [k] = w; 794 heap [k] = w;
541 ((W)heap [k])->active = k + 1; 795 ev_active (heap [k]) = k;
542
543} 796}
544 797
545static void 798/* away from the root */
799void inline_speed
546downheap (WT *heap, int N, int k) 800downheap (WT *heap, int N, int k)
547{ 801{
548 WT w = heap [k]; 802 WT w = heap [k];
803 WT *E = heap + N + HEAP0;
549 804
550 while (k < (N >> 1)) 805 for (;;)
551 { 806 {
552 int j = k << 1; 807 ev_tstamp minat;
808 WT *minpos;
809 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
553 810
554 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 811 // find minimum child
812 if (expect_true (pos + DHEAP - 1 < E))
555 ++j; 813 {
814 /* fast path */
815 (minpos = pos + 0), (minat = (*minpos)->at);
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
819 }
820 else
821 {
822 /* slow path */
823 if (pos >= E)
824 break;
825 (minpos = pos + 0), (minat = (*minpos)->at);
826 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
827 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
828 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
829 }
556 830
557 if (w->at <= heap [j]->at) 831 if (w->at <= minat)
558 break; 832 break;
559 833
560 heap [k] = heap [j]; 834 ev_active (*minpos) = k;
561 ((W)heap [k])->active = k + 1; 835 heap [k] = *minpos;
562 k = j; 836
837 k = minpos - heap;
563 } 838 }
564 839
565 heap [k] = w; 840 heap [k] = w;
841 ev_active (heap [k]) = k;
842}
843
844#else // 4HEAP
845
846#define HEAP0 1
847
848/* towards the root */
849void inline_speed
850upheap (WT *heap, int k)
851{
852 WT w = heap [k];
853
854 for (;;)
855 {
856 int p = k >> 1;
857
858 /* maybe we could use a dummy element at heap [0]? */
859 if (!p || heap [p]->at <= w->at)
860 break;
861
862 heap [k] = heap [p];
863 ev_active (heap [k]) = k;
864 k = p;
865 }
866
867 heap [k] = w;
868 ev_active (heap [k]) = k;
869}
870
871/* away from the root */
872void inline_speed
873downheap (WT *heap, int N, int k)
874{
875 WT w = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N)
882 break;
883
884 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
885 ? 1 : 0;
886
887 if (w->at <= heap [c]->at)
888 break;
889
890 heap [k] = heap [c];
566 ((W)heap [k])->active = k + 1; 891 ((W)heap [k])->active = k;
567} 892
893 k = c;
894 }
568 895
569inline void 896 heap [k] = w;
897 ev_active (heap [k]) = k;
898}
899#endif
900
901void inline_size
570adjustheap (WT *heap, int N, int k) 902adjustheap (WT *heap, int N, int k)
571{ 903{
572 upheap (heap, k); 904 upheap (heap, k);
573 downheap (heap, N, k); 905 downheap (heap, N, k);
574} 906}
576/*****************************************************************************/ 908/*****************************************************************************/
577 909
578typedef struct 910typedef struct
579{ 911{
580 WL head; 912 WL head;
581 sig_atomic_t volatile gotsig; 913 EV_ATOMIC_T gotsig;
582} ANSIG; 914} ANSIG;
583 915
584static ANSIG *signals; 916static ANSIG *signals;
585static int signalmax; 917static int signalmax;
586 918
587static int sigpipe [2]; 919static EV_ATOMIC_T gotsig;
588static sig_atomic_t volatile gotsig;
589static struct ev_io sigev;
590 920
591static void 921void inline_size
592signals_init (ANSIG *base, int count) 922signals_init (ANSIG *base, int count)
593{ 923{
594 while (count--) 924 while (count--)
595 { 925 {
596 base->head = 0; 926 base->head = 0;
598 928
599 ++base; 929 ++base;
600 } 930 }
601} 931}
602 932
603static void 933/*****************************************************************************/
604sighandler (int signum)
605{
606#if _WIN32
607 signal (signum, sighandler);
608#endif
609 934
610 signals [signum - 1].gotsig = 1; 935void inline_speed
611
612 if (!gotsig)
613 {
614 int old_errno = errno;
615 gotsig = 1;
616 write (sigpipe [1], &signum, 1);
617 errno = old_errno;
618 }
619}
620
621void
622ev_feed_signal_event (EV_P_ int signum)
623{
624 WL w;
625
626#if EV_MULTIPLICITY
627 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
628#endif
629
630 --signum;
631
632 if (signum < 0 || signum >= signalmax)
633 return;
634
635 signals [signum].gotsig = 0;
636
637 for (w = signals [signum].head; w; w = w->next)
638 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
639}
640
641static void
642sigcb (EV_P_ struct ev_io *iow, int revents)
643{
644 int signum;
645
646 read (sigpipe [0], &revents, 1);
647 gotsig = 0;
648
649 for (signum = signalmax; signum--; )
650 if (signals [signum].gotsig)
651 ev_feed_signal_event (EV_A_ signum + 1);
652}
653
654inline void
655fd_intern (int fd) 936fd_intern (int fd)
656{ 937{
657#ifdef _WIN32 938#ifdef _WIN32
658 int arg = 1; 939 int arg = 1;
659 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 940 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
661 fcntl (fd, F_SETFD, FD_CLOEXEC); 942 fcntl (fd, F_SETFD, FD_CLOEXEC);
662 fcntl (fd, F_SETFL, O_NONBLOCK); 943 fcntl (fd, F_SETFL, O_NONBLOCK);
663#endif 944#endif
664} 945}
665 946
947static void noinline
948evpipe_init (EV_P)
949{
950 if (!ev_is_active (&pipeev))
951 {
952#if EV_USE_EVENTFD
953 if ((evfd = eventfd (0, 0)) >= 0)
954 {
955 evpipe [0] = -1;
956 fd_intern (evfd);
957 ev_io_set (&pipeev, evfd, EV_READ);
958 }
959 else
960#endif
961 {
962 while (pipe (evpipe))
963 syserr ("(libev) error creating signal/async pipe");
964
965 fd_intern (evpipe [0]);
966 fd_intern (evpipe [1]);
967 ev_io_set (&pipeev, evpipe [0], EV_READ);
968 }
969
970 ev_io_start (EV_A_ &pipeev);
971 ev_unref (EV_A); /* watcher should not keep loop alive */
972 }
973}
974
975void inline_size
976evpipe_write (EV_P_ EV_ATOMIC_T *flag)
977{
978 if (!*flag)
979 {
980 int old_errno = errno; /* save errno because write might clobber it */
981
982 *flag = 1;
983
984#if EV_USE_EVENTFD
985 if (evfd >= 0)
986 {
987 uint64_t counter = 1;
988 write (evfd, &counter, sizeof (uint64_t));
989 }
990 else
991#endif
992 write (evpipe [1], &old_errno, 1);
993
994 errno = old_errno;
995 }
996}
997
666static void 998static void
667siginit (EV_P) 999pipecb (EV_P_ ev_io *iow, int revents)
668{ 1000{
669 fd_intern (sigpipe [0]); 1001#if EV_USE_EVENTFD
670 fd_intern (sigpipe [1]); 1002 if (evfd >= 0)
1003 {
1004 uint64_t counter;
1005 read (evfd, &counter, sizeof (uint64_t));
1006 }
1007 else
1008#endif
1009 {
1010 char dummy;
1011 read (evpipe [0], &dummy, 1);
1012 }
671 1013
672 ev_io_set (&sigev, sigpipe [0], EV_READ); 1014 if (gotsig && ev_is_default_loop (EV_A))
673 ev_io_start (EV_A_ &sigev); 1015 {
674 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1016 int signum;
1017 gotsig = 0;
1018
1019 for (signum = signalmax; signum--; )
1020 if (signals [signum].gotsig)
1021 ev_feed_signal_event (EV_A_ signum + 1);
1022 }
1023
1024#if EV_ASYNC_ENABLE
1025 if (gotasync)
1026 {
1027 int i;
1028 gotasync = 0;
1029
1030 for (i = asynccnt; i--; )
1031 if (asyncs [i]->sent)
1032 {
1033 asyncs [i]->sent = 0;
1034 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1035 }
1036 }
1037#endif
675} 1038}
676 1039
677/*****************************************************************************/ 1040/*****************************************************************************/
678 1041
679static struct ev_child *childs [PID_HASHSIZE]; 1042static void
1043ev_sighandler (int signum)
1044{
1045#if EV_MULTIPLICITY
1046 struct ev_loop *loop = &default_loop_struct;
1047#endif
1048
1049#if _WIN32
1050 signal (signum, ev_sighandler);
1051#endif
1052
1053 signals [signum - 1].gotsig = 1;
1054 evpipe_write (EV_A_ &gotsig);
1055}
1056
1057void noinline
1058ev_feed_signal_event (EV_P_ int signum)
1059{
1060 WL w;
1061
1062#if EV_MULTIPLICITY
1063 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1064#endif
1065
1066 --signum;
1067
1068 if (signum < 0 || signum >= signalmax)
1069 return;
1070
1071 signals [signum].gotsig = 0;
1072
1073 for (w = signals [signum].head; w; w = w->next)
1074 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1075}
1076
1077/*****************************************************************************/
1078
1079static WL childs [EV_PID_HASHSIZE];
680 1080
681#ifndef _WIN32 1081#ifndef _WIN32
682 1082
683static struct ev_signal childev; 1083static ev_signal childev;
1084
1085#ifndef WIFCONTINUED
1086# define WIFCONTINUED(status) 0
1087#endif
1088
1089void inline_speed
1090child_reap (EV_P_ int chain, int pid, int status)
1091{
1092 ev_child *w;
1093 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1094
1095 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1096 {
1097 if ((w->pid == pid || !w->pid)
1098 && (!traced || (w->flags & 1)))
1099 {
1100 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1101 w->rpid = pid;
1102 w->rstatus = status;
1103 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1104 }
1105 }
1106}
684 1107
685#ifndef WCONTINUED 1108#ifndef WCONTINUED
686# define WCONTINUED 0 1109# define WCONTINUED 0
687#endif 1110#endif
688 1111
689static void 1112static void
690child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
691{
692 struct ev_child *w;
693
694 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
695 if (w->pid == pid || !w->pid)
696 {
697 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
698 w->rpid = pid;
699 w->rstatus = status;
700 ev_feed_event (EV_A_ (W)w, EV_CHILD);
701 }
702}
703
704static void
705childcb (EV_P_ struct ev_signal *sw, int revents) 1113childcb (EV_P_ ev_signal *sw, int revents)
706{ 1114{
707 int pid, status; 1115 int pid, status;
708 1116
1117 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
709 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1118 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
710 { 1119 if (!WCONTINUED
1120 || errno != EINVAL
1121 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1122 return;
1123
711 /* make sure we are called again until all childs have been reaped */ 1124 /* make sure we are called again until all children have been reaped */
1125 /* we need to do it this way so that the callback gets called before we continue */
712 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1126 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
713 1127
714 child_reap (EV_A_ sw, pid, pid, status); 1128 child_reap (EV_A_ pid, pid, status);
1129 if (EV_PID_HASHSIZE > 1)
715 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1130 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
716 }
717} 1131}
718 1132
719#endif 1133#endif
720 1134
721/*****************************************************************************/ 1135/*****************************************************************************/
747{ 1161{
748 return EV_VERSION_MINOR; 1162 return EV_VERSION_MINOR;
749} 1163}
750 1164
751/* return true if we are running with elevated privileges and should ignore env variables */ 1165/* return true if we are running with elevated privileges and should ignore env variables */
752static int 1166int inline_size
753enable_secure (void) 1167enable_secure (void)
754{ 1168{
755#ifdef _WIN32 1169#ifdef _WIN32
756 return 0; 1170 return 0;
757#else 1171#else
759 || getgid () != getegid (); 1173 || getgid () != getegid ();
760#endif 1174#endif
761} 1175}
762 1176
763unsigned int 1177unsigned int
764ev_method (EV_P) 1178ev_supported_backends (void)
765{ 1179{
766 return method; 1180 unsigned int flags = 0;
767}
768 1181
769static void 1182 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1183 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1184 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1185 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1186 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1187
1188 return flags;
1189}
1190
1191unsigned int
1192ev_recommended_backends (void)
1193{
1194 unsigned int flags = ev_supported_backends ();
1195
1196#ifndef __NetBSD__
1197 /* kqueue is borked on everything but netbsd apparently */
1198 /* it usually doesn't work correctly on anything but sockets and pipes */
1199 flags &= ~EVBACKEND_KQUEUE;
1200#endif
1201#ifdef __APPLE__
1202 // flags &= ~EVBACKEND_KQUEUE; for documentation
1203 flags &= ~EVBACKEND_POLL;
1204#endif
1205
1206 return flags;
1207}
1208
1209unsigned int
1210ev_embeddable_backends (void)
1211{
1212 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1213
1214 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1215 /* please fix it and tell me how to detect the fix */
1216 flags &= ~EVBACKEND_EPOLL;
1217
1218 return flags;
1219}
1220
1221unsigned int
1222ev_backend (EV_P)
1223{
1224 return backend;
1225}
1226
1227unsigned int
1228ev_loop_count (EV_P)
1229{
1230 return loop_count;
1231}
1232
1233void
1234ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1235{
1236 io_blocktime = interval;
1237}
1238
1239void
1240ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1241{
1242 timeout_blocktime = interval;
1243}
1244
1245static void noinline
770loop_init (EV_P_ unsigned int flags) 1246loop_init (EV_P_ unsigned int flags)
771{ 1247{
772 if (!method) 1248 if (!backend)
773 { 1249 {
774#if EV_USE_MONOTONIC 1250#if EV_USE_MONOTONIC
775 { 1251 {
776 struct timespec ts; 1252 struct timespec ts;
777 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1253 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
778 have_monotonic = 1; 1254 have_monotonic = 1;
779 } 1255 }
780#endif 1256#endif
781 1257
782 ev_rt_now = ev_time (); 1258 ev_rt_now = ev_time ();
783 mn_now = get_clock (); 1259 mn_now = get_clock ();
784 now_floor = mn_now; 1260 now_floor = mn_now;
785 rtmn_diff = ev_rt_now - mn_now; 1261 rtmn_diff = ev_rt_now - mn_now;
786 1262
787 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1263 io_blocktime = 0.;
1264 timeout_blocktime = 0.;
1265 backend = 0;
1266 backend_fd = -1;
1267 gotasync = 0;
1268#if EV_USE_INOTIFY
1269 fs_fd = -2;
1270#endif
1271
1272 /* pid check not overridable via env */
1273#ifndef _WIN32
1274 if (flags & EVFLAG_FORKCHECK)
1275 curpid = getpid ();
1276#endif
1277
1278 if (!(flags & EVFLAG_NOENV)
1279 && !enable_secure ()
1280 && getenv ("LIBEV_FLAGS"))
788 flags = atoi (getenv ("LIBEV_FLAGS")); 1281 flags = atoi (getenv ("LIBEV_FLAGS"));
789 1282
790 if (!(flags & 0x0000ffff)) 1283 if (!(flags & 0x0000ffffU))
791 flags |= 0x0000ffff; 1284 flags |= ev_recommended_backends ();
792 1285
793 method = 0;
794#if EV_USE_PORT 1286#if EV_USE_PORT
795 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1287 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
796#endif 1288#endif
797#if EV_USE_KQUEUE 1289#if EV_USE_KQUEUE
798 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1290 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
799#endif 1291#endif
800#if EV_USE_EPOLL 1292#if EV_USE_EPOLL
801 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1293 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
802#endif 1294#endif
803#if EV_USE_POLL 1295#if EV_USE_POLL
804 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1296 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
805#endif 1297#endif
806#if EV_USE_SELECT 1298#if EV_USE_SELECT
807 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1299 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
808#endif 1300#endif
809 1301
810 ev_init (&sigev, sigcb); 1302 ev_init (&pipeev, pipecb);
811 ev_set_priority (&sigev, EV_MAXPRI); 1303 ev_set_priority (&pipeev, EV_MAXPRI);
812 } 1304 }
813} 1305}
814 1306
815void 1307static void noinline
816loop_destroy (EV_P) 1308loop_destroy (EV_P)
817{ 1309{
818 int i; 1310 int i;
819 1311
1312 if (ev_is_active (&pipeev))
1313 {
1314 ev_ref (EV_A); /* signal watcher */
1315 ev_io_stop (EV_A_ &pipeev);
1316
1317#if EV_USE_EVENTFD
1318 if (evfd >= 0)
1319 close (evfd);
1320#endif
1321
1322 if (evpipe [0] >= 0)
1323 {
1324 close (evpipe [0]);
1325 close (evpipe [1]);
1326 }
1327 }
1328
1329#if EV_USE_INOTIFY
1330 if (fs_fd >= 0)
1331 close (fs_fd);
1332#endif
1333
1334 if (backend_fd >= 0)
1335 close (backend_fd);
1336
820#if EV_USE_PORT 1337#if EV_USE_PORT
821 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1338 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
822#endif 1339#endif
823#if EV_USE_KQUEUE 1340#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1341 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
825#endif 1342#endif
826#if EV_USE_EPOLL 1343#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1344 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
828#endif 1345#endif
829#if EV_USE_POLL 1346#if EV_USE_POLL
830 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1347 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
831#endif 1348#endif
832#if EV_USE_SELECT 1349#if EV_USE_SELECT
833 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1350 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
834#endif 1351#endif
835 1352
836 for (i = NUMPRI; i--; ) 1353 for (i = NUMPRI; i--; )
1354 {
837 array_free (pending, [i]); 1355 array_free (pending, [i]);
1356#if EV_IDLE_ENABLE
1357 array_free (idle, [i]);
1358#endif
1359 }
1360
1361 ev_free (anfds); anfdmax = 0;
838 1362
839 /* have to use the microsoft-never-gets-it-right macro */ 1363 /* have to use the microsoft-never-gets-it-right macro */
840 array_free (fdchange, EMPTY0); 1364 array_free (fdchange, EMPTY);
841 array_free (timer, EMPTY0); 1365 array_free (timer, EMPTY);
842#if EV_PERIODICS 1366#if EV_PERIODIC_ENABLE
843 array_free (periodic, EMPTY0); 1367 array_free (periodic, EMPTY);
844#endif 1368#endif
1369#if EV_FORK_ENABLE
845 array_free (idle, EMPTY0); 1370 array_free (fork, EMPTY);
1371#endif
846 array_free (prepare, EMPTY0); 1372 array_free (prepare, EMPTY);
847 array_free (check, EMPTY0); 1373 array_free (check, EMPTY);
1374#if EV_ASYNC_ENABLE
1375 array_free (async, EMPTY);
1376#endif
848 1377
849 method = 0; 1378 backend = 0;
850} 1379}
851 1380
852static void 1381#if EV_USE_INOTIFY
1382void inline_size infy_fork (EV_P);
1383#endif
1384
1385void inline_size
853loop_fork (EV_P) 1386loop_fork (EV_P)
854{ 1387{
855#if EV_USE_PORT 1388#if EV_USE_PORT
856 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1389 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
857#endif 1390#endif
858#if EV_USE_KQUEUE 1391#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1392 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
860#endif 1393#endif
861#if EV_USE_EPOLL 1394#if EV_USE_EPOLL
862 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1395 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
863#endif 1396#endif
1397#if EV_USE_INOTIFY
1398 infy_fork (EV_A);
1399#endif
864 1400
865 if (ev_is_active (&sigev)) 1401 if (ev_is_active (&pipeev))
866 { 1402 {
867 /* default loop */ 1403 /* this "locks" the handlers against writing to the pipe */
1404 /* while we modify the fd vars */
1405 gotsig = 1;
1406#if EV_ASYNC_ENABLE
1407 gotasync = 1;
1408#endif
868 1409
869 ev_ref (EV_A); 1410 ev_ref (EV_A);
870 ev_io_stop (EV_A_ &sigev); 1411 ev_io_stop (EV_A_ &pipeev);
1412
1413#if EV_USE_EVENTFD
1414 if (evfd >= 0)
1415 close (evfd);
1416#endif
1417
1418 if (evpipe [0] >= 0)
1419 {
871 close (sigpipe [0]); 1420 close (evpipe [0]);
872 close (sigpipe [1]); 1421 close (evpipe [1]);
1422 }
873 1423
874 while (pipe (sigpipe))
875 syserr ("(libev) error creating pipe");
876
877 siginit (EV_A); 1424 evpipe_init (EV_A);
1425 /* now iterate over everything, in case we missed something */
1426 pipecb (EV_A_ &pipeev, EV_READ);
878 } 1427 }
879 1428
880 postfork = 0; 1429 postfork = 0;
881} 1430}
882 1431
888 1437
889 memset (loop, 0, sizeof (struct ev_loop)); 1438 memset (loop, 0, sizeof (struct ev_loop));
890 1439
891 loop_init (EV_A_ flags); 1440 loop_init (EV_A_ flags);
892 1441
893 if (ev_method (EV_A)) 1442 if (ev_backend (EV_A))
894 return loop; 1443 return loop;
895 1444
896 return 0; 1445 return 0;
897} 1446}
898 1447
904} 1453}
905 1454
906void 1455void
907ev_loop_fork (EV_P) 1456ev_loop_fork (EV_P)
908{ 1457{
909 postfork = 1; 1458 postfork = 1; /* must be in line with ev_default_fork */
910} 1459}
911
912#endif 1460#endif
913 1461
914#if EV_MULTIPLICITY 1462#if EV_MULTIPLICITY
915struct ev_loop * 1463struct ev_loop *
916ev_default_loop_ (unsigned int flags) 1464ev_default_loop_init (unsigned int flags)
917#else 1465#else
918int 1466int
919ev_default_loop (unsigned int flags) 1467ev_default_loop (unsigned int flags)
920#endif 1468#endif
921{ 1469{
922 if (sigpipe [0] == sigpipe [1])
923 if (pipe (sigpipe))
924 return 0;
925
926 if (!ev_default_loop_ptr) 1470 if (!ev_default_loop_ptr)
927 { 1471 {
928#if EV_MULTIPLICITY 1472#if EV_MULTIPLICITY
929 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1473 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
930#else 1474#else
931 ev_default_loop_ptr = 1; 1475 ev_default_loop_ptr = 1;
932#endif 1476#endif
933 1477
934 loop_init (EV_A_ flags); 1478 loop_init (EV_A_ flags);
935 1479
936 if (ev_method (EV_A)) 1480 if (ev_backend (EV_A))
937 { 1481 {
938 siginit (EV_A);
939
940#ifndef _WIN32 1482#ifndef _WIN32
941 ev_signal_init (&childev, childcb, SIGCHLD); 1483 ev_signal_init (&childev, childcb, SIGCHLD);
942 ev_set_priority (&childev, EV_MAXPRI); 1484 ev_set_priority (&childev, EV_MAXPRI);
943 ev_signal_start (EV_A_ &childev); 1485 ev_signal_start (EV_A_ &childev);
944 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1486 ev_unref (EV_A); /* child watcher should not keep loop alive */
961#ifndef _WIN32 1503#ifndef _WIN32
962 ev_ref (EV_A); /* child watcher */ 1504 ev_ref (EV_A); /* child watcher */
963 ev_signal_stop (EV_A_ &childev); 1505 ev_signal_stop (EV_A_ &childev);
964#endif 1506#endif
965 1507
966 ev_ref (EV_A); /* signal watcher */
967 ev_io_stop (EV_A_ &sigev);
968
969 close (sigpipe [0]); sigpipe [0] = 0;
970 close (sigpipe [1]); sigpipe [1] = 0;
971
972 loop_destroy (EV_A); 1508 loop_destroy (EV_A);
973} 1509}
974 1510
975void 1511void
976ev_default_fork (void) 1512ev_default_fork (void)
977{ 1513{
978#if EV_MULTIPLICITY 1514#if EV_MULTIPLICITY
979 struct ev_loop *loop = ev_default_loop_ptr; 1515 struct ev_loop *loop = ev_default_loop_ptr;
980#endif 1516#endif
981 1517
982 if (method) 1518 if (backend)
983 postfork = 1; 1519 postfork = 1; /* must be in line with ev_loop_fork */
984} 1520}
985 1521
986/*****************************************************************************/ 1522/*****************************************************************************/
987 1523
988static int 1524void
989any_pending (EV_P) 1525ev_invoke (EV_P_ void *w, int revents)
990{ 1526{
991 int pri; 1527 EV_CB_INVOKE ((W)w, revents);
992
993 for (pri = NUMPRI; pri--; )
994 if (pendingcnt [pri])
995 return 1;
996
997 return 0;
998} 1528}
999 1529
1000static void 1530void inline_speed
1001call_pending (EV_P) 1531call_pending (EV_P)
1002{ 1532{
1003 int pri; 1533 int pri;
1004 1534
1005 for (pri = NUMPRI; pri--; ) 1535 for (pri = NUMPRI; pri--; )
1006 while (pendingcnt [pri]) 1536 while (pendingcnt [pri])
1007 { 1537 {
1008 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1538 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1009 1539
1010 if (p->w) 1540 if (expect_true (p->w))
1011 { 1541 {
1542 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1543
1012 p->w->pending = 0; 1544 p->w->pending = 0;
1013 EV_CB_INVOKE (p->w, p->events); 1545 EV_CB_INVOKE (p->w, p->events);
1014 } 1546 }
1015 } 1547 }
1016} 1548}
1017 1549
1018static void 1550#if EV_IDLE_ENABLE
1551void inline_size
1552idle_reify (EV_P)
1553{
1554 if (expect_false (idleall))
1555 {
1556 int pri;
1557
1558 for (pri = NUMPRI; pri--; )
1559 {
1560 if (pendingcnt [pri])
1561 break;
1562
1563 if (idlecnt [pri])
1564 {
1565 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1566 break;
1567 }
1568 }
1569 }
1570}
1571#endif
1572
1573void inline_size
1019timers_reify (EV_P) 1574timers_reify (EV_P)
1020{ 1575{
1021 while (timercnt && ((WT)timers [0])->at <= mn_now) 1576 while (timercnt && ev_at (timers [HEAP0]) <= mn_now)
1022 { 1577 {
1023 struct ev_timer *w = timers [0]; 1578 ev_timer *w = (ev_timer *)timers [HEAP0];
1024 1579
1025 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1580 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1026 1581
1027 /* first reschedule or stop timer */ 1582 /* first reschedule or stop timer */
1028 if (w->repeat) 1583 if (w->repeat)
1029 { 1584 {
1030 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1585 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1031 1586
1032 ((WT)w)->at += w->repeat; 1587 ev_at (w) += w->repeat;
1033 if (((WT)w)->at < mn_now) 1588 if (ev_at (w) < mn_now)
1034 ((WT)w)->at = mn_now; 1589 ev_at (w) = mn_now;
1035 1590
1036 downheap ((WT *)timers, timercnt, 0); 1591 downheap (timers, timercnt, HEAP0);
1037 } 1592 }
1038 else 1593 else
1039 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1594 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1040 1595
1041 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1596 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1042 } 1597 }
1043} 1598}
1044 1599
1045#if EV_PERIODICS 1600#if EV_PERIODIC_ENABLE
1046static void 1601void inline_size
1047periodics_reify (EV_P) 1602periodics_reify (EV_P)
1048{ 1603{
1049 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1604 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now)
1050 { 1605 {
1051 struct ev_periodic *w = periodics [0]; 1606 ev_periodic *w = (ev_periodic *)periodics [HEAP0];
1052 1607
1053 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1608 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1054 1609
1055 /* first reschedule or stop timer */ 1610 /* first reschedule or stop timer */
1056 if (w->reschedule_cb) 1611 if (w->reschedule_cb)
1057 { 1612 {
1058 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1613 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1059 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1614 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1060 downheap ((WT *)periodics, periodiccnt, 0); 1615 downheap (periodics, periodiccnt, 1);
1061 } 1616 }
1062 else if (w->interval) 1617 else if (w->interval)
1063 { 1618 {
1064 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1619 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1065 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1621 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1066 downheap ((WT *)periodics, periodiccnt, 0); 1622 downheap (periodics, periodiccnt, HEAP0);
1067 } 1623 }
1068 else 1624 else
1069 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1625 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1070 1626
1071 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1627 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1072 } 1628 }
1073} 1629}
1074 1630
1075static void 1631static void noinline
1076periodics_reschedule (EV_P) 1632periodics_reschedule (EV_P)
1077{ 1633{
1078 int i; 1634 int i;
1079 1635
1080 /* adjust periodics after time jump */ 1636 /* adjust periodics after time jump */
1081 for (i = 0; i < periodiccnt; ++i) 1637 for (i = 1; i <= periodiccnt; ++i)
1082 { 1638 {
1083 struct ev_periodic *w = periodics [i]; 1639 ev_periodic *w = (ev_periodic *)periodics [i];
1084 1640
1085 if (w->reschedule_cb) 1641 if (w->reschedule_cb)
1086 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1642 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1087 else if (w->interval) 1643 else if (w->interval)
1088 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1089 } 1645 }
1090 1646
1091 /* now rebuild the heap */ 1647 /* now rebuild the heap */
1092 for (i = periodiccnt >> 1; i--; ) 1648 for (i = periodiccnt >> 1; --i; )
1093 downheap ((WT *)periodics, periodiccnt, i); 1649 downheap (periodics, periodiccnt, i + HEAP0);
1094} 1650}
1095#endif 1651#endif
1096 1652
1097inline int 1653void inline_speed
1098time_update_monotonic (EV_P) 1654time_update (EV_P_ ev_tstamp max_block)
1099{ 1655{
1656 int i;
1657
1658#if EV_USE_MONOTONIC
1659 if (expect_true (have_monotonic))
1660 {
1661 ev_tstamp odiff = rtmn_diff;
1662
1100 mn_now = get_clock (); 1663 mn_now = get_clock ();
1101 1664
1665 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1666 /* interpolate in the meantime */
1102 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1667 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1103 { 1668 {
1104 ev_rt_now = rtmn_diff + mn_now; 1669 ev_rt_now = rtmn_diff + mn_now;
1105 return 0; 1670 return;
1106 } 1671 }
1107 else 1672
1108 {
1109 now_floor = mn_now; 1673 now_floor = mn_now;
1110 ev_rt_now = ev_time (); 1674 ev_rt_now = ev_time ();
1111 return 1;
1112 }
1113}
1114 1675
1115static void 1676 /* loop a few times, before making important decisions.
1116time_update (EV_P) 1677 * on the choice of "4": one iteration isn't enough,
1117{ 1678 * in case we get preempted during the calls to
1118 int i; 1679 * ev_time and get_clock. a second call is almost guaranteed
1119 1680 * to succeed in that case, though. and looping a few more times
1120#if EV_USE_MONOTONIC 1681 * doesn't hurt either as we only do this on time-jumps or
1121 if (expect_true (have_monotonic)) 1682 * in the unlikely event of having been preempted here.
1122 { 1683 */
1123 if (time_update_monotonic (EV_A)) 1684 for (i = 4; --i; )
1124 { 1685 {
1125 ev_tstamp odiff = rtmn_diff;
1126
1127 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1128 {
1129 rtmn_diff = ev_rt_now - mn_now; 1686 rtmn_diff = ev_rt_now - mn_now;
1130 1687
1131 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1688 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1132 return; /* all is well */ 1689 return; /* all is well */
1133 1690
1134 ev_rt_now = ev_time (); 1691 ev_rt_now = ev_time ();
1135 mn_now = get_clock (); 1692 mn_now = get_clock ();
1136 now_floor = mn_now; 1693 now_floor = mn_now;
1137 } 1694 }
1138 1695
1139# if EV_PERIODICS 1696# if EV_PERIODIC_ENABLE
1697 periodics_reschedule (EV_A);
1698# endif
1699 /* no timer adjustment, as the monotonic clock doesn't jump */
1700 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1701 }
1702 else
1703#endif
1704 {
1705 ev_rt_now = ev_time ();
1706
1707 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1708 {
1709#if EV_PERIODIC_ENABLE
1140 periodics_reschedule (EV_A); 1710 periodics_reschedule (EV_A);
1141# endif 1711#endif
1142 /* no timer adjustment, as the monotonic clock doesn't jump */ 1712 /* adjust timers. this is easy, as the offset is the same for all of them */
1143 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1713 for (i = 1; i <= timercnt; ++i)
1714 ev_at (timers [i]) += ev_rt_now - mn_now;
1144 } 1715 }
1145 }
1146 else
1147#endif
1148 {
1149 ev_rt_now = ev_time ();
1150
1151 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1152 {
1153#if EV_PERIODICS
1154 periodics_reschedule (EV_A);
1155#endif
1156
1157 /* adjust timers. this is easy, as the offset is the same for all */
1158 for (i = 0; i < timercnt; ++i)
1159 ((WT)timers [i])->at += ev_rt_now - mn_now;
1160 }
1161 1716
1162 mn_now = ev_rt_now; 1717 mn_now = ev_rt_now;
1163 } 1718 }
1164} 1719}
1165 1720
1178static int loop_done; 1733static int loop_done;
1179 1734
1180void 1735void
1181ev_loop (EV_P_ int flags) 1736ev_loop (EV_P_ int flags)
1182{ 1737{
1183 double block; 1738 loop_done = EVUNLOOP_CANCEL;
1184 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1185 1739
1186 while (activecnt) 1740 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1741
1742 do
1187 { 1743 {
1744#ifndef _WIN32
1745 if (expect_false (curpid)) /* penalise the forking check even more */
1746 if (expect_false (getpid () != curpid))
1747 {
1748 curpid = getpid ();
1749 postfork = 1;
1750 }
1751#endif
1752
1753#if EV_FORK_ENABLE
1754 /* we might have forked, so queue fork handlers */
1755 if (expect_false (postfork))
1756 if (forkcnt)
1757 {
1758 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1759 call_pending (EV_A);
1760 }
1761#endif
1762
1188 /* queue check watchers (and execute them) */ 1763 /* queue prepare watchers (and execute them) */
1189 if (expect_false (preparecnt)) 1764 if (expect_false (preparecnt))
1190 { 1765 {
1191 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1766 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1192 call_pending (EV_A); 1767 call_pending (EV_A);
1193 } 1768 }
1194 1769
1770 if (expect_false (!activecnt))
1771 break;
1772
1195 /* we might have forked, so reify kernel state if necessary */ 1773 /* we might have forked, so reify kernel state if necessary */
1196 if (expect_false (postfork)) 1774 if (expect_false (postfork))
1197 loop_fork (EV_A); 1775 loop_fork (EV_A);
1198 1776
1199 /* update fd-related kernel structures */ 1777 /* update fd-related kernel structures */
1200 fd_reify (EV_A); 1778 fd_reify (EV_A);
1201 1779
1202 /* calculate blocking time */ 1780 /* calculate blocking time */
1781 {
1782 ev_tstamp waittime = 0.;
1783 ev_tstamp sleeptime = 0.;
1203 1784
1204 /* we only need this for !monotonic clock or timers, but as we basically 1785 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1205 always have timers, we just calculate it always */
1206#if EV_USE_MONOTONIC
1207 if (expect_true (have_monotonic))
1208 time_update_monotonic (EV_A);
1209 else
1210#endif
1211 { 1786 {
1212 ev_rt_now = ev_time (); 1787 /* update time to cancel out callback processing overhead */
1213 mn_now = ev_rt_now; 1788 time_update (EV_A_ 1e100);
1214 }
1215 1789
1216 if (flags & EVLOOP_NONBLOCK || idlecnt)
1217 block = 0.;
1218 else
1219 {
1220 block = MAX_BLOCKTIME; 1790 waittime = MAX_BLOCKTIME;
1221 1791
1222 if (timercnt) 1792 if (timercnt)
1223 { 1793 {
1224 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1794 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge;
1225 if (block > to) block = to; 1795 if (waittime > to) waittime = to;
1226 } 1796 }
1227 1797
1228#if EV_PERIODICS 1798#if EV_PERIODIC_ENABLE
1229 if (periodiccnt) 1799 if (periodiccnt)
1230 { 1800 {
1231 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1801 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1232 if (block > to) block = to; 1802 if (waittime > to) waittime = to;
1233 } 1803 }
1234#endif 1804#endif
1235 1805
1236 if (block < 0.) block = 0.; 1806 if (expect_false (waittime < timeout_blocktime))
1807 waittime = timeout_blocktime;
1808
1809 sleeptime = waittime - backend_fudge;
1810
1811 if (expect_true (sleeptime > io_blocktime))
1812 sleeptime = io_blocktime;
1813
1814 if (sleeptime)
1815 {
1816 ev_sleep (sleeptime);
1817 waittime -= sleeptime;
1818 }
1237 } 1819 }
1238 1820
1239 method_poll (EV_A_ block); 1821 ++loop_count;
1822 backend_poll (EV_A_ waittime);
1240 1823
1241 /* update ev_rt_now, do magic */ 1824 /* update ev_rt_now, do magic */
1242 time_update (EV_A); 1825 time_update (EV_A_ waittime + sleeptime);
1826 }
1243 1827
1244 /* queue pending timers and reschedule them */ 1828 /* queue pending timers and reschedule them */
1245 timers_reify (EV_A); /* relative timers called last */ 1829 timers_reify (EV_A); /* relative timers called last */
1246#if EV_PERIODICS 1830#if EV_PERIODIC_ENABLE
1247 periodics_reify (EV_A); /* absolute timers called first */ 1831 periodics_reify (EV_A); /* absolute timers called first */
1248#endif 1832#endif
1249 1833
1834#if EV_IDLE_ENABLE
1250 /* queue idle watchers unless io or timers are pending */ 1835 /* queue idle watchers unless other events are pending */
1251 if (idlecnt && !any_pending (EV_A)) 1836 idle_reify (EV_A);
1252 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1837#endif
1253 1838
1254 /* queue check watchers, to be executed first */ 1839 /* queue check watchers, to be executed first */
1255 if (checkcnt) 1840 if (expect_false (checkcnt))
1256 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1841 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1257 1842
1258 call_pending (EV_A); 1843 call_pending (EV_A);
1259
1260 if (loop_done)
1261 break;
1262 } 1844 }
1845 while (expect_true (
1846 activecnt
1847 && !loop_done
1848 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1849 ));
1263 1850
1264 if (loop_done != 2) 1851 if (loop_done == EVUNLOOP_ONE)
1265 loop_done = 0; 1852 loop_done = EVUNLOOP_CANCEL;
1266} 1853}
1267 1854
1268void 1855void
1269ev_unloop (EV_P_ int how) 1856ev_unloop (EV_P_ int how)
1270{ 1857{
1271 loop_done = how; 1858 loop_done = how;
1272} 1859}
1273 1860
1274/*****************************************************************************/ 1861/*****************************************************************************/
1275 1862
1276inline void 1863void inline_size
1277wlist_add (WL *head, WL elem) 1864wlist_add (WL *head, WL elem)
1278{ 1865{
1279 elem->next = *head; 1866 elem->next = *head;
1280 *head = elem; 1867 *head = elem;
1281} 1868}
1282 1869
1283inline void 1870void inline_size
1284wlist_del (WL *head, WL elem) 1871wlist_del (WL *head, WL elem)
1285{ 1872{
1286 while (*head) 1873 while (*head)
1287 { 1874 {
1288 if (*head == elem) 1875 if (*head == elem)
1293 1880
1294 head = &(*head)->next; 1881 head = &(*head)->next;
1295 } 1882 }
1296} 1883}
1297 1884
1298inline void 1885void inline_speed
1299ev_clear_pending (EV_P_ W w) 1886clear_pending (EV_P_ W w)
1300{ 1887{
1301 if (w->pending) 1888 if (w->pending)
1302 { 1889 {
1303 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1890 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1304 w->pending = 0; 1891 w->pending = 0;
1305 } 1892 }
1306} 1893}
1307 1894
1308inline void 1895int
1896ev_clear_pending (EV_P_ void *w)
1897{
1898 W w_ = (W)w;
1899 int pending = w_->pending;
1900
1901 if (expect_true (pending))
1902 {
1903 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1904 w_->pending = 0;
1905 p->w = 0;
1906 return p->events;
1907 }
1908 else
1909 return 0;
1910}
1911
1912void inline_size
1913pri_adjust (EV_P_ W w)
1914{
1915 int pri = w->priority;
1916 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1917 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1918 w->priority = pri;
1919}
1920
1921void inline_speed
1309ev_start (EV_P_ W w, int active) 1922ev_start (EV_P_ W w, int active)
1310{ 1923{
1311 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1924 pri_adjust (EV_A_ w);
1312 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1313
1314 w->active = active; 1925 w->active = active;
1315 ev_ref (EV_A); 1926 ev_ref (EV_A);
1316} 1927}
1317 1928
1318inline void 1929void inline_size
1319ev_stop (EV_P_ W w) 1930ev_stop (EV_P_ W w)
1320{ 1931{
1321 ev_unref (EV_A); 1932 ev_unref (EV_A);
1322 w->active = 0; 1933 w->active = 0;
1323} 1934}
1324 1935
1325/*****************************************************************************/ 1936/*****************************************************************************/
1326 1937
1327void 1938void noinline
1328ev_io_start (EV_P_ struct ev_io *w) 1939ev_io_start (EV_P_ ev_io *w)
1329{ 1940{
1330 int fd = w->fd; 1941 int fd = w->fd;
1331 1942
1332 if (ev_is_active (w)) 1943 if (expect_false (ev_is_active (w)))
1333 return; 1944 return;
1334 1945
1335 assert (("ev_io_start called with negative fd", fd >= 0)); 1946 assert (("ev_io_start called with negative fd", fd >= 0));
1336 1947
1337 ev_start (EV_A_ (W)w, 1); 1948 ev_start (EV_A_ (W)w, 1);
1338 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1949 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1339 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1950 wlist_add (&anfds[fd].head, (WL)w);
1340 1951
1341 fd_change (EV_A_ fd); 1952 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1953 w->events &= ~EV_IOFDSET;
1342} 1954}
1343 1955
1344void 1956void noinline
1345ev_io_stop (EV_P_ struct ev_io *w) 1957ev_io_stop (EV_P_ ev_io *w)
1346{ 1958{
1347 ev_clear_pending (EV_A_ (W)w); 1959 clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 1960 if (expect_false (!ev_is_active (w)))
1349 return; 1961 return;
1350 1962
1351 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1963 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1352 1964
1353 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1965 wlist_del (&anfds[w->fd].head, (WL)w);
1354 ev_stop (EV_A_ (W)w); 1966 ev_stop (EV_A_ (W)w);
1355 1967
1356 fd_change (EV_A_ w->fd); 1968 fd_change (EV_A_ w->fd, 1);
1357} 1969}
1358 1970
1359void 1971void noinline
1360ev_timer_start (EV_P_ struct ev_timer *w) 1972ev_timer_start (EV_P_ ev_timer *w)
1361{ 1973{
1362 if (ev_is_active (w)) 1974 if (expect_false (ev_is_active (w)))
1363 return; 1975 return;
1364 1976
1365 ((WT)w)->at += mn_now; 1977 ev_at (w) += mn_now;
1366 1978
1367 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1979 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1368 1980
1369 ev_start (EV_A_ (W)w, ++timercnt); 1981 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1370 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1982 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2);
1371 timers [timercnt - 1] = w; 1983 timers [ev_active (w)] = (WT)w;
1372 upheap ((WT *)timers, timercnt - 1); 1984 upheap (timers, ev_active (w));
1373 1985
1374 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1986 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1375} 1987}
1376 1988
1377void 1989void noinline
1378ev_timer_stop (EV_P_ struct ev_timer *w) 1990ev_timer_stop (EV_P_ ev_timer *w)
1379{ 1991{
1380 ev_clear_pending (EV_A_ (W)w); 1992 clear_pending (EV_A_ (W)w);
1381 if (!ev_is_active (w)) 1993 if (expect_false (!ev_is_active (w)))
1382 return; 1994 return;
1383 1995
1996 {
1997 int active = ev_active (w);
1998
1384 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1999 assert (("internal timer heap corruption", timers [active] == (WT)w));
1385 2000
1386 if (((W)w)->active < timercnt--) 2001 if (expect_true (active < timercnt + HEAP0 - 1))
1387 { 2002 {
1388 timers [((W)w)->active - 1] = timers [timercnt]; 2003 timers [active] = timers [timercnt + HEAP0 - 1];
1389 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2004 adjustheap (timers, timercnt, active);
1390 } 2005 }
1391 2006
1392 ((WT)w)->at -= mn_now; 2007 --timercnt;
2008 }
2009
2010 ev_at (w) -= mn_now;
1393 2011
1394 ev_stop (EV_A_ (W)w); 2012 ev_stop (EV_A_ (W)w);
1395} 2013}
1396 2014
1397void 2015void noinline
1398ev_timer_again (EV_P_ struct ev_timer *w) 2016ev_timer_again (EV_P_ ev_timer *w)
1399{ 2017{
1400 if (ev_is_active (w)) 2018 if (ev_is_active (w))
1401 { 2019 {
1402 if (w->repeat) 2020 if (w->repeat)
1403 { 2021 {
1404 ((WT)w)->at = mn_now + w->repeat; 2022 ev_at (w) = mn_now + w->repeat;
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2023 adjustheap (timers, timercnt, ev_active (w));
1406 } 2024 }
1407 else 2025 else
1408 ev_timer_stop (EV_A_ w); 2026 ev_timer_stop (EV_A_ w);
1409 } 2027 }
1410 else if (w->repeat) 2028 else if (w->repeat)
1411 { 2029 {
1412 w->at = w->repeat; 2030 ev_at (w) = w->repeat;
1413 ev_timer_start (EV_A_ w); 2031 ev_timer_start (EV_A_ w);
1414 } 2032 }
1415} 2033}
1416 2034
1417#if EV_PERIODICS 2035#if EV_PERIODIC_ENABLE
1418void 2036void noinline
1419ev_periodic_start (EV_P_ struct ev_periodic *w) 2037ev_periodic_start (EV_P_ ev_periodic *w)
1420{ 2038{
1421 if (ev_is_active (w)) 2039 if (expect_false (ev_is_active (w)))
1422 return; 2040 return;
1423 2041
1424 if (w->reschedule_cb) 2042 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2043 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval) 2044 else if (w->interval)
1427 { 2045 {
1428 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2046 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1429 /* this formula differs from the one in periodic_reify because we do not always round up */ 2047 /* this formula differs from the one in periodic_reify because we do not always round up */
1430 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2048 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 } 2049 }
2050 else
2051 ev_at (w) = w->offset;
1432 2052
1433 ev_start (EV_A_ (W)w, ++periodiccnt); 2053 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1434 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2054 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2);
1435 periodics [periodiccnt - 1] = w; 2055 periodics [ev_active (w)] = (WT)w;
1436 upheap ((WT *)periodics, periodiccnt - 1); 2056 upheap (periodics, ev_active (w));
1437 2057
1438 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2058 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1439} 2059}
1440 2060
1441void 2061void noinline
1442ev_periodic_stop (EV_P_ struct ev_periodic *w) 2062ev_periodic_stop (EV_P_ ev_periodic *w)
1443{ 2063{
1444 ev_clear_pending (EV_A_ (W)w); 2064 clear_pending (EV_A_ (W)w);
1445 if (!ev_is_active (w)) 2065 if (expect_false (!ev_is_active (w)))
1446 return; 2066 return;
1447 2067
2068 {
2069 int active = ev_active (w);
2070
1448 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2071 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1449 2072
1450 if (((W)w)->active < periodiccnt--) 2073 if (expect_true (active < periodiccnt + HEAP0 - 1))
1451 { 2074 {
1452 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2075 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1453 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2076 adjustheap (periodics, periodiccnt, active);
1454 } 2077 }
2078
2079 --periodiccnt;
2080 }
1455 2081
1456 ev_stop (EV_A_ (W)w); 2082 ev_stop (EV_A_ (W)w);
1457} 2083}
1458 2084
1459void 2085void noinline
1460ev_periodic_again (EV_P_ struct ev_periodic *w) 2086ev_periodic_again (EV_P_ ev_periodic *w)
1461{ 2087{
1462 /* TODO: use adjustheap and recalculation */ 2088 /* TODO: use adjustheap and recalculation */
1463 ev_periodic_stop (EV_A_ w); 2089 ev_periodic_stop (EV_A_ w);
1464 ev_periodic_start (EV_A_ w); 2090 ev_periodic_start (EV_A_ w);
1465} 2091}
1466#endif 2092#endif
1467 2093
1468void
1469ev_idle_start (EV_P_ struct ev_idle *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++idlecnt);
1475 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1476 idles [idlecnt - 1] = w;
1477}
1478
1479void
1480ev_idle_stop (EV_P_ struct ev_idle *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 idles [((W)w)->active - 1] = idles [--idlecnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490void
1491ev_prepare_start (EV_P_ struct ev_prepare *w)
1492{
1493 if (ev_is_active (w))
1494 return;
1495
1496 ev_start (EV_A_ (W)w, ++preparecnt);
1497 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1498 prepares [preparecnt - 1] = w;
1499}
1500
1501void
1502ev_prepare_stop (EV_P_ struct ev_prepare *w)
1503{
1504 ev_clear_pending (EV_A_ (W)w);
1505 if (!ev_is_active (w))
1506 return;
1507
1508 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1509 ev_stop (EV_A_ (W)w);
1510}
1511
1512void
1513ev_check_start (EV_P_ struct ev_check *w)
1514{
1515 if (ev_is_active (w))
1516 return;
1517
1518 ev_start (EV_A_ (W)w, ++checkcnt);
1519 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1520 checks [checkcnt - 1] = w;
1521}
1522
1523void
1524ev_check_stop (EV_P_ struct ev_check *w)
1525{
1526 ev_clear_pending (EV_A_ (W)w);
1527 if (!ev_is_active (w))
1528 return;
1529
1530 checks [((W)w)->active - 1] = checks [--checkcnt];
1531 ev_stop (EV_A_ (W)w);
1532}
1533
1534#ifndef SA_RESTART 2094#ifndef SA_RESTART
1535# define SA_RESTART 0 2095# define SA_RESTART 0
1536#endif 2096#endif
1537 2097
1538void 2098void noinline
1539ev_signal_start (EV_P_ struct ev_signal *w) 2099ev_signal_start (EV_P_ ev_signal *w)
1540{ 2100{
1541#if EV_MULTIPLICITY 2101#if EV_MULTIPLICITY
1542 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2102 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1543#endif 2103#endif
1544 if (ev_is_active (w)) 2104 if (expect_false (ev_is_active (w)))
1545 return; 2105 return;
1546 2106
1547 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2107 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1548 2108
2109 evpipe_init (EV_A);
2110
2111 {
2112#ifndef _WIN32
2113 sigset_t full, prev;
2114 sigfillset (&full);
2115 sigprocmask (SIG_SETMASK, &full, &prev);
2116#endif
2117
2118 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2119
2120#ifndef _WIN32
2121 sigprocmask (SIG_SETMASK, &prev, 0);
2122#endif
2123 }
2124
1549 ev_start (EV_A_ (W)w, 1); 2125 ev_start (EV_A_ (W)w, 1);
1550 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1551 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2126 wlist_add (&signals [w->signum - 1].head, (WL)w);
1552 2127
1553 if (!((WL)w)->next) 2128 if (!((WL)w)->next)
1554 { 2129 {
1555#if _WIN32 2130#if _WIN32
1556 signal (w->signum, sighandler); 2131 signal (w->signum, ev_sighandler);
1557#else 2132#else
1558 struct sigaction sa; 2133 struct sigaction sa;
1559 sa.sa_handler = sighandler; 2134 sa.sa_handler = ev_sighandler;
1560 sigfillset (&sa.sa_mask); 2135 sigfillset (&sa.sa_mask);
1561 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2136 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1562 sigaction (w->signum, &sa, 0); 2137 sigaction (w->signum, &sa, 0);
1563#endif 2138#endif
1564 } 2139 }
1565} 2140}
1566 2141
1567void 2142void noinline
1568ev_signal_stop (EV_P_ struct ev_signal *w) 2143ev_signal_stop (EV_P_ ev_signal *w)
1569{ 2144{
1570 ev_clear_pending (EV_A_ (W)w); 2145 clear_pending (EV_A_ (W)w);
1571 if (!ev_is_active (w)) 2146 if (expect_false (!ev_is_active (w)))
1572 return; 2147 return;
1573 2148
1574 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2149 wlist_del (&signals [w->signum - 1].head, (WL)w);
1575 ev_stop (EV_A_ (W)w); 2150 ev_stop (EV_A_ (W)w);
1576 2151
1577 if (!signals [w->signum - 1].head) 2152 if (!signals [w->signum - 1].head)
1578 signal (w->signum, SIG_DFL); 2153 signal (w->signum, SIG_DFL);
1579} 2154}
1580 2155
1581void 2156void
1582ev_child_start (EV_P_ struct ev_child *w) 2157ev_child_start (EV_P_ ev_child *w)
1583{ 2158{
1584#if EV_MULTIPLICITY 2159#if EV_MULTIPLICITY
1585 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2160 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1586#endif 2161#endif
1587 if (ev_is_active (w)) 2162 if (expect_false (ev_is_active (w)))
1588 return; 2163 return;
1589 2164
1590 ev_start (EV_A_ (W)w, 1); 2165 ev_start (EV_A_ (W)w, 1);
1591 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2166 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1592} 2167}
1593 2168
1594void 2169void
1595ev_child_stop (EV_P_ struct ev_child *w) 2170ev_child_stop (EV_P_ ev_child *w)
1596{ 2171{
1597 ev_clear_pending (EV_A_ (W)w); 2172 clear_pending (EV_A_ (W)w);
1598 if (!ev_is_active (w)) 2173 if (expect_false (!ev_is_active (w)))
1599 return; 2174 return;
1600 2175
1601 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2176 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1602 ev_stop (EV_A_ (W)w); 2177 ev_stop (EV_A_ (W)w);
1603} 2178}
1604 2179
2180#if EV_STAT_ENABLE
2181
2182# ifdef _WIN32
2183# undef lstat
2184# define lstat(a,b) _stati64 (a,b)
2185# endif
2186
2187#define DEF_STAT_INTERVAL 5.0074891
2188#define MIN_STAT_INTERVAL 0.1074891
2189
2190static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2191
2192#if EV_USE_INOTIFY
2193# define EV_INOTIFY_BUFSIZE 8192
2194
2195static void noinline
2196infy_add (EV_P_ ev_stat *w)
2197{
2198 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2199
2200 if (w->wd < 0)
2201 {
2202 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2203
2204 /* monitor some parent directory for speedup hints */
2205 /* note that exceeding the hardcoded limit is not a correctness issue, */
2206 /* but an efficiency issue only */
2207 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2208 {
2209 char path [4096];
2210 strcpy (path, w->path);
2211
2212 do
2213 {
2214 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2215 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2216
2217 char *pend = strrchr (path, '/');
2218
2219 if (!pend)
2220 break; /* whoops, no '/', complain to your admin */
2221
2222 *pend = 0;
2223 w->wd = inotify_add_watch (fs_fd, path, mask);
2224 }
2225 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2226 }
2227 }
2228 else
2229 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2230
2231 if (w->wd >= 0)
2232 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2233}
2234
2235static void noinline
2236infy_del (EV_P_ ev_stat *w)
2237{
2238 int slot;
2239 int wd = w->wd;
2240
2241 if (wd < 0)
2242 return;
2243
2244 w->wd = -2;
2245 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2246 wlist_del (&fs_hash [slot].head, (WL)w);
2247
2248 /* remove this watcher, if others are watching it, they will rearm */
2249 inotify_rm_watch (fs_fd, wd);
2250}
2251
2252static void noinline
2253infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2254{
2255 if (slot < 0)
2256 /* overflow, need to check for all hahs slots */
2257 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2258 infy_wd (EV_A_ slot, wd, ev);
2259 else
2260 {
2261 WL w_;
2262
2263 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2264 {
2265 ev_stat *w = (ev_stat *)w_;
2266 w_ = w_->next; /* lets us remove this watcher and all before it */
2267
2268 if (w->wd == wd || wd == -1)
2269 {
2270 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2271 {
2272 w->wd = -1;
2273 infy_add (EV_A_ w); /* re-add, no matter what */
2274 }
2275
2276 stat_timer_cb (EV_A_ &w->timer, 0);
2277 }
2278 }
2279 }
2280}
2281
2282static void
2283infy_cb (EV_P_ ev_io *w, int revents)
2284{
2285 char buf [EV_INOTIFY_BUFSIZE];
2286 struct inotify_event *ev = (struct inotify_event *)buf;
2287 int ofs;
2288 int len = read (fs_fd, buf, sizeof (buf));
2289
2290 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2291 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2292}
2293
2294void inline_size
2295infy_init (EV_P)
2296{
2297 if (fs_fd != -2)
2298 return;
2299
2300 fs_fd = inotify_init ();
2301
2302 if (fs_fd >= 0)
2303 {
2304 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2305 ev_set_priority (&fs_w, EV_MAXPRI);
2306 ev_io_start (EV_A_ &fs_w);
2307 }
2308}
2309
2310void inline_size
2311infy_fork (EV_P)
2312{
2313 int slot;
2314
2315 if (fs_fd < 0)
2316 return;
2317
2318 close (fs_fd);
2319 fs_fd = inotify_init ();
2320
2321 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2322 {
2323 WL w_ = fs_hash [slot].head;
2324 fs_hash [slot].head = 0;
2325
2326 while (w_)
2327 {
2328 ev_stat *w = (ev_stat *)w_;
2329 w_ = w_->next; /* lets us add this watcher */
2330
2331 w->wd = -1;
2332
2333 if (fs_fd >= 0)
2334 infy_add (EV_A_ w); /* re-add, no matter what */
2335 else
2336 ev_timer_start (EV_A_ &w->timer);
2337 }
2338
2339 }
2340}
2341
2342#endif
2343
2344void
2345ev_stat_stat (EV_P_ ev_stat *w)
2346{
2347 if (lstat (w->path, &w->attr) < 0)
2348 w->attr.st_nlink = 0;
2349 else if (!w->attr.st_nlink)
2350 w->attr.st_nlink = 1;
2351}
2352
2353static void noinline
2354stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2355{
2356 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2357
2358 /* we copy this here each the time so that */
2359 /* prev has the old value when the callback gets invoked */
2360 w->prev = w->attr;
2361 ev_stat_stat (EV_A_ w);
2362
2363 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2364 if (
2365 w->prev.st_dev != w->attr.st_dev
2366 || w->prev.st_ino != w->attr.st_ino
2367 || w->prev.st_mode != w->attr.st_mode
2368 || w->prev.st_nlink != w->attr.st_nlink
2369 || w->prev.st_uid != w->attr.st_uid
2370 || w->prev.st_gid != w->attr.st_gid
2371 || w->prev.st_rdev != w->attr.st_rdev
2372 || w->prev.st_size != w->attr.st_size
2373 || w->prev.st_atime != w->attr.st_atime
2374 || w->prev.st_mtime != w->attr.st_mtime
2375 || w->prev.st_ctime != w->attr.st_ctime
2376 ) {
2377 #if EV_USE_INOTIFY
2378 infy_del (EV_A_ w);
2379 infy_add (EV_A_ w);
2380 ev_stat_stat (EV_A_ w); /* avoid race... */
2381 #endif
2382
2383 ev_feed_event (EV_A_ w, EV_STAT);
2384 }
2385}
2386
2387void
2388ev_stat_start (EV_P_ ev_stat *w)
2389{
2390 if (expect_false (ev_is_active (w)))
2391 return;
2392
2393 /* since we use memcmp, we need to clear any padding data etc. */
2394 memset (&w->prev, 0, sizeof (ev_statdata));
2395 memset (&w->attr, 0, sizeof (ev_statdata));
2396
2397 ev_stat_stat (EV_A_ w);
2398
2399 if (w->interval < MIN_STAT_INTERVAL)
2400 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2401
2402 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2403 ev_set_priority (&w->timer, ev_priority (w));
2404
2405#if EV_USE_INOTIFY
2406 infy_init (EV_A);
2407
2408 if (fs_fd >= 0)
2409 infy_add (EV_A_ w);
2410 else
2411#endif
2412 ev_timer_start (EV_A_ &w->timer);
2413
2414 ev_start (EV_A_ (W)w, 1);
2415}
2416
2417void
2418ev_stat_stop (EV_P_ ev_stat *w)
2419{
2420 clear_pending (EV_A_ (W)w);
2421 if (expect_false (!ev_is_active (w)))
2422 return;
2423
2424#if EV_USE_INOTIFY
2425 infy_del (EV_A_ w);
2426#endif
2427 ev_timer_stop (EV_A_ &w->timer);
2428
2429 ev_stop (EV_A_ (W)w);
2430}
2431#endif
2432
2433#if EV_IDLE_ENABLE
2434void
2435ev_idle_start (EV_P_ ev_idle *w)
2436{
2437 if (expect_false (ev_is_active (w)))
2438 return;
2439
2440 pri_adjust (EV_A_ (W)w);
2441
2442 {
2443 int active = ++idlecnt [ABSPRI (w)];
2444
2445 ++idleall;
2446 ev_start (EV_A_ (W)w, active);
2447
2448 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2449 idles [ABSPRI (w)][active - 1] = w;
2450 }
2451}
2452
2453void
2454ev_idle_stop (EV_P_ ev_idle *w)
2455{
2456 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w)))
2458 return;
2459
2460 {
2461 int active = ev_active (w);
2462
2463 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2464 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2465
2466 ev_stop (EV_A_ (W)w);
2467 --idleall;
2468 }
2469}
2470#endif
2471
2472void
2473ev_prepare_start (EV_P_ ev_prepare *w)
2474{
2475 if (expect_false (ev_is_active (w)))
2476 return;
2477
2478 ev_start (EV_A_ (W)w, ++preparecnt);
2479 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2480 prepares [preparecnt - 1] = w;
2481}
2482
2483void
2484ev_prepare_stop (EV_P_ ev_prepare *w)
2485{
2486 clear_pending (EV_A_ (W)w);
2487 if (expect_false (!ev_is_active (w)))
2488 return;
2489
2490 {
2491 int active = ev_active (w);
2492
2493 prepares [active - 1] = prepares [--preparecnt];
2494 ev_active (prepares [active - 1]) = active;
2495 }
2496
2497 ev_stop (EV_A_ (W)w);
2498}
2499
2500void
2501ev_check_start (EV_P_ ev_check *w)
2502{
2503 if (expect_false (ev_is_active (w)))
2504 return;
2505
2506 ev_start (EV_A_ (W)w, ++checkcnt);
2507 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2508 checks [checkcnt - 1] = w;
2509}
2510
2511void
2512ev_check_stop (EV_P_ ev_check *w)
2513{
2514 clear_pending (EV_A_ (W)w);
2515 if (expect_false (!ev_is_active (w)))
2516 return;
2517
2518 {
2519 int active = ev_active (w);
2520
2521 checks [active - 1] = checks [--checkcnt];
2522 ev_active (checks [active - 1]) = active;
2523 }
2524
2525 ev_stop (EV_A_ (W)w);
2526}
2527
2528#if EV_EMBED_ENABLE
2529void noinline
2530ev_embed_sweep (EV_P_ ev_embed *w)
2531{
2532 ev_loop (w->other, EVLOOP_NONBLOCK);
2533}
2534
2535static void
2536embed_io_cb (EV_P_ ev_io *io, int revents)
2537{
2538 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2539
2540 if (ev_cb (w))
2541 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2542 else
2543 ev_loop (w->other, EVLOOP_NONBLOCK);
2544}
2545
2546static void
2547embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2548{
2549 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2550
2551 {
2552 struct ev_loop *loop = w->other;
2553
2554 while (fdchangecnt)
2555 {
2556 fd_reify (EV_A);
2557 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2558 }
2559 }
2560}
2561
2562#if 0
2563static void
2564embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2565{
2566 ev_idle_stop (EV_A_ idle);
2567}
2568#endif
2569
2570void
2571ev_embed_start (EV_P_ ev_embed *w)
2572{
2573 if (expect_false (ev_is_active (w)))
2574 return;
2575
2576 {
2577 struct ev_loop *loop = w->other;
2578 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2579 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2580 }
2581
2582 ev_set_priority (&w->io, ev_priority (w));
2583 ev_io_start (EV_A_ &w->io);
2584
2585 ev_prepare_init (&w->prepare, embed_prepare_cb);
2586 ev_set_priority (&w->prepare, EV_MINPRI);
2587 ev_prepare_start (EV_A_ &w->prepare);
2588
2589 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2590
2591 ev_start (EV_A_ (W)w, 1);
2592}
2593
2594void
2595ev_embed_stop (EV_P_ ev_embed *w)
2596{
2597 clear_pending (EV_A_ (W)w);
2598 if (expect_false (!ev_is_active (w)))
2599 return;
2600
2601 ev_io_stop (EV_A_ &w->io);
2602 ev_prepare_stop (EV_A_ &w->prepare);
2603
2604 ev_stop (EV_A_ (W)w);
2605}
2606#endif
2607
2608#if EV_FORK_ENABLE
2609void
2610ev_fork_start (EV_P_ ev_fork *w)
2611{
2612 if (expect_false (ev_is_active (w)))
2613 return;
2614
2615 ev_start (EV_A_ (W)w, ++forkcnt);
2616 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2617 forks [forkcnt - 1] = w;
2618}
2619
2620void
2621ev_fork_stop (EV_P_ ev_fork *w)
2622{
2623 clear_pending (EV_A_ (W)w);
2624 if (expect_false (!ev_is_active (w)))
2625 return;
2626
2627 {
2628 int active = ev_active (w);
2629
2630 forks [active - 1] = forks [--forkcnt];
2631 ev_active (forks [active - 1]) = active;
2632 }
2633
2634 ev_stop (EV_A_ (W)w);
2635}
2636#endif
2637
2638#if EV_ASYNC_ENABLE
2639void
2640ev_async_start (EV_P_ ev_async *w)
2641{
2642 if (expect_false (ev_is_active (w)))
2643 return;
2644
2645 evpipe_init (EV_A);
2646
2647 ev_start (EV_A_ (W)w, ++asynccnt);
2648 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2649 asyncs [asynccnt - 1] = w;
2650}
2651
2652void
2653ev_async_stop (EV_P_ ev_async *w)
2654{
2655 clear_pending (EV_A_ (W)w);
2656 if (expect_false (!ev_is_active (w)))
2657 return;
2658
2659 {
2660 int active = ev_active (w);
2661
2662 asyncs [active - 1] = asyncs [--asynccnt];
2663 ev_active (asyncs [active - 1]) = active;
2664 }
2665
2666 ev_stop (EV_A_ (W)w);
2667}
2668
2669void
2670ev_async_send (EV_P_ ev_async *w)
2671{
2672 w->sent = 1;
2673 evpipe_write (EV_A_ &gotasync);
2674}
2675#endif
2676
1605/*****************************************************************************/ 2677/*****************************************************************************/
1606 2678
1607struct ev_once 2679struct ev_once
1608{ 2680{
1609 struct ev_io io; 2681 ev_io io;
1610 struct ev_timer to; 2682 ev_timer to;
1611 void (*cb)(int revents, void *arg); 2683 void (*cb)(int revents, void *arg);
1612 void *arg; 2684 void *arg;
1613}; 2685};
1614 2686
1615static void 2687static void
1624 2696
1625 cb (revents, arg); 2697 cb (revents, arg);
1626} 2698}
1627 2699
1628static void 2700static void
1629once_cb_io (EV_P_ struct ev_io *w, int revents) 2701once_cb_io (EV_P_ ev_io *w, int revents)
1630{ 2702{
1631 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2703 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1632} 2704}
1633 2705
1634static void 2706static void
1635once_cb_to (EV_P_ struct ev_timer *w, int revents) 2707once_cb_to (EV_P_ ev_timer *w, int revents)
1636{ 2708{
1637 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2709 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1638} 2710}
1639 2711
1640void 2712void
1641ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2713ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1642{ 2714{
1643 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2715 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1644 2716
1645 if (!once) 2717 if (expect_false (!once))
2718 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2719 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1647 else 2720 return;
1648 { 2721 }
2722
1649 once->cb = cb; 2723 once->cb = cb;
1650 once->arg = arg; 2724 once->arg = arg;
1651 2725
1652 ev_init (&once->io, once_cb_io); 2726 ev_init (&once->io, once_cb_io);
1653 if (fd >= 0) 2727 if (fd >= 0)
1654 { 2728 {
1655 ev_io_set (&once->io, fd, events); 2729 ev_io_set (&once->io, fd, events);
1656 ev_io_start (EV_A_ &once->io); 2730 ev_io_start (EV_A_ &once->io);
1657 } 2731 }
1658 2732
1659 ev_init (&once->to, once_cb_to); 2733 ev_init (&once->to, once_cb_to);
1660 if (timeout >= 0.) 2734 if (timeout >= 0.)
1661 { 2735 {
1662 ev_timer_set (&once->to, timeout, 0.); 2736 ev_timer_set (&once->to, timeout, 0.);
1663 ev_timer_start (EV_A_ &once->to); 2737 ev_timer_start (EV_A_ &once->to);
1664 }
1665 } 2738 }
1666} 2739}
2740
2741#if EV_MULTIPLICITY
2742 #include "ev_wrap.h"
2743#endif
1667 2744
1668#ifdef __cplusplus 2745#ifdef __cplusplus
1669} 2746}
1670#endif 2747#endif
1671 2748

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines