ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.120 by root, Fri Nov 16 01:54:25 2007 UTC vs.
Revision 1.268 by root, Mon Oct 27 13:39:18 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
63 99
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
66# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
67 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
68#endif 132#endif
69 133
70#include <math.h> 134#include <math.h>
71#include <stdlib.h> 135#include <stdlib.h>
72#include <fcntl.h> 136#include <fcntl.h>
79#include <sys/types.h> 143#include <sys/types.h>
80#include <time.h> 144#include <time.h>
81 145
82#include <signal.h> 146#include <signal.h>
83 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
84#ifndef _WIN32 154#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 155# include <sys/time.h>
87# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
88#else 158#else
159# include <io.h>
89# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 161# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
93# endif 164# endif
94#endif 165#endif
95 166
96/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
97 168
98#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
99# define EV_USE_MONOTONIC 1 171# define EV_USE_MONOTONIC 1
172# else
173# define EV_USE_MONOTONIC 0
174# endif
100#endif 175#endif
101 176
102#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 1 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
104#endif 187#endif
105 188
106#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
108# define EV_SELECT_USE_FD_SET 1
109#endif 191#endif
110 192
111#ifndef EV_USE_POLL 193#ifndef EV_USE_POLL
112# ifdef _WIN32 194# ifdef _WIN32
113# define EV_USE_POLL 0 195# define EV_USE_POLL 0
115# define EV_USE_POLL 1 197# define EV_USE_POLL 1
116# endif 198# endif
117#endif 199#endif
118 200
119#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
120# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
121#endif 207#endif
122 208
123#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
125#endif 211#endif
126 212
127#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
128# define EV_USE_PORT 0 214# define EV_USE_PORT 0
129#endif 215#endif
130 216
131/**/ 217#ifndef EV_USE_INOTIFY
132 218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
133/* darwin simply cannot be helped */ 219# define EV_USE_INOTIFY 1
134#ifdef __APPLE__ 220# else
135# undef EV_USE_POLL 221# define EV_USE_INOTIFY 0
136# undef EV_USE_KQUEUE
137#endif 222# endif
223#endif
224
225#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
138 268
139#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
140# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
141# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
142#endif 272#endif
144#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
145# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
146# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
147#endif 277#endif
148 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
149#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
150# include <winsock.h> 301# include <winsock.h>
151#endif 302#endif
152 303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
153/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
154 333
155#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
156#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
157#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
158/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
159 337
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
166#if __GNUC__ >= 3 338#if __GNUC__ >= 4
167# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
168# define inline inline 340# define noinline __attribute__ ((noinline))
169#else 341#else
170# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
171# define inline static 343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif
172#endif 347#endif
173 348
174#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
175#define expect_true(expr) expect ((expr) != 0, 1) 350#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline
352
353#if EV_MINIMAL
354# define inline_speed static noinline
355#else
356# define inline_speed static inline
357#endif
176 358
177#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
178#define ABSPRI(w) ((w)->priority - EV_MINPRI) 360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
179 361
180#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 362#define EMPTY /* required for microsofts broken pseudo-c compiler */
181#define EMPTY2(a,b) /* used to suppress some warnings */ 363#define EMPTY2(a,b) /* used to suppress some warnings */
182 364
183typedef struct ev_watcher *W; 365typedef ev_watcher *W;
184typedef struct ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
185typedef struct ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
186 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
187static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
188 377
189#ifdef _WIN32 378#ifdef _WIN32
190# include "ev_win32.c" 379# include "ev_win32.c"
191#endif 380#endif
192 381
193/*****************************************************************************/ 382/*****************************************************************************/
194 383
195static void (*syserr_cb)(const char *msg); 384static void (*syserr_cb)(const char *msg);
196 385
386void
197void ev_set_syserr_cb (void (*cb)(const char *msg)) 387ev_set_syserr_cb (void (*cb)(const char *msg))
198{ 388{
199 syserr_cb = cb; 389 syserr_cb = cb;
200} 390}
201 391
202static void 392static void noinline
203syserr (const char *msg) 393syserr (const char *msg)
204{ 394{
205 if (!msg) 395 if (!msg)
206 msg = "(libev) system error"; 396 msg = "(libev) system error";
207 397
212 perror (msg); 402 perror (msg);
213 abort (); 403 abort ();
214 } 404 }
215} 405}
216 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
217static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
218 423
424void
219void ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
220{ 426{
221 alloc = cb; 427 alloc = cb;
222} 428}
223 429
224static void * 430inline_speed void *
225ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
226{ 432{
227 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
228 434
229 if (!ptr && size) 435 if (!ptr && size)
230 { 436 {
231 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
232 abort (); 438 abort ();
243typedef struct 449typedef struct
244{ 450{
245 WL head; 451 WL head;
246 unsigned char events; 452 unsigned char events;
247 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char egen; /* generation counter to counter epoll bugs */
248#if EV_SELECT_IS_WINSOCKET 456#if EV_SELECT_IS_WINSOCKET
249 SOCKET handle; 457 SOCKET handle;
250#endif 458#endif
251} ANFD; 459} ANFD;
252 460
253typedef struct 461typedef struct
254{ 462{
255 W w; 463 W w;
256 int events; 464 int events;
257} ANPENDING; 465} ANPENDING;
466
467#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */
469typedef struct
470{
471 WL head;
472} ANFS;
473#endif
474
475/* Heap Entry */
476#if EV_HEAP_CACHE_AT
477 typedef struct {
478 ev_tstamp at;
479 WT w;
480 } ANHE;
481
482 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else
486 typedef WT ANHE;
487
488 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he)
491#endif
258 492
259#if EV_MULTIPLICITY 493#if EV_MULTIPLICITY
260 494
261 struct ev_loop 495 struct ev_loop
262 { 496 {
296 gettimeofday (&tv, 0); 530 gettimeofday (&tv, 0);
297 return tv.tv_sec + tv.tv_usec * 1e-6; 531 return tv.tv_sec + tv.tv_usec * 1e-6;
298#endif 532#endif
299} 533}
300 534
301inline ev_tstamp 535ev_tstamp inline_size
302get_clock (void) 536get_clock (void)
303{ 537{
304#if EV_USE_MONOTONIC 538#if EV_USE_MONOTONIC
305 if (expect_true (have_monotonic)) 539 if (expect_true (have_monotonic))
306 { 540 {
319{ 553{
320 return ev_rt_now; 554 return ev_rt_now;
321} 555}
322#endif 556#endif
323 557
324#define array_roundsize(type,n) (((n) | 4) & ~3) 558void
559ev_sleep (ev_tstamp delay)
560{
561 if (delay > 0.)
562 {
563#if EV_USE_NANOSLEEP
564 struct timespec ts;
565
566 ts.tv_sec = (time_t)delay;
567 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
568
569 nanosleep (&ts, 0);
570#elif defined(_WIN32)
571 Sleep ((unsigned long)(delay * 1e3));
572#else
573 struct timeval tv;
574
575 tv.tv_sec = (time_t)delay;
576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
577
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */
581 select (0, 0, 0, 0, &tv);
582#endif
583 }
584}
585
586/*****************************************************************************/
587
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
589
590int inline_size
591array_nextsize (int elem, int cur, int cnt)
592{
593 int ncur = cur + 1;
594
595 do
596 ncur <<= 1;
597 while (cnt > ncur);
598
599 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
600 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
601 {
602 ncur *= elem;
603 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
604 ncur = ncur - sizeof (void *) * 4;
605 ncur /= elem;
606 }
607
608 return ncur;
609}
610
611static noinline void *
612array_realloc (int elem, void *base, int *cur, int cnt)
613{
614 *cur = array_nextsize (elem, *cur, cnt);
615 return ev_realloc (base, elem * *cur);
616}
617
618#define array_init_zero(base,count) \
619 memset ((void *)(base), 0, sizeof (*(base)) * (count))
325 620
326#define array_needsize(type,base,cur,cnt,init) \ 621#define array_needsize(type,base,cur,cnt,init) \
327 if (expect_false ((cnt) > cur)) \ 622 if (expect_false ((cnt) > (cur))) \
328 { \ 623 { \
329 int newcnt = cur; \ 624 int ocur_ = (cur); \
330 do \ 625 (base) = (type *)array_realloc \
331 { \ 626 (sizeof (type), (base), &(cur), (cnt)); \
332 newcnt = array_roundsize (type, newcnt << 1); \ 627 init ((base) + (ocur_), (cur) - ocur_); \
333 } \
334 while ((cnt) > newcnt); \
335 \
336 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
337 init (base + cur, newcnt - cur); \
338 cur = newcnt; \
339 } 628 }
340 629
630#if 0
341#define array_slim(type,stem) \ 631#define array_slim(type,stem) \
342 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 632 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
343 { \ 633 { \
344 stem ## max = array_roundsize (stem ## cnt >> 1); \ 634 stem ## max = array_roundsize (stem ## cnt >> 1); \
345 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 635 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
346 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 636 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
347 } 637 }
638#endif
348 639
349#define array_free(stem, idx) \ 640#define array_free(stem, idx) \
350 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 641 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
351 642
352/*****************************************************************************/ 643/*****************************************************************************/
353 644
354static void 645void noinline
355anfds_init (ANFD *base, int count)
356{
357 while (count--)
358 {
359 base->head = 0;
360 base->events = EV_NONE;
361 base->reify = 0;
362
363 ++base;
364 }
365}
366
367void
368ev_feed_event (EV_P_ void *w, int revents) 646ev_feed_event (EV_P_ void *w, int revents)
369{ 647{
370 W w_ = (W)w; 648 W w_ = (W)w;
649 int pri = ABSPRI (w_);
371 650
372 if (w_->pending) 651 if (expect_false (w_->pending))
652 pendings [pri][w_->pending - 1].events |= revents;
653 else
373 { 654 {
655 w_->pending = ++pendingcnt [pri];
656 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
657 pendings [pri][w_->pending - 1].w = w_;
374 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 658 pendings [pri][w_->pending - 1].events = revents;
375 return;
376 } 659 }
377
378 w_->pending = ++pendingcnt [ABSPRI (w_)];
379 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
380 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
381 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
382} 660}
383 661
384static void 662void inline_speed
385queue_events (EV_P_ W *events, int eventcnt, int type) 663queue_events (EV_P_ W *events, int eventcnt, int type)
386{ 664{
387 int i; 665 int i;
388 666
389 for (i = 0; i < eventcnt; ++i) 667 for (i = 0; i < eventcnt; ++i)
390 ev_feed_event (EV_A_ events [i], type); 668 ev_feed_event (EV_A_ events [i], type);
391} 669}
392 670
393inline void 671/*****************************************************************************/
672
673void inline_speed
394fd_event (EV_P_ int fd, int revents) 674fd_event (EV_P_ int fd, int revents)
395{ 675{
396 ANFD *anfd = anfds + fd; 676 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 677 ev_io *w;
398 678
399 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 679 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
400 { 680 {
401 int ev = w->events & revents; 681 int ev = w->events & revents;
402 682
403 if (ev) 683 if (ev)
404 ev_feed_event (EV_A_ (W)w, ev); 684 ev_feed_event (EV_A_ (W)w, ev);
406} 686}
407 687
408void 688void
409ev_feed_fd_event (EV_P_ int fd, int revents) 689ev_feed_fd_event (EV_P_ int fd, int revents)
410{ 690{
691 if (fd >= 0 && fd < anfdmax)
411 fd_event (EV_A_ fd, revents); 692 fd_event (EV_A_ fd, revents);
412} 693}
413 694
414/*****************************************************************************/ 695void inline_size
415
416static void
417fd_reify (EV_P) 696fd_reify (EV_P)
418{ 697{
419 int i; 698 int i;
420 699
421 for (i = 0; i < fdchangecnt; ++i) 700 for (i = 0; i < fdchangecnt; ++i)
422 { 701 {
423 int fd = fdchanges [i]; 702 int fd = fdchanges [i];
424 ANFD *anfd = anfds + fd; 703 ANFD *anfd = anfds + fd;
425 struct ev_io *w; 704 ev_io *w;
426 705
427 int events = 0; 706 unsigned char events = 0;
428 707
429 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 708 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
430 events |= w->events; 709 events |= (unsigned char)w->events;
431 710
432#if EV_SELECT_IS_WINSOCKET 711#if EV_SELECT_IS_WINSOCKET
433 if (events) 712 if (events)
434 { 713 {
435 unsigned long argp; 714 unsigned long arg;
715 #ifdef EV_FD_TO_WIN32_HANDLE
716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
717 #else
436 anfd->handle = _get_osfhandle (fd); 718 anfd->handle = _get_osfhandle (fd);
719 #endif
437 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
438 } 721 }
439#endif 722#endif
440 723
724 {
725 unsigned char o_events = anfd->events;
726 unsigned char o_reify = anfd->reify;
727
441 anfd->reify = 0; 728 anfd->reify = 0;
442
443 method_modify (EV_A_ fd, anfd->events, events);
444 anfd->events = events; 729 anfd->events = events;
730
731 if (o_events != events || o_reify & EV_IOFDSET)
732 backend_modify (EV_A_ fd, o_events, events);
733 }
445 } 734 }
446 735
447 fdchangecnt = 0; 736 fdchangecnt = 0;
448} 737}
449 738
450static void 739void inline_size
451fd_change (EV_P_ int fd) 740fd_change (EV_P_ int fd, int flags)
452{ 741{
453 if (anfds [fd].reify) 742 unsigned char reify = anfds [fd].reify;
454 return;
455
456 anfds [fd].reify = 1; 743 anfds [fd].reify |= flags;
457 744
745 if (expect_true (!reify))
746 {
458 ++fdchangecnt; 747 ++fdchangecnt;
459 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 748 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
460 fdchanges [fdchangecnt - 1] = fd; 749 fdchanges [fdchangecnt - 1] = fd;
750 }
461} 751}
462 752
463static void 753void inline_speed
464fd_kill (EV_P_ int fd) 754fd_kill (EV_P_ int fd)
465{ 755{
466 struct ev_io *w; 756 ev_io *w;
467 757
468 while ((w = (struct ev_io *)anfds [fd].head)) 758 while ((w = (ev_io *)anfds [fd].head))
469 { 759 {
470 ev_io_stop (EV_A_ w); 760 ev_io_stop (EV_A_ w);
471 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 761 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
472 } 762 }
473} 763}
474 764
475static int 765int inline_size
476fd_valid (int fd) 766fd_valid (int fd)
477{ 767{
478#ifdef _WIN32 768#ifdef _WIN32
479 return _get_osfhandle (fd) != -1; 769 return _get_osfhandle (fd) != -1;
480#else 770#else
481 return fcntl (fd, F_GETFD) != -1; 771 return fcntl (fd, F_GETFD) != -1;
482#endif 772#endif
483} 773}
484 774
485/* called on EBADF to verify fds */ 775/* called on EBADF to verify fds */
486static void 776static void noinline
487fd_ebadf (EV_P) 777fd_ebadf (EV_P)
488{ 778{
489 int fd; 779 int fd;
490 780
491 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
492 if (anfds [fd].events) 782 if (anfds [fd].events)
493 if (!fd_valid (fd) == -1 && errno == EBADF) 783 if (!fd_valid (fd) && errno == EBADF)
494 fd_kill (EV_A_ fd); 784 fd_kill (EV_A_ fd);
495} 785}
496 786
497/* called on ENOMEM in select/poll to kill some fds and retry */ 787/* called on ENOMEM in select/poll to kill some fds and retry */
498static void 788static void noinline
499fd_enomem (EV_P) 789fd_enomem (EV_P)
500{ 790{
501 int fd; 791 int fd;
502 792
503 for (fd = anfdmax; fd--; ) 793 for (fd = anfdmax; fd--; )
506 fd_kill (EV_A_ fd); 796 fd_kill (EV_A_ fd);
507 return; 797 return;
508 } 798 }
509} 799}
510 800
511/* usually called after fork if method needs to re-arm all fds from scratch */ 801/* usually called after fork if backend needs to re-arm all fds from scratch */
512static void 802static void noinline
513fd_rearm_all (EV_P) 803fd_rearm_all (EV_P)
514{ 804{
515 int fd; 805 int fd;
516 806
517 /* this should be highly optimised to not do anything but set a flag */
518 for (fd = 0; fd < anfdmax; ++fd) 807 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 808 if (anfds [fd].events)
520 { 809 {
521 anfds [fd].events = 0; 810 anfds [fd].events = 0;
811 anfds [fd].emask = 0;
522 fd_change (EV_A_ fd); 812 fd_change (EV_A_ fd, EV_IOFDSET | 1);
523 } 813 }
524} 814}
525 815
526/*****************************************************************************/ 816/*****************************************************************************/
527 817
528static void 818/*
529upheap (WT *heap, int k) 819 * the heap functions want a real array index. array index 0 uis guaranteed to not
530{ 820 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
531 WT w = heap [k]; 821 * the branching factor of the d-tree.
822 */
532 823
533 while (k && heap [k >> 1]->at > w->at) 824/*
534 { 825 * at the moment we allow libev the luxury of two heaps,
535 heap [k] = heap [k >> 1]; 826 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
536 ((W)heap [k])->active = k + 1; 827 * which is more cache-efficient.
537 k >>= 1; 828 * the difference is about 5% with 50000+ watchers.
538 } 829 */
830#if EV_USE_4HEAP
539 831
540 heap [k] = w; 832#define DHEAP 4
541 ((W)heap [k])->active = k + 1; 833#define HEAP0 (DHEAP - 1) /* index of first element in heap */
834#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
835#define UPHEAP_DONE(p,k) ((p) == (k))
542 836
543} 837/* away from the root */
544 838void inline_speed
545static void
546downheap (WT *heap, int N, int k) 839downheap (ANHE *heap, int N, int k)
547{ 840{
548 WT w = heap [k]; 841 ANHE he = heap [k];
842 ANHE *E = heap + N + HEAP0;
549 843
550 while (k < (N >> 1)) 844 for (;;)
551 { 845 {
552 int j = k << 1; 846 ev_tstamp minat;
847 ANHE *minpos;
848 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
553 849
554 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 850 /* find minimum child */
851 if (expect_true (pos + DHEAP - 1 < E))
555 ++j; 852 {
556 853 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
557 if (w->at <= heap [j]->at) 854 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else if (pos < E)
859 {
860 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else
558 break; 866 break;
559 867
868 if (ANHE_at (he) <= minat)
869 break;
870
871 heap [k] = *minpos;
872 ev_active (ANHE_w (*minpos)) = k;
873
874 k = minpos - heap;
875 }
876
877 heap [k] = he;
878 ev_active (ANHE_w (he)) = k;
879}
880
881#else /* 4HEAP */
882
883#define HEAP0 1
884#define HPARENT(k) ((k) >> 1)
885#define UPHEAP_DONE(p,k) (!(p))
886
887/* away from the root */
888void inline_speed
889downheap (ANHE *heap, int N, int k)
890{
891 ANHE he = heap [k];
892
893 for (;;)
894 {
895 int c = k << 1;
896
897 if (c > N + HEAP0 - 1)
898 break;
899
900 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
901 ? 1 : 0;
902
903 if (ANHE_at (he) <= ANHE_at (heap [c]))
904 break;
905
560 heap [k] = heap [j]; 906 heap [k] = heap [c];
561 ((W)heap [k])->active = k + 1; 907 ev_active (ANHE_w (heap [k])) = k;
908
562 k = j; 909 k = c;
563 } 910 }
564 911
565 heap [k] = w; 912 heap [k] = he;
566 ((W)heap [k])->active = k + 1; 913 ev_active (ANHE_w (he)) = k;
567} 914}
915#endif
568 916
569inline void 917/* towards the root */
918void inline_speed
919upheap (ANHE *heap, int k)
920{
921 ANHE he = heap [k];
922
923 for (;;)
924 {
925 int p = HPARENT (k);
926
927 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
928 break;
929
930 heap [k] = heap [p];
931 ev_active (ANHE_w (heap [k])) = k;
932 k = p;
933 }
934
935 heap [k] = he;
936 ev_active (ANHE_w (he)) = k;
937}
938
939void inline_size
570adjustheap (WT *heap, int N, int k) 940adjustheap (ANHE *heap, int N, int k)
571{ 941{
942 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
572 upheap (heap, k); 943 upheap (heap, k);
944 else
573 downheap (heap, N, k); 945 downheap (heap, N, k);
946}
947
948/* rebuild the heap: this function is used only once and executed rarely */
949void inline_size
950reheap (ANHE *heap, int N)
951{
952 int i;
953
954 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
955 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
956 for (i = 0; i < N; ++i)
957 upheap (heap, i + HEAP0);
574} 958}
575 959
576/*****************************************************************************/ 960/*****************************************************************************/
577 961
578typedef struct 962typedef struct
579{ 963{
580 WL head; 964 WL head;
581 sig_atomic_t volatile gotsig; 965 EV_ATOMIC_T gotsig;
582} ANSIG; 966} ANSIG;
583 967
584static ANSIG *signals; 968static ANSIG *signals;
585static int signalmax; 969static int signalmax;
586 970
587static int sigpipe [2]; 971static EV_ATOMIC_T gotsig;
588static sig_atomic_t volatile gotsig;
589static struct ev_io sigev;
590 972
591static void 973/*****************************************************************************/
592signals_init (ANSIG *base, int count)
593{
594 while (count--)
595 {
596 base->head = 0;
597 base->gotsig = 0;
598 974
599 ++base; 975void inline_speed
600 }
601}
602
603static void
604sighandler (int signum)
605{
606#if _WIN32
607 signal (signum, sighandler);
608#endif
609
610 signals [signum - 1].gotsig = 1;
611
612 if (!gotsig)
613 {
614 int old_errno = errno;
615 gotsig = 1;
616 write (sigpipe [1], &signum, 1);
617 errno = old_errno;
618 }
619}
620
621void
622ev_feed_signal_event (EV_P_ int signum)
623{
624 WL w;
625
626#if EV_MULTIPLICITY
627 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
628#endif
629
630 --signum;
631
632 if (signum < 0 || signum >= signalmax)
633 return;
634
635 signals [signum].gotsig = 0;
636
637 for (w = signals [signum].head; w; w = w->next)
638 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
639}
640
641static void
642sigcb (EV_P_ struct ev_io *iow, int revents)
643{
644 int signum;
645
646 read (sigpipe [0], &revents, 1);
647 gotsig = 0;
648
649 for (signum = signalmax; signum--; )
650 if (signals [signum].gotsig)
651 ev_feed_signal_event (EV_A_ signum + 1);
652}
653
654inline void
655fd_intern (int fd) 976fd_intern (int fd)
656{ 977{
657#ifdef _WIN32 978#ifdef _WIN32
658 int arg = 1; 979 unsigned long arg = 1;
659 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 980 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
660#else 981#else
661 fcntl (fd, F_SETFD, FD_CLOEXEC); 982 fcntl (fd, F_SETFD, FD_CLOEXEC);
662 fcntl (fd, F_SETFL, O_NONBLOCK); 983 fcntl (fd, F_SETFL, O_NONBLOCK);
663#endif 984#endif
664} 985}
665 986
987static void noinline
988evpipe_init (EV_P)
989{
990 if (!ev_is_active (&pipeev))
991 {
992#if EV_USE_EVENTFD
993 if ((evfd = eventfd (0, 0)) >= 0)
994 {
995 evpipe [0] = -1;
996 fd_intern (evfd);
997 ev_io_set (&pipeev, evfd, EV_READ);
998 }
999 else
1000#endif
1001 {
1002 while (pipe (evpipe))
1003 syserr ("(libev) error creating signal/async pipe");
1004
1005 fd_intern (evpipe [0]);
1006 fd_intern (evpipe [1]);
1007 ev_io_set (&pipeev, evpipe [0], EV_READ);
1008 }
1009
1010 ev_io_start (EV_A_ &pipeev);
1011 ev_unref (EV_A); /* watcher should not keep loop alive */
1012 }
1013}
1014
1015void inline_size
1016evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1017{
1018 if (!*flag)
1019 {
1020 int old_errno = errno; /* save errno because write might clobber it */
1021
1022 *flag = 1;
1023
1024#if EV_USE_EVENTFD
1025 if (evfd >= 0)
1026 {
1027 uint64_t counter = 1;
1028 write (evfd, &counter, sizeof (uint64_t));
1029 }
1030 else
1031#endif
1032 write (evpipe [1], &old_errno, 1);
1033
1034 errno = old_errno;
1035 }
1036}
1037
666static void 1038static void
667siginit (EV_P) 1039pipecb (EV_P_ ev_io *iow, int revents)
668{ 1040{
669 fd_intern (sigpipe [0]); 1041#if EV_USE_EVENTFD
670 fd_intern (sigpipe [1]); 1042 if (evfd >= 0)
1043 {
1044 uint64_t counter;
1045 read (evfd, &counter, sizeof (uint64_t));
1046 }
1047 else
1048#endif
1049 {
1050 char dummy;
1051 read (evpipe [0], &dummy, 1);
1052 }
671 1053
672 ev_io_set (&sigev, sigpipe [0], EV_READ); 1054 if (gotsig && ev_is_default_loop (EV_A))
673 ev_io_start (EV_A_ &sigev); 1055 {
674 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1056 int signum;
1057 gotsig = 0;
1058
1059 for (signum = signalmax; signum--; )
1060 if (signals [signum].gotsig)
1061 ev_feed_signal_event (EV_A_ signum + 1);
1062 }
1063
1064#if EV_ASYNC_ENABLE
1065 if (gotasync)
1066 {
1067 int i;
1068 gotasync = 0;
1069
1070 for (i = asynccnt; i--; )
1071 if (asyncs [i]->sent)
1072 {
1073 asyncs [i]->sent = 0;
1074 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1075 }
1076 }
1077#endif
675} 1078}
676 1079
677/*****************************************************************************/ 1080/*****************************************************************************/
678 1081
679static struct ev_child *childs [PID_HASHSIZE]; 1082static void
1083ev_sighandler (int signum)
1084{
1085#if EV_MULTIPLICITY
1086 struct ev_loop *loop = &default_loop_struct;
1087#endif
1088
1089#if _WIN32
1090 signal (signum, ev_sighandler);
1091#endif
1092
1093 signals [signum - 1].gotsig = 1;
1094 evpipe_write (EV_A_ &gotsig);
1095}
1096
1097void noinline
1098ev_feed_signal_event (EV_P_ int signum)
1099{
1100 WL w;
1101
1102#if EV_MULTIPLICITY
1103 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1104#endif
1105
1106 --signum;
1107
1108 if (signum < 0 || signum >= signalmax)
1109 return;
1110
1111 signals [signum].gotsig = 0;
1112
1113 for (w = signals [signum].head; w; w = w->next)
1114 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1115}
1116
1117/*****************************************************************************/
1118
1119static WL childs [EV_PID_HASHSIZE];
680 1120
681#ifndef _WIN32 1121#ifndef _WIN32
682 1122
683static struct ev_signal childev; 1123static ev_signal childev;
1124
1125#ifndef WIFCONTINUED
1126# define WIFCONTINUED(status) 0
1127#endif
1128
1129void inline_speed
1130child_reap (EV_P_ int chain, int pid, int status)
1131{
1132 ev_child *w;
1133 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1134
1135 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1136 {
1137 if ((w->pid == pid || !w->pid)
1138 && (!traced || (w->flags & 1)))
1139 {
1140 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1141 w->rpid = pid;
1142 w->rstatus = status;
1143 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1144 }
1145 }
1146}
684 1147
685#ifndef WCONTINUED 1148#ifndef WCONTINUED
686# define WCONTINUED 0 1149# define WCONTINUED 0
687#endif 1150#endif
688 1151
689static void 1152static void
690child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
691{
692 struct ev_child *w;
693
694 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
695 if (w->pid == pid || !w->pid)
696 {
697 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
698 w->rpid = pid;
699 w->rstatus = status;
700 ev_feed_event (EV_A_ (W)w, EV_CHILD);
701 }
702}
703
704static void
705childcb (EV_P_ struct ev_signal *sw, int revents) 1153childcb (EV_P_ ev_signal *sw, int revents)
706{ 1154{
707 int pid, status; 1155 int pid, status;
708 1156
1157 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
709 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1158 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
710 { 1159 if (!WCONTINUED
1160 || errno != EINVAL
1161 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1162 return;
1163
711 /* make sure we are called again until all childs have been reaped */ 1164 /* make sure we are called again until all children have been reaped */
1165 /* we need to do it this way so that the callback gets called before we continue */
712 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1166 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
713 1167
714 child_reap (EV_A_ sw, pid, pid, status); 1168 child_reap (EV_A_ pid, pid, status);
1169 if (EV_PID_HASHSIZE > 1)
715 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1170 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
716 }
717} 1171}
718 1172
719#endif 1173#endif
720 1174
721/*****************************************************************************/ 1175/*****************************************************************************/
747{ 1201{
748 return EV_VERSION_MINOR; 1202 return EV_VERSION_MINOR;
749} 1203}
750 1204
751/* return true if we are running with elevated privileges and should ignore env variables */ 1205/* return true if we are running with elevated privileges and should ignore env variables */
752static int 1206int inline_size
753enable_secure (void) 1207enable_secure (void)
754{ 1208{
755#ifdef _WIN32 1209#ifdef _WIN32
756 return 0; 1210 return 0;
757#else 1211#else
759 || getgid () != getegid (); 1213 || getgid () != getegid ();
760#endif 1214#endif
761} 1215}
762 1216
763unsigned int 1217unsigned int
764ev_method (EV_P) 1218ev_supported_backends (void)
765{ 1219{
766 return method; 1220 unsigned int flags = 0;
767}
768 1221
769static void 1222 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1223 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1224 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1225 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1226 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1227
1228 return flags;
1229}
1230
1231unsigned int
1232ev_recommended_backends (void)
1233{
1234 unsigned int flags = ev_supported_backends ();
1235
1236#ifndef __NetBSD__
1237 /* kqueue is borked on everything but netbsd apparently */
1238 /* it usually doesn't work correctly on anything but sockets and pipes */
1239 flags &= ~EVBACKEND_KQUEUE;
1240#endif
1241#ifdef __APPLE__
1242 // flags &= ~EVBACKEND_KQUEUE; for documentation
1243 flags &= ~EVBACKEND_POLL;
1244#endif
1245
1246 return flags;
1247}
1248
1249unsigned int
1250ev_embeddable_backends (void)
1251{
1252 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1253
1254 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1255 /* please fix it and tell me how to detect the fix */
1256 flags &= ~EVBACKEND_EPOLL;
1257
1258 return flags;
1259}
1260
1261unsigned int
1262ev_backend (EV_P)
1263{
1264 return backend;
1265}
1266
1267unsigned int
1268ev_loop_count (EV_P)
1269{
1270 return loop_count;
1271}
1272
1273void
1274ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1275{
1276 io_blocktime = interval;
1277}
1278
1279void
1280ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1281{
1282 timeout_blocktime = interval;
1283}
1284
1285static void noinline
770loop_init (EV_P_ unsigned int flags) 1286loop_init (EV_P_ unsigned int flags)
771{ 1287{
772 if (!method) 1288 if (!backend)
773 { 1289 {
774#if EV_USE_MONOTONIC 1290#if EV_USE_MONOTONIC
775 { 1291 {
776 struct timespec ts; 1292 struct timespec ts;
777 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1293 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
778 have_monotonic = 1; 1294 have_monotonic = 1;
779 } 1295 }
780#endif 1296#endif
781 1297
782 ev_rt_now = ev_time (); 1298 ev_rt_now = ev_time ();
783 mn_now = get_clock (); 1299 mn_now = get_clock ();
784 now_floor = mn_now; 1300 now_floor = mn_now;
785 rtmn_diff = ev_rt_now - mn_now; 1301 rtmn_diff = ev_rt_now - mn_now;
786 1302
787 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1303 io_blocktime = 0.;
1304 timeout_blocktime = 0.;
1305 backend = 0;
1306 backend_fd = -1;
1307 gotasync = 0;
1308#if EV_USE_INOTIFY
1309 fs_fd = -2;
1310#endif
1311
1312 /* pid check not overridable via env */
1313#ifndef _WIN32
1314 if (flags & EVFLAG_FORKCHECK)
1315 curpid = getpid ();
1316#endif
1317
1318 if (!(flags & EVFLAG_NOENV)
1319 && !enable_secure ()
1320 && getenv ("LIBEV_FLAGS"))
788 flags = atoi (getenv ("LIBEV_FLAGS")); 1321 flags = atoi (getenv ("LIBEV_FLAGS"));
789 1322
790 if (!(flags & 0x0000ffff)) 1323 if (!(flags & 0x0000ffffU))
791 flags |= 0x0000ffff; 1324 flags |= ev_recommended_backends ();
792 1325
793 method = 0;
794#if EV_USE_PORT 1326#if EV_USE_PORT
795 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1327 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
796#endif 1328#endif
797#if EV_USE_KQUEUE 1329#if EV_USE_KQUEUE
798 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1330 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
799#endif 1331#endif
800#if EV_USE_EPOLL 1332#if EV_USE_EPOLL
801 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1333 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
802#endif 1334#endif
803#if EV_USE_POLL 1335#if EV_USE_POLL
804 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1336 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
805#endif 1337#endif
806#if EV_USE_SELECT 1338#if EV_USE_SELECT
807 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1339 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
808#endif 1340#endif
809 1341
810 ev_init (&sigev, sigcb); 1342 ev_init (&pipeev, pipecb);
811 ev_set_priority (&sigev, EV_MAXPRI); 1343 ev_set_priority (&pipeev, EV_MAXPRI);
812 } 1344 }
813} 1345}
814 1346
815void 1347static void noinline
816loop_destroy (EV_P) 1348loop_destroy (EV_P)
817{ 1349{
818 int i; 1350 int i;
819 1351
1352 if (ev_is_active (&pipeev))
1353 {
1354 ev_ref (EV_A); /* signal watcher */
1355 ev_io_stop (EV_A_ &pipeev);
1356
1357#if EV_USE_EVENTFD
1358 if (evfd >= 0)
1359 close (evfd);
1360#endif
1361
1362 if (evpipe [0] >= 0)
1363 {
1364 close (evpipe [0]);
1365 close (evpipe [1]);
1366 }
1367 }
1368
1369#if EV_USE_INOTIFY
1370 if (fs_fd >= 0)
1371 close (fs_fd);
1372#endif
1373
1374 if (backend_fd >= 0)
1375 close (backend_fd);
1376
820#if EV_USE_PORT 1377#if EV_USE_PORT
821 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1378 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
822#endif 1379#endif
823#if EV_USE_KQUEUE 1380#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1381 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
825#endif 1382#endif
826#if EV_USE_EPOLL 1383#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1384 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
828#endif 1385#endif
829#if EV_USE_POLL 1386#if EV_USE_POLL
830 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1387 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
831#endif 1388#endif
832#if EV_USE_SELECT 1389#if EV_USE_SELECT
833 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1390 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
834#endif 1391#endif
835 1392
836 for (i = NUMPRI; i--; ) 1393 for (i = NUMPRI; i--; )
1394 {
837 array_free (pending, [i]); 1395 array_free (pending, [i]);
1396#if EV_IDLE_ENABLE
1397 array_free (idle, [i]);
1398#endif
1399 }
1400
1401 ev_free (anfds); anfdmax = 0;
838 1402
839 /* have to use the microsoft-never-gets-it-right macro */ 1403 /* have to use the microsoft-never-gets-it-right macro */
840 array_free (fdchange, EMPTY0); 1404 array_free (fdchange, EMPTY);
841 array_free (timer, EMPTY0); 1405 array_free (timer, EMPTY);
842#if EV_PERIODICS 1406#if EV_PERIODIC_ENABLE
843 array_free (periodic, EMPTY0); 1407 array_free (periodic, EMPTY);
844#endif 1408#endif
1409#if EV_FORK_ENABLE
845 array_free (idle, EMPTY0); 1410 array_free (fork, EMPTY);
1411#endif
846 array_free (prepare, EMPTY0); 1412 array_free (prepare, EMPTY);
847 array_free (check, EMPTY0); 1413 array_free (check, EMPTY);
1414#if EV_ASYNC_ENABLE
1415 array_free (async, EMPTY);
1416#endif
848 1417
849 method = 0; 1418 backend = 0;
850} 1419}
851 1420
852static void 1421#if EV_USE_INOTIFY
1422void inline_size infy_fork (EV_P);
1423#endif
1424
1425void inline_size
853loop_fork (EV_P) 1426loop_fork (EV_P)
854{ 1427{
855#if EV_USE_PORT 1428#if EV_USE_PORT
856 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1429 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
857#endif 1430#endif
858#if EV_USE_KQUEUE 1431#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1432 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
860#endif 1433#endif
861#if EV_USE_EPOLL 1434#if EV_USE_EPOLL
862 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1435 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
863#endif 1436#endif
1437#if EV_USE_INOTIFY
1438 infy_fork (EV_A);
1439#endif
864 1440
865 if (ev_is_active (&sigev)) 1441 if (ev_is_active (&pipeev))
866 { 1442 {
867 /* default loop */ 1443 /* this "locks" the handlers against writing to the pipe */
1444 /* while we modify the fd vars */
1445 gotsig = 1;
1446#if EV_ASYNC_ENABLE
1447 gotasync = 1;
1448#endif
868 1449
869 ev_ref (EV_A); 1450 ev_ref (EV_A);
870 ev_io_stop (EV_A_ &sigev); 1451 ev_io_stop (EV_A_ &pipeev);
1452
1453#if EV_USE_EVENTFD
1454 if (evfd >= 0)
1455 close (evfd);
1456#endif
1457
1458 if (evpipe [0] >= 0)
1459 {
871 close (sigpipe [0]); 1460 close (evpipe [0]);
872 close (sigpipe [1]); 1461 close (evpipe [1]);
1462 }
873 1463
874 while (pipe (sigpipe))
875 syserr ("(libev) error creating pipe");
876
877 siginit (EV_A); 1464 evpipe_init (EV_A);
1465 /* now iterate over everything, in case we missed something */
1466 pipecb (EV_A_ &pipeev, EV_READ);
878 } 1467 }
879 1468
880 postfork = 0; 1469 postfork = 0;
881} 1470}
1471
1472#if EV_MULTIPLICITY
1473
1474struct ev_loop *
1475ev_loop_new (unsigned int flags)
1476{
1477 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1478
1479 memset (loop, 0, sizeof (struct ev_loop));
1480
1481 loop_init (EV_A_ flags);
1482
1483 if (ev_backend (EV_A))
1484 return loop;
1485
1486 return 0;
1487}
1488
1489void
1490ev_loop_destroy (EV_P)
1491{
1492 loop_destroy (EV_A);
1493 ev_free (loop);
1494}
1495
1496void
1497ev_loop_fork (EV_P)
1498{
1499 postfork = 1; /* must be in line with ev_default_fork */
1500}
1501
1502#if EV_VERIFY
1503static void noinline
1504verify_watcher (EV_P_ W w)
1505{
1506 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1507
1508 if (w->pending)
1509 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1510}
1511
1512static void noinline
1513verify_heap (EV_P_ ANHE *heap, int N)
1514{
1515 int i;
1516
1517 for (i = HEAP0; i < N + HEAP0; ++i)
1518 {
1519 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1520 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1521 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1522
1523 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1524 }
1525}
1526
1527static void noinline
1528array_verify (EV_P_ W *ws, int cnt)
1529{
1530 while (cnt--)
1531 {
1532 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1533 verify_watcher (EV_A_ ws [cnt]);
1534 }
1535}
1536#endif
1537
1538void
1539ev_loop_verify (EV_P)
1540{
1541#if EV_VERIFY
1542 int i;
1543 WL w;
1544
1545 assert (activecnt >= -1);
1546
1547 assert (fdchangemax >= fdchangecnt);
1548 for (i = 0; i < fdchangecnt; ++i)
1549 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1550
1551 assert (anfdmax >= 0);
1552 for (i = 0; i < anfdmax; ++i)
1553 for (w = anfds [i].head; w; w = w->next)
1554 {
1555 verify_watcher (EV_A_ (W)w);
1556 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1557 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1558 }
1559
1560 assert (timermax >= timercnt);
1561 verify_heap (EV_A_ timers, timercnt);
1562
1563#if EV_PERIODIC_ENABLE
1564 assert (periodicmax >= periodiccnt);
1565 verify_heap (EV_A_ periodics, periodiccnt);
1566#endif
1567
1568 for (i = NUMPRI; i--; )
1569 {
1570 assert (pendingmax [i] >= pendingcnt [i]);
1571#if EV_IDLE_ENABLE
1572 assert (idleall >= 0);
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
882 1602
883#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
884struct ev_loop * 1604struct ev_loop *
885ev_loop_new (unsigned int flags)
886{
887 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
888
889 memset (loop, 0, sizeof (struct ev_loop));
890
891 loop_init (EV_A_ flags);
892
893 if (ev_method (EV_A))
894 return loop;
895
896 return 0;
897}
898
899void
900ev_loop_destroy (EV_P)
901{
902 loop_destroy (EV_A);
903 ev_free (loop);
904}
905
906void
907ev_loop_fork (EV_P)
908{
909 postfork = 1;
910}
911
912#endif
913
914#if EV_MULTIPLICITY
915struct ev_loop *
916ev_default_loop_ (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
917#else 1606#else
918int 1607int
919ev_default_loop (unsigned int flags) 1608ev_default_loop (unsigned int flags)
920#endif 1609#endif
921{ 1610{
922 if (sigpipe [0] == sigpipe [1])
923 if (pipe (sigpipe))
924 return 0;
925
926 if (!ev_default_loop_ptr) 1611 if (!ev_default_loop_ptr)
927 { 1612 {
928#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
929 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
930#else 1615#else
931 ev_default_loop_ptr = 1; 1616 ev_default_loop_ptr = 1;
932#endif 1617#endif
933 1618
934 loop_init (EV_A_ flags); 1619 loop_init (EV_A_ flags);
935 1620
936 if (ev_method (EV_A)) 1621 if (ev_backend (EV_A))
937 { 1622 {
938 siginit (EV_A);
939
940#ifndef _WIN32 1623#ifndef _WIN32
941 ev_signal_init (&childev, childcb, SIGCHLD); 1624 ev_signal_init (&childev, childcb, SIGCHLD);
942 ev_set_priority (&childev, EV_MAXPRI); 1625 ev_set_priority (&childev, EV_MAXPRI);
943 ev_signal_start (EV_A_ &childev); 1626 ev_signal_start (EV_A_ &childev);
944 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1627 ev_unref (EV_A); /* child watcher should not keep loop alive */
956{ 1639{
957#if EV_MULTIPLICITY 1640#if EV_MULTIPLICITY
958 struct ev_loop *loop = ev_default_loop_ptr; 1641 struct ev_loop *loop = ev_default_loop_ptr;
959#endif 1642#endif
960 1643
1644 ev_default_loop_ptr = 0;
1645
961#ifndef _WIN32 1646#ifndef _WIN32
962 ev_ref (EV_A); /* child watcher */ 1647 ev_ref (EV_A); /* child watcher */
963 ev_signal_stop (EV_A_ &childev); 1648 ev_signal_stop (EV_A_ &childev);
964#endif 1649#endif
965 1650
966 ev_ref (EV_A); /* signal watcher */
967 ev_io_stop (EV_A_ &sigev);
968
969 close (sigpipe [0]); sigpipe [0] = 0;
970 close (sigpipe [1]); sigpipe [1] = 0;
971
972 loop_destroy (EV_A); 1651 loop_destroy (EV_A);
973} 1652}
974 1653
975void 1654void
976ev_default_fork (void) 1655ev_default_fork (void)
977{ 1656{
978#if EV_MULTIPLICITY 1657#if EV_MULTIPLICITY
979 struct ev_loop *loop = ev_default_loop_ptr; 1658 struct ev_loop *loop = ev_default_loop_ptr;
980#endif 1659#endif
981 1660
982 if (method) 1661 if (backend)
983 postfork = 1; 1662 postfork = 1; /* must be in line with ev_loop_fork */
984} 1663}
985 1664
986/*****************************************************************************/ 1665/*****************************************************************************/
987 1666
988static int 1667void
989any_pending (EV_P) 1668ev_invoke (EV_P_ void *w, int revents)
990{ 1669{
991 int pri; 1670 EV_CB_INVOKE ((W)w, revents);
992
993 for (pri = NUMPRI; pri--; )
994 if (pendingcnt [pri])
995 return 1;
996
997 return 0;
998} 1671}
999 1672
1000static void 1673void inline_speed
1001call_pending (EV_P) 1674call_pending (EV_P)
1002{ 1675{
1003 int pri; 1676 int pri;
1004 1677
1005 for (pri = NUMPRI; pri--; ) 1678 for (pri = NUMPRI; pri--; )
1006 while (pendingcnt [pri]) 1679 while (pendingcnt [pri])
1007 { 1680 {
1008 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1681 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1009 1682
1010 if (p->w) 1683 if (expect_true (p->w))
1011 { 1684 {
1685 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1686
1012 p->w->pending = 0; 1687 p->w->pending = 0;
1013 EV_CB_INVOKE (p->w, p->events); 1688 EV_CB_INVOKE (p->w, p->events);
1689 EV_FREQUENT_CHECK;
1014 } 1690 }
1015 } 1691 }
1016} 1692}
1017 1693
1018static void 1694#if EV_IDLE_ENABLE
1695void inline_size
1696idle_reify (EV_P)
1697{
1698 if (expect_false (idleall))
1699 {
1700 int pri;
1701
1702 for (pri = NUMPRI; pri--; )
1703 {
1704 if (pendingcnt [pri])
1705 break;
1706
1707 if (idlecnt [pri])
1708 {
1709 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1710 break;
1711 }
1712 }
1713 }
1714}
1715#endif
1716
1717void inline_size
1019timers_reify (EV_P) 1718timers_reify (EV_P)
1020{ 1719{
1720 EV_FREQUENT_CHECK;
1721
1021 while (timercnt && ((WT)timers [0])->at <= mn_now) 1722 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1022 { 1723 {
1023 struct ev_timer *w = timers [0]; 1724 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1024 1725
1025 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1726 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1026 1727
1027 /* first reschedule or stop timer */ 1728 /* first reschedule or stop timer */
1028 if (w->repeat) 1729 if (w->repeat)
1029 { 1730 {
1731 ev_at (w) += w->repeat;
1732 if (ev_at (w) < mn_now)
1733 ev_at (w) = mn_now;
1734
1030 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1735 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1031 1736
1032 ((WT)w)->at += w->repeat; 1737 ANHE_at_cache (timers [HEAP0]);
1033 if (((WT)w)->at < mn_now)
1034 ((WT)w)->at = mn_now;
1035
1036 downheap ((WT *)timers, timercnt, 0); 1738 downheap (timers, timercnt, HEAP0);
1037 } 1739 }
1038 else 1740 else
1039 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1741 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1040 1742
1743 EV_FREQUENT_CHECK;
1041 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1744 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1042 } 1745 }
1043} 1746}
1044 1747
1045#if EV_PERIODICS 1748#if EV_PERIODIC_ENABLE
1046static void 1749void inline_size
1047periodics_reify (EV_P) 1750periodics_reify (EV_P)
1048{ 1751{
1752 EV_FREQUENT_CHECK;
1753
1049 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1754 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1050 { 1755 {
1051 struct ev_periodic *w = periodics [0]; 1756 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1052 1757
1053 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1758 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1054 1759
1055 /* first reschedule or stop timer */ 1760 /* first reschedule or stop timer */
1056 if (w->reschedule_cb) 1761 if (w->reschedule_cb)
1057 { 1762 {
1058 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1763 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1764
1059 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1765 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1766
1767 ANHE_at_cache (periodics [HEAP0]);
1060 downheap ((WT *)periodics, periodiccnt, 0); 1768 downheap (periodics, periodiccnt, HEAP0);
1061 } 1769 }
1062 else if (w->interval) 1770 else if (w->interval)
1063 { 1771 {
1064 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1772 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1065 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1773 /* if next trigger time is not sufficiently in the future, put it there */
1774 /* this might happen because of floating point inexactness */
1775 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1776 {
1777 ev_at (w) += w->interval;
1778
1779 /* if interval is unreasonably low we might still have a time in the past */
1780 /* so correct this. this will make the periodic very inexact, but the user */
1781 /* has effectively asked to get triggered more often than possible */
1782 if (ev_at (w) < ev_rt_now)
1783 ev_at (w) = ev_rt_now;
1784 }
1785
1786 ANHE_at_cache (periodics [HEAP0]);
1066 downheap ((WT *)periodics, periodiccnt, 0); 1787 downheap (periodics, periodiccnt, HEAP0);
1067 } 1788 }
1068 else 1789 else
1069 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1790 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1070 1791
1792 EV_FREQUENT_CHECK;
1071 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1793 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1072 } 1794 }
1073} 1795}
1074 1796
1075static void 1797static void noinline
1076periodics_reschedule (EV_P) 1798periodics_reschedule (EV_P)
1077{ 1799{
1078 int i; 1800 int i;
1079 1801
1080 /* adjust periodics after time jump */ 1802 /* adjust periodics after time jump */
1081 for (i = 0; i < periodiccnt; ++i) 1803 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1082 { 1804 {
1083 struct ev_periodic *w = periodics [i]; 1805 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1084 1806
1085 if (w->reschedule_cb) 1807 if (w->reschedule_cb)
1086 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1808 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1087 else if (w->interval) 1809 else if (w->interval)
1088 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1810 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1811
1812 ANHE_at_cache (periodics [i]);
1813 }
1814
1815 reheap (periodics, periodiccnt);
1816}
1817#endif
1818
1819void inline_speed
1820time_update (EV_P_ ev_tstamp max_block)
1821{
1822 int i;
1823
1824#if EV_USE_MONOTONIC
1825 if (expect_true (have_monotonic))
1089 } 1826 {
1827 ev_tstamp odiff = rtmn_diff;
1090 1828
1091 /* now rebuild the heap */
1092 for (i = periodiccnt >> 1; i--; )
1093 downheap ((WT *)periodics, periodiccnt, i);
1094}
1095#endif
1096
1097inline int
1098time_update_monotonic (EV_P)
1099{
1100 mn_now = get_clock (); 1829 mn_now = get_clock ();
1101 1830
1831 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1832 /* interpolate in the meantime */
1102 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1833 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1103 { 1834 {
1104 ev_rt_now = rtmn_diff + mn_now; 1835 ev_rt_now = rtmn_diff + mn_now;
1105 return 0; 1836 return;
1106 } 1837 }
1107 else 1838
1108 {
1109 now_floor = mn_now; 1839 now_floor = mn_now;
1110 ev_rt_now = ev_time (); 1840 ev_rt_now = ev_time ();
1111 return 1;
1112 }
1113}
1114 1841
1115static void 1842 /* loop a few times, before making important decisions.
1116time_update (EV_P) 1843 * on the choice of "4": one iteration isn't enough,
1117{ 1844 * in case we get preempted during the calls to
1118 int i; 1845 * ev_time and get_clock. a second call is almost guaranteed
1119 1846 * to succeed in that case, though. and looping a few more times
1120#if EV_USE_MONOTONIC 1847 * doesn't hurt either as we only do this on time-jumps or
1121 if (expect_true (have_monotonic)) 1848 * in the unlikely event of having been preempted here.
1122 { 1849 */
1123 if (time_update_monotonic (EV_A)) 1850 for (i = 4; --i; )
1124 { 1851 {
1125 ev_tstamp odiff = rtmn_diff; 1852 rtmn_diff = ev_rt_now - mn_now;
1126 1853
1127 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1854 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1855 return; /* all is well */
1856
1857 ev_rt_now = ev_time ();
1858 mn_now = get_clock ();
1859 now_floor = mn_now;
1860 }
1861
1862# if EV_PERIODIC_ENABLE
1863 periodics_reschedule (EV_A);
1864# endif
1865 /* no timer adjustment, as the monotonic clock doesn't jump */
1866 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1867 }
1868 else
1869#endif
1870 {
1871 ev_rt_now = ev_time ();
1872
1873 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1874 {
1875#if EV_PERIODIC_ENABLE
1876 periodics_reschedule (EV_A);
1877#endif
1878 /* adjust timers. this is easy, as the offset is the same for all of them */
1879 for (i = 0; i < timercnt; ++i)
1128 { 1880 {
1129 rtmn_diff = ev_rt_now - mn_now; 1881 ANHE *he = timers + i + HEAP0;
1130 1882 ANHE_w (*he)->at += ev_rt_now - mn_now;
1131 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1883 ANHE_at_cache (*he);
1132 return; /* all is well */
1133
1134 ev_rt_now = ev_time ();
1135 mn_now = get_clock ();
1136 now_floor = mn_now;
1137 } 1884 }
1138
1139# if EV_PERIODICS
1140 periodics_reschedule (EV_A);
1141# endif
1142 /* no timer adjustment, as the monotonic clock doesn't jump */
1143 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1144 } 1885 }
1145 }
1146 else
1147#endif
1148 {
1149 ev_rt_now = ev_time ();
1150
1151 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1152 {
1153#if EV_PERIODICS
1154 periodics_reschedule (EV_A);
1155#endif
1156
1157 /* adjust timers. this is easy, as the offset is the same for all */
1158 for (i = 0; i < timercnt; ++i)
1159 ((WT)timers [i])->at += ev_rt_now - mn_now;
1160 }
1161 1886
1162 mn_now = ev_rt_now; 1887 mn_now = ev_rt_now;
1163 } 1888 }
1164} 1889}
1165 1890
1173ev_unref (EV_P) 1898ev_unref (EV_P)
1174{ 1899{
1175 --activecnt; 1900 --activecnt;
1176} 1901}
1177 1902
1903void
1904ev_now_update (EV_P)
1905{
1906 time_update (EV_A_ 1e100);
1907}
1908
1178static int loop_done; 1909static int loop_done;
1179 1910
1180void 1911void
1181ev_loop (EV_P_ int flags) 1912ev_loop (EV_P_ int flags)
1182{ 1913{
1183 double block; 1914 loop_done = EVUNLOOP_CANCEL;
1184 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1185 1915
1186 while (activecnt) 1916 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1917
1918 do
1187 { 1919 {
1920#if EV_VERIFY >= 2
1921 ev_loop_verify (EV_A);
1922#endif
1923
1924#ifndef _WIN32
1925 if (expect_false (curpid)) /* penalise the forking check even more */
1926 if (expect_false (getpid () != curpid))
1927 {
1928 curpid = getpid ();
1929 postfork = 1;
1930 }
1931#endif
1932
1933#if EV_FORK_ENABLE
1934 /* we might have forked, so queue fork handlers */
1935 if (expect_false (postfork))
1936 if (forkcnt)
1937 {
1938 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1939 call_pending (EV_A);
1940 }
1941#endif
1942
1188 /* queue check watchers (and execute them) */ 1943 /* queue prepare watchers (and execute them) */
1189 if (expect_false (preparecnt)) 1944 if (expect_false (preparecnt))
1190 { 1945 {
1191 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1946 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1192 call_pending (EV_A); 1947 call_pending (EV_A);
1193 } 1948 }
1194 1949
1950 if (expect_false (!activecnt))
1951 break;
1952
1195 /* we might have forked, so reify kernel state if necessary */ 1953 /* we might have forked, so reify kernel state if necessary */
1196 if (expect_false (postfork)) 1954 if (expect_false (postfork))
1197 loop_fork (EV_A); 1955 loop_fork (EV_A);
1198 1956
1199 /* update fd-related kernel structures */ 1957 /* update fd-related kernel structures */
1200 fd_reify (EV_A); 1958 fd_reify (EV_A);
1201 1959
1202 /* calculate blocking time */ 1960 /* calculate blocking time */
1961 {
1962 ev_tstamp waittime = 0.;
1963 ev_tstamp sleeptime = 0.;
1203 1964
1204 /* we only need this for !monotonic clock or timers, but as we basically 1965 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1205 always have timers, we just calculate it always */
1206#if EV_USE_MONOTONIC
1207 if (expect_true (have_monotonic))
1208 time_update_monotonic (EV_A);
1209 else
1210#endif
1211 { 1966 {
1212 ev_rt_now = ev_time (); 1967 /* update time to cancel out callback processing overhead */
1213 mn_now = ev_rt_now; 1968 time_update (EV_A_ 1e100);
1214 }
1215 1969
1216 if (flags & EVLOOP_NONBLOCK || idlecnt)
1217 block = 0.;
1218 else
1219 {
1220 block = MAX_BLOCKTIME; 1970 waittime = MAX_BLOCKTIME;
1221 1971
1222 if (timercnt) 1972 if (timercnt)
1223 { 1973 {
1224 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1974 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1225 if (block > to) block = to; 1975 if (waittime > to) waittime = to;
1226 } 1976 }
1227 1977
1228#if EV_PERIODICS 1978#if EV_PERIODIC_ENABLE
1229 if (periodiccnt) 1979 if (periodiccnt)
1230 { 1980 {
1231 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1981 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1232 if (block > to) block = to; 1982 if (waittime > to) waittime = to;
1233 } 1983 }
1234#endif 1984#endif
1235 1985
1236 if (block < 0.) block = 0.; 1986 if (expect_false (waittime < timeout_blocktime))
1987 waittime = timeout_blocktime;
1988
1989 sleeptime = waittime - backend_fudge;
1990
1991 if (expect_true (sleeptime > io_blocktime))
1992 sleeptime = io_blocktime;
1993
1994 if (sleeptime)
1995 {
1996 ev_sleep (sleeptime);
1997 waittime -= sleeptime;
1998 }
1237 } 1999 }
1238 2000
1239 method_poll (EV_A_ block); 2001 ++loop_count;
2002 backend_poll (EV_A_ waittime);
1240 2003
1241 /* update ev_rt_now, do magic */ 2004 /* update ev_rt_now, do magic */
1242 time_update (EV_A); 2005 time_update (EV_A_ waittime + sleeptime);
2006 }
1243 2007
1244 /* queue pending timers and reschedule them */ 2008 /* queue pending timers and reschedule them */
1245 timers_reify (EV_A); /* relative timers called last */ 2009 timers_reify (EV_A); /* relative timers called last */
1246#if EV_PERIODICS 2010#if EV_PERIODIC_ENABLE
1247 periodics_reify (EV_A); /* absolute timers called first */ 2011 periodics_reify (EV_A); /* absolute timers called first */
1248#endif 2012#endif
1249 2013
2014#if EV_IDLE_ENABLE
1250 /* queue idle watchers unless io or timers are pending */ 2015 /* queue idle watchers unless other events are pending */
1251 if (idlecnt && !any_pending (EV_A)) 2016 idle_reify (EV_A);
1252 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2017#endif
1253 2018
1254 /* queue check watchers, to be executed first */ 2019 /* queue check watchers, to be executed first */
1255 if (checkcnt) 2020 if (expect_false (checkcnt))
1256 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2021 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1257 2022
1258 call_pending (EV_A); 2023 call_pending (EV_A);
1259
1260 if (loop_done)
1261 break;
1262 } 2024 }
2025 while (expect_true (
2026 activecnt
2027 && !loop_done
2028 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2029 ));
1263 2030
1264 if (loop_done != 2) 2031 if (loop_done == EVUNLOOP_ONE)
1265 loop_done = 0; 2032 loop_done = EVUNLOOP_CANCEL;
1266} 2033}
1267 2034
1268void 2035void
1269ev_unloop (EV_P_ int how) 2036ev_unloop (EV_P_ int how)
1270{ 2037{
1271 loop_done = how; 2038 loop_done = how;
1272} 2039}
1273 2040
1274/*****************************************************************************/ 2041/*****************************************************************************/
1275 2042
1276inline void 2043void inline_size
1277wlist_add (WL *head, WL elem) 2044wlist_add (WL *head, WL elem)
1278{ 2045{
1279 elem->next = *head; 2046 elem->next = *head;
1280 *head = elem; 2047 *head = elem;
1281} 2048}
1282 2049
1283inline void 2050void inline_size
1284wlist_del (WL *head, WL elem) 2051wlist_del (WL *head, WL elem)
1285{ 2052{
1286 while (*head) 2053 while (*head)
1287 { 2054 {
1288 if (*head == elem) 2055 if (*head == elem)
1293 2060
1294 head = &(*head)->next; 2061 head = &(*head)->next;
1295 } 2062 }
1296} 2063}
1297 2064
1298inline void 2065void inline_speed
1299ev_clear_pending (EV_P_ W w) 2066clear_pending (EV_P_ W w)
1300{ 2067{
1301 if (w->pending) 2068 if (w->pending)
1302 { 2069 {
1303 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2070 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1304 w->pending = 0; 2071 w->pending = 0;
1305 } 2072 }
1306} 2073}
1307 2074
1308inline void 2075int
2076ev_clear_pending (EV_P_ void *w)
2077{
2078 W w_ = (W)w;
2079 int pending = w_->pending;
2080
2081 if (expect_true (pending))
2082 {
2083 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2084 w_->pending = 0;
2085 p->w = 0;
2086 return p->events;
2087 }
2088 else
2089 return 0;
2090}
2091
2092void inline_size
2093pri_adjust (EV_P_ W w)
2094{
2095 int pri = w->priority;
2096 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2097 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2098 w->priority = pri;
2099}
2100
2101void inline_speed
1309ev_start (EV_P_ W w, int active) 2102ev_start (EV_P_ W w, int active)
1310{ 2103{
1311 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2104 pri_adjust (EV_A_ w);
1312 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1313
1314 w->active = active; 2105 w->active = active;
1315 ev_ref (EV_A); 2106 ev_ref (EV_A);
1316} 2107}
1317 2108
1318inline void 2109void inline_size
1319ev_stop (EV_P_ W w) 2110ev_stop (EV_P_ W w)
1320{ 2111{
1321 ev_unref (EV_A); 2112 ev_unref (EV_A);
1322 w->active = 0; 2113 w->active = 0;
1323} 2114}
1324 2115
1325/*****************************************************************************/ 2116/*****************************************************************************/
1326 2117
1327void 2118void noinline
1328ev_io_start (EV_P_ struct ev_io *w) 2119ev_io_start (EV_P_ ev_io *w)
1329{ 2120{
1330 int fd = w->fd; 2121 int fd = w->fd;
1331 2122
1332 if (ev_is_active (w)) 2123 if (expect_false (ev_is_active (w)))
1333 return; 2124 return;
1334 2125
1335 assert (("ev_io_start called with negative fd", fd >= 0)); 2126 assert (("ev_io_start called with negative fd", fd >= 0));
2127 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2128
2129 EV_FREQUENT_CHECK;
1336 2130
1337 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1338 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1339 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1340 2134
1341 fd_change (EV_A_ fd); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1342} 2136 w->events &= ~EV_IOFDSET;
1343 2137
1344void 2138 EV_FREQUENT_CHECK;
2139}
2140
2141void noinline
1345ev_io_stop (EV_P_ struct ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1346{ 2143{
1347 ev_clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 2145 if (expect_false (!ev_is_active (w)))
1349 return; 2146 return;
1350 2147
1351 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1352 2149
2150 EV_FREQUENT_CHECK;
2151
1353 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1354 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1355 2154
1356 fd_change (EV_A_ w->fd); 2155 fd_change (EV_A_ w->fd, 1);
1357}
1358 2156
1359void 2157 EV_FREQUENT_CHECK;
2158}
2159
2160void noinline
1360ev_timer_start (EV_P_ struct ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1361{ 2162{
1362 if (ev_is_active (w)) 2163 if (expect_false (ev_is_active (w)))
1363 return; 2164 return;
1364 2165
1365 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1366 2167
1367 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1368 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1369 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1370 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1371 timers [timercnt - 1] = w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1372 upheap ((WT *)timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1373 2178
2179 EV_FREQUENT_CHECK;
2180
1374 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1375} 2182}
1376 2183
1377void 2184void noinline
1378ev_timer_stop (EV_P_ struct ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1379{ 2186{
1380 ev_clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1381 if (!ev_is_active (w)) 2188 if (expect_false (!ev_is_active (w)))
1382 return; 2189 return;
1383 2190
2191 EV_FREQUENT_CHECK;
2192
2193 {
2194 int active = ev_active (w);
2195
1384 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1385 2197
1386 if (((W)w)->active < timercnt--) 2198 --timercnt;
2199
2200 if (expect_true (active < timercnt + HEAP0))
1387 { 2201 {
1388 timers [((W)w)->active - 1] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1389 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2203 adjustheap (timers, timercnt, active);
1390 } 2204 }
2205 }
1391 2206
1392 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1393 2210
1394 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1395} 2212}
1396 2213
1397void 2214void noinline
1398ev_timer_again (EV_P_ struct ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1399{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1400 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1401 { 2220 {
1402 if (w->repeat) 2221 if (w->repeat)
1403 { 2222 {
1404 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1406 } 2226 }
1407 else 2227 else
1408 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1409 } 2229 }
1410 else if (w->repeat) 2230 else if (w->repeat)
1411 { 2231 {
1412 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1413 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1414 } 2234 }
1415}
1416 2235
2236 EV_FREQUENT_CHECK;
2237}
2238
1417#if EV_PERIODICS 2239#if EV_PERIODIC_ENABLE
1418void 2240void noinline
1419ev_periodic_start (EV_P_ struct ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1420{ 2242{
1421 if (ev_is_active (w)) 2243 if (expect_false (ev_is_active (w)))
1422 return; 2244 return;
1423 2245
1424 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval) 2248 else if (w->interval)
1427 { 2249 {
1428 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1429 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1430 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 } 2253 }
2254 else
2255 ev_at (w) = w->offset;
1432 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1433 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1434 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1435 periodics [periodiccnt - 1] = w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1436 upheap ((WT *)periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1437 2265
2266 EV_FREQUENT_CHECK;
2267
1438 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1439} 2269}
1440 2270
1441void 2271void noinline
1442ev_periodic_stop (EV_P_ struct ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1443{ 2273{
1444 ev_clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1445 if (!ev_is_active (w)) 2275 if (expect_false (!ev_is_active (w)))
1446 return; 2276 return;
1447 2277
2278 EV_FREQUENT_CHECK;
2279
2280 {
2281 int active = ev_active (w);
2282
1448 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1449 2284
1450 if (((W)w)->active < periodiccnt--) 2285 --periodiccnt;
2286
2287 if (expect_true (active < periodiccnt + HEAP0))
1451 { 2288 {
1452 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1453 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2290 adjustheap (periodics, periodiccnt, active);
1454 } 2291 }
2292 }
2293
2294 EV_FREQUENT_CHECK;
1455 2295
1456 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1457} 2297}
1458 2298
1459void 2299void noinline
1460ev_periodic_again (EV_P_ struct ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1461{ 2301{
1462 /* TODO: use adjustheap and recalculation */ 2302 /* TODO: use adjustheap and recalculation */
1463 ev_periodic_stop (EV_A_ w); 2303 ev_periodic_stop (EV_A_ w);
1464 ev_periodic_start (EV_A_ w); 2304 ev_periodic_start (EV_A_ w);
1465} 2305}
1466#endif 2306#endif
1467 2307
1468void
1469ev_idle_start (EV_P_ struct ev_idle *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++idlecnt);
1475 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1476 idles [idlecnt - 1] = w;
1477}
1478
1479void
1480ev_idle_stop (EV_P_ struct ev_idle *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 idles [((W)w)->active - 1] = idles [--idlecnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490void
1491ev_prepare_start (EV_P_ struct ev_prepare *w)
1492{
1493 if (ev_is_active (w))
1494 return;
1495
1496 ev_start (EV_A_ (W)w, ++preparecnt);
1497 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1498 prepares [preparecnt - 1] = w;
1499}
1500
1501void
1502ev_prepare_stop (EV_P_ struct ev_prepare *w)
1503{
1504 ev_clear_pending (EV_A_ (W)w);
1505 if (!ev_is_active (w))
1506 return;
1507
1508 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1509 ev_stop (EV_A_ (W)w);
1510}
1511
1512void
1513ev_check_start (EV_P_ struct ev_check *w)
1514{
1515 if (ev_is_active (w))
1516 return;
1517
1518 ev_start (EV_A_ (W)w, ++checkcnt);
1519 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1520 checks [checkcnt - 1] = w;
1521}
1522
1523void
1524ev_check_stop (EV_P_ struct ev_check *w)
1525{
1526 ev_clear_pending (EV_A_ (W)w);
1527 if (!ev_is_active (w))
1528 return;
1529
1530 checks [((W)w)->active - 1] = checks [--checkcnt];
1531 ev_stop (EV_A_ (W)w);
1532}
1533
1534#ifndef SA_RESTART 2308#ifndef SA_RESTART
1535# define SA_RESTART 0 2309# define SA_RESTART 0
1536#endif 2310#endif
1537 2311
1538void 2312void noinline
1539ev_signal_start (EV_P_ struct ev_signal *w) 2313ev_signal_start (EV_P_ ev_signal *w)
1540{ 2314{
1541#if EV_MULTIPLICITY 2315#if EV_MULTIPLICITY
1542 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1543#endif 2317#endif
1544 if (ev_is_active (w)) 2318 if (expect_false (ev_is_active (w)))
1545 return; 2319 return;
1546 2320
1547 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1548 2322
2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2326
2327 {
2328#ifndef _WIN32
2329 sigset_t full, prev;
2330 sigfillset (&full);
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333
2334 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2335
2336#ifndef _WIN32
2337 sigprocmask (SIG_SETMASK, &prev, 0);
2338#endif
2339 }
2340
1549 ev_start (EV_A_ (W)w, 1); 2341 ev_start (EV_A_ (W)w, 1);
1550 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1551 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1552 2343
1553 if (!((WL)w)->next) 2344 if (!((WL)w)->next)
1554 { 2345 {
1555#if _WIN32 2346#if _WIN32
1556 signal (w->signum, sighandler); 2347 signal (w->signum, ev_sighandler);
1557#else 2348#else
1558 struct sigaction sa; 2349 struct sigaction sa;
1559 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1560 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1561 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1562 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
1563#endif 2354#endif
1564 } 2355 }
1565}
1566 2356
1567void 2357 EV_FREQUENT_CHECK;
2358}
2359
2360void noinline
1568ev_signal_stop (EV_P_ struct ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1569{ 2362{
1570 ev_clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1571 if (!ev_is_active (w)) 2364 if (expect_false (!ev_is_active (w)))
1572 return; 2365 return;
1573 2366
2367 EV_FREQUENT_CHECK;
2368
1574 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1575 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1576 2371
1577 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1578 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
1579}
1580 2374
2375 EV_FREQUENT_CHECK;
2376}
2377
1581void 2378void
1582ev_child_start (EV_P_ struct ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1583{ 2380{
1584#if EV_MULTIPLICITY 2381#if EV_MULTIPLICITY
1585 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1586#endif 2383#endif
1587 if (ev_is_active (w)) 2384 if (expect_false (ev_is_active (w)))
1588 return; 2385 return;
1589 2386
2387 EV_FREQUENT_CHECK;
2388
1590 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1591 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1592}
1593 2391
2392 EV_FREQUENT_CHECK;
2393}
2394
1594void 2395void
1595ev_child_stop (EV_P_ struct ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1596{ 2397{
1597 ev_clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1598 if (!ev_is_active (w)) 2399 if (expect_false (!ev_is_active (w)))
1599 return; 2400 return;
1600 2401
2402 EV_FREQUENT_CHECK;
2403
1601 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1602 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1603} 2408}
2409
2410#if EV_STAT_ENABLE
2411
2412# ifdef _WIN32
2413# undef lstat
2414# define lstat(a,b) _stati64 (a,b)
2415# endif
2416
2417#define DEF_STAT_INTERVAL 5.0074891
2418#define MIN_STAT_INTERVAL 0.1074891
2419
2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2421
2422#if EV_USE_INOTIFY
2423# define EV_INOTIFY_BUFSIZE 8192
2424
2425static void noinline
2426infy_add (EV_P_ ev_stat *w)
2427{
2428 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2429
2430 if (w->wd < 0)
2431 {
2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2433
2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2438 {
2439 char path [4096];
2440 strcpy (path, w->path);
2441
2442 do
2443 {
2444 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2445 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2446
2447 char *pend = strrchr (path, '/');
2448
2449 if (!pend)
2450 break; /* whoops, no '/', complain to your admin */
2451
2452 *pend = 0;
2453 w->wd = inotify_add_watch (fs_fd, path, mask);
2454 }
2455 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2456 }
2457 }
2458 else
2459 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2460
2461 if (w->wd >= 0)
2462 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2463}
2464
2465static void noinline
2466infy_del (EV_P_ ev_stat *w)
2467{
2468 int slot;
2469 int wd = w->wd;
2470
2471 if (wd < 0)
2472 return;
2473
2474 w->wd = -2;
2475 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2476 wlist_del (&fs_hash [slot].head, (WL)w);
2477
2478 /* remove this watcher, if others are watching it, they will rearm */
2479 inotify_rm_watch (fs_fd, wd);
2480}
2481
2482static void noinline
2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2484{
2485 if (slot < 0)
2486 /* overflow, need to check for all hash slots */
2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2488 infy_wd (EV_A_ slot, wd, ev);
2489 else
2490 {
2491 WL w_;
2492
2493 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2494 {
2495 ev_stat *w = (ev_stat *)w_;
2496 w_ = w_->next; /* lets us remove this watcher and all before it */
2497
2498 if (w->wd == wd || wd == -1)
2499 {
2500 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2501 {
2502 w->wd = -1;
2503 infy_add (EV_A_ w); /* re-add, no matter what */
2504 }
2505
2506 stat_timer_cb (EV_A_ &w->timer, 0);
2507 }
2508 }
2509 }
2510}
2511
2512static void
2513infy_cb (EV_P_ ev_io *w, int revents)
2514{
2515 char buf [EV_INOTIFY_BUFSIZE];
2516 struct inotify_event *ev = (struct inotify_event *)buf;
2517 int ofs;
2518 int len = read (fs_fd, buf, sizeof (buf));
2519
2520 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2521 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2522}
2523
2524void inline_size
2525infy_init (EV_P)
2526{
2527 if (fs_fd != -2)
2528 return;
2529
2530 /* kernels < 2.6.25 are borked
2531 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2532 */
2533 {
2534 struct utsname buf;
2535 int major, minor, micro;
2536
2537 fs_fd = -1;
2538
2539 if (uname (&buf))
2540 return;
2541
2542 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2543 return;
2544
2545 if (major < 2
2546 || (major == 2 && minor < 6)
2547 || (major == 2 && minor == 6 && micro < 25))
2548 return;
2549 }
2550
2551 fs_fd = inotify_init ();
2552
2553 if (fs_fd >= 0)
2554 {
2555 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2556 ev_set_priority (&fs_w, EV_MAXPRI);
2557 ev_io_start (EV_A_ &fs_w);
2558 }
2559}
2560
2561void inline_size
2562infy_fork (EV_P)
2563{
2564 int slot;
2565
2566 if (fs_fd < 0)
2567 return;
2568
2569 close (fs_fd);
2570 fs_fd = inotify_init ();
2571
2572 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2573 {
2574 WL w_ = fs_hash [slot].head;
2575 fs_hash [slot].head = 0;
2576
2577 while (w_)
2578 {
2579 ev_stat *w = (ev_stat *)w_;
2580 w_ = w_->next; /* lets us add this watcher */
2581
2582 w->wd = -1;
2583
2584 if (fs_fd >= 0)
2585 infy_add (EV_A_ w); /* re-add, no matter what */
2586 else
2587 ev_timer_start (EV_A_ &w->timer);
2588 }
2589 }
2590}
2591
2592#endif
2593
2594#ifdef _WIN32
2595# define EV_LSTAT(p,b) _stati64 (p, b)
2596#else
2597# define EV_LSTAT(p,b) lstat (p, b)
2598#endif
2599
2600void
2601ev_stat_stat (EV_P_ ev_stat *w)
2602{
2603 if (lstat (w->path, &w->attr) < 0)
2604 w->attr.st_nlink = 0;
2605 else if (!w->attr.st_nlink)
2606 w->attr.st_nlink = 1;
2607}
2608
2609static void noinline
2610stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2611{
2612 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2613
2614 /* we copy this here each the time so that */
2615 /* prev has the old value when the callback gets invoked */
2616 w->prev = w->attr;
2617 ev_stat_stat (EV_A_ w);
2618
2619 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2620 if (
2621 w->prev.st_dev != w->attr.st_dev
2622 || w->prev.st_ino != w->attr.st_ino
2623 || w->prev.st_mode != w->attr.st_mode
2624 || w->prev.st_nlink != w->attr.st_nlink
2625 || w->prev.st_uid != w->attr.st_uid
2626 || w->prev.st_gid != w->attr.st_gid
2627 || w->prev.st_rdev != w->attr.st_rdev
2628 || w->prev.st_size != w->attr.st_size
2629 || w->prev.st_atime != w->attr.st_atime
2630 || w->prev.st_mtime != w->attr.st_mtime
2631 || w->prev.st_ctime != w->attr.st_ctime
2632 ) {
2633 #if EV_USE_INOTIFY
2634 if (fs_fd >= 0)
2635 {
2636 infy_del (EV_A_ w);
2637 infy_add (EV_A_ w);
2638 ev_stat_stat (EV_A_ w); /* avoid race... */
2639 }
2640 #endif
2641
2642 ev_feed_event (EV_A_ w, EV_STAT);
2643 }
2644}
2645
2646void
2647ev_stat_start (EV_P_ ev_stat *w)
2648{
2649 if (expect_false (ev_is_active (w)))
2650 return;
2651
2652 /* since we use memcmp, we need to clear any padding data etc. */
2653 memset (&w->prev, 0, sizeof (ev_statdata));
2654 memset (&w->attr, 0, sizeof (ev_statdata));
2655
2656 ev_stat_stat (EV_A_ w);
2657
2658 if (w->interval < MIN_STAT_INTERVAL)
2659 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2660
2661 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2662 ev_set_priority (&w->timer, ev_priority (w));
2663
2664#if EV_USE_INOTIFY
2665 infy_init (EV_A);
2666
2667 if (fs_fd >= 0)
2668 infy_add (EV_A_ w);
2669 else
2670#endif
2671 ev_timer_start (EV_A_ &w->timer);
2672
2673 ev_start (EV_A_ (W)w, 1);
2674
2675 EV_FREQUENT_CHECK;
2676}
2677
2678void
2679ev_stat_stop (EV_P_ ev_stat *w)
2680{
2681 clear_pending (EV_A_ (W)w);
2682 if (expect_false (!ev_is_active (w)))
2683 return;
2684
2685 EV_FREQUENT_CHECK;
2686
2687#if EV_USE_INOTIFY
2688 infy_del (EV_A_ w);
2689#endif
2690 ev_timer_stop (EV_A_ &w->timer);
2691
2692 ev_stop (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2695}
2696#endif
2697
2698#if EV_IDLE_ENABLE
2699void
2700ev_idle_start (EV_P_ ev_idle *w)
2701{
2702 if (expect_false (ev_is_active (w)))
2703 return;
2704
2705 pri_adjust (EV_A_ (W)w);
2706
2707 EV_FREQUENT_CHECK;
2708
2709 {
2710 int active = ++idlecnt [ABSPRI (w)];
2711
2712 ++idleall;
2713 ev_start (EV_A_ (W)w, active);
2714
2715 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2716 idles [ABSPRI (w)][active - 1] = w;
2717 }
2718
2719 EV_FREQUENT_CHECK;
2720}
2721
2722void
2723ev_idle_stop (EV_P_ ev_idle *w)
2724{
2725 clear_pending (EV_A_ (W)w);
2726 if (expect_false (!ev_is_active (w)))
2727 return;
2728
2729 EV_FREQUENT_CHECK;
2730
2731 {
2732 int active = ev_active (w);
2733
2734 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2735 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2736
2737 ev_stop (EV_A_ (W)w);
2738 --idleall;
2739 }
2740
2741 EV_FREQUENT_CHECK;
2742}
2743#endif
2744
2745void
2746ev_prepare_start (EV_P_ ev_prepare *w)
2747{
2748 if (expect_false (ev_is_active (w)))
2749 return;
2750
2751 EV_FREQUENT_CHECK;
2752
2753 ev_start (EV_A_ (W)w, ++preparecnt);
2754 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2755 prepares [preparecnt - 1] = w;
2756
2757 EV_FREQUENT_CHECK;
2758}
2759
2760void
2761ev_prepare_stop (EV_P_ ev_prepare *w)
2762{
2763 clear_pending (EV_A_ (W)w);
2764 if (expect_false (!ev_is_active (w)))
2765 return;
2766
2767 EV_FREQUENT_CHECK;
2768
2769 {
2770 int active = ev_active (w);
2771
2772 prepares [active - 1] = prepares [--preparecnt];
2773 ev_active (prepares [active - 1]) = active;
2774 }
2775
2776 ev_stop (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
2779}
2780
2781void
2782ev_check_start (EV_P_ ev_check *w)
2783{
2784 if (expect_false (ev_is_active (w)))
2785 return;
2786
2787 EV_FREQUENT_CHECK;
2788
2789 ev_start (EV_A_ (W)w, ++checkcnt);
2790 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2791 checks [checkcnt - 1] = w;
2792
2793 EV_FREQUENT_CHECK;
2794}
2795
2796void
2797ev_check_stop (EV_P_ ev_check *w)
2798{
2799 clear_pending (EV_A_ (W)w);
2800 if (expect_false (!ev_is_active (w)))
2801 return;
2802
2803 EV_FREQUENT_CHECK;
2804
2805 {
2806 int active = ev_active (w);
2807
2808 checks [active - 1] = checks [--checkcnt];
2809 ev_active (checks [active - 1]) = active;
2810 }
2811
2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2815}
2816
2817#if EV_EMBED_ENABLE
2818void noinline
2819ev_embed_sweep (EV_P_ ev_embed *w)
2820{
2821 ev_loop (w->other, EVLOOP_NONBLOCK);
2822}
2823
2824static void
2825embed_io_cb (EV_P_ ev_io *io, int revents)
2826{
2827 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2828
2829 if (ev_cb (w))
2830 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2831 else
2832 ev_loop (w->other, EVLOOP_NONBLOCK);
2833}
2834
2835static void
2836embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2837{
2838 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2839
2840 {
2841 struct ev_loop *loop = w->other;
2842
2843 while (fdchangecnt)
2844 {
2845 fd_reify (EV_A);
2846 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2847 }
2848 }
2849}
2850
2851static void
2852embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2853{
2854 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2855
2856 {
2857 struct ev_loop *loop = w->other;
2858
2859 ev_loop_fork (EV_A);
2860 }
2861}
2862
2863#if 0
2864static void
2865embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2866{
2867 ev_idle_stop (EV_A_ idle);
2868}
2869#endif
2870
2871void
2872ev_embed_start (EV_P_ ev_embed *w)
2873{
2874 if (expect_false (ev_is_active (w)))
2875 return;
2876
2877 {
2878 struct ev_loop *loop = w->other;
2879 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2880 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2881 }
2882
2883 EV_FREQUENT_CHECK;
2884
2885 ev_set_priority (&w->io, ev_priority (w));
2886 ev_io_start (EV_A_ &w->io);
2887
2888 ev_prepare_init (&w->prepare, embed_prepare_cb);
2889 ev_set_priority (&w->prepare, EV_MINPRI);
2890 ev_prepare_start (EV_A_ &w->prepare);
2891
2892 ev_fork_init (&w->fork, embed_fork_cb);
2893 ev_fork_start (EV_A_ &w->fork);
2894
2895 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2896
2897 ev_start (EV_A_ (W)w, 1);
2898
2899 EV_FREQUENT_CHECK;
2900}
2901
2902void
2903ev_embed_stop (EV_P_ ev_embed *w)
2904{
2905 clear_pending (EV_A_ (W)w);
2906 if (expect_false (!ev_is_active (w)))
2907 return;
2908
2909 EV_FREQUENT_CHECK;
2910
2911 ev_io_stop (EV_A_ &w->io);
2912 ev_prepare_stop (EV_A_ &w->prepare);
2913 ev_fork_stop (EV_A_ &w->fork);
2914
2915 EV_FREQUENT_CHECK;
2916}
2917#endif
2918
2919#if EV_FORK_ENABLE
2920void
2921ev_fork_start (EV_P_ ev_fork *w)
2922{
2923 if (expect_false (ev_is_active (w)))
2924 return;
2925
2926 EV_FREQUENT_CHECK;
2927
2928 ev_start (EV_A_ (W)w, ++forkcnt);
2929 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2930 forks [forkcnt - 1] = w;
2931
2932 EV_FREQUENT_CHECK;
2933}
2934
2935void
2936ev_fork_stop (EV_P_ ev_fork *w)
2937{
2938 clear_pending (EV_A_ (W)w);
2939 if (expect_false (!ev_is_active (w)))
2940 return;
2941
2942 EV_FREQUENT_CHECK;
2943
2944 {
2945 int active = ev_active (w);
2946
2947 forks [active - 1] = forks [--forkcnt];
2948 ev_active (forks [active - 1]) = active;
2949 }
2950
2951 ev_stop (EV_A_ (W)w);
2952
2953 EV_FREQUENT_CHECK;
2954}
2955#endif
2956
2957#if EV_ASYNC_ENABLE
2958void
2959ev_async_start (EV_P_ ev_async *w)
2960{
2961 if (expect_false (ev_is_active (w)))
2962 return;
2963
2964 evpipe_init (EV_A);
2965
2966 EV_FREQUENT_CHECK;
2967
2968 ev_start (EV_A_ (W)w, ++asynccnt);
2969 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2970 asyncs [asynccnt - 1] = w;
2971
2972 EV_FREQUENT_CHECK;
2973}
2974
2975void
2976ev_async_stop (EV_P_ ev_async *w)
2977{
2978 clear_pending (EV_A_ (W)w);
2979 if (expect_false (!ev_is_active (w)))
2980 return;
2981
2982 EV_FREQUENT_CHECK;
2983
2984 {
2985 int active = ev_active (w);
2986
2987 asyncs [active - 1] = asyncs [--asynccnt];
2988 ev_active (asyncs [active - 1]) = active;
2989 }
2990
2991 ev_stop (EV_A_ (W)w);
2992
2993 EV_FREQUENT_CHECK;
2994}
2995
2996void
2997ev_async_send (EV_P_ ev_async *w)
2998{
2999 w->sent = 1;
3000 evpipe_write (EV_A_ &gotasync);
3001}
3002#endif
1604 3003
1605/*****************************************************************************/ 3004/*****************************************************************************/
1606 3005
1607struct ev_once 3006struct ev_once
1608{ 3007{
1609 struct ev_io io; 3008 ev_io io;
1610 struct ev_timer to; 3009 ev_timer to;
1611 void (*cb)(int revents, void *arg); 3010 void (*cb)(int revents, void *arg);
1612 void *arg; 3011 void *arg;
1613}; 3012};
1614 3013
1615static void 3014static void
1616once_cb (EV_P_ struct ev_once *once, int revents) 3015once_cb (EV_P_ struct ev_once *once, int revents)
1617{ 3016{
1618 void (*cb)(int revents, void *arg) = once->cb; 3017 void (*cb)(int revents, void *arg) = once->cb;
1619 void *arg = once->arg; 3018 void *arg = once->arg;
1620 3019
1621 ev_io_stop (EV_A_ &once->io); 3020 ev_io_stop (EV_A_ &once->io);
1622 ev_timer_stop (EV_A_ &once->to); 3021 ev_timer_stop (EV_A_ &once->to);
1623 ev_free (once); 3022 ev_free (once);
1624 3023
1625 cb (revents, arg); 3024 cb (revents, arg);
1626} 3025}
1627 3026
1628static void 3027static void
1629once_cb_io (EV_P_ struct ev_io *w, int revents) 3028once_cb_io (EV_P_ ev_io *w, int revents)
1630{ 3029{
1631 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3030 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3031
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1632} 3033}
1633 3034
1634static void 3035static void
1635once_cb_to (EV_P_ struct ev_timer *w, int revents) 3036once_cb_to (EV_P_ ev_timer *w, int revents)
1636{ 3037{
1637 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3038 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3039
3040 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1638} 3041}
1639 3042
1640void 3043void
1641ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3044ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1642{ 3045{
1643 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3046 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1644 3047
1645 if (!once) 3048 if (expect_false (!once))
3049 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3050 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1647 else 3051 return;
1648 { 3052 }
3053
1649 once->cb = cb; 3054 once->cb = cb;
1650 once->arg = arg; 3055 once->arg = arg;
1651 3056
1652 ev_init (&once->io, once_cb_io); 3057 ev_init (&once->io, once_cb_io);
1653 if (fd >= 0) 3058 if (fd >= 0)
1654 { 3059 {
1655 ev_io_set (&once->io, fd, events); 3060 ev_io_set (&once->io, fd, events);
1656 ev_io_start (EV_A_ &once->io); 3061 ev_io_start (EV_A_ &once->io);
1657 } 3062 }
1658 3063
1659 ev_init (&once->to, once_cb_to); 3064 ev_init (&once->to, once_cb_to);
1660 if (timeout >= 0.) 3065 if (timeout >= 0.)
1661 { 3066 {
1662 ev_timer_set (&once->to, timeout, 0.); 3067 ev_timer_set (&once->to, timeout, 0.);
1663 ev_timer_start (EV_A_ &once->to); 3068 ev_timer_start (EV_A_ &once->to);
1664 }
1665 } 3069 }
1666} 3070}
3071
3072#if EV_MULTIPLICITY
3073 #include "ev_wrap.h"
3074#endif
1667 3075
1668#ifdef __cplusplus 3076#ifdef __cplusplus
1669} 3077}
1670#endif 3078#endif
1671 3079

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines